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 
 

 
Abstract—Precision fertilisation is crucial to agricultural 

system, which enables to balance soil nutrients, save fertiliser, 

reduce emissions, and increase crop yield productivity. Due to the 

low-level sensor and network technologies on most farms, it is 

difficult to acquire diverse and comprehensive agricultural data. 

Hence, the absence of agricultural data becomes a major obstacle 

to the applications of machine learning techniques in precision 

fertilisation. In this work, we investigate a newly acquired 

real-world agricultural dataset collected from four genuine winter 

wheat farms in the United Kingdom, which covers various sorts of 

agricultural information, such as climate, soil nutrients, and crop 

yield. To deal with the spatio-temporal characteristics of the 

agricultural dataset, we propose a novel multi-task learning 

(MTL) approach that utilises a tensor created from original data 

to efficiently predict the amount and timing of base fertiliser and 

topdressing. Specifically, the agricultural measurements (such as 

climatic data, soil nutrients, etc.) are encoded into a 

three-dimensional tensor, and tensor decomposition is utilised to 

extract a series of interpretable temporal and spatial latent factors 

from the raw data. The latent factor is then utilised as a multi-task 

relationship to train the spatio-temporal tensor prediction model. 

The temporal latent factor can be regarded as a temporal pattern 

shared by different farms on the fertilisation operation of the 

same crop, and the spatial latent factor can be regarded as the 

influence of different farm locations on the fertilisation operation 

of the same crop. Extensive experiments are carried out to 

evaluate our proposed method utilising the real-world 

agricultural dataset, in comparison to the standard regression 

models. Results show that our proposed method provide superior 

accuracy and stability in fertilisation prediction. Moreover, we 

have constructed a precision fertilisation system that integrates 

the proposed algorithm and multi-dimensional agricultural data 

to assist farms in achieving intelligent, precise and personalised 

farm management and fertilisation decisions. 
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I. INTRODUCTION 

USTAINABLE fertiliser management and reducing 
farming emissions have become high priority agricultural 

issues in recent decades. The excessive use of chemical 
fertilisers and pesticides is causing damage to the soil and 
ecosystem, as well as hazards to human health (Sharma and 
Singhvi, 2017). Many countries have given strong support for 
innovating artificial intelligence (AI) assisted smart farming 
technologies to enhance production and reduce emissions. For 
example, there are farming, seeding, and selecting intelligent 
robots (Fue et al., 2020) (Sowjanya et al., 2017), as well as 
intelligent detection systems, such as intelligent soil detection, 
disease and insect pest detection, and climatic disaster warning 
(Ray, 2017) (Shi et al., 2019). Besides, smart wearable products 
for poultry and cattle are widely employed in the livestock 
breeding business (Halachmi et al., 2019) (Neethirajan, 2017). 
These AI-assisted techniques significantly improve the yield 
productivity and operational intelligence.   

Despite the above achievements, the use of AI in precision 
fertilisation is still largely under studied. Fertilisers are 
materials of natural or synthetic origin that are applied to soil or 
to plant tissues to supply nutrients. For good nutrient 
management, the total supply of nutrients from all these sources 
must meet, but not exceed crop demand. Applying the correct 
amount of nitrogen at the correct time is an essential feature of 
good crop management. For most fertiliser applications, 
however, soil does not always provide the best nutrients for 
crops, and farmers must rotate their crops on a regular basis. 
Traditionally, this is achieved by using human experts and prior 
knowledge. Based on the first-principle, the nutrient balance 
model (Bindraban et al., 2000) and fertiliser effect function 
model (He et al., 2011) are two classic methods for estimating 
fertiliser application rates. The nutrient balance method is 
typically computationally expensive due to the large number of 
involved factors, and it heavily relies on human experts and 
prior knowledge. The fertiliser effect function method requires 
the fitting of ternary quadratic equations using massive 
experimental data. Such function fitting is normally poor due to 
the low-quality of data. Hence, these mechanism models are not 
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applicable to precision fertilisation. An alternative way is to 
employ data-driven techniques using machine learning models. 
However, high-quality data acquisition from farms is a difficult 
task. Large amounts of data in the domains of agronomy, 
remote sensing, and plant breeding are collected by national 
and international agricultural research agencies, which can 
theoretically support machine learning models. However, these 
data are often non-reusable, non-interpretable or 
non-discoverable (Tzachor et al., 2022).  The incomplete and 
skewed agricultural data directly leads to the poor decision 
making in fertilisation, hence causing the overuse and waste of 
fertilisers in farms.  To the best of our knowledge, a complete 
agricultural dataset has not been established so far for smart 
fertiliser study. More critically, the development of machine 
learning model driven by agricultural data for precision 
fertilisation is still a vacant research field.  
  To fill this research vacancy in smart agriculture community, 
this paper proposes a novel MTL approach for precision 

fertilisation utilising newly acquired real-world agricultural 
data. This dataset was collected from four genuine winter wheat 
farms in the United Kingdom, which covers various sorts of 
agricultural information, such as climate, soil nutrients, and 
crop yield. Due to the different farm locations and acquisition 
time, the obtained dataset exhibits strong spatio-temporal 
characteristics, which is difficult to mine for traditional 
machine learning models. Our proposed tensor-based MTL 
model can effectively capture spatio-temporal characteristics of 
the agricultural data, thus enabling accurately predicting the 
fertiliser amount and time for different farms.  As is known, 
standard machine learning regression models aim to optimize a 
certain metric of a single task, which fails to capture the related 
information from other learning tasks (Zhou et al., 2011). By 
sharing joint representations among related tasks, MTL allows 
to make full utilise of information from other tasks, thus 
improving the achievable performance (Zhang and Yang, 
2021). It should be noted that integrating spatio-temporal 
information from different farms into MTL framework for 
precision fertilisation is a challenging task. First, it is difficult 
to collect agricultural data and fertiliser application records 
from various farms and digitizing them into a 
AI-model-friendly dataset. Second, it is challenge to integrate 
both temporal and spatial information into the MTL model with 
a tensor representation. Third, traditional MTL correlations are 
based on various assumptions made by task models, such as 
low rank assumption (Kumar and Daumé, 2012) and temporal 

 
Fig. 1. CP decomposition is signified by a tensor based on the input 
agricultural data. 

 
Fig. 2. Overview of the presented spatio-temporal tensor multi-tasking regression framework. 
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smoothing assumption (Zhou et al., 2013), but how to define 
tasks and correlations among tasks remains a problem when 
combining spatio-temporal tensor with MTL model.   
  To address above-mentioned problems, a real-world 
agricultural dataset from four genuine winter wheat farms, 
containing a variety of agricultural features such as climate, soil 
nutrients, crop yield, and fertilisation records, is first formed for 
smart fertiliser study. To deal with the spatio-temporal 
characteristics of this dataset, we propose a novel MTL method 
by integrating a three-dimensional tensor created from raw data 
to accurately predict the amount and timing of base fertiliser 
and topdressing. Specifically, a third-order spatio-temporal 
tensor is utilised to represent real-world agricultural data from 
various farms. Space (i.e., the various farms), time (i.e., from 
September to August the following year), and features (i.e., 
various input agricultural information) denote three dimensions 
of the tensor. Based on CANDECOMP/PARAFAC (CP) 
approach (Kolda and Bader, 2009), the proposed model 
decomposes tensors and extracts a series of rank-one latent 
factors from the original data. The agricultural spatio-temporal 
data can be decomposed into multiple rank-one tensors, with 
each rank-one tensor generated utilizing the outer product of 
three rank-one latent factors (Fig. 1). Since each latent factor 
can be characterized in terms of space, time, and feature 
dimensions, an interpretable approach for describing the latent 
factors that govern data variability is proposed. Fertiliser 
application prediction for different months and different farms 
are the tasks in this research, the spatial (farm) and temporal 
(month) latent factors obtained from the raw agricultural data 
combined with tensor decomposition are the multi-task 
relationships in the model. The latent factors can be utilised as 
predictors to train a MTL model that aggregates the outputs of 
the spatial and temporal models to generate final predictions 
while incorporating sparsity-inducing norms as additional 
constraints to prevent overfitting and improve model 
interpretability. 
  The main contributions of this paper are as follow: 

1) A real-world agricultural dataset from four genuine winter 
wheat farms is established for smart fertiliser study. This 
provides a desirable platform for machine learning assisted 
precision fertilisation.  

2) To exploit the spatio-temporal information reside in the 
agricultural data, the original data is encoded into a third order 
tensor.  Followed by this, a novel tensor-based MTL framework 
is proposed for precise fertilisation. It employs tensor 
decomposition to learn task correlations from raw data and 
seamlessly integrates temporal and spatial latent factors in the 
model to improve fertilisation prediction accuracy and stability. 
  3) Extensive experiments are carried out to evaluate our 
proposed method utilising the real-world agricultural dataset, in 
comparison to the standard regression models. Moreover, 
important factors that influence the nitrogen fertilisation 
process is identified and analyzed.  
  The rest of the paper is organized as follows: Section II 
introduces the literature review. The proposed Tensor MTL 
model for precision fertilisation research is presented in 
Section III. Our real-world agricultural dataset, preprocessing 

steps, and experimental steps are presented in Section IV. 
Section V provides the experimental results for the agricultural 
dataset, which were utilised to validate the performance of the 
proposed prediction model, as well as a discussion of the 
important features and discoveries for our proposed approach. 
Section VI introduces our precision fertilisation system, which 
integrates the proposed algorithm and multi-dimensional 
agricultural data. The paper is concluded in Section VII. 

II. LITERATURE REVIEW 

Precision agriculture is a system that uses information 
technology to perform a comprehensive set of modern 
agricultural operation technology and management based on 
geographical variation at a defined time, location, and 
quantitatively (Zhang et al., 2002). Its core concept is to modify 
crop inputs based on soil parameters, mobilise soil production, 
and produce the same or higher revenue with the least amount 
of input while improving the environment (Chen et al., 2014). 
A new pattern of agriculture that blends information 
technology and agricultural production in a holistic approach is 
efficient use of diverse agricultural resources. Precise 
agricultural technology concentrates on decision-making and 
precision fertilisation. To optimise fertiliser utilisation, 
decision-making and precision fertilisation technologies are 
based on soil nutrient conditions, crop fertiliser requirements, 
and goal yield to modify fertiliser quantity, nitrogen, 
phosphorus, and potassium ratios, and fertilisation duration 
(Shafi et al., 2019). Maximize the utilisation of land resources, 
achieve the best yield and economic advantages using a 
reasonable amount of fertiliser, and safeguard the agricultural 
ecological environment and natural resources (Gebbers and 
Adamchuk, 2010). Decision-making and precision fertilisation 
technologies can help conserve fertiliser while increasing crop 
yield and balancing soil nutrients. The major technologies for 
decision-making and precise fertilisation include realizing 
accurate soil nutrient testing and crop nutrition diagnosis based 
on the spatial variability of soil nutrients in the fertilising area 
(Cox, 2002); determining appropriate fertilisation models to 
achieve reasonable fertilisation decisions (Pierpaoli et al., 
2013); and adopting reasonable fertilisation methods to achieve 
precise fertiliser application (Maes and Steppe, 2019).  

Decision-making initially means the process or solution that 
necessitates human decision-making. Noises such as ability 
experience, knowledge level, and mental feeling will invariably 
disrupt it because it is something that needs to be defined by 
humans (Das, 2016). As a result, data collecting and visual 
analysis informatization seeks to give data and theoretical 
support for decision-making, promoting the most efficient 
decision-making in the most effective method at the 
appropriate time. Practical application scenarios frequently 
require making multiple decisions in multiple aspects and 
levels, that is, based on multiple decision results in the previous 
step, and then making each decision in the next step, and 
repeating the above process according to the continuous 
acquisition new data to complete the entire application process 
decisions and actions (Jarrahi, 2018), the participation of 
people and the key decision-making role have divided the entire 
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process into multiple divisible sections. Artificial intelligence 
can produce unambiguous decision-making findings and 
conduct appropriate actions based on those decisions, allowing 
decision-making, thinking, and action to be fully integrated and 
finished without the need for human intervention; the entire 
process is completely automated.  

Traditional decision-making is based on rules, which 
necessitates artificially establishing preconditions and guide the 
actions of machines when those criteria are satisfied. Artificial 
intelligence decision-making is data-driven decision-making. 
In other words, machines can synthesise rules from data and 
generalise knowledge that can be applied to real-world 
circumstances, and it is based on data and the machine's 
experience. All of its expertise is based on real-world data and 
scenarios (Jarrahi, 2018). It can cope with a variety of 
complicated problems, diverse specific conditions, and make 
more accurate judgements to optimise the system than 
traditional decision-making.  

Several prior research have proposed a variety of models and 
methods to be used in precision fertilisation with machine 
learning. In 2001, Pokrajac and Obradovic (2001) developed a 
neural network-based precision fertilisation decision support 
system. Yu et al. (2010) presented a neural network ensemble 
technique in which the K-means clustering method is used to 
individually choose optimum networks and a Lagrange 
multiplier is used to aggregate these chosen networks to 
calculate the fertilisation rate more precisely. For oil crop 
fertilisation, Zheng et al. (2013) presented a hybrid 
multiobjective fireworks optimization method that considers 
not only crop production and quality but also energy 
consumption and environmental implications. Dong et al. 
(2020) presented a wavelet-BP neural network-based technique 
for precision maize fertilisation. For fertilisation prediction 
applications, the preceding models and algorithms can produce 
acceptable results. However, the aforementioned study did not 
utilise both the temporal and spatial information of the data in 
the algorithm in order to increase the accuracy and stability of 
the prediction.  

