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Originally conceived to model duopolies, a Cournot com-
petition is an economic model which applies to oligopolies
competing on the same products and markets. In Cournot
competitions, the reward a player gets by selling goods
depends on the actions of the other players which change
the price at which such goods are sold. The profits received
by players are affected by the actions of individual players
and strategies are chosen in response to those (see Cournot
(1897)). Cournot competitions are also known as Cournot
games given their strategic nature. With respect to market
dynamics, single Cournot games have been widely studied
and results on the nature of equilibria are available in
the literature by (Varian (1992), Mas-Collel (1995)). By
dividing the players from the market, Bimpikis et al.
(2014) obtained equilibria for the Cournot competition
in which players are associated to specific markets via a
bipartite network. Results were also obtained by Kyparisis
and Qiu (1990), Qiu (1991) and Abolhassani et al. (2014)
each of whom defined an equilibrium allocation to be
a set of strategies in which firms make zero marginal
profit. Cournot competitions do not have elements linked
to variable costs of transportation or associated to the
physical distance between players and markets in which
they compete.
The well known selfish routing problem considers the cost
of moving across physical distances. In these, players have
to navigate a network from an origin to a destination node
where each edge has a cost, which is a function of the num-

⋆ This paper was developed under PhD funding by the ESPRC.

1. INTRODUCTION ber of players using it, and which eventually diminishes
the utility of the players as more of them use the same
edge (Roughgarden (2006)). In selfish routing problems,
a Wardrop equilibrium is defined as the set of routing
strategies adopted by the player such that no player has
any incentive in changing their routing unilaterally. Such
an equilibrium concept is fundamental in the traffic as-
signment problem, to the point that measured flows are
often taken as the naturally emerging equilibrium and a
starting point to obtain the origin-destination matrix by
reconstructing the costs associated to each edge through
congestion functions (Zhang et al. (2019)). Congestion
functions are convex, monotonically increasing functions
relating the travel time along a road segment (a popular
proxy for the cost) to the volume of traffic on that segment.
Although different from Cournot games, selfish routing
problems have been investigated through multilayer net-
works too, where each layer represents different transport
means or performance (e.g. long range fast journeys as
opposed to short range, slower transfers). Ibrahim and
De Bacco (2021) examined such a multilayer transport
setting providing algorithms to obtain Wardrop equilibria.

The multilayer setting is amenable to represent different
dynamical systems, each abstracted as a network, inter-
acting between them. In particular, the network Cournot
competition as explored by Bimpikis et al. (2014) can be
connected to a separate transport layer, where the selfish
routing problem of shipping the goods from players to
markets is explored. The Nash equilibrium of the Cournot
game will have to be considered in conjunction with the
Wardrop equilibrium of the selfish routing problem, as
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Abstract: Geopolitical instability, climate change and black swan events disrupt the trade and
logistics of resources around the globe. Events such as the unforeseen closure of the Suez Canal
or the cessation of trade between some players due to wars or embargos are some examples
of this. The problem of predicting local price change under modification of an underlying
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responses to the market rather than from moving to a new equilibrium utility. We found that
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one or both may be achieved. Where there is a Wardrop
equilibrium in the selfish routing problem, under appropri-
ate assumptions this is also a Nash-Cournot equilibrium
(Haurie and Marcotte (1985)).

This work presents a bilayer model where a Cournot
competition is set in the bipartite network of players and
markets in the first layer and a selfish routing problem is
presented in the second layer, as a congestion game played
in the physically embedded transportation network.

An examination of a capacity constrained oligopoly prob-
lem was considered by Alsabah et al. (2021) finding that
a reduction in transportation costs can negatively impact
profit for all firms. Their approach differs from that of this
paper as they do not consider transport on a network.

While the Cournot competition adopts the setting in
Bimpikis et al. (2014) and the congestion game leverages
on the results in Ibrahim and De Bacco (2021), the
interaction between the two leads to original results in the
emergence of equilibrium points where each player has no
incentive to change the quantity of goods to sell in each
market or the routing to ship such goods. We shall follow
the notation in Boccaletti et al. (2014) for the multilayer
structure.

The network Cournot case and transportation problems
are both well studied subjects. A gap is present in the
literature about the interaction between these problems.
This work addresses such a gap and explores the dynamics
of the bilayer model.

In this paper, we present the following original contribu-
tions:

• We introduce a new bi-layer model of market trans-
port where a Cournot competition on a bipartite
network is influenced by transport costs, which are
the result of a congestion game in a second layer.
The volume of traffic in the second layer are in turn
influenced by the goods exchanged between sellers
and markets in the Cournot competition.

• We prove existence and uniqueness of the equilibrium
points in each layer individually in the hypothesis of
stationary conditions in the other and show they are
stable.

• We finally analysed the coupled co-evolving dynamics
of both layer, find the equilibrium points and their
features in terms of uniqueness and stability.

This work, while focussed on the analytical aspects of
the Cournot-congestion game, looks also at more applied
research questions around the relationship between market
competition and transportation costs. This is a theme with
wide reaching utility, impacting strategic choices for food
security and supply chain resilience. One example of this
is the global wheat market, where some countries are net
producers and some are net consumers, and knowledge
about the coupled dynamics of prices and transport costs
is extremely valuable. The link from the model to the
application is offered by considering the world market as
a routing problem wherein firms are competing agents
attempting to maximise their personal utility.

2. MODEL FORMULATION

2.1 Model Basis

The bi-layer model captures the effects of the goods’
routing in the transportation layer on their price. Players
are considered, each selling goods in order to maximise
their own profit, taking into account the price of goods in
each market and the cost of transporting goods to those
markets. The aim of the players is to maximise income
generated by the sale minus the transportation cost.

Fig. 1. An example model with 2 players, 2 markets and a
5 node transport layer

2.2 Network Formulation

We shall consider a multilayer network composed of two
layers, hence referred to as a bilayer network. A bilayer
network is a pair M = (G, Eαβ) where α and β index
the layers and G = (Gα, Gβ) is a family of undirected
weighted graphs called ‘layers’ of M. In layer α we have
the graph Gα = (Vα, Eα) where Vα is a set of nodes
vαi ∈ Vα with i ∈ {1, 2...Nα} and ai,j = (vαi , v

α
j ) ∈ Eα

is a set of edges. Likewise, we have Gβ = (Vβ , Eβ) . with

v
β
i ∈ Vβ with i ∈ {1, 2...Nβ} and bi,j = (vβi , v

β
j ) ∈ Eβ .

Each node on the upper layer (and accordingly every
member of these sets) is associated to a node in Gβ .

The discrete ‘location’ map L(·) = v
β
i : Vα → Vβ gives

the geographical embedding of any player or market onto
Gβ and for each vk ∈ Gα, there exists ek ∈ Eαβ with
ek = (vαk , L(v

α
k )).

Eα and Eβ are the sets of intra-layer edges. Hence Eαβ
is defined to be the set of inter-layer edges with ek =
(vαk , L(v

α
k )), with k ∈ {1, 2...Nα}. Throughout, referring

to the schematic representation in Figure 1, Gα is also
referred to in text as the ‘Upper Layer’ and Gβ as the
‘Lower Layer’.

The nodes in the upper layer can be divided in a set of N
players (sellers) and a set of M markets. The bipartite
assumption is appropriate as no traffic passes between
pairs of sellers or pairs of markets. X = (x1, x2, . . . , xN )
is the set of players and Y = (y1, y2, . . . , yM ) is the set of
markets, with X ∩ Y = ∅ and Vα = X ∪ Y.

xi and yj do not have layer-denoting superscripts as the
sets X and Y are only in the upper layer.

There exists an ordering on the elements of Vα with
v1 = x1, . . . , vN = xN , vN+1 = y1 . . . , vNα

= yM .
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The weights of the edges Eα represent the amount of
goods being sold by a player to a market and are given
by w(·) : Eα → R+.

As there are no edges between any two elements of X
and no edges between any two elements of Y , Gα is a bi-
partite graph such that for a(·,·) ∈ Eα, a(·,·) = (xi, yj), xi ∈
X, yj ∈ Y and (xi, yj) ∈ Eα for all xi ∈ X, yj ∈ Y.

The lower layer Gβ is the transportation layer and its
nodes and edges represent a real world transportation
system. The edges in the lower layer have lengths and
capacities, l(bi) ∈ R+, c(bi) ∈ R+.

Finally, the set Eαβ of inter-layer edges represents the
geographical embedding of the elements of the upper layer
into the lower layer.

2.3 Transport Paths

Transport on the lower layer must fulfil demand in the
upper layer, that is, the amount of goods transferred
between a player and a market in the upper layer must
correspond to the travel demand between the location
of the player and the location of the market in the
transport layer. While there exists only a single path
between xi and yj in the upper layer, there can exist
multiple paths between L(xi) and L(yj) in the lower layer.
This paper refers to each possible route as a path pki,j
where i and j represent the index of the element of X
and Y that path represents travel between and k is the
index of the path. The set of all paths between L(xi)
and L(yj) is Pi,j and the collection of all sets of paths
between L(X) and L(Y ) in the lower layer is P such
that P = (P1,1, . . . , P1,M , P2,1, . . . , PN,1, . . . , PN,M ) and

Pi,j =
(

p1i,j , p
2
i,j , . . . , p

NPi,j

i,j

)

, where NPi,j
is the number

of paths, in the lower layer, between node L(xα
i ) and

L(yαj ). The transport through the lower layer must fulfil
the transport requirements as described by edge weight in

the upper layer. As such w(ai,j) =
∑NPi,j

k=1 pki,j . Note that,

with a slight abuse of notation, we defined pki,j as both the
path (an ordered set of edges between L(xi) and L(yj))
and as the flow of goods routed through them.

3. COURNOT GAME

Cournot competition describes the dynamics of the players
in the upper layer with respect to each market as the
following conditions are satisfied:

• The game has multiple players;
• there is no collusion between players;
• each player has market power, that is, each player

strategy changes the price in the market they partic-
ipate in;

• The number of players and markets are fixed and the
goods sold by all players are homogeneous;

• players choose the quantity of goods to sell rather
than their price, which is a consequence of the total
amount of good sold;

• players engage in rational behaviour.

However, as there are a number of markets, they end up
engaging in parallel Cournot competition.

3.1 Game Dynamics

Each player x ∈ X attempts to sell their goods in order
to maximise the difference between their income and the
costs they incur.

• The costs they incur are for the utilisation of trans-
port links. The transport links become congested as
they are used more and this influences the total costs.

• The income generated comes from selling goods to
markets. They receive profit depending on the supply
and demand to each market they sell to.

The utility is hence given by the function: u(si, s−i) :
Si, S−i →∈ R+. si is the current strategy of player xi,
Si is the set of all possible strategies for player xi, s

−i

is the current strategy of all other players and S
−i is the

set of all possible strategies of all players. The game is
played asynchronously with players sequentially updating
their strategy to the best response for the strategies
played by all other players. The players are concerned
with the maximisation of their utility over multiple rounds
rather than just in the immediate future. Accordingly,
they consider the future strategies of other players when
deciding their own best response. It is assumed that player
1 (x1) updates their strategy first, followed by player 2,
progressing in order and returning to player 1 after player
N has updated their strategy. Each player’s strategy is the
union of an upper layer and a lower layer set of actions,
which consist of:

• Choosing an allocation of sellers to sell goods to in
the upper layer. This is a mixed strategy of the form
(w(ai,1), w(ai,2), . . . , w(ai,M )) for ai,j ∈ Eα.

• Selecting a mixed-strategy of paths they utilise to
transport these goods. The paths they select must
appropriately fulfil their origin destination pairing.

This gives a strategy

si =

(

[ai,1, ai,2, . . . , ai,M ]

[p1i,1, . . . , p
(NPi,1

)

i,1 , . . . , p1i,m, . . . , p
(NPi,m

)

i,Nc
]

)

(1)

The utility for a player xi is given by

u(si, s−i) = A(si, s−i)−B(si, s−i) (2)

A(si, s−i) =

M
∑

j=1

Amj
(si, s−i) (3)

where A(si, s−i) is the total profit made in the upper layer
and Amj

(si, s−i) is the profit made by i in market j.
B(si, s−i) is the congestion function. We do not impose
specific restrictions on the choice of the congestion func-
tions other than continuity and being strictly monotoni-
cally increasing, from which convexity follows.

4. UNCOUPLED DYNAMICS RESULTS

4.1 Approach to Cournot Equilibrium

First considering that the distribution of flows across all
the paths between the same origin and destination is
uniform and fixed (such that pkij = plij for all k, l ∈
{1, 2, ...Npij

} and i ∈ {1, 2, ...N}, j ∈ {1, 2, ...M}) and
does not depend on the amount of goods the player sells
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in that particular market. This makes the transportation
costs influence the player’s utility but makes the lower
layer’s dynamics insensitive to the dynamics in the upper
layer. In other words, a player can change the amount of
goods they sell in each market but they cannot change
the share of flow between paths with the same origin and
destination. The game is therefore played in the upper
layer only, albeit influenced by the costs generated in
the lower layer. Assuming the game starts from a non-
equilbrium state, with the players progressively playing
the optimal response to the other players’ strategies, the
utilities across multiple rounds can be examined.

Bimpikis et al. (2014) proved that, where the profit func-
tion is twice differentiable, concave, and strictly decreasing
and the costs of production are twice differentiable, convex
and increasing, the game has a unique equilibrium. In
the present case, there is no cost of production in the
upper layer. The 0-function can however be substituted
and fulfils the conditions of being twice differentiable and
weakly monotonically increasing. Consider the two player
case with Amj

(si, s−i) generally defined as Amj
(si, s−i) =

w(ai,j) ·
(

Q−
∑N

k=1 w(ak,j)
)

, where Q is the profit where

there is no supply. A profit function does exist which fulfils
the conditions outlined by Bimpikis et al. (2014). As such,
the game has a unique equilibrium as proved therein.

This equilibrium can be found by considering the sum of
Am1

(h, s−i) and Am2
(1 − h, s−i) for variable h ∈ [0, 1].

h ∈ [0, 1] implies the production by each player is 1 in
total, allocated among all markets. It can be seen that this
function is concave (where h is w(a1,1)). The equilibrium
occurs at the maximum of this graph.

The approach towards an equilibrium happens in a consis-
tent manner. First define an equilibrium-mimicking strat-
egy to be one in which players move so that all markets
receive the same supply as they would if the game was
in equilibrium. Consider the myopic best response as one
concerned only with the utility received after one round
of the game. The myopic best response by a player lies at
the midpoint between the final equilibrium strategy and
the equilibrium mimicking strategy for that player. In the
two player case this is easy to identify as there is only a
single player’s strategy to respond to. This leads at our
first Theorem.

Theorem 1. Let A(·, ·) be as defined in Equation (3),
and let g ≥ 0 be the difference in utility gained by
the first player moving as they play their myopic best
response, compared to the utility they would receive at
equilibrium. Then the utility of the first player through
successive myopic best responses, compared to the final
unique equilibrium strategy is 16g

30 > 0.

This means that rational players will have no incentive to
play an equilibrium strategy if all the other players have
not already done so.

Proof. The two possible strategies are playing the myopic
best response to the opponents in order to take advantage
of their non-optimal strategy or moving to the equilibrium
position immediately. Normalising with respect to the
equilibrium strategy, with g the additional utility gained
by the myopic responder relative to the equilibrium, the

utility gained by the player at each subsequent change
in strategy by either player is given by the sequence
g,− g

2 ,
g
16 ,−

g
32 , . . .

This is an infinite sequence which, using the formula
∑

∞

n=1 sn = s1
1−(

s2
s1

)
, sums to 16g

30 > 0.

✷

Accordingly, each player will play the myopic best response
given their opponents current strategy rather than playing
the equilibrium strategy immediately. As such, the myopic
best response is also the best strategy over any time frame.
The game dynamics therefore approaches the equilibrium
as shown in Figure 2.

Fig. 2. The Progressive Strategy positions of both players
as they approach the equilibrium from a variety of
start positions. Bounds on convergence and start
points from which both convergence paths are shown.

4.2 Transport-only solutions

We now consider the equilibrium in the lower layer when
the volume of goods to each market is fixed in the upper
layer. Considering a congestion function B(f) which in-
creases monotonically with flow f , we can now state the
following

Theorem 2. Consider two values of the flows f and f ′

between any two nodes in the upper layer, with f > f ′.
When B(f) ≥ B(f ′) and w(ai,j) ∈ R+, then Wardrop
Equilibria exist in the lower layer.

In fact, where the transportation costs are monotoni-
cally increasing as flow increases and assuming fixed edge
weights in the upper layer, Wardrop equilibria can be
found Wardrop (1952).

Proof. Consider the rate of change of utility with respect
to changes made in a player’s transport strategy, given by
∂u(si,s−i)

∂pk
i,j

When considering a change in the paths selected

a player can examine the change in congestion cost from
doing so. Increasing the amount the player uses a path
will always result in an increase in costs. Due to the fixed
upper layer however, w(ai,j) is constant and

∑NPi,j

k=1 pki,j = w(ai,j) is fixed. As such any additional traf-
fic along one path must result in a reduction in traffic along
a parallel path. The path allocation is therefore in equilib-

rium when ∂u(si,s−i)

∂pk
ij

= q, q ∈ R+, p
k
ij �= 0 for all i, j, k.
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This fulfils the conditions of a Wardrop equilibrium
wherein all paths have equal cost to all players.

