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We present a general approach to the derivation of the effective anisotropy field which determines the
dynamical behavior of magnetic spins according to the Landau-Lifshitz-Gilbert equation. The approach is based
on the gradient in spherical polar coordinates with the final results being expressed in Cartesian coordinates
as usually applied in atomistic and micromagnetic model calculations. The approach is generally valid for
all orders of anisotropies including higher-order combinations of azimuthal and rotational anisotropies often
found in functional magnetic materials such as permanent magnets and an emerging class of antiferromagnetic
materials with applications in spintronics. Anisotropies are represented in terms of spherical harmonics which
have the important property of rational temperature scaling. Effective field vectors are given for anisotropies up
to sixth order, presenting a unified framework for implementing higher-order magnetic anisotropies in numerical
simulations.

DOI: 10.1103/PhysRevB.107.064413

I. INTRODUCTION

Magnetic materials are central to developments which un-
derpin today’s information-based society. Applications range
from magnetic information storage, still the dominant form
of cloud storage, to the exciting possibilities associated with
spintronics [1]. The transition to hybrid and all-electric ve-
hicles is driving renewed interest in the development of
high-performance permanent magnets, with a particular aim
of reducing the quantity of strategic rare-earth materials. Fi-
nally, the development of “neuromorphic spintronics” raises
the exciting possibility of the use of magnetic textures as
neurons in brain-inspired computing and the use of mag-
netic tunnel junctions to simulate both synapses and neurons
[2]. Neuromorphic spintronics can combine computation and
memory at a very local level, reducing power requirements,
and provides various physical mechanisms as a source of
computational power.

A feature of many of these applications is the use of
magnetic materials with higher-order magnetic anisotropies
due to their composite structure or the intrinsic properties of
the material. An archetypal example is the alloy Nd2Fe14B
which revolutionized the permanent magnet industry from
the mid 1980s. Recently, the drive for improved motors
has led to the use of similar alloys in complex structures
aimed at increasing the magnet energy product while reducing
the rare-earth content. More recently, with the burgeoning

*These authors contributed equally to this work.
†jbc525@york.ac.uk
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interest in antiferromagnetic spintronics, it has been shown
that using the antiferromagnet as the active element instead
of a ferromagnet the device can significantly outperform con-
ventional devices [3–9]. One of the most promising materials
for these devices is Mn2Au due to its high Néel tempera-
ture, moderate anisotropy, and layered multisublattice spin
structure. It has been predicted that in certain antiferromag-
nets (AFMs) a current-induced spin-orbit torque is able to
switch the sublattice magnetic orientation [3,4]. Recently, this
has been demonstrated experimentally for CuMnAs [10–13]
and Mn2Au [14]. A common feature of both Nd2Fe14B and
Mn2Au is the presence of higher-order anisotropies, including
fourth-order rotational terms. In many materials, including
Mn2Au [15], the anisotropy arises from anisotropic exchange
and has a two-site form [16]. The physical understanding
of such complex materials and in particular the tempera-
ture dependence of properties requires atomistic spin models
which are capable of modeling higher-order anisotropies and
anisotropic exchange.

Atomistic spin models [17] are based on classical spins
interacting via the use of a tensor form of the exchange
interaction which introduces, e.g., the Heisenberg interac-
tion, exchange anisotropy, and the Dzyaloshinskii-Moriya
interaction. Static properties such as the temperature depen-
dence of the magnetization can be investigated using standard
Metropolis Monte Carlo methods [18]. Calculations of the
magnetic anisotropy and its temperature dependence are car-
ried out using the constrained Monte Carlo (CMC) method
of Asselin et al. [19]. Spin dynamic calculations are also
possible using integration of the stochastic Landau-Lifshitz-
Gilbert (LLG) equation. Characterization of the temperature
dependence of the anisotropy is extremely important for
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applications which involve elevated temperatures, such as
permanent magnets in motor applications and heat-assisted
magnetic recording (HAMR) [20] where the recording
medium is heated to beyond the magnetic ordering (Curie)
temperature to achieve writing. It is important to note that
the temperature variation of the macroscopic anisotropy K (T )
is a thermodynamic free energy: The intrinsic anisotropy at
the atomic level has a quantum mechanical quantity which
varies slowly with temperature. To characterize K (T ) the
Akulov-Zener-Callen-Callen law [21–23] describing the mag-
netization scaling of the temperature-dependent magnetic
anisotropy is often used,

K (T )

K (T = 0)
=

(

M(T )

M(T = 0)

)p(p+1)/2

, (1)

where M is the bulk magnetization, and p is the power order
of the anisotropy. However, it is important to note that this
scaling applies only when the anisotropy is represented by
orthogonal functions [23].

Experimentally, magnetic anisotropy is measured indi-
rectly, considering the restoring torque of a magnetic sample
where the magnetic moment is oriented away from a known
crystallographic axis. For a uniaxial system these curves are
then fitted assuming a form of the anisotropy energy Ek given
by

Ek = K1 sin2 θ + K2 sin4 θ + K3 sin6 θ, (2)

where K1, K2, K3 are the first, second, and third anisotropy
constants, respectively. Originally, the nonorthogonality of
these functions was not considered important, but when con-
sidering the temperature dependence of the constituent terms,
the actual scaling depends on the relative values of the
anisotropy constants [24]. Another common misconception
in the literature is confusing the number of the anisotropy
constant with the order of the effect. The first term in Eq. (2)
is second order in θ (or equivalently in magnetization mz) and
is not a first-order anisotropy. Similarly the second term is
fourth order, and the third term is sixth order. This distinc-
tion is important when considering the scaling of magnetic
anisotropy with temperature and so we make a specific point
of clarification here.

Here, we present a unified framework for the implementa-
tion of the full range of magnetic anisotropies, expressed in
terms of spherical harmonics, in atomistic spin models, that
is self-consistent and follows the analytically derived scaling
laws for their separable components. The derived fields work
for both the Landau-Lifshitz-Bloch (LLB) and LLG integra-
tion schemes and a further technique allows for an effective
field which is more computationally efficient, but can only be
used for the LLG formalism. The LLG form of the fields have
been fully implemented in the VAMPIRE open source software
package [17,25]. It is important to note that both approaches,
the power law expression (2) and the use of spherical harmon-
ics presented here, are both perfectly valid. Equation (2), when
fitted to experimental data, gives values of the coefficients
which fully characterize the anisotropy energy surface and
its temperature dependence for a given material. Skomski
[24] shows that the coefficients of both representations can
be simply related. However, the temperature dependence of

the coefficients determined by fitting to Eq. (2) will not have
the rational scaling with magnetization of a fitting to spher-
ical harmonics because of the requirement of representation
[23] in terms of orthogonal functions. Where this scaling is
important, the representation in terms of spherical harmonics
is required.

II. THEORY

A. General framework of atomistic spin models

The general formulation of atomistic spin models [17] em-
ploys a lattice of fixed length atomic spins interacting with a
spin Hamiltonian of the form

H = −
∑

i< j

Ji jSi · S j + HA −
∑

i

μiB · Si, (3)

where Si, j are unit vectors describing the direction of local
moments i, j, Ji j is the Heisenberg exchange interaction be-
tween neighboring spins, μi is the spin moment of atom i,
and B is the externally applied magnetic induction field. The
focus of this paper is anisotropic contributions, represented by
the general contribution to the spin Hamiltonian HA. We will
present detailed expressions for this term in later sections.

B. Uniaxial and rotational anisotropy

In this formalism for anisotropy, the easy/hard axis vector
is taken to lie along the ẑ axis of the unit cell, from which
θ is measured, and the x̂ axis determines the zero for the
measurement of φ in accordance with the standard spherical
polar coordinate system. Ignoring the effects of neighboring
moments, the anisotropic energy of a magnetic moment m is
some function EA(r, θ, φ) where r = ||m||, commonly written
as μ. Completely ignoring the effects of neighboring mo-
ments may mean that circumstances in which high changes in
magnetization direction occurring over small distances are not
well described by the model, although to a degree this may be
accounted for by including two-ion anisotropy. The magnetic
field is therefore found by taking the negative gradient −∇EA

with respect to m. In general, any real scalar function on a
spherical surface can be written in terms of real spherical
harmonics such that Y (θ, φ) =

∑

l,m kl,mYl,m(θ, φ), with the
standard m and l integers where |m| � l and l � 0, and the
kl,m are constants. To conserve time reversal symmetry, invari-
ance of Y (θ, φ) with respect to the combined transformations
θ → π − θ and φ → φ + π is required, thus m + l must be
even. Spherical harmonics satisfying these requirements can
describe triclinic crystal systems. The symmetries of other
crystal systems allow even more simplifications to be made.
For many systems, the x axis can be chosen such that there
is symmetry with respect to φ, allowing all negative m terms
to be omitted. In addition, if the system is orthorhombic there
is order two rotational symmetry, thus only even m, and con-
sequently even l are allowed. Tetragonal systems have order
four rotational symmetry only permitting m to be a multiple of
four. Cubic systems, in addition to the tetragonal constraint,
fix the ratios between the harmonic terms such that fourth-
order rotational symmetry about the x and y axes is obeyed.
Hexagonal systems with sixth-order rotational symmetry only
permit m to be multiples of six. Table I gives a subset of the al-

064413-2



GENERALIZED FORM OF THE MAGNETIC ANISOTROPY … PHYSICAL REVIEW B 107, 064413 (2023)

TABLE I. Expressions for anisotropy energies given for order θ ,
order φ.

Order Energy

2,0 −k2,0 cos2 θ

2,2 −k2,2 sin2 θ cos 2φ

4,0 −k4,0(cos4 θ − 6
7 cos2 θ )

4,2 −k4,2 sin2 θ (cos2 θ − 1
7 ) cos 2φ

4,4 −k4,4 sin4 θ cos 4φ

6,0 −k6,0(cos6 θ − 15
11 cos4 θ + 5

11 cos2 θ )

6,2 −k6,2 sin2 θ (cos4 θ − 9
11 cos2 θ + 1

33 ) cos 2φ

6,4 −k6,4 sin4 θ (cos2 θ − 1
11 ) cos 4φ

6,6 −k6,6 sin6 θ cos 6φ

lowed terms likely to be useful to such systems. The constants
have been chosen such that the highest-order trigonometric
terms are premultiplied by −1. Since only energy differences
exhibit physical properties, any constant energies have also
been removed.

To include the radial dependence, the most general form
involves multiplying each of the spherical harmonic terms by
some function of r. Understanding the radial dependence is
nontrivial due to the difficultly in observing the spin length
in magnetic materials. Here, the dependence can be expressed
generally as a Maclaurin expansion, where since symmetry of
EA is required for r → −r, only even power terms in r are
nonzero. Multiplying the l = 0 harmonic by such a polyno-
mial yields a form similar to that of the Landau Hamiltonian.
The form is restricted to a Maclaurin expansion, since the
presence of diverging field energies would be unphysical, sug-
gesting a Laurent series is inappropriate. However, it is worth
noting that a Maclaurin expansion does not have to be used,
as any orthogonal expansion would work. It may therefore be
useful to consider that restriction to a Maclaurin formalism is
not required and in fact any function of |r| is allowed as long
as it is piecewise smooth. Considering the general case of a
Maclaurin expansion, the final form can be written as

EA(r, θ, φ) =
∑

n,l,m

kn,l,mrnYl,m(θ, φ), (4)

where the integers n, l � 0, n, (l + m) are even, |m| � l and
kn,l,m are constants.

It is important to note that the only ways to obtain the
necessary constants are through the use of either ab initio or
experimental methods.

III. EFFECTIVE FIELD REPRESENTATION

The effective anisotropy field can be defined as the field
which acts on the magnetization to give the torque

Ŵ = M × Beff . (5)

However, according to Brown [26], the field is indeterminate
by a factor λM where λ is any scalar. Further, the effec-
tive field cannot be considered an external field since the

anisotropy energy cannot be expressed in terms of Beff from
Eq. (5) as

EA = −M · Beff . (6)

Fujiwara and Zhao [27] tackled this problem directly by seek-
ing an expression for Beff which simultaneously satisfied both
Eqs. (5) and (6). They solved the problem by constructing the
Stoner-Wohlfarth [28] astroid and determining a simultaneous
solution of Eqs. (5) and (6) as the intersection of two vectors
constructed from the astroid. However, it is straightforward
for purely rotational anisotropy to analytically solve Eqs. (5)
and (6). For an n-fold rotational anisotropy, E = K cos(nφ)
and Ŵ = −nK sin(nφ), and a direct solution gives the follow-
ing expressions for the components of the anisotropy field, Bx

and By, as

Bx = 1
2 BK [cos(nφ) cos φ + n sin(nφ) sin φ],

By = 1
2 BK [cos(nφ) sin φ − n sin(nφ) cos φ], (7)

where BK = 2K/Ms. In terms of Cartesian coordinates the
fourth-order anisotropy field components become

Bx =
BK

2
mx

[

16m2
y

(

m2
x − m2

y

)

+ 8m4
x − 8m2

x + 1
]

,

By =
BK

2
my

[

−16m2
x

(

m2
x − m2

y

)

+ 8m4
x − 8m2

x + 1
]

. (8)

This is relatively cumbersome for such a simple form of
anisotropy. Also, observation of Eq. (7) shows that each effec-
tive field component contains a term in the energy cos(nφ) and
the torque n sin(nφ): The dot or cross product simply selects
respectively the former or the latter. Any such derivation will
produce a similarly nonphysical field. The next section will
outline a technique which goes further to derive fields which
work generally for spin vectors not just in a plane, but any
direction on the three-dimensional sphere. Such fields derived
would be appropriate for use with the LLB equation, and a
technique to obtain simplified effective fields, which are less
computationally demanding and appropriate for use with LLG
integration, will also be discussed.

IV. GENERAL APPROACH TO ROTATIONAL

ANISOTROPIES

We start with the gradient in spherical polar coordinates
with respect to m, equivalent to ∂/∂m which is given by

∇ = x̂

(

sin θ cos φ
∂

∂r
+

cos θ cos φ

r

∂

∂θ
−

sin φ

r sin θ

∂

∂φ

)

+ ŷ

(

sin θ sin φ
∂

∂r
+

cos θ sin φ

r

∂

∂θ
+

cos φ

r sin θ

∂

∂φ

)

+ ẑ

(

cos θ
∂

∂r
−

sin θ

r

∂

∂θ

)

, (9)

which can be used to find −∇EA(r, θ, φ) for an evolution
of systems with longitudinal as well as rotational degrees of
freedom such described by the LLB equation of motion [29]
and its stochastic form [30]. Similarly, models including lon-
gitudinal spin fluctuations of the magnetic moment describe
changes of spin magnitude using a Landau Hamiltonian with
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terms up to m6 [31,32]. In such cases the radial derivatives
give the appropriate field.

It is worth noting that terms in Eq. (4) with n = 0 give
purely anisotropic terms, and terms with l = 0 give purely
radial terms. If Landau terms dominate over coupled radial
and angular terms, i.e., |kn>0,0,0| ≫ |kn>0,l>0,m|, then pertur-
bations in r have little angular dependence. Similarly if purely
anisotropic terms dominate over coupled angular-radial terms,
perturbations in the angular directions have little dependence
on r. If both cases are valid, then the dynamics are described
by purely anisotropic and radial terms. An even further sim-
plification is possible if a moment has its radius restricted to
a length r = μ so the expression reduces to an expansion in
spherical harmonics with constants kl,m, and the LLG equa-
tion of motion appropriately describes the system dynamics
with

EA(r, θ, φ) = EA(θ, φ) =
∑

l,m

kl,mYl,m(θ, φ). (10)

For anisotropy energies involving these purely anisotropic
terms, there is no radial dependence and the magnetic moment
can be simplified with the restriction that it takes a position on
a sphere of radius μ so that Eq. (9) reduces to

∇ =
1

μ

[

x̂

(

cos φ cos θ
∂

∂θ
−

sin φ

sin θ

∂

∂φ

)

+ ŷ

(

sin φ cos θ
∂

∂θ
+

cos φ

sin θ

∂

∂φ

)

− ẑ sin θ
∂

∂θ

]

; (11)

note that this μ length simplification must not be used for
any terms with radial dependence. From this gradient, the
torque can be calculated using −m̂ × ∇El,m, where El,m rep-
resents a contribution due to a purely anisotropic term with
the corresponding l and m from EA(θ, φ). This represents
a first-principles approach to the determination of effective
anisotropy fields for spin dynamics and micromagnetic mod-
els. It is also possible to yield the same results for the fields
by representing the anisotropy energies explicitly in terms of
direction cosine components, and taking the gradient in the
Cartesian basis. In the following we present details of the
calculation for second-order anisotropy including the method
for the determination of the simplest field representation,
bearing in mind the indeterminacy of the anisotropy field men-
tioned by Brown [26]. Following this we derive the expression
for fourth-order anisotropy including some of the rotational
terms. The results pertaining to other common anisotropies,
including the Cartesian representation most relevant for atom-
istic spin models, are given in Tables II–IV.

A. Second order

The second-order uniaxial term creates an energetic in-
centive for the magnetization to align with the z axis if the
second-order uniaxial anisotropy constant k2,0 is positive. The
form used is given by

E2,0 = −k2,0 cos2 θ, (12)

with coefficients and constant offsets removed for simplicity,
since it is only gradients in energy which give rise to fields.
A similar convention is used for the higher- order terms later

TABLE II. Effective anisotropy field expressions given for order
θ , order φ.

Order Effective field

2,0 (2k2,0mz/μ)

⎡

⎣

0
0
1

⎤

⎦

2,2 (2k2,2/μ)

⎡

⎣

mx

−my

0

⎤

⎦

4,0 (2k4,0mz/μ)(2m2
z − 6

7 )

⎡

⎣

0
0
1

⎤

⎦

4,2 (4k4,2/μ)

⎡

⎢

⎣

−m3
x + 3

7 mx

m3
y − 3

7 my

0

⎤

⎥

⎦

4,4 (4k4,4/μ)

⎡

⎢

⎣

mx (m2
x − 3m2

y )

my(m2
y − 3m2

x )
0

⎤

⎥

⎦

6,0 (2k6,0mz/μ)(3m4
z − 30

11 m2
z + 5

11 )

⎡

⎣

0
0
1

⎤

⎦

6,2 (2k6,2/μ)

⎡

⎢

⎣

my(m2
x + m2

y )(m2
x − 3m2

y ) − 32
11 m3

x + 16
33 mx

mx (m2
x + m2

y )(3m2
x − m2

y ) + 32
11 m3

y − 16
33 my

0

⎤

⎥

⎦

6,4 (2k6,4/μ)

⎡

⎢

⎣

mx[(5m4
y + 10m2

x m2
y − 3m4

x ) + 20
11 (m2

x − 3m2
y )]

my[(5m4
x + 10m2

x m2
y − 3m4

y ) + 20
11 (m2

y − 3m2
x )]

0

⎤

⎥

⎦

6,6 (6k6,6/μ)

⎡

⎢

⎣

−mx (10m2
y m2

x − m4
x − 5m4

y )

my(10m2
x m2

y − m4
y − 5m4

x )
0

⎤

⎥

⎦

considered. A calculation of −∇E2,0 using Eq. (11) yields

B2,0 = −
2k2,0mz

μ

⎡

⎣

⎡

⎣

0
0

−1

⎤

⎦ + mz

⎡

⎣

mx

my

mz

⎤

⎦

⎤

⎦, (13)

with mx, my, and mz denoting the x̂, ŷ, ẑ components of m̂,
respectively. The torque is then found from μm̂ × B2,0 to be

τ2,0 = 2k2,0mz

⎡

⎣

my

−mx

0

⎤

⎦, (14)

so the effective field can be written as

B2,0 eff =
2k2,0

μ
mz

⎡

⎣

0
0
1

⎤

⎦ (15)

since the part of B2,0 which is proportional to m̂ makes no
contribution to the torque. This is the usual expression found
by taking the derivative of the energy in Cartesian coordi-
nates. However, this result is coincidental and not generally
applicable to higher-order magnetic anisotropies. Notice that
μm̂ × B2,0 eff yields the same torque as μm̂ × B2,0, and any
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TABLE III. Anisotropy torque expressions given for order θ ,
order φ.

Order Torque

2,0 2k2,0mz

⎡

⎣

my

−mx

0

⎤

⎦

2,2 2k2,2

⎡

⎣

mymz

mxmz

−2mxmy

⎤

⎦

4,0 2k4,0mz(2m2
z − 6

7 )

⎡

⎣

my

−mx

0

⎤

⎦

4,2 −4k4,2

⎡

⎢

⎣

mymz(m2
y − 3

7 )

mxmz(m2
x − 3

7 )

mxmy(−m2
x − m2

y + 6
7 )

⎤

⎥

⎦

4,4 −4k4,4

⎡

⎢

⎣

mymz(−3m2
x + m2

y )

mxmz(3m2
y − m2

x )

4mxmy(m2
x − m2

y )

⎤

⎥

⎦

6,0 −2k6,0mz(3m4
z − 30

11 m2
z + 5

11 )

⎡

⎣

−my

mx

0

⎤

⎦

6,2 −2k6,2

⎡

⎢

⎣

mymz[(m2
x + m2

y )(3m2
y − m2

x ) − 32
11 m2

y + 16
33 ]

mxmz[(m2
x + m2

y )(3m2
x − m2

y ) − 32
11 m2

x + 16
33 ]

−2mxmy[(m2
x + m2

y )2 − 16
11 (m2

x + m2
y ) + 16

33 ]

⎤

⎥

⎦

6,4 −2k6,4

⎡

⎢

⎣

mymz[5m4
x − 10m2

x m2
y + 3m4

y + 20
11 (3m2

x − m2
y )]

mxmz[3m4
x − 10m2

x m2
y − 5m4

y − 20
11 (3m2

y − m2
x )]

8mxmy[−m4
x + m4

y − 10
11 (m2

x − m2
y )]

⎤

⎥

⎦

6,6 −6k6,6

⎡

⎢

⎣

mymz(10m2
x m2

y − m4
y − 5m4

x )

mxmz(10m2
x m2

y − m4
x − 5m4

y )

mxmy(−20m2
x m2

y + 6m4
y + 6m4

x )

⎤

⎥

⎦

effective field would obey the equation

μ

⎡

⎣

0 −mz my

mz 0 −mx

−my mx 0

⎤

⎦

⎡

⎣

B2x eff

B2y eff

B2z eff

⎤

⎦ = 2k2,0mz

⎡

⎣

my

−mx

0

⎤

⎦, (16)

which represents the simultaneous equations yielded from the
cross product μm̂ × B2,0 eff. Noticing that since the determi-
nant of the matrix as well as all Cramer determinants are zero
and that the matrix has nonzero cofactors suggests an infinite
number of solutions lying on a line. From the simultaneous
equations, the line equation can then be written as

B2x eff =
mx

my

B2y eff = −
2k2,0mx

μ
+

mx

mz

B2z eff, (17)

and setting B2x eff = B2y eff = 0 yields the given effective field.
The effective field is in the same plane as that defined by m

and B2,0, however, its direction and magnitude are changed
from B2,0 so as to remove a component for more efficient
computation. This means that there is a radial component in
B2,0 eff, whereas in the true field B2,0 there is not. Thus such
effective fields should only be used for computation of LLG
dynamics, and not for the LLB where the true fields should be
used. It is possible to use the effective field for LLB dynamics,

but only when calculating the cross-product term; the dot
product term should be zero.

The other second-order term is rotational and described by

E2,2 = −k2,2 sin2 θ cos 2φ, (18)

where k2,2 is a constant. This contribution occurs in lower-
symmetry systems, i.e., where the rotational symmetry in the
plane perpendicular to the uniaxial anisotropy axis is of order
2, e.g., orthorhombic, monoclinic, and triclinic systems. Using
Eq. (11) this yields a field of

B2,2 =
2k2,2

μ

⎡

⎣

⎡

⎣

mx

−my

0

⎤

⎦ −
(

m2
x − m2

y

)

⎡

⎣

mx

my

mz

⎤

⎦

⎤

⎦, (19)

which allows for an effective field of the form

B2,2 eff =
2k2,2

μ

⎡

⎣

mx

−my

0

⎤

⎦. (20)

B. Fourth order

We now consider higher-order magnetic anisotropies
where the Cartesian derivative yields incorrect expressions for
the effective magnetic fields, particularly in the case of rota-
tional anisotropies. Experimentally, the fourth-order magnetic
anisotropy is usually expressed in the form

E4,0 = K2 sin4 θ, (21)

which as discussed earlier leads to an incorrect scaling as the
common scaling laws are derived for orthogonal functions.
In the permanent magnet community the anisotropy is often
described by a Legendre polynomial of appropriate order in
Cartesian coordinates

E4,0 = −k4
1
8

(

35m4
z − 30m2

z + 3
)

, (22)

where k4 is a constant. Here, the requirement for orthogonality
is satisfied by design through the addition of a second-order
component. A similar spherical harmonic representation is
given by the expansion of fourth-order uniaxial components
of Eq. (10),

E4,0 = −k4
3

16

√

1

π
(35 cos4 θ − 30 cos2 θ + 3). (23)

The more complicated functional form of the Legendre poly-
nomials and spherical harmonics has limited their wider
adoption in the community, especially due to the change of
definition of the anisotropy constant Kl to a constant of order
k2l and the need to fit to more complicated expressions when
measuring torque curves [24]. To balance the requirements
for simplicity and orthogonality we have adopted a minimally
orthogonal function for higher-order anisotropies, where the
leading term of the relevant order is normalized to 1 and irrel-
evant constants are also removed. For fourth-order anisotropy
with nonrotational terms that leads to an expression of the
form

E4,0 = −k4,0
(

cos4 θ − 6
7 cos2 θ

)

, (24)
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TABLE IV. Anisotropy field expressions given for order θ , order φ.

Order Field

2,0 −(2k2,0mz/μ)

⎡

⎣

mxmz

mymz

−(1 − m2
z )

⎤

⎦

2,2 (2k2,2/μ)

⎡

⎢

⎣

mx (−m2
x + m2

y + 1)

my(−m2
x + m2

y − 1)

mz(−m2
x + m2

y )

⎤

⎥

⎦

4,0 −(2k4,0mz/μ)(2m2
z − 6

7 )

⎡

⎢

⎣

mzmx

mzmy

(m2
z − 1)

⎤

⎥

⎦

4,2 (4k4,2/μ)

⎡

⎢

⎣

mx (m4
x − m4

y ) − mx

7 (10m2
x − 3m2

y − 7)

my(m4
x − m4

y ) −
my

7 (3m2
x − 10m2

y + 7)

mz(m4
x − m4

y ) − 3
7 mz(m2

x − m2
y )

⎤

⎥

⎦

4,4 −(4k4,4/μ)

⎡

⎢

⎣

mx (m4
x + m4

y − 6m2
x m2

y + 3m2
y − m2

x )

my(m4
x + m4

y − 6m2
x m2

y + 3m2
x − m2

y )

mz(m4
x + m4

y − 6m2
x m2

y )

⎤

⎥

⎦

6,0 −(2k6,0mz/μ)(3m4
z − 30

11 m2
z + 5

11 )

⎡

⎣

mzmx

mzmy

(m2
z − 1)

⎤

⎦

6,2 (2k6,2/μ)

⎡

⎢

⎣

mx (−3m6
x − 3m4

x m2
y + 3m2

x m4
y + 3m6

y + 65
11 m4

x + 2m2
x m2

y − 43
11 m4

y − 112
33 m2

x + 16
33 m2

y + 16
33 )

my(−3m6
x − 3m4

x m2
y + 3m2

x m4
y + 3m6

y + 43
11 m4

x − 2m2
x m2

y − 65
11 m4

y − 16
33 m2

x + 112
33 m2

y − 16
33 )

mz(m2
x − m2

y )[3(m2
x + m2

y )2 + 32
11 (m2

x + m2
y ) − 16

33 ]

⎤

⎥

⎦

6,4 −(2k6,4/μ)

⎡

⎢

⎣

mx (3m2
y − m2

x + 53
11 m4

x − 230
11 m2

x m2
y − 35

11 m4
y − 3m6

x − 15m4
x m2

y − 15m2
x m4

y − 3m6
y )

my(3m2
x − m2

y + 53
11 m4

y − 230
11 m2

x m2
y − 35

11 m4
x − 3m6

y + 15m2
x m4

y + 15m4
x m2

y − 3m6
x )

−3mz[(m2
x + m2

y )(m4
x − 6m2

x m2
y + m4

y ) + 20
11 (m4

x + m4
y − 6m2

x m2
y )]

⎤

⎥

⎦

6,6 −(6k6,6/μ)