In order to overcome the above issues, we utilise the notion 
of multi-task learning to include both the temporal and spatial 
information in the data into the algorithm to enhance the 

accuracy, stability and generalisation of the model. The 
premise behind multi-task learning is that there is an underlying 
connection between various data recordings from subjects, and 
that capturing the intrinsic correlation can enhance the 
generalisation of the final prediction model (Zhang and Yang, 
2021). The typical focus of a traditional machine learning 
prediction method is on optimising specific metrics using a 
model or a mix of models (Das and Behera, 2017). Although 
the strategy can typically generate adequate results, it primarily 
concentrates on a single task, causing the model's relationships 
to be overlooked. In contrast to traditional single-task learning, 
multi-task learning allows information and knowledge from 
other tasks to be fully utilised and shared, thus improving 
achievable performance and enhancing the generalisability of 
the algorithm. By sharing the representation between related 
tasks, MTL can assist the model better summaries the original 
task. The MTL technique focuses on how to define tasks and 
the relationship between tasks. Low-rank assumptions (Chen et 
al., 2011), parameter sharing (Evgeniou and Pontil, 2004), 
novel regularisation (Cao et al., 2017) (Wang et al., 2019) are 
utilised to establish task relevance in existing MTL techniques, 
and the addition of the kernel method allows the algorithm to fit 
non-linear connections (Cao et al., 2018) (Peng et al., 2019). 

III. PROPOSED APPROACH 

A. Denotation 

For brevity, we represent tensors as italic capital letters, such 
as X or Y, and matrices by capital letters, such as A or B. 
Vectors are denoted by lowercase letters such as x whereas 
Scalars are denoted by italic lowercase letters such as a. 

B. Tensor Decomposition 

The proposed tensor MTL framework's training and 
prediction stages are depicted in Fig. 2. Understanding the 
latent factors in the spatio-temporal tensor of farm 
measurement data is required for our proposed method. These 
latent factors are represented by factor matrices A and B, which 
can be generated utilising tensor decomposition techniques. 
Two typical techniques for decomposing the tensor are Tucker 
and CANDECOMP/PARAFAC (CP) decompositions (Kolda 

Table 1 Nitrogen application timing for winter wheat from the real-world agricultural dataset. 
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and Bader, 2009). The Tucker decomposition divides the tensor 
into the product of the core tensor and each mode's factor 
matrix. Although it presents a more complete statement, the 
latent factors are harder to understand since the number of 
latent factors differs between models (Xu et al., 2019). In 
contrast, CP decomposition decomposes a tensor into a sum of 
rank-one tensors. i.e., 𝑋 ≈  ⟦A × B × C⟧  =  ∑ a𝑖 ∘  b𝑖  ∘𝑟𝑖=1 c𝑖, where ∘ denote the outer product operation between two 
vectors, while a𝑖 , b𝑖  and c𝑖  correspond to the vectors related 
with the i-th latent factor. Given a tensor X of the size 𝑛1  × 𝑛2  ×  𝑛3, the size of matrix A, B and C is 𝑛1  × 𝑟, 𝑛2  ×𝑟 and 𝑛3  × 𝑟 respectively.  

C. Spatio-temporal tensor multi-task regression 

To predict the precise amount and timing of fertilisation 
during a twelve-month period. Consider a tensor multi-task 
regression problem with s training samples (farms) and t time 
points (months) of d features (agricultural input information). 
Let X ∈  ℝ𝑠×𝑡×𝑑  be the input tensor from diverse farms, Y ∈ ℝ𝑠×𝑡  be the targets. Since fertiliser application is a 

multistep concept including numerous processes (e.g., base 
fertiliser and top dressing), the objectives are presented as a set 
of twelve-month time series, allowing us to determine how 
much fertiliser should be applied in given months. Table 1 
shows the winter wheat fertilisation target.  

The objective function of the proposed method can be stated 
as follows:  minW, V,A, B, C 12 ‖Ŷ − Y‖F

2 +  𝜆2 ‖𝑋 −  ⟦A,  B,  C⟧‖F2 +  Ω𝑚(W,  V)+ Ω𝑙(A,  B,  C) ŷ𝑠𝑡 = (AWT + BVT)x𝑠𝑡T                          (1) 

where the first term calculates the empirical error for the 
training data. Ŷ ∈  ℝ𝑠×𝑡  are the predicted values (Fertiliser 
application time and amount), A ∈  ℝs×𝑟 is the spatial latent 
factor matrix and B ∈  ℝ𝑡×𝑟 is the temporal latent factor matrix, 
W ∈  ℝ𝑑×𝑟  is the spatial model parameter matrix and V ∈  ℝ𝑑×𝑟 is the temporal model parameter matrix with r latent 
factors, 𝜆  is regularization parameter. Ω𝑙  are regularization 
terms for latent factors and Ω𝑚  are regularization terms for 
model parameters, the Ω𝑙 and  Ω𝑚 are utilised to limit the size 
of the parameters to prevent overfitting and perform feature 
selection. Obtain latent factors by optimising objective 

function ‖𝑋 −  ⟦A,  B,  C⟧‖F2 , where 𝑋 =  ⟦A,  B,  C⟧ =  ∑ a𝑖 ∘  b𝑖  ∘  c𝑖𝑟𝑖=1 , where ∘ denote the outer 
product operation between two vectors.  

By iteratively optimising the objective function for each set 
of variables for which a solution is sought, the latent factors A, 
B, and C, as well as the model parameters W and V, can be 
learned. We utilise the proximal gradient descent approach to 
solve each subproblem in this study since not all components of 
the objective function are differentiable. In the MTL model, the 
proximal approach is commonly utilised to construct the 
proximal solution for the non-smooth objective function 
(Zweig and Weinshall, 2013) (Zhao et al., 2015) (Han and 
Zhang, 2015) (Gong et al., 2014), that is, by replacing the 
smooth function with the quadratic function, the sum of the 
smooth and non-smooth functions. Stated that 
non-differentiable function f(x), which can be factored into the 
smooth differentiable function d(x) and the non-smooth 
function n(x), i.e., f(x) = d(x) + n(x). The model parameters can 
be iteratively updated utilising proximal gradient descent 
approach:  

Table 2 Structures of the winter wheat real-world agricultural dataset. 

Winter Wheat 

Dataset 

Agricultural feature Range of target 

values (kg/ha) 
Climate data Soil properties and nutrients 

data 

Cropping data 

Nitrogen fertiliser Mean daily temperature (℃) 

Monthly rainfall (mm) 

Monthly solar radiation (TJ/ha) 

Soil pH value 

Soil water holding capacity (mm) 

Soil phosphorus content (mg/l) 

Soil potassium content (mg/l) 

Soil magnesium content (mg/l) 

Potential grain yield (t/ha) 

Seeds sown per m2 

Working ha 

0 – 126.99 

 

Algorithm 1: Pseudocode for Spatio-temporal tensor 
multi-task regression 
Input:  

X: Spatio-temporal tensor Y: Twelve-month targets 
A: Spatial latent factors 
B: Temporal latent factors 
C: Feature latent factors 
W: Spatial model parameters 
V: Temporal model parameters 

Output: Ŷ: Twelve-month predicted values 
Parameter: 𝜆, 𝛽 
1: if (number of iterations < maximum iterations) or 

(‖Ŷ − Y‖F2 > optimization tolerance) then 
2:        Solve A, B, C, W, V by optimizing (1) with the 

training set 
3: end if 

4: Utilise A, B, W, V to calculate Ŷ with the test set 
4: return Ŷ 
 
Fig. 3. Pseudocode for Spatio-temporal tensor multi-task regression.  
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x(𝑠) = 𝐩𝐫𝐨𝐱𝑧𝑠,n (x(𝑠−1) − 𝑧𝑠∇d(x(𝑠−1)))          (2) 

where x(𝑠) is the parameter to be estimated at step s. 𝐩𝐫𝐨𝐱𝑧𝑠,n is 
proximal operator for non-differentiable function n, ∇d(x(𝑠−1)) 
is the gradient for the smooth function d, x(𝑠−1) and 𝑧𝑠 is the 
step size for gradient descent update. The proximal operator for ℓ1-norm function is the soft-thresholding operator (Parikh and 
Boyd, 2014) as follows:  𝐩𝐫𝐨𝐱𝜉,n (v) = (v − 𝜉)+ − (−v − 𝜉)+            (3) 

where 𝜉  is the threshold parameter. Iteratively updating the 
parameters involves computing the gradient on the smooth 
section of the objective function and then using the 
soft-thresholding operation (proximal mapping function for ℓ1-norm) to determine its next value. A line search technique 
can be utilised to evaluate the step size. This strategy can 
improve an optimization process's convergence time or make 
the design of distributed optimization algorithms easier. The 
pseudocode is depicted in the Fig.3.  

IV. EXPERIMENTAL SETTINGS 

A. Dataset 

In collaboration with the UK agricultural company, we have 
collected a real-world agricultural dataset containing various 
agricultural factors from four genuine winter wheat farms, this 
dataset is non-public but can be requested from the 
corresponding author for research purposes. Farms include a 
wide range of information for agricultural data, and our chosen 
factors must meet two conditions: first, it can affect the crop's 
growth and yield from an agronomic standpoint. Second, it is a 
parameter that can be determined prior to the fertilisation stage. 
Specifically, our dataset has three categories of data.  

The first is climate data, which can be collected from a 
weather forecast tool, and we have three factors: mean daily 
temperature, monthly rainfall, and solar radiation.  

The second sort of content is soil properties and nutrients 
data, which can be collected by soil analysis. We have two 
variables for soil properties: soil pH value and soil water 
holding capacity, and three variables for soil nutrients: soil 
phosphorus, potassium, and magnesium content. Soil analysis 

enables farmers to optimise yields by adjusting their fertiliser 
requirements to the needs of their plants, while minimizing 
environmental risks. It can also be utilised to assess the texture, 
moisture and strength characteristics of the soil. 

The third type of content is cropping data, which can be 
collected through cropping records, and we have four 
parameters: potential grain yield, seeds sown per m2, and 
working ha.  

There are 11 agricultural input features in total for 
fertilisation prediction. For the prediction target, nitrogen 
fertiliser is the sole fertiliser that all farms use once the crops 
are planted, and it is the most frequently manufactured and used 
fertiliser on the planet. The right quantity of nitrogen fertiliser 
can help increase crop yields and improve the quality of 
agricultural goods. As a result, the research concentrates on 
nitrogen fertilisation prediction. The structures of the winter 
wheat dataset are summarised in Table 2.  

B. Evaluation metrics 

Based on the tensor of input agricultural data, we propose a 
prediction model for nitrogen fertilisation prediction. We 
utilised data from three of the farms for model training and the 
remaining one for testing due to the limited number of farms 
and the difficulties of gathering agricultural data. Since 
regularisation parameters and the number of latent factors r 
must be set during the training phase, we use 2-fold 
cross-validation on the training data to determine model 
parameters.  

In this study, the root mean square error (rMSE) is utilised as 
the prime evaluation metric to assess the accuracy of different 
prediction algorithms. For overall regression performance, we 
utilise R squared (R2), which evaluates how well the predicted 
value matches the actual value. The R2 ranges from −∞ to 1, 
with the closer the number to 1, the greater the prediction result. 
The following are the definitions of rMSE and R2: rMSE(y, 𝑦̂) = √‖y−ŷ‖22n                          (4) R2 = 1 − ∑ (y𝑖−ŷ𝑖)2𝑖∑ (y𝑖−y̅)2𝑖                            (5) 

where for the R2, y𝑖 is the ground truth of target at number i and 

Table 3 

Comparison of the results from our proposed methods with standard methods for nitrogen fertilisation prediction with real-world winter wheat dataset. The best 
results are bolded. 

Methods rMSE 𝐑𝟐 

Ridge regression 
Lasso regression 

Elastic-Net 
Bayesian ridge regression 

Bayesian automatic relevance determination regression 
Linear support vector regression 

Sigmoid kernel support vector regression 
Regression based on k-nearest neighbors 

Decision tree regressor 
Multi-layer perceptron regressor 

TMTR-b 
TMTR-s 
TMTR-t 

25.9331±4.4030 
25.7061±4.3802 
29.3327±6.3230 
30.7387±5.9796 
25.8242±3.9310 
36.3096±6.4595 
35.2318±7.3093 
34.1705±8.8471 
26.9973±8.0372 
32.1934±6.9039 
22.7924±4.2660 
28.7313±4.3463 
20.8125±3.1875 

0.3733±0.2056 
0.3622±0.2225 
0.2028±0.1440 
0.1340±0.1585 
0.3187±0.2554 
0.1514±0.1797 
0.1750±0.1360 
0.1928±0.1775 
0.3338±0.6233 
0.2067±0.1302 
0.5122±0.1878 
0.2362±0.1352 
0.5649±0.1131 
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ŷ𝑖 is the corresponding prediction from a prediction model, y̅ is 
the average of the true y values. For the rMSE, y is the target's 
ground truth in the matrix and ŷ is the corresponding prediction 
by a prediction model. The mean and standard deviation of 20 
iterations of tests on different data splits are reported.  

C. Tensor multi-task regression and its variants 

In our studies, we examine the predictive accuracy of tensor 
multi-task regression utilising both spatial and temporal latent 
factors, as well as spatial latent factors or temporal latent 
factors alone supplemented with a ℓ1-norm regularisation term 
to ensure model sparsity. Specific tensor multi-tasking 
regressions and their variants are shown below.  

 
Tensor multi-task regression contains both spatial and 

temporal model parameter and corresponding latent factors 
(TMTR-b): minW,V,A, B, C 12 ‖Ŷ − Y‖F

2 +  𝜆2 ‖𝑋 −  ⟦A,  B,  C⟧‖F2 + 𝛽‖W, V, A, B, C‖1 𝑦𝑖𝑗 = ∑ ∑ (A𝑖WT + B𝑗VT)𝑡𝑗=1𝑠𝑖=1 x𝑖𝑗T               (6) 
 
Tensor multi-task regression contains spatial model 

parameter and corresponding latent factors (TMTR-s): minW,A, B, C 12 ‖Ŷ − Y‖F
2 +  𝜆2 ‖𝑋 −  ⟦A,  B,  C⟧‖F2 + 𝛽‖W, A, B, C‖1 𝑦𝑖𝑗 = ∑ ∑ A𝑖WT𝑡𝑗=1𝑠𝑖=1 x𝑖𝑗T                       (7) 

 
Tensor multi-task regression contains temporal model 

parameter and corresponding latent factors (TMTR-t): 

minV, A, B, C 12 ‖Ŷ − Y‖F
2 +  𝜆2 ‖𝑋 −  ⟦A,  B,  C⟧‖F2 + 𝛽‖V, A, B, C‖1 𝑦𝑖𝑗 = ∑ ∑ B𝑗VT𝑡𝑗=1𝑠𝑖=1 x𝑖𝑗T                          (8) 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Comparison with standard regression methods 

We utilised the real-world winter wheat dataset to evaluate 
the precision fertilisation prediction performance of the 
proposed tensor multi-task regression and its variants with the 
following standard regression methods. The dataset is 
represented as a third-order tensor for our proposed tensor 
multi-tasking approach. The dataset is represented as a matrix 
with dimensions of months x features for the standard 
regression models used for comparison. Table 3 shows the 
experimental results for nitrogen fertilisation prediction.  

 Ridge regression (Hoerl and Kennard, 1970) 
 Lasso regression (Tibshirani, 1996) 
 Elastic-Net (Zhou and Hastie, 2005) 
 Bayesian ridge regression (Minka, 2000) 
 Bayesian automatic relevance determination regression 

(Rudy and Sapsis, 2021) 
 Linear support vector regression (Smola and 

Schölkopf, 2004) 
 Sigmoid kernel support vector regression (Smola and 

Schölkopf, 2004) 
 Regression based on k-nearest neighbors (Song et al., 

2017) 
 Decision tree regressor (Dobra, 2002) 
 Multi-layer perceptron regressor (Ramchoun et al., 

 
Fig. 4. Precision fertilisation system. 
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2016) 
 
Our observations are as follows: 
1) The presented tensor multi-task regression algorithms 

outperform standard regression methods in the winter wheat 
dataset, validating the utilisation of the temporal and spatial 
latent factor hypothesis and multi-task learning concept in our 
regression formulation.  

2) TMTR-t delivered the best performance. Due to the 
difficulty of a small dataset, information in the spatial 
dimension does not perform well, and experiments have shown 
that utilising only latent factors in the temporal dimension in 
the algorithm produces superior results. 

3) The presented tensor multi-tasking regression model 
enhances prediction stability substantially. The standard 
deviation of the 20 iterative experiments was lower than the 
standard comparison methods. That may be due to the inclusion 
of temporal latent factors in the prediction algorithm to improve 
stability. In other words, all farms share a set of temporal 
patterns for the fertilisation operation in a multi-task learning 
manner, thus improving the generalisation and stability of the 
model. 

B. Interpretability 

The rank of features was listed in descending order of weight 
parameter values for the proposed TMTR-t model (i.e., the best 
performing model) in Table 4. The higher rank indicates the 
greater impact on the final prediction.  

From the results presented in Table 4, we can observe that 11 
agricultural factors can be divided into three levels according to 
importance for winter wheat nitrogen fertilisation. The first 
level is ranked 1 to 4, which can be regarded as having an 
important impact on the nitrogen fertilisation of winter wheat. 
Two of them are weather factors, namely monthly solar 
radiation and monthly rainfall, and the remaining two are soil 
pH value and potential grain yield. For solar radiation, it is 
necessary to apply more nitrogen fertiliser in places with good 
sunshine conditions, which can promote the vegetative growth 
and reproductive growth of crops, while in places with poor 
sunshine conditions, less nitrogen fertiliser should be applied to 
prevent crops from maturing late (Caviglia and Sadras, 2001). 
For rainfall, it has a great influence on the degree of nitrogen 

loss. The nitrogen loss caused by rainfall is an important factor 
of farmland pollution and the higher the fertilisation rate, the 
more serious the nitrogen loss (Monjardino et al., 2013). For 
soil pH value, the most direct impact on the fertilisation effect 
is to affect the solubility of soil nutrients. In addition, it will 
also affect the life activities of soil microorganisms, thereby 
indirectly reducing the effectiveness of soil nutrients (Cameron 
et al., 2013). For potential grain yield, good nitrogen fertiliser 
utilisation promotes crop growth and development, resulting in 
higher yields and improved quality (Kindred et al., 2008).  