✷

5. GRAPH REDUCTION

A path pki,j on a graph (introduced in section 2.3) gives
a set of edges which can be used to move from i to j.
Let µq,r be the set of paths which use edge bq,r ∈ Eβ .
µq,r = [aq,r1,1,1, a

q,r
1,1,2, a

q,r
1,2,1, . . . ] where a

q,r
i,j,k ∈ {0, 1}

indicates whether path k between player i and market j
uses edge q, r.

As such, given an edge ai,j in the upper layer, Pi,j is a
mapping from ai,j to Eβ and is a collection of the sets
of edges in the lower layer which are used as part of the
transport solution running parallel to the edge, ai,j .
Hence, µq,r is a mapping from bq,r to Eα giving the
set of edges in the upper layer which use bq,r in their
transport solution. More formally, we have P(·,·) : Eα →
{Eβ , Eβ , . . . } and µ(·,·) : Eβ → {Eα, Eα, . . . }. Defining a
fulfilment as a set of all parallel paths between L(xi) and
L(yj).

When all the edges in Gβ have the same capacity, the
graph can be reduced from a set of nodes and edges to
a Λ representation on which simultaneous equations can
be used to find equilibria. Uniform capacity is required, as
the aim of this representation is to classify edges by their
Λ’s to reduce the complexity of the graph and edges with
different capacities cannot be grouped together.

Where every edge can be classified as being in λ(·,...,·), all
edges which are used by the same set of fulfilments can be
considered to be a single edge whose length is the sum of
the lengths of the edges within it, and whose capacity is
equal to the capacity of each edge in it. This gives a graph
representation Gβ → Λ.

Theorem 3. Let the network in the lower layer Gβ be
acyclic and let G1

β and G2
β be two subnetworks included

in Gβ such that G1
β ∩ G2

β = ∅, and G1
β ∪ G2

β = Gβ − {b},
where b ∈ Eβ . Let N1 and M1 be the number of nodes
in G1

β directly connected respectively to a player and to a
market in Gα. Also define N2 = N−N1 and M2 = M−M1.
For any vertex vi ∈ G1

β and vj ∈ G2
β any path connecting

them will use b. Then the multiplicity of fulfilments which
use the edge e will be such that N1M2 +N2M1.

Proof. Consider an edge b. There exists subgraphs G1
β

and G2
β such that for vi ∈ G1

β and vj ∈ G2
β any path

connecting them will use b. As each element of the upper
layer is embedded into only a single node of the lower layer,
L(vαg ) is either in G1

β or G2
β but not both. Of the N players,

if i are in G1
β then N − i are in G2

β . Similarly of the M

markets, if j are in G2
β , M − j are in G1

β . b is used i · j

times from G1
β to G2

β as every L(xa) has one edge to L(yb)

and (N − i) · (M − j) times from G2
β to G1

β .

✷

Theorem 3 can then be used to reduce the graph to a
smaller set of λ... as λ... whose index multiplicity does not
exist in the set of possible N1M2 + N2M1 need not be

considered. For example in the case with two players and
two markets λa = ∅ as there exist no edges which are only
used by 1 fulfilment.

As means of an example, this becomes
Gβ → [λ(a11,a12), λ(a11,a21), . . . , λ(a11,a12,a21,a22)] in the two
player, two market sub-case. Note that the number of
elements in the vector is independent on the number of
actual edges in Gβ .

The change in utility a player i gets from selling more to a
specific market, hence increasing the weight of any edge a

in the upper layer is
(

∂u(si,s−i)
∂a

)

. An equilibrium, in this

case, corresponds to no incentive to change the amount
sold, therefore, in the 2 player, two market case, this means

solving ∂u(s1,s−1)
∂a11

= ∂u(s1,s−1)
∂a12

,
∂u(s2,s−2)

∂a21

= ∂u(s2,s−2)
∂a22

,
∂u(s1,s−1)

∂a11

= η1,
∂u(s2,s−2)

∂a21

= η2 where η1 and η2 are
constants representing the cost of production of goods to
the players such that if players sell with costs greater than
η1 and η2, they will have negative profits.

5.1 Null Transportation Case

Lemma 4. In the Cournot-congestion game, where trans-
portation costs are null, the sale price is the same in every
market.