⎡

⎢

⎣

mx (m6
x − 15m4

x m2
y + 15m2

x m4
y − m6

y + 10m2
x m2

y − m4
x − 5m4

y )

my(m6
x − 15m4

x m2
y + 15m2

x m4
y − m6

y − 10m2
x m2

y + m4
y + 5m4

x )

mz(m6
x − 15m4

x m2
y + 15m2

x m4
y − m6

y )

⎤

⎥

⎦

with k4,0 denoting the fourth-order anisotropy constant. Using
a similar technique to the second-order derivation, the field
and effective field are then given respectively as

B4,0 = −
2k4,0mz

μ

(

2m2
z −

6

7

)

⎡

⎣mz

⎡

⎣

mx

my

mz

⎤

⎦ −

⎡

⎣

0
0
1

⎤

⎦

⎤

⎦, (25)

and since m̂ × m̂ = 0,

B4,0 eff =
2k4,0mz

μ

(

2m2
z −

6

7

)

⎡

⎣

0
0
1

⎤

⎦ (26)

to yield the same effective torque. Next, considering the ro-
tational terms, one with second-order rotational symmetry
and the other with fourth-order rotational symmetry in the xy

plane, the second-order rotational term is given by

E4,2 = −k4,2 sin2 θ
(

cos2 θ − 1
7

)

cos 2φ, (27)

where k4,2 represents the fourth-order θ , second-order φ

anisotropy constant. This yields a field and an effective field

respectively given by

B4,2 =
4k4,2

μ

⎡

⎣

(

m4
x − m4

y −
3

7

(

m2
x − m2

y

)

)

⎡

⎣

mx

my

mz

⎤

⎦

+

⎡

⎢

⎢

⎣

−m3
x + 3

7 mx

m3
y − 3

7 my

0

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

, (28)

B4,2 eff =
4k4,2

μ

⎡

⎢

⎢

⎣

−m3
x + 3

7 mx

m3
y − 3

7 my

0

⎤

⎥

⎥

⎦

. (29)

The fourth-order rotational term, which is applicable to
Mn2Au [15], is given by

E4,4 = −k4,4 sin4 θ cos 4φ, (30)

where k4,4 represents the fourth-order θ , fourth-order φ aniso-
tropy constant. The field and effective field are respectively

064413-6
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given as

B4,4 = −
4k4,4

μ

⎡

⎣

(

m4
x + m4

y − 6m2
xm2

y

)

⎡

⎣

mx

my

mz

⎤

⎦

+

⎡

⎢

⎣

mx

(

3m2
y − m2

x

)

my

(

3m2
x − m2

y

)

0

⎤

⎥

⎦

⎤

⎥

⎦
, (31)

B4,4 eff =
4k4,4

μ

⎡

⎢

⎣

mx

(

m2
x − 3m2

y

)

my

(

m2
y − 3m2

x

)

0

⎤

⎥

⎦
. (32)

For additional use, the expressions up to sixth order are
included in the tables. The importance of our approach is
demonstrated by the fact that obtaining expressions for the
effective magnetic field by calculating the derivative of the
energy in Cartesian form yields an incorrect torque and thus
incorrect equilibrium and dynamic properties of the system,
unless the energy is expressed using direction cosine form
before taking the derivatives. Therefore care must be taken
when implementing higher-order magnetic anisotropies in nu-
merical codes [33–37].

V. CONCLUSIONS

Atomistic and micromagnetic models are increasingly used
for simulations of the properties of magnetic materials with

applications in many fields. Particularly challenging is the
representation of anisotropy fields for computational dynamic
calculation in materials with higher-order anisotropies. Into
this consideration comes the important scaling law of mag-
netic anisotropy which requires representation in terms of
orthogonal functions [23]. We have developed a general ap-
proach based on the spherical polar representation of the
gradient which, coupled with solutions of the simultaneous
equations yielded from the cross product of the magnetization
and an effective field, leads to the minimal representation
of the effective field for applications in spin dynamics, both
in the atomistic and micromagnetic discretization schemes.
The derivation of the Cartesian components of the effective
field (most useful for atomistic and micromagnetic simula-
tions) is given for two specific examples, with an extensive
collection of results being given in the tables. All the exam-
ples described here have been included in the VAMPIRE [25]
code.
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