The second level is ranked 5 to 7, which can be seen as 
having a moderate effect on nitrogen fertilisation in winter 
wheat. The third level is ranked 8 to 11, which had little or no 
effect on nitrogen fertilisation in winter wheat. 

VI. PRECISION FERTILISATION SYSTEM 

The above proposed spatio-temporal tensor multi-task 
regression algorithm for fertilisation prediction and 
multi-dimensional agricultural data are integrated in a precision 
fertilisation system (dev-cms.fcimcs.com). The system requires 
an authorization to utilise, please contact the corresponding 
author for further information. The system is an intelligent, 
real-time, precise and personalised life-cycle planting decision 

 
Fig. 5. Algorithm integration interface. 

Table 4 The rank of Agricultural features according to the weight 
parameter values for the proposed TMTR-t model on Nitrogen 

fertilisation. 

Rank Agricultural feature 
Weight parameter 

value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Monthly solar radiation (TJ/ha) 

Soil pH value 

Monthly rainfall (mm) 

Potential grain yield (t/ha) 

Mean daily temperature (℃) 

Working ha 

Soil phosphorus content (mg/l) 

Soil magnesium content (mg/l) 

Soil water holding capacity (mm) 

Seeds sown per m2 

Soil potassium content (mg/l) 

0.9559 

0.8671 

0.8650 

0.8215 

0.6795 

0.6258 

0.6087 

0.3545 

0.3290 

0.1605 

0 
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tool, dedicated to solving the core needs of low-cost farming 
and high efficiency output.  

The system is utilised to assist farmers or farm managers 
with farm information inspecting and management, 
environmental information query, crop information 
management, fertiliser application process management and 
recording, and fertiliser application decision guidance. Fig. 4 
shows the application interface of the system and Fig. 5 shows 
the interface of the integrated fertilisation prediction algorithm. 
The main system interface allows the user to monitor and 
manage crop records, geographic location, staff and various 
information for all farms. The basic farm information interface 
allows users to monitor and manage individual farm 
information, including climate, geographic location, staff and 
fertilisation tasks. The farm management interface allows users 
to manage information for different fields and crops on the 
farm. The crop information interface allows users to manage 
specific field soil information, fertilisation tasks and records for 
different crops. The user can utilise our proposed precision 
fertilisation algorithm in the algorithm integration interface, 
where the user has to input various environmental information 
of the farm and field, then the system will output the exact 
month and amount of fertiliser to be applied. 

VII. CONCLUSION 

This research gathers agricultural data from various farms 
and integrates it into a real-world agricultural dataset, and then 
we present a multi-task learning approach for precision 
fertilisation prediction based on Spatio-temporal tensor. The 
method builds a prediction model based on spatio-temporal 
input information from individual farms and presents 
multi-task regression utilising the spatio-temporal latent factors 
obtained from tensor decomposition as multi-task relationships 
to achieve the final prediction results. The predictive model can 
be utilised to compute the optimal amount and time of 
application of various types of fertilisers, therefore preventing 
environmental harm caused by over-fertilisation. The 
experiment results indicate that multi-task learning employing 
spatio-temporal tensors can increase the accuracy and stability 
of agricultural fertiliser application prediction. It can help 
farmers and managers use fertilisers more rationally and 
productively, reducing fertiliser pollution while maintaining or 
boosting agricultural production. Moreover, we have 
constructed a precision fertilisation system that integrates the 
proposed spatio-temporal tensor multi-task regression 
algorithm for fertilisation prediction and multi-dimensional 
agricultural data to effectively support real-world farms in 
achieving the goals of low-cost farming and high efficiency 
output. 
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Highlights 
• A real-world agricultural dataset collected from real winter wheat farms in 

the UK. 
• Spatio-temporal tensor multi-task learning for precision fertilisation 

prediction. 
• Important factors influencing nitrogen fertilisation process were identified 

and analysed. 
• A precision fertilisation system has been constructed for intelligent farm 

management 
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