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Abstract. Serverless computing is a technology that offers the ability
to create modular, highly-scalable, fault-tolerant applications, leverag-
ing container-based virtualisation to deploy applications and services. It
is revolutionising the way we think about application development, and
serverless platforms are already ubiquitous in the public and private sec-
tors. Commercial solutions dominate the market with widespread adop-
tion from industry giants such as Amazon, Google and Microsoft, though
open-source solutions do exist such as Apache OpenWhisk, Fission and
OpenFaaS. This tutorial will present the state-of-the-art in serverless
computing research, and provide useful insights into the main challenges
that motivate researchers to work on this topic. It will also identify re-
search gaps for future research.

Keywords: Serverless computing · · Cloud Computing · Containerisa-
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1 Introduction

The goal of serverless computing is to provide isolated environments that ab-
stract underlying technologies and expose small runtime containers for users to
run functions as code [13]. It provides a resource-efficient, low overhead alter-
native to Virtual Machines (VMs) and containers. Serverless computing simply
means that the serverless platform allows a developer to build code and deploy
it without ever needing to configure or manage underlying servers. The unit of
deployment is the code; not the container that hosts the code, or the server
that runs the code, but simply the code itself. However, a major requirement for
writing serverless code is the ability to express the logic as functions that are
instantiated to process a single event triggered by a service.

With zero infrastructure and maintenance costs and little-to-no operating
expense, a serverless computing platform is an ideal solution to build and opti-
mise any Internet of Things (IoT) operