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A B S T R A C T   

The Continuous Strength Method (CSM) is a deformation-based approach to the design of structures that enables 
a continuous, rational and accurate allowance for material nonlinearity (i.e. the spread of plasticity and strain 
hardening). Central to the method is the application of strain limits, determined on the basis of the local slen-
derness of full cross-sections, to define the resistance of a structural member or system. The method can be 
applied to structures formed using different materials (e.g. steel, stainless steel or aluminium) and manufacturing 
processes (e.g. hot-rolled or cold-formed) through the assignment of suitable stress–strain relationships, and can 
be used for steel–concrete composite design and in fire scenarios. In composite construction, the CSM enables a 
more rigorous assessment to be made of the development of strength in the structural system taking due account 
of compatibility between the constituent materials. The design method enables enhancements in structural ef-
ficiency and, unlike traditional approaches, allows the assessment of both strength and ductility (which is 
particularly relevant for high strength steel) demands at the ultimate limit state. For hand calculations, a set of 
straightforward CSM design equations have been developed. Recognising the increasing importance and use of 
advanced analysis (i.e. GMNIA), recent research, summarised herein, has focussed on integration of the CSM 
strain limits into a framework of design by second order inelastic analysis, where the benefits of the method 
become even more substantial. This paper provides a review of the background and recent developments to the 
CSM, including incorporation into design standards. Current and ongoing research to expand the scope of the 
CSM is summarised and recommendations for future work are also set out.   

1. Introduction 

The origins of the Continuous Strength Method (CSM) date back to 
2002 [1], where the deformation-based design concept was developed 
and applied to structural stainless steel elements. In 2008, the name 
‘Continuous Strength Method’ [2] was first introduced to reflect the 
continuity in resistance predictions with varying cross-section slender-
ness, in contrast to the step-wise resistance predictions associated with 
traditional strength-based design, built upon the cross-section classifi-
cation concept. At first, the perceived benefits of the CSM were limited 
merely to improved cross-section capacity predictions, particularly for 
materials with rounded stress–strain curves and a high degree of strain 
hardening. Later, further developments highlighted the breadth of 
applicability of the method and its true potential as a system-level design 
approach. The CSM has now been applied to the design of steel [3–6], 
stainless steel [7–12], aluminium alloy [13–15], reinforced concrete 
[16,17] and composite structures [18–21], as well as steel structures in 
fire [22,23]. Recent attention has been focussed upon extension of the 

CSM to member-level design [24–28] and incorporation of the CSM into 
a framework of design by advanced analysis (i.e. GMNIA) [29–34] and 
into codes of practice; the CSM now features in the AISC Design Guide 
for Structural Stainless Steel (2013) [35], the Fourth Edition of the SCI 
Design Manual for Structural Stainless Steel (2017) [36], the draft Eu-
ropean Standard prEN 1993–1-4 [37] for the design of stainless steel 
structures, the draft European Standard prEN 1993–1-14 [38] for the 
design of steel structures by finite element analysis, the ASCE Specifi-
cation ASCE-8–21 [39] for the design of cold-formed stainless steel 
structures and the AISC Specification AISC 370 [40] for the design of 
hot-rolled and welded stainless steel structures. 

A review of the background, key concepts and components, and 
fundamental design equations of the CSM is presented in this paper. 
Current and ongoing research to expand the scope and range of appli-
cability of the CSM is summarised. Finally, recommendations for future 
work on CSM development are set out to provide insight into what as-
pects need to be explored further and to encourage research to take place 
in these areas. 
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2. Background and CSM key components 

2.1. Background 

The CSM has two key components: (1) a ‘base curve’ that defines the 
limiting strain εcsm for a cross-section (i.e. the deformation capacity) 
based on its local slenderness and (2) a constitutive model that provides 
a suitable representation of the stress–strain relationship of the material. 
The CSM is a ground-up design approach that starts from the analysis of 
cross-sections, but extends to the design of members and frames. The 
two key components of the CSM are described in the following two sub- 
sections of the paper. 

2.2. Deformation capacity (strain limits) 

2.2.1. General 
Since the Continuous Strength Method is a deformation-based design 

approach, it requires the determination of a relationship between the 
maximum limiting strain that a cross-section can endure prior to 
reaching its ultimate capacity and its local slenderness. This relationship 
is equivalent to the process of cross-section classification used in many 
structural metallic design codes, but instead of placing a cross-section 
into a discrete behavioural class, a normalised limiting strain is 
assigned. For slender cross-sections, the limiting strain is below the yield 
strain and there is therefore no benefit in capacity to be gained from the 
spread of plasticity and strain hardening, except in the case of non- 
doubly-symmetric cross-sections that can have limiting strains on the 
compression side less than the yield strain yet experience plasticity and 
strain hardening on the tensile side. For non-slender cross-sections, the 
limiting strain is beyond the yield strain and capacity benefits can be 
derived from the spread of plasticity and strain hardening. The base 
curve for cross-sections comprising flat plates (e.g. I-sections and rect-
angular hollow sections) are described in Section 2.2.2, while circular 
hollow sections (CHS) are considered in Section 2.2.3. 

2.2.2. Base curve – Plated cross-sections 
At the core of the CSM is a base curve, which defines a continuous 

relationship between the deformation capacity of a cross-section and its 
cross-section slenderness λ̄p. The cross-section slenderness is defined by 
λ̄p =

̅̅̅̅̅̅̅̅̅̅̅̅fy/σcr
√ , where fy is the yield strength (or 0.2% proof stress in the 

case of materials with rounded stress–strain curves) and σcr is the elastic 
local buckling stress of the full cross-section. While in traditional design, 
local buckling is generally treated on an element-by-element basis 
through cross-section classification and effective width formulae, in 
reality, a cross-section is an assemblage of plates that interact with one 
another. It is, therefore, more appropriate to consider local buckling on a 
full cross-section basis. The CSM is very much an ally of the Direct 
Strength Method (DSM) [41,42] in this regard, in the sense that the 
susceptibility of cross-sections to local buckling is considered on this full 
cross-section basis, allowing for element interaction; the elastic local 
buckling stress σcr may be determined for the full cross-section either 
using numerical methods, such as the finite strip software CUFSM [43], 
or approximate analytical formulae [44,45]. 

The CSM deformation capacity is defined through the strain ratio 
εcsm/εy, as given by Eqs. (1) and (2) for non-slender and slender cross- 
sections, respectively, 
εcsm

εy

=
0.25

λ̄3.6
p

, but
εcsm

εy

⩽ min

(

Ω,
C1εu

εy

)

for λ̄p ⩽ 0.68 (1)  

εcsm

εy

=

(

1 −
0.222

λ̄
1.05

p

)

1

λ̄
1.05

p

for 0.68 < λ̄p ⩽ 1.60 (2) 

where εcsm is the maximum strain that a cross-section can resist prior 
to failure and εy is the material yield strain equal to fy/E with E being the 
Young’s modulus. In Eq. (1), two upper bounds are placed on the CSM 

strain ratio εcsm/εy; the first limit of Ω defines the maximum tolerable 
level of plastic strains and may be defined on a project by project basis, 
with a recommended value of 15, and the second limit of C1εu/εy, where 
C1 is a coefficient corresponding to the adopted CSM material model as 
described in Section 2.3.2 and εu is the strain at the material ultimate 
tensile strength fu, defines a ‘cut-off’ strain to avoid over-predictions of 
material strength when using the resistance functions developed for 
hand calculations, which are outlined in Section 3. Both Eqs. (1) and (2) 
pass through the identified transition point, i.e. (0.68, 1), ensuring 
compatibility between the CSM base curves for non-slender and slender 
cross-sections. The transition between slender and non-slender plated 
cross-sections occurs at ̄λp = 0.68 [7]. At this slenderness, cross-sections 
fail at the yield load Ny (i.e. determined as the product of the gross cross- 
sectional area A and the material yield strength fy) in compression and 
the elastic moment Mel (for symmetric sections) in bending. Below this 
limit (i.e. for non-slender cross-sections with λ̄p ⩽ 0.68), failure occurs 
beyond the yield strain and benefit can be taken from the spread of 
plasticity and potentially strain hardening. Beyond this limit (i.e. for 
slender cross-sections with λ̄p > 0.68), failure occurs below the yield 
strain. 