Proof. The utility for a player is given in Equation (2).
Transportation costs are 0 where B(·, ·) = 0 and accord-
ingly the utility of each player is A(·, ·). By examining the
partial differential equations it has been found that

∂u(s1, s−1)

∂a11
=

∂u(s1, s−1)

∂a12
,
∂u(s1, s−1)

∂a11
=

∂Am1
(s1, s−1)

∂a11
(4)

Accordingly from Equation (4)
∂Am1

(s1,s−1)

∂a11

=
∂Am2

(s2,s−2)

∂a21

can be derived. As Am1
uses the same utility equation as

Am2
, where their partial derivatives are the same, they

hold the same value. As such, without loss of generality
this can be applied to any 2 markets and accordingly the
prices in all markets will be at equilibrium at a single
constant value.

✷

6. GENERAL MULTILAYER SOLUTIONS

When examining the coupled layers, the proof of the exis-
tence of unique equilibria given in Bimpikis et al. (2014)
and used in section 4.1 does not hold. This is because while
the profit functions remain twice differentiable, convex
and strictly decreasing, the costs functions are not twice
differentiable, concave and increasing.

Theorem 5. The Cournot-congestion game is in equilib-

rium if and only if, for each player, ∂u(si,s−i)
∂aij

− ∂u(si,s−i)

∂pk
ij

=

r(i), for i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,M}, k ∈
{1, 2, . . . , NPi,j

}, r(i) ∈ R+ with r(i) a fixed constant for
all j, k.

This theorem means the system is at equilibrium if and
only if each player has the same marginal utility for all
(non-zero) strategies available to them.
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Proof. The change in utility of a market and associated
route is given by

∂u(si, s−i)

∂aij
−

∂u(si, s−i)

∂pkij
. (5)

Where there exist no alternate markets or paths such
that changing to that market and using an associated
transport route in order to transport goods there has a
utility increase greater in magnitude than the decrease in
utility from no longer using the current strategy, a player
will change strategies. This implies that for any s ∈ S
for which Equation (5) is not true, the system is not at
equilibrium.

If all players have the same marginal utility for each
strategy than no player has a benefit in marginal changes
to their strategy. Accordingly the system must be in
equilibrium.

7. DISCUSSION

This paper explored the dynamics of two coupled games
that together capture dynamic behaviour observable in
global trade. The strategic interaction of players in
oligopolies is well captured by the Cournot competition,
and studied under this light since the beginning of the 20

th

century. Likewise, congestion games, are a classical opera-
tion research problem and characteristics of the Wardrop
equilibrium are well known. However, when the two games
are set on graphs and made to interact as a multilayer
network, the dynamics becomes richer and the equilibria
in each layer depend on the dynamics of the other.
A recent attempt of introducing the transport dynamics as
a cost in the Cournot competition was made by Bimpikis
et al. (2014) where, to each player-market interaction, a
congestion cost is associated . By separating the transport
layer from the Cournot competition, our work opens up to
the possibility of multiple paths, meaning that a strategy
for each player includes the choice of routing to the market.
The travel costs were already included in the Cournot com-
petition by Alsabah et al. (2021), however this approach to
routing considers only functional transport costs. The mul-
tilayer path based transport routing that appears in this
paper was not found previous literature by the authors. By
analysing the two layers separately we found our results
aligned to the existing literature on single layer network
oligopolies as well as selfish routing problems, which we
leverage on. However a difference exists between the fixed
travel dynamics discussed in Section 4.1 and the classical
Cournot competition. In our case, transportation cost still
exist but players are not able to influence them by choosing
alternative routing.
Under mild assumptions about convexity and concavity
of costs and profits, the model offers insights about the
gain in playing a selfish strategy while approaching the
equilibrium. This was only proved for the case of 2 players
and any number of markets, but an extension to multiple
players is possible and subject of the current research.
Finally, results are achieved using a graph representation
which makes use of a notation based on the links used in
the paths. This representation stems from transportation
research and is alike to the link-route incidence matrix rep-
resentation. In our framework it offers the tool to reduce
the multiplicity of the solution space making the identi-

fication of equilibria of the complete Cournot-congestion
game feasible.

8. CONCLUSIONS

In this work, a multilayer network was used to couple
the network Cournot competition (on the upper layer)
to a selfish routing problem (on the lower layer). The
nature of the behaviour of players on the upper layer when
uncoupled from the lower layer has been found to manifest
as a unique stable equilibrium. Similarly it was found that
there exists a unique stable equilibrium on the lower layer.
When the layers are coupled there no longer exists unique
stable equilibria as the concave behaviour in the upper
layer and the convex behaviour in the lower layer when
added give a non-concave utility function. Existence of
equilibria was however proved and the dynamics examined
via a link-route representation of the lower layer.
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