A detailed description of the establishment of the CSM base curve is 
presented in [2,7,46,47], while the underpinning experimental data are 
shown in Figs. 1 and 2 for non-slender and slender cross-sections, 
respectively. The collected test data include results for hot-rolled and 
cold-formed steel, stainless steel and aluminium stub columns (in which 
εcsm was determined based on average axial shortening at ultimate load) 
and beams in four-point bending (in which εcsm was determined based 
on average curvature in the uniform moment region at ultimate load). 
The base curve for non-slender cross-sections (λ̄p ⩽ 0.68) was fitted to the 
test data (see Fig. 1), with a single curve (Eq. (1)) applicable to all 
metallic materials, despite the variation in mechanical properties and 
strain hardening characteristics. This response would not necessarily be 
expected based on tangent modulus theory and consideration only of 
elastic critical buckling, but may be explained with reference to the 
metallurgical process of yielding, characterised by the occurrence of a 
series of localised jumps in strain (i.e. slip movements) rather than 
uniform deformation [48], and to the influence of (inelastic) post- 
buckling, where there is a dependency on both the strain hardening 
slope and absolute material strength reserves beyond yield [49,50]. The 
form of the base curve for slender cross-sections (λ̄p > 0.68) (Eq. (2)) is 
the same as the strength curves used in the effective width method of EN 
1993–1-5 [51] (also plotted in Fig. 2) and the DSM [41,42]. 

For structural fire design, higher deformations are expected, and 
indeed tolerated, than at room temperature. Extension of the CSM to the 

Fig. 1. Base curve – relationship between strain ratio and slenderness for non- 
slender cross-sections. 
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design of cross-sections at elevated temperature has been investigated 
by Theofanous et al. [22] and Yun et al. [23]. It was found that the base 
curve at room temperature (Eq. (2)) was also applicable at elevated 
temperatures, provided due account was taken of the reduction in 
strength and Young’s modulus of the material in the determination of 
cross-section slenderness. The CSM was shown to offer improved pre-
dictions of element capacity in fire over existing design methods. 

2.2.3. Base curve - circular hollow sections 
The base curve defining the relationship between deformation ca-

pacity and local slenderness λ̄c for non-slender and slender circular 
hollow sections (CHS) was developed in [2,52–54]. The base curve 
established in [53] is included in prEN 1993–1-4 [37] and given by: 
εcsm

εy

=
4.44 × 10−3

λ
4.5

c

, but
εcsm

εy

⩽ min

(

Ω,
C1εu

εy

)

for λc ⩽ 0.3 (3)  

εcsm

εy

=

(

1 −
0.224

λ
0.342

c

)

1

λ
0.342

c

for 0.3 < λc ⩽ 0.6 (4)  

where 

λc =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

fy

/

σcr,c

√

(5)  

with the elastic buckling stress σcr,c of a CHS under compression, 
bending or combined loading being determined from the classical 
expression of Eq. (6) [55], with further discussion given in [56]: 

σcr,c =
E

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3(1 − ν2)
√

2t

D
(6)  

where t is the thickness of the CHS, D is the outer diameter of the CHS 
and ν is the Poisson’s ratio. 

A revised base curve for CHS and elliptical hollow sections (EHS) 
[57] was developed by Meng et al. [54], as given by Eqs. (7) and (8), to 
account for the different deformation capacities under different loading 
scenarios: 
εcsm

εy

=

(

λ̄0

λ̄c

)B

, but
εcsm

εy

⩽ min

(

Ω,
C1εu

εy

)

for λ̄c ⩽ λ̄0 (7)  

εcsm

εy

=

(

1 −
A

λ̄
0.3

c

)

1

λ̄
0.3

c

for λ̄0 < λ̄c ⩽ 0.6 (8) 

where λ̄0 is the slenderness limit between non-slender and slender 
CHS and EHS, and A and B are coefficients that describe the shape of the 

base curve; λ̄0, A and B are all expressed in terms of a parameter ψ, as 
given by Eqs. (9)-(11), respectively. 
λ0 = 0.43− 0.07((1 + ψ)/2 )2 (9)  

A =
(

1 − λ
0.3

0

)

λ̄
0.3

0 (10)  

B = 2.5+((1 + ψ)/2 )2 (11) 
The parameter ψ describes the ratio between compression and 

bending for CHS and EHS and is defined by Eq. (12), where NEd is the 
design compression load, My,Ed and Mz,Ed are the design bending mo-
ments about the major and minor axis, respectively, and Mel,y and Mel,z 
are the elastic bending moment capacities about the major and minor 
axis, respectively. 

ψ =

NEd

Ny
−

My,Ed

Mel,y
−

Mz,Ed

Mel,z

NEd

Ny
+

My,Ed

Mel,y
+

Mz,Ed

Mel,z

(12) 

Both base curves, alongside the collected test data, are plotted in 
Fig. 3, where N denotes cross-sectional tests in compression (i.e. stub 
column tests) and M denotes cross-sectional tests in bending (beam 
tests). The newer base curve [54] can be seen from Fig. 3 to capture the 
trend of the test data more accurately, and is included in ASCE-8–21 
[39]. There are, however, some test data points that deviate noticeably 
from the trend of the base curve; this may be attributed to the sensitivity 
of the cross-sectional behaviour of CHS to initial local imperfections and 
loading eccentricities. 

2.3. Material models 

2.3.1. General 
Early versions of the CSM adopted the compound Ramberg–Osgood 

model, which can accurately capture the stress–strain response of 
stainless steels, but results in relatively complex resistance equations 
that are inconvenient for hand calculations. Thus, simplified material 
models have been developed and employed throughout the recent 
development of the CSM; the material models used in the CSM resistance 
functions suitable for hand calculations are described in Section 2.3.2. 
For design by second order inelastic analysis, as described in Section 5, 
where internal forces and moments are determined within the analysis 
by numerical integration, more accurate and complex material stress–-
strain models can be easily accommodated; the material models for the 
design of structures by finite element (FE) analysis are introduced in 
Section 2.3.3. 

Fig. 2. Base curve – relationship between strain ratio and slenderness for 
slender cross-sections. 

Fig. 3. Base curve – relationship between strain ratio and slenderness for 
slender and non-slender CHS and EHS. 
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2.3.2. Material models for simplified resistance functions 
To facilitate hand calculations, relatively simple resistance functions 

are required. A quad-linear material model has been established by Yun 
and Gardner [58], to accurately represent the elastic, yield plateau and 
strain hardening characteristics of hot-rolled steels, while a bilinear (i.e. 
elastic, linear hardening) material model has been developed to repre-
sent the strain hardening behaviour of metallic materials with a rounded 
stress–strain response, such as cold-formed steels [59], austenitic and 
duplex stainless steels [7], ferritic stainless steels [60] and aluminium 
alloys [13]. 

The quad-linear material model [58] for hot-rolled steels is illus-
trated in Fig. 4 and described by Eq. (13). In Eq. (13), σ and ε are en-
gineering stress and strain, respectively, εsh is the strain hardening strain 
at which the plastic yield plateau ends and strain hardening initiates and 
Esh is the slope of the first linear hardening region determined as the 
slope of the line passing through two defined points on the stress–strain 
curve (see Fig. 4): the strain hardening point (εsh, fy) and a specified 
maximum point (C2εu, fu). Two coefficients are employed in the quad- 
linear material model: C1 defines the transition point between the first 
and second strain hardening regions and is also included in the CSM base 
curves for non-slender cross-sections (Eqs. (1), (3) and (7)) to avoid 
over-predictions of strength for the adopted resistance functions, and C2 
is used to define Esh in Eq. (14). Predictive expressions for the strain 
hardening strain εsh and the material coefficients of C1 and C2 are given 
by Eqs. (15)-(17), respectively. 

σ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Eε for ε ⩽ εy

fy for εy < ε ⩽ εsh

fy + Esh(ε − εsh) for εsh < ε ⩽ C1εu

fC1εu
+

fu − fC1εu

εu − C1εu

(ε − C1εu) for C1εu < ε ⩽ εu

(13)  

Esh =
fu − fy

C2εu − εsh

for hot-rolled carbon steels (14)  

εsh = 0.1
fy

fu

− 0.055, but 0.015 ⩽ εsh ⩽ 0.03 (15)  

C1 =
εsh + 0.25(εu − εsh)

εu

(16)  

C2 =
εsh + 0.4(εu − εsh)

εu

(17) 

The bilinear (i.e. elastic, linear hardening) constitutive model for 
metallic materials characterised by a rounded stress–strain response 
with no sharply defined yield point, such as cold-formed steels, stainless 
steels and aluminium alloys, is illustrated in Fig. 5 and described by Eq. 
(18). As shown in Fig. 5, the bilinear material model effectively starts at 
the 0.2% off-set plastic strain, and assumes elastic stress–strain 

behaviour up to the yield (i.e. 0.2% proof) strength fy. The slope of the 
elastic region is taken as the Young’s modulus E. Note that the material 
nonlinearity in this region has been accounted for by subtracting 0.2% 
plastic strain from the defined deformation capacity in the development 
of the base curve [2,7,46,47]. Similar to the quad-linear material model, 
the slope of the linear hardening region Esh of the bi-linear model is 
determined as the slope of the line passing through two defined points 
on the stress–strain curve (see Fig. 5): the yield point (εy, fy) and a 
specified maximum point (C2εu, fu). 

To reflect the differing strain hardening characteristics of different 
materials, the slope of the linear hardening region Esh of the bilinear 
material model is determined with reference to the material coefficients 
Ci from Eq. (19) given in Table 1. The strain hardening slope is a function 
of fy, fu and εy, all of which are readily available to a designer, as well as 
εu, which is not typically available to a designer as it is not supplied in 
material specifications, but may be predicted using Eq. (20). Detailed 
information on the derivation of these material coefficients is given by 
Yun et al. [59] and Gardner and Yun [61] for cold-formed steels, Afshan 
and Gardner [7], Bock et al. [60] and Arrayago et al. [62] for stainless 
steels, and Su et al. [13,14] and Yun et al. [63] for aluminium alloys. 

σ =

{

Eε for ε < εy

fy + Esh

(

ε − εy

)

for εy ⩽ ε ⩽ C2εu
(18)  

Esh =
fu − fy

C2εu − εy

(19)  

εu = C3

(

1 −
fy

fu

)

+C4, but εu ⩾ 0.06 for hot-rolled steels (20) 

The bilinear material model is able to capture the essence of the 
strain hardening behaviour to a suitably accurate degree for signifi-
cantly improved strength predictions within the CSM design framework. 
The greatest benefit from strain hardening is derived for those materials 
that exhibit the highest strain hardening slopes (particularly the 
austenitic and duplex stainless steels), though worthwhile capacity ad-
vantages are achieved for all materials. 

Fig. 4. Typical test stress–strain curve and quad-linear material model for hot- 
rolled steels. 

Fig. 5. Typical test stress–strain curve and bilinear (i.e. elastic, linear hard-
ening) constitutive model for materials with a rounded stress–strain response. 

Table 1 
Summary of coefficients for the CSM elastic, linear hardening material model.  

Type of material C1 C2 C3 C4 

Hot-rolled steels Eq. (16) Eq. (17)  0.60 0 
Cold-formed steels 0.40 0.45  0.60 0 
Austenitic and duplex stainless steels 0.10 0.16  1.00 0 
Ferritic stainless steels 0.40 0.45  0.60 0 
Aluminium alloys 0.50 0.50  0.13 0.06  
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2.3.3. Material models for design by finite element analysis 
In design by finite element analysis, member stability checks are 

typically circumvented, and resistances are directly dependent on the 
adopted material model. It is therefore crucial that the stress–strain 
properties are accurately represented. For hot-rolled steels, either the 
quad-linear material model (introduced in Section 2.3.2) or a bilinear 
plus nonlinear hardening model may be used. The former features in 
prEN 1993–1-14 [38] for the design of steel structures using finite 
element analysis, while the latter was proposed by Yun and Gardner 
[58] as an alternative to the quad-linear model to capture the rounded 
strain hardening response after the yield plateau more smoothly, as 
shown in Fig. 6 and expressed by Eq. (21), where εsh and εu are calcu-
lated from the Eq. (15) and (20), respectively.   

The two-stage Ramberg–Osgood material model [61–63] has been 
found to accurately capture the nonlinear stress–strain response of 
metallic materials such as cold-formed steels, stainless steels and 
aluminium alloys. The basic formulation of the two-stage Ram-
berg–Osgood material model is given by Eq. (22), where the nonlinear 
stress–strain curve is divided into two stages: below and above the 0.2% 
proof stress fy. 

ε =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

σ

E
+ 0.002

(

σ

fy

)n

for σ ⩽ fy

σ − fy

E0.2

+

(

εu − ε0.2 −
fu − fy

E0.2

)

(

σ − fy

fu − fy

)m

+ ε0.2 for fy < σ ⩽ fu

(22) 
In Eq. (22), E0.2 is the tangent modulus of the stress–strain curve at 

the 0.2% proof stress, which can be defined by Eq. (23), ε0.2 is the total 
strain at the 0.2% proof stress, equal to 0.002 + fy/E, and n and m are the 
strain hardening exponents, the recommended values of which can be 
found in Gardner and Yun [61] for cold-formed steels, Afshan et al. [64] 
and Arrayago et al. [62] for stainless steels and Yun et al. [63] for 
aluminium alloys. 

E0.2 =
E

1 + 0.002n E
fy

(23)  

3. CSM cross-section resistance functions 

3.1. General 

Within the CSM design framework, cross-section resistance is 
calculated utilising the limiting strain εcsm determined from the CSM 
base curve, in conjunction with the appropriate CSM material model. 
The CSM resistance expressions for cross-sections under compression, 
bending and combined loading are described in the following 
subsections. 

3.2. Compression 

The CSM cross-section compression resistance Ncsm,Rd is determined 
as the product of the gross cross-section area A and the CSM limiting 
stress σcsm, as given by: 

Fig. 6. Typical test stress–strain curve and bilinear plus nonlinear hardening 
model for hot-rolled steels. 

σ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Eε for ε ⩽ εy

fy for εy ⩽ ε ⩽ εsh

fy +
(

fu − fy

)

⎛

⎝0.4

(

ε − εsh

εu − εsh

)

+ 2

(

ε − εsh

εu − εsh

)

/

(

1 + 400

(

ε − εsh

εu − εsh

)5
)1/5

⎞

⎠ for εsh ⩽ ε ⩽ εu

(21)   

Fig. 7. Variation of normalised CSM bending resistance with strain ratio for 
materials with rounded stress–strain curves and different strain hard-
ening slopes. 
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Ncsm,Rd =
Aσcsm

γM0

(24) 

The CSM limiting stress σcsm is calculated by substituting ε = εcsm 
into the appropriate CSM material model (Eq. (13) or (18)) and deter-
mining the corresponding σ = σcsm, and γM0 is the partial safety factor for 
cross-section resistance; it has been shown that values of 1.0 and 1.1 are 
suitable for steel [3,59] and stainless steel [7] and aluminium alloy 
[13,14] design, respectively, allowing the recommended Eurocode 
values of γM0 to be maintained within the CSM design framework. When 
εcsm > εsh for hot-rolled steel cross-sections or εcsm > εy for cold-formed 
steel, stainless steel and aluminium alloy cross-sections, σcsm will be 
greater than the yield strength fy due to the occurrence of strain 
hardening. 

3.3. Bending 

For slender cross-sections (λ̄p > 0.68 or λ̄c > 0.3), the CSM 
bending resistance Mcsm,Rd is given simply by the product of the CSM 
limiting stress σcsm and the elastic section modulus Wel, as given by: 

Mcsm,Rd = σcsm

Wel

γM0

=
εcsm

εy

Welfy

γM0

for εcsm ⩽ εy (25) 

For non-slender hot-rolled steel cross-sections, the CSM bending 
resistance Mcsm,Rd depends upon whether or not strain hardening is 
experienced (i.e. whether or not εcsm > εsh). If εcsm ≤ εsh, the cross- 
section bending resistance Mcsm,Rd is given by Eq. (26), where Wpl is 
the plastic section modulus about the axis of bending, and α is a 
dimensionless coefficient that is equal to 1.2 for I-sections bending about 
the minor axis and equal to 2 for I-sections bending about the major axis 
as well as square, rectangular and circular hollow sections (i.e. SHS, RHS 
and CHS) bending about either principal axis. 

Mcsm,Rd =
Wplfy

γM0

[

1 −

(

1 −
Wel

Wpl

)

/

(

εcsm

εy

)α ]

(26)  

for hot-rolled steel cross-sections with εcsm⩽εsh. 
Eq. (26) captures the partial spread of plasticity, resulting in 

increasing resistance with increasing deformation capacity (i.e. strain 
ratio εcsm/εy). For stockier hot-rolled steel cross-sections, where εcsm >
εsh, some benefit from strain hardening can also be exploited, and the 
CSM cross-section bending resistance is given by Eq. (27): 

Mcsm,Rd =
Wplfy

γM0

[

1 −

(

1 −
Wel

Wpl

)

/

(

εcsm

εy

)α

+ β

(

εcsm − εsh

εy

)2
Esh

E

]

(27)  

for hot-rolled steel cross-sections with εcsm > εsh 

where β is an additional dimensionless coefficient that is equal to 
0.05 for I-sections bending about the minor axis and equal to 0.08 for I- 
sections bending about the major axis and SHS/RHS bending about 
either principal axis. A detailed description of the derivation of Eq. (27) 
can be found in [3]. 

For non-slender cross-sections made of metallic materials with 
rounded stress–strain behaviour, the CSM bending resistance Mcsm,Rd is 
determined from Eq. (28), which is dependent on the cross-sectional 
deformation capacity (i.e. strain ratio εcsm/εy) and the strain hard-
ening slope of the material (i.e. Esh). An example of the variation of the 
normalised CSM bending resistance (i.e. the CSM bending resistance 
Mcsm,Rd normalised by the cross-section plastic bending moment Mpl) 
with strain ratio is shown in Fig. 7 for different strain hardening slopes. 
Bending capacity can be seen to increase smoothly and continuously 
with increasing deformation capacity, with higher resistances obtained 
for the materials that exhibit the higher degrees of strain hardening. 

Mcsm,Rd =
Wplfy

γM0

[

1 +
Esh

E

Wel

Wpl

(

εcsm

εy

− 1

)

−

(

1 −
Wel

Wpl

)

/

(

εcsm

εy

)α ]

(28)  

for cross-sections made of materials with rounded stress-strain behav-
iour with εcsm > εy. 

3.4. Combined loading 

The CSM interaction expressions [4] for the design of cross-sections 
under combined loading are given by Eqs. (29) and (30) for major and 
minor axis bending plus compression, respectively: 

My,Ed ⩽ MR,csm,y,Rd = Mcsm,y,Rd

[

1 −

(

NEd

Ncsm,Rd

)ay
]1/by

(29)  

Mz,Ed ⩽ MR,csm,z,Rd = Mcsm,z,Rd

[

1 −

(

NEd

Ncsm,Rd

)az
]1/bz

(30) 

where NEd is the applied design axial load, MEd is the applied design 
bending moment, Ncsm,Rd and Mcsm,Rd are the CSM cross-section 
compression and bending resistances, respectively, MR,csm,Rd is the 
design CSM bending resistance reduced due to the presence of an axial 
force NEd and ay, az, by and bz are dimensionless interaction coefficients 
that depend on the section type, strain ratio and axis of bending. Note 
that the suffixes ‘y’ and ‘z’ denote bending about the major and the 
minor axis, respectively. 

For biaxial bending plus compression, the following interaction 
equation applies: 
(

My,Ed

MR,csm,y,Rd

)αcsm

+

(

Mz,Ed

MR,csm,z,Rd

)βcsm

⩽ 1 (31) 

where αcsm and βcsm are additional dimensionless interaction co-
efficients. The interaction coefficients for I-sections, SHS and RHS are 
defined in Table 2, where aw and af are the ratios of the cross-section 
web area Aw and flange area Af to the gross area A, respectively, Wr 
= Wpl,y/Wpl,z is the ratio of the major to minor axis plastic section 
moduli and ncsm is the ratio of the design axial load to the CSM cross- 
section compression resistance NEd/Ncsm. Note that all the interaction 
coefficients are taken equal to unity for strain ratios εcsm/εy lower than 
3, which corresponds to cross-sections with λ̄p values higher than 
approximately 0.5 (see Fig. 1), resulting in a linear interaction formula 
for these less stocky cross-sections, as given by Eq. (32). 

NEd

Ncsm,Rd

+
My,Ed

Mcsm,y,Rd

+
Mz,Ed

Mcsm,z,Rd

⩽ 1 (32) 

An example of a normalised comparison between collected test and 
finite element (FE) data for cold-formed steel SHS/RHS under uniaxial 
bending plus compression [59] with the EN 1993–1-1 [65] interaction 
curve, with the traditional ends points of the yield load Ny in compres-
sion and plastic moment capacity Mpl in bending, is shown in Fig. 8. The 
same data, normalised by the CSM end points, are shown in Fig. 9, 
alongside the CSM interaction curve [4]. A dramatic improvement in 
prediction accuracy and reduction in scatter is observed due to the 
rational exploitation of the spread of plasticity and strain hardening. 

It has also been shown that use of the CSM axial and bending re-
sistances as the end points of the existing EN 1993–1-1 [65] interaction 
curves leads to accurate and consistent strength predictions and 
improved economy over traditional design methods. This approach has 
recently been extended to cover the design of stainless steel CHS/SHS/ 
RHS [8–10] and channel sections [11], steel CHS/SHS/RHS [5,54,59] 
and I-sections [6] and aluminium SHS/RHS [66]. 

3.5. Non-doubly symmetric cross-sections 

For non-doubly symmetric sections in bending, in the case where the 
neutral axis is closer to the extreme compressive fibre, although the 
limiting strain in compression may be less than the yield strain, the 
corresponding strains in tension can be significantly larger than the yield 
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strain, resulting in the spread of plasticity and strain hardening. The 
CSM captures this behaviour by first calculating the limiting strain on 
the compressive side of the cross-section εcsm,c from Eq. (1), and then, on 
the assumption of a linearly-varying through-depth strain distribution 
and a determined neutral axis position, finding the corresponding strain 
on the tensile side εcsm,t [12]. The stress distribution is then derived from 
the CSM material model. The CSM strain and stress distributions for a T- 
section, made of materials with rounded stress–strain curves such as 
stainless steels and aluminium alloys, in major axis bending are shown in 
Fig. 10. The CSM cross-section bending moment resistance is then 
determined by integration of the stress distribution throughout the 
cross-section depth. Simplified design equations for mono-symmetric 
and asymmetric stainless steel cross-sections in bending have been 
derived on this basis in [12]. The design approach has been applied to 
stainless steel angle and channel section beams [67] and aluminium 
alloy channel section beams [68], and shown to provide accurate and 
consistent results in comparison to both test and numerical results. 

3.6. Improvements in cross-section capacity predictions 

The benefits derived from the application of the CSM to the predic-
tion of the resistances of cross-sections of different structural materials 
have been shown in previous studies [7–14,53,59,60]; for example, 
average enhancements in capacity over traditional methods of 12% for 
stainless steel in compression and 19% for stainless steel in bending have 
been demonstrated [7]. Furthermore, due to the increased consistency 
and therefore reduction in scatter of the predictions, these enhanced 
strengths can generally be secured in conjunction with the existing 
partial safety factors. 

4. CSM for steel–concrete composite design 

In composite construction, deformation based design enables a more 
rigorous assessment to be made of the development of the strength of the 
structural system taking due account of the compatibility between the 
constituent materials. In this section, recent developments to the 
deformation based CSM for steel and composite design are described. 

Maintaining the basic design philosophy of the CSM, an analytical 
model to calculate the bending capacity of composite beams with full 
shear connection under sagging bending moment (see Fig. 11) has been 
developed [18], allowing for the influence of strain hardening through 
the quad-linear material model for hot-rolled steels [58] as described in 
Section 2.3.2. The analytical model for the scenario where the neutral 
axis lies within the concrete slab, as shown in Fig. 11, and the strain at 
the bottom outer fibre of the steel section reaches the strain hardening 
strain εsh, is outlined herein. The CSM design procedure is as follows: 

(1) Determine the neutral axis position ycsm,c, as shown in Fig. 11, 
assuming that concrete crushing governs the failure (i.e. the maximum 
outer fibre strain in the concrete slab reaches the limit of the assumed 
concrete failure strain of 0.0035) by solving the quadratic Eq. (33). 
By2

csm,c +Cycsm,c +D = 0 (33) 
in which the coefficients B, C and D are given by Eqs. (34)-(36), 

respectively. 

B = 0.85fcdbeff −
0.0035

2
twEsh

(

1 +
εsh

0.0035

)2 (34)  

C = 0.0035Esh

(

1 +
εsh

0.0035

)

[

bf tf + tw(hc + ha)
]

− fyAa (35)  

D = − 0.0035Esh(hc + ha)
[

bf tf +
tw

2
(hc + ha)

]

(36) 

Fig. 8. Capacity comparison between test/FE results and EC3 interaction 
expression for Class 1 and 2 cold-formed steel SHS/RHS under uniaxial bending 
plus compression [59]. 

Fig. 9. Capacity comparison between test/FE results and CSM interaction 
expression for cold-formed steel SHS/RHS with λ̄p ⩽ 0.5 under uniaxial bending 
plus compression [59]. 

Table 2 
CSM interaction coefficients for cross-sections under combined loading.   

I-sections SHS and RHS  
3 ≤ εcsm/εy < 5 5 ≤ εcsm/εy ≤ 15 3 ≤ εcsm/εy ≤ 15 

ay aw + 1.2 
by 0.8 
az 2 8aw + 1.2 aw + 1.2 
bz 1 0.8–0.5aw 0.8 
αcsm 2 – 1.5ncsm ≥ 1 2 + 0.15Wr − 5ncsm1.5 ≥ 1.3 1.75 + Wr(2ncsm2 − 0.15) ≤ 1.7 + Wr 
βcsm 0.8 + 5ncsm2.2 ≤ 4 0.8 + (15 − Wr)ncsm2.2 ≤ 8 1.6 + (3.5 – 1.5Wr)ncsm2 ≤ 3.7 − Wr  
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where fcd is the design concrete (cylinder) compressive strength, beff 
is the effective width of the concrete slab, tw and tf are the web and 
flange thickness of the steel beam, respectively, bf is the flange width of 
the steel beam, ha and hc are the depth of the steel beam and the concrete 
slab, respectively, and fy and Aa are the yield strength and cross- 
sectional area of the steel section, respectively. 

(2) Determine the neutral axis position ycsm,a assuming that steel 
failure governs the deformation capacity (i.e. the strain at the outer fibre 
of the steel section reaches the limiting strain of 15εy) by Eq. (37). 

ycsm,a=
fyAa+Esh

(

15εy−εsh

)

bf tf +(Esh/2)
(

15εy−εsh

)

tw(hc+ha)
(

1−εsh

/

15εy

)

0.85fcdbeff +(Esh/2)
(

15εy−εsh

)

tw

(

1−εsh

/

15εy

)

(37) 
(3) Calculate the corresponding limiting curvatures κcsm,c and κcsm,a 

for concrete failure mode and steel failure mode, respectively: 

κcsm,c =
0.0035

ycsm,c

(38)  

κcsm,a =
15εy

hc + ha − ycsm,a

(39) 

The critical curvature κcsm is identified as the lower value of κcsm,c 
and κcsm,a. 

(4) Determine the moment capacity Mcsm,c,Rd of the composite sec-
tion using the critical κcsm and its corresponding neutral axis position 
ycsm, as given by Eq. (40). 

Mcsm,c,Rd =
(

fcsm − fy

)

bf tf

(

hc + ha −
ycsm

2

)

+ fyAa

(

hc +
ha

2
−

ycsm

2

)

+
tw

12

(

fcsm − fy

)

(

hc + ha −
εsh

κcsm

− ycsm

)[

4(hc + ha) + 2
εsh

κcsm

− ycsm

]

(40) 

The moment capacities obtained from the developed analytical 
method have been compared against a series of experimental results 
collected from the literature on composite beams with full shear 
connection [18]. The CSM has been shown to provide more accurate 
predictions of test capacities than the current approach given in EN 
1994–1-1 [69], with an average enhancement in resistance of 5% being 
achieved primarily through the exploitation of strain hardening. For 
composite beams with partial shear connection, a tentative approach 
utilising the CSM bending resistance of the bare steel section Mcsm,Rd 
(see Eqs. (26) and (27)) and the proposed bending resistance of the 
composite beam with full shear connection Mcsm,c,Rd (see Eq. (40)) has 
been proposed on the basis of numerical investigations [18]. 

The scope of the CSM for composite structures has been extended in 
recent research to the design of composite beams under hogging bending 
moments [19]. Developments to the CSM in the areas of both stainless 
steel reinforced concrete beams [16,17] and stainless steel–concrete 
composite beams [20] have also been carried out. Further experimental 
and analytical research in this area is currently underway. 

Fig. 11. Strain and stress distribution for a composite beam with full shear connection.  

Fig. 10. Application of the CSM to non-doubly symmetric sections subjected to bending.  
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5. Design by advanced inelastic analysis with CSM strain limits 

5.1. General 

The design of metallic structures is conventionally founded on a two- 
step process whereby the internal forces and moments are first deter-
mined through a simplified structural analysis (e.g. first or second order 
elastic analysis), then a series of strength and stability checks are carried 
out on the individual members. For improved design efficiency, system- 
level advanced analysis, featuring the incorporation of both geometric 
and material nonlinearities, as well as initial imperfections, can be used. 
In such an approach, the erosion of stiffness due to buckling and plas-
ticity is explicitly modelled, and consequently the distribution of inter-
nal forces and moments within a structure are accurately determined, 
and frame and member stability effects are directly captured [70]. 
Advanced structural analysis is commonly carried out using beam finite 
elements for ease of use and computational efficiency. However, beam 
finite elements are unable to capture cross-section local buckling 
behaviour; thus, in current practice (e.g. EN 1993–1-1 [65]), cross- 
section checks based on the concept of cross-section classification are 
required. However, the codified treatment of local buckling (i) leads to 
artificial steps in resistance predictions, (ii) ignores the beneficial effect 
of strain hardening for compact cross-sections, (iii) fails to accurately 
account for the spread of plasticity in Class 3 (semi-compact) sections 
and (iv) fails to capture the beneficial effect of bending moment gradi-
ents along member lengths on local cross-section stability. Additionally, 
classification is based upon the most slender plate element within the 
cross-section thereby neglecting the beneficial interaction between the 
individual plate elements of the cross-section during local buckling. 
With the aim of overcoming these drawbacks resulting from the concept 
of cross-section classification, a more consistent design approach has 
been developed [29–34], whereby the CSM strain limits are used to 
simulate the influence of local buckling in a second order inelastic 
analysis using beam elements. This method has been included in AISC 
370 [40] for stainless steel design and is due for inclusion in prEN 
1993–1-14 [38] for hot-rolled steel, cold-formed steel and stainless steel 
design. The key aspects of the design method are summarised in Section 
5.2, while two illustrative examples are provided in Section 5.3. 

5.2. Key aspects of design by advanced inelastic analysis with CSM strain 
limits 

In this design approach, beam elements are employed to perform an 
advanced inelastic analysis, i.e. a geometrically and materially 

nonlinear analysis with imperfections (GMNIA). The ultimate resistance 
of a member or structure is then determined from the GMNIA as the first 
to occur of (1) the load at which the average strain across the cross- 
section elastic local buckling half-wavelength (described later) reaches 
the corresponding CSM limit strain, or (2) the peak load, after which the 
load–deformation response decreases. The full material stress–strain 
behaviour i.e. sharply defined yielding for hot-rolled steel [58] and a 
rounded response for cold-formed steel [61], stainless steel [62,64] and 
aluminium [63] should be appropriately modelled, and account should 
be taken for both initial geometric imperfections and residual stresses. 
Residual stresses can either be introduced explicitly or through equiv-
alent bow imperfections that allow for the combined effects of geometric 
imperfections and residual stresses. Equivalent bow imperfections for 
design by GMNIA have been derived for flexural buckling [71], lateral- 
torsional buckling [72] and combined loading [73] and are included in 
prEN 1993–1-14 [38]. 

The CSM strain limits should be applied to all cross-sections in the 
structure, and are determined using the CSM base curve, given by Eqs. 
(1) and (2) when a material model with a sharply-defined yield point (e. 
g. hot-rolled steel) is used, and Eqs. (41) and (42) when a rounded 
material model (e.g. the two-stage Ramberg–Osgood model for cold- 
formed steels, stainless steels and aluminium alloys) is used, where σ 

is the maximum compressive stress [29]. The latter CSM base curve 
equations compensate for the 0.2% strain offset that was subtracted 
from the cold-formed steel, stainless steel and aluminium data in the 
derivation of the CSM base curve and material model (see Section 2.3.2). 
εcsm

εy

=
0.25

λ
3.6

p

+
0.002

εy

but
εcsm

εy

⩽ Ω, for λp ⩽ 0.68 (41)  

εcsm

εy

=

(

1 −
0.222

λ
1.05

p

)

1

λ
1.05

p

+
0.002

(

σ
/

fy

)n

εy

, for 0.68 < λp ⩽ 1.0 (42) 

The beneficial effect of strain gradients (generally resulting from 
local moment gradients) on the local stability of cross-sections, i.e. the 
ability of the less heavily loaded cross-sections to provide some support 
in resisting local buckling to the adjacent critical cross-section, have 
been previously recognised [74–76]. To account for this beneficial ef-
fect, a strain averaging approach has been developed and implemented 
into design by advanced analysis [29–34]. The strain averaging 
approach requires the CSM strain limit εcsm to be applied to an averaged 
compressive strain εEd,Lb across the local buckling half-wavelength Lb,cs 
(see Fig. 12) rather than the maximum compressive strain along the 
length of a member. The elastic local buckling half-wavelength Lb,cs can 
be obtained numerically e.g. using the finite strip method software 

Fig. 12. Bending moment diagrams (BMD), strain distributions and typical locations of Lb,cs for (a) a beam without web stiffeners and (b) a beam with a 
web stiffener. 
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CUFSM [43] or through explicit formulae [77] based on the first order 
internal force distribution. All cross-sections must be checked; however, 
the critical cross-section is often easy to identify, e.g. that subjected to 
the highest bending moment Mmax, as shown in Fig. 12(a). For structural 
members with stiffeners, local buckling is constrained within the vi-
cinity of the stiffener and hence Lb,cs is located to either side of the 
stiffener; typically the side with the shallower moment gradient will 
govern (see Fig. 12(b)) [30]. Note that in the calculation of the averaged 
strain εEd,Lb, only the beam elements that lie wholly within the averaging 
length Lb,cs should be considered. 

In cases of high shear force and/or torsion, allowance needs to be 
made to account for the adverse influence on the bending capacity. In 
this design method, the influence of the interaction between bending, 
shear and torsion is accounted for by applying a reduced strain limit εcsm, 
V [30,34]. As an example, for I-sections under combined bending and 
shear, the reduced strain limit εcsm,V is given by Eq. (43), where ρy and ρz 
are the reduction factors ranging from 0 to 1.0 to allow for the influence 
of high vertical and lateral shear, as given by Eqs. (44) and (45), 
respectively, μy,fl is given by Eq. (46) and μz,w is the ratio of the cross- 
section minor axis bending moment resistance determined neglecting 
the presence of the flanges Mw to the elastic minor axis bending resis-
tance of the full cross-section Mel,z. Note that μz,w is negligible for I- 
sections since Mw ≈ 0. 
εcsm,V = εcsm − ρy

(

εcsm − μy,flεy

)

− ρz

(

εcsm − μz,wεy

) (43)  

ρy =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 for
Vy,Ed

Vy,Rk

⩽ 0.5

(

2Vy,Ed

Vy,Rk

− 1

)2

for
Vy,Ed

Vy,Rk

> 0.5

(44)  

ρz =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 for
Vz,Ed

Vz,Rk

⩽ 0.25

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(

Vz,Ed

Vz,Rk

)2
√

for 0.25 <
Vz,Ed

Vz,Rk

< 1.0

1 for
Vz,Ed

Vz,Rk

= 1.0

(45) 

where Vy,Ed and Vz,Ed are the design value of shear forces and Vy,Rk 
and Vz,Rk are the cross-section shear resistances, taken as the plastic 
cross-section shear resistances. 

μy,fl =
btf

(

h − tf

)

fy

Mel,y

(46) 

Note that separate cross-section shear capacity and shear buckling 
checks are also required, which can be carried out using the relevant 
provisions of EN 1993–1-1 [65] and EN 1993–1-5 [51]. 

An overview of how the key structural phenomenon are treated in 
the described design method i.e. design by GMNIA with CSM strain 
limits and the traditional design methods provided in EN 1993–1-1 [65] 
for steel members and frames has been presented by Fieber et al. [31] 
and is summarised in Table 3. The comparisons highlight the advantages 
of using the advanced CSM-based design approach, with a more 

Table 3 
Overview of treatment of key structural phenomena in EN 1993–1-1 [65] and design by GMNIA with CSM strain limits [30].   

Design method  
EN 1993–1-1 [65] GMNIA using beam elements with CSM 

strain limits  Elastic design Plastic design 
Global analysis* LA GNA GNIA MNA GMNA GMNIA GMNIA 

Frame imperfections Imperfect geometry or equivalent horizontal 
forces (EHF) 

Imperfect geometry or equivalent 
horizontal forces (EHF) 

Imperfect geometry or equivalent horizontal 
forces (EHF) 

Member imperfections Member 
buckling 
checks 

Equivalent imperfections Member 
buckling checks 

Equivalent 
imperfections 

Equivalent imperfections 

Local imperfection and local buckling Cross-section classification; effective width 
method for Class 4 cross-sections 

Cross-section classification; plastic 
analysis limited to structures with Class 1 

cross-sections 

Strain limits 

P - Δ effects (frame buckling) Ignored if 
αcr ≥ 10; 
Otherwise 
approx. 
methods 

Global analysis Ignored if αcr ≥
15; Otherwise 

approx. 
methods 

Global analysis Global analysis 

P - δ effects (member buckling) Member 
buckling 
checks 

Global analysis + cross- 
section checks 

Member 
buckling checks 

Global analysis Global analysis 

Moment gradient effect on member 
stability 

Member 
buckling 
checks 

with Cm 
factors 

Global analysis Member 
buckling checks 
with Cm factors 

Global analysis Global analysis 

Moment gradient effect on local 
stability 

Ignored Ignored Strain averaging approach 

Force/moment redistribution due to 
member buckling 

Ignored Captured in global analysis Ignored Captured in global 
analysis 

Captured in global analysis 

Force/moment redistribution due to 
material yielding 

Ignored Captured in global analysis Captured in global analysis and controlled 
by CSM strain limits 

Spread of plasticity Ignored in analysis, approximated in design 
checks for Class 1 and 2 cross-sections 

Captured in global analysis using elastic, 
perfectly plastic material model 

Captured in global analysis and controlled 
by CSM strain limits 

Strain hardening Ignored Ignored Material model with strain hardening 
*Different analysis types: (i) linear elastic analysis (LA), (ii) geometrically nonlinear analysis (GNA), (iii) geometrically nonlinear analysis with imperfections (GNIA), 
(iv) first order materially nonlinear analysis (MNA), (v) geometrically and materially nonlinear analysis (GMNA), (vi) geometrically and materially nonlinear analysis 
with imperfections (GMNIA). 
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consistent, rational and systematic treatment of local buckling, material 
nonlinearity, strain hardening and the influence of local moment gra-
dients. This has been further demonstrated in a number of studies 
[29,30,32–34] showing that design by GMNIA with CSM strain limits 
enables accurate predictions of the resistance of structures while 
allowing for the structural failure mechanism to be clearly visualised. 
More details on the treatment of the interaction between bending, shear 
and torsion and some key aspects of the FE modelling in the framework 
of design by GMNIA can be found in [30,34]. 

5.3. Illustrative examples 

In this subsection, the application of the method of design by GMNIA 
with CSM strain limits is illustrated with reference to a simply-supported 
hot-rolled steel beam subjected to four-point bending and a two-span 
stainless steel continuous beam. 

5.3.1. Hot-rolled steel I-section beam 
Fig. 13 presents the normalised moment-strain responses of a 4.5 m 

simply-supported IPE 220 beam subjected to four-point bending ob-
tained from shell and beam FE models. Note that in the FE models, only 

Fig. 13. Illustrative example of design by GMNIA with CSM strain limits on a simply-supported IPE 220 S355 steel beam subjected to four-point bending.  

Fig. 14. Illustrative example of design by GMNIA with CSM strain limits on a two-span austenitic stainless steel continuous beam subjected to mid-span point 
loads [29]. 
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in-plane behaviour is considered and out-of-plane restraints were pro-
vided to prevent lateral-torsional buckling. As shown in Fig. 13, the 
benchmark shell FE model undergoes a degree of plasticity and strain 
hardening before reaching a peak bending moment of Mu,shell = 1.06Mpl. 
Failure, caused by inelastic local buckling of the compression flange at 
the critical cross-section is explicitly captured by the shell FE model. The 
beam FE model, on the other hand, is unable to capture cross-section 
failure and hence no peak load arises in the GMNIA. However, cross- 
section failure is accounted for in the developed design method 
through the application of the CSM strain limit, with failure defined as 
the point at which the average compressive strain at any cross-section in 
the system reaches the CSM strain limit. Note that, in the present 
example, there is uniform bending moment in the critical mid-span re-
gion of the beam; hence, there are no moment gradient effects, and the 
average compressive strain εEd,Lb across the critical local buckling half- 
wavelength is the same as the maximum compressive strain at the 
critical cross-section. The normalised CSM strain limit εcsm/εy for an IPE 
220 made of grade S355 steel under pure bending is 10.5 (calculated 
using Eq. (1), where the cross-section slenderness λ̄p = 0.35, based on 
an elastic critical buckling stress of σcr,cs = 2837 MPa, calculated using 

the formulae given in [45]). Application of this strain limit to the beam 
element GMNIA results in a resistance prediction Mu,beam = 1.04Mpl, 
which is close but on the safe side of the shell FE model prediction, while 
providing a 4% increase in capacity over the EN 1993–1-1 [65] resis-
tance prediction of Mpl. 

5.3.2. Stainless steel I-section continuous beam 
With increasing indeterminacy, which is typically associated with 

more complex structural systems, the benefits of performing design by 
GMNIA with CSM strain limits tend to increase; while at member level, 
the CSM strain limits capture the beneficial effects of the spread of 
plasticity, strain hardening and local moment gradients, at system level, 
the strain limits also control the degree of permissible moment redis-
tribution due to plastification and instability. In traditional design, the 
permitted level of plastic moment redistribution is very crudely deter-
mined based on the classification of the cross-section – in structures 
composed of Class 1 cross-sections, full moment redistribution is 
allowed, while for Class 2 (or higher) cross-sections, no moment redis-
tribution is allowed. 

Fig. 14 shows the load-end rotation responses of a two-span 

Table 4 
State of Continuous Strength Method development.  

Topic Details Research Status Reference   
Existing Ongoing Needed  

Material modelling Hot-rolled steel ✓   [58] 
Cold-formed steel ✓   [59] 
Stainless steel ✓   [7,60] 
Aluminium ✓   [13,63] 
High strength steel ✓  ✓ [58,61] 
Elevated temperature ✓  ✓ [23] 

CSM for cross-section design SHS/RHS under compression/bending/combined loading ✓   [1–5,7,9,10,13,14,60,66,79–82] 
CHS/EHS1/SOHS2/FOHS3 under compression/bending/combined loading ✓  ✓ [8,53,79–86] 
I-/Channel/Angle/T-sections under compression/bending/combined 
loading 

✓  ✓ [3,6,11,12,67,68,87–92] 

Additively manufactured cross-sections under compression/bending/ 
combined loading 

✓ ✓ ✓ [93,94] 

Slender cross-sections under compression/bending/combined loading ✓  ✓ [53,79,80,95–97] 
Cross-sections in shear or torsion ✓  ✓ [98–100] 
Stiffened cross-sections ✓  ✓ [101] 
Perforated cross-sections ✓ ✓ ✓ [100,102–105] 
Cross-sections under concentrated transverse load  ✓ ✓  

CSM for member design Flexural buckling of SHS/RHS columns ✓ ✓ ✓ [25,106,107] 
CHS/SHS/RHS/I-section Beam-columns ✓ ✓ ✓ [26,28,108–110] 
Lateral/Lateral-torsional buckling of uniform/tapered structural 
components 

✓ ✓ ✓ [24] 

Distortional buckling e.g. for lipped channels   ✓  

CSM for composite design Composite beams under sagging bending moment ✓   [18] 
Composite beams under hogging bending moment ✓   [19] 
CFRP-strengthened concrete-filled stainless steel tubular stub columns ✓  ✓ [21] 
Steel-reinforced concrete beams ✓ ✓ ✓ [16,17] 
Concrete-filled steel tubular elements ✓ ✓ ✓ [111,112] 
Bamboo composite tubes ✓ ✓ ✓ [113] 

CSM for design by advanced 
analysis 

SHS/RHS/I-section structural members under compression/bending/ 
combined loading 

✓  ✓ [29,30,34] 

Continuous beams/frames with I-section or SHS/RHS profiles ✓  ✓ [31,32,114–117] 
Flexural/lateral-torsional buckling of web-tapered steel I-section members ✓ ✓ ✓ [33] 
Advanced analysis to high strength/stainless steel frames made of 
tapered/uniform members  

✓ ✓  

CSM for connections Aluminium/stainless steel T-stubs ✓ ✓ ✓ [15,119] 
Stainless steel staggered bolted connections in tension ✓ ✓ ✓ [120] 

CSM for fire design Cross-sections under compression/bending ✓  ✓ [22,118] 
Cross-sections under combined loading ✓  ✓ [23] 
Beam-columns  ✓ ✓  

Lateral/lateral-torsional buckling of uniform/tapered structural 
components   

✓  

CSM for seismic design Cold-formed stainless steel RHS beams ✓ ✓ ✓ [121] 
Seismic design of cross-sections, members and systems   ✓  

Table notes: 1. EHS = elliptical hollow sections. 2. SOHS = semi-oval hollow sections. 3. FOHS = flat-oval hollow sections. 
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austenitic stainless steel W14×82 continuous beam obtained from shell 
and beam FE models. Note that in the FE models, only in-plane behav-
iour is considered and out-of-plane restraints were provided to prevent 
lateral-torsional buckling. The bending moment and normalised 
maximum compressive strain distributions at failure determined from 
the beam FE GMNIA are also shown in Fig. 14. The considered W14×82 
cross-section has a local buckling half-wavelength Lb,cs equal to 500 mm 
(determined from the finite strip software CUFSM [43]), a cross-section 
slenderness λ̄p equal to 0.31 (determined from the finite strip software 
CUFSM [43]) and a corresponding CSM strain limit εcsm/εy of 15 
(determined from the CSM base curve, see Eq. (32)). 

It can be seen from the normalised maximum compressive strain 
distribution that there are three potential failure regions, Lb,cs1, Lb,cs2 
and Lb,cs3, within each span of the continuous beam, with the length of 
each potential failure region equal to the local buckling half-wavelength 
of 500 mm. The average compressive strains at failure across the three 
potential failure regions, εEd,Lb,1, εEd,Lb,2 and εEd,Lb,3, are also shown in 
Fig. 14. It is observed that while the peak strain occurs at the location of 
the internal support (i.e. Lb,cs3), the moment gradient is very steep (and 
hence beneficial) at this point. The critical cross-section is found to arise 
at the location of the point loads (i.e. Lb,cs1), where the peak strain is 
lower, but the moment gradient is shallower and hence less beneficial. 
This critical location corresponds to the point of failure observed in the 
corresponding shell FE model. Design by GMNIA using beam elements 
with the CSM strain limit εcsm/εy = 15 for this continuous beam results in 
a system resistance prediction that is close to but on the safe side of the 
shell FE model prediction, while providing a 32% increase in capacity 
over EN 1993–1-4 [78]. Design by second order inelastic analysis allows 
the structural failure mechanism to be accurately captured and visual-
ised, and has been shown to provide consistent capacity predictions for a 
wide range of steel and stainless steel members and structural systems 
[29–34]. 

6. Summary and outlook 

6.1. Summary of CSM development 

A summary of the current state of developments of the CSM is pre-
sented in Table 4. The CSM developments are categorised into seven 
major groups: material modelling, design of cross-sections, design of 
members, design of composite structures, design by advanced analysis, 
connection design, fire design and seismic design. The status of each 
different research topic is described in Table 4 as existing, ongoing or 
needed, depending on whether the research topic has been addressed in 
the literature, is known to the authors as being conducted or is consid-
ered to be important for further development, respectively. In addition, 
the most relevant references for each topic are selected and provided in 
Table 4 for interested readers. 

6.2. Outlook 

Although extensive research has been carried out on the develop-
ment and expansion of the CSM for steel and steel-composite design, 
there remains a number of areas where further research is required, as 
identified in Table 4. Selected topics are described in this section to 
provide researchers with a view on what is needed for further devel-
opment of the CSM. 

Accurate constitutive modelling is a key feature of any advanced 
analysis or design method, including the CSM. Material models for hot- 
rolled steel [58], cold-formed steel [61], stainless steel [62,64] and 
aluminium [63] have been established based on extensive datasets of 
experimental stress–strain curves collected from the literature. Howev-
er, there are only a relatively limited number of tensile coupon test re-
sults on high strength steel reported in the literature; thus additional test 
data on high strength steel are required to verify and potentially 

improve current models. Further experimental data are also needed at 
elevated temperatures and high strain rates [122]. 

The CSM design of non-slender cross-sections has been systemati-
cally studied, while the design method for slender cross-sections, 
considering the influence of element interaction on post-local buckling 
behaviour, merits further investigation. Moreover, despite some existing 
research on cross-sections in shear [98], a systematic study on cross- 
sections under combined shear and bending is lacking. Significant 
work also remains to be done on extending the CSM to the design of 
cross-sections under concentrated transverse loads, as well as cross- 
sections manufactured using new techniques, such as wire arc additive 
manufacturing [123,124]. 

Research into the application of the CSM to the design of members 
has shown significant promise in the case of stainless steel [25,26]. 
Further studies are required to extend the initial research to members of 
different cross-section types and materials. Other buckling modes, 
including distortional buckling, lateral-torsional buckling and torsional- 
flexural buckling also require attention. 

Extension of the CSM to the design of concrete-filled steel tubular 
(CFST) members has been explored [125], but requires further research. 
Compared with empty steel tubular sections, local buckling is inhibited 
in concrete-filled specimens due to the presence of the concrete. By 
allowing for the influence of the concrete infill on the local buckling 
stress and hence slenderness of the steel section, the CSM failure strain of 
the steel tube can be obtained from the base curve. This can be used to 
assess compatibility with the concrete failure strain, predict the failure 
mode and hence determine the resistance of the composite cross-section. 
Strain-based design of CFST members is considered to be a topic with 
substantial potential for research and impact on practice. Composite 
construction featuring other combinations of materials, such as steel and 
timber [126] is also considered to be an area of fruitful research, 
including the establishment of CSM-based design criteria. 

A number of researchers have explored the CSM design of indeter-
minate structures [31,32,114–117], including through design by 
GMNIA using beam elements with CSM strain limits [29–34]. Design by 
GMNIA with CSM strain limits has been extensively verified for 
continuous beams and plane frames made of normal strength steel and 
stainless steel but requires further research for three-dimensional 
frames, trusses, structures at elevated temperatures and under seismic 
loading, as well as composite structures and structures composed of 
different materials. 

Work performed in [15,118,120] demonstrates the possibility to 
extend the CSM to the design of steel connections. For connections made 
of hardening materials, the ultimate bending moment resistances of the 
plastic hinges can substantially exceed their plastic bending moments. 
Through application of the CSM to determine the ultimate resistance of 
hardening plastic hinges, the accuracy of resistance predictions can be 
significantly improved through the explicit consideration of strain 
compatibility and hence the rational exploitation of the spread of plas-
ticity and strain hardening. Further work is needed in this area. 

A number of studies into the development and assessment of the CSM 
for the design of steel cross-sections at elevated temperatures 
[22,23,118] have been carried out. Further research is required to 
extend the CSM to cover steel cross-sections subjected to thermal gra-
dients and steel members at elevated temperatures. The potential to use 
the CSM to consider combinations of mechanical and thermal loading 
through a rational strain-based approach should be explored. Applica-
tion of the CSM to structures composed of other materials should also be 
investigated. In addition to fire, another extreme loading condition is 
that corresponding to seismic actions, where the importance of ductility 
and failure mode control [127,128] is well known. Owing to its explicit 
consideration of deformations, there is potential for the CSM to be 
expanded to consider cross-section failure under an accumulation of 
plastic strains, thereby predicting the structural response and ultimately 
inelastic local buckling and fracture from low cycle fatigue; an initial 
study presented in [121] shows promising results. 
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Finally, work is needed in developing authoritative supporting 
guidance documents, worked examples and training on the CSM, to 
promote its wider use among designers and manufacturers. Overall, 
although the CSM now features in a number of international design 
standards, as outlined in this section, there remains considerable scope 
for refinement, development and expansion with the aim to bring 
greater efficiency to structural design, thus leading to more sustainable 
construction. 

7. Conclusions 

The Continuous Strength Method (CSM) is a deformation-based 
structural design approach in which cross-section failure is defined 
based on strain limits. A review of the background, development and 
current status of the CSM has been presented herein. The CSM allows for 
a rational exploitation of the spread of plasticity, strain hardening and 
moment redistribution. The limiting strain that a cross-section can 
endure is determined, as a function of cross-section slenderness, from 
the CSM base curve; this replaces the notion of cross-section classifica-
tion. The limiting strain is then used in conjunction with simplified CSM 
material models, the strain hardening modulus of which varies to reflect 
the degree of strain hardening of the considered material (i.e. hot-rolled 
steel, cold-formed steel, stainless steel or aluminium), to determine the 
cross-section resistance under the applied loading conditions – 

compression, bending or combined loading. Application of the CSM is 
performed through straightforward hand calculations, and significant 
benefits in terms of accuracy of resistance predictions and reduction in 
scatter are achieved. In addition to the design of conventional metal 
structural elements, the CSM has been applied to connection design, 
composite structures, structures in fire and reinforced concrete struc-
tures. The strain based design approach has also been integrated into the 
framework of design by advanced analysis (GMNIA), where more so-
phisticated material models are used, and yet further benefits arise. 

The CSM has been formally adopted in the North American and 
European design codes for stainless steel structures [35–37,39,40] and 
in the new Eurocode (EN 1993–1-14) for the design of steel structures by 
finite element analysis [38]. Further developments to the CSM are 
ongoing and, although much has been achieved, there remains consid-
erable scope for further research and wider application in practice. 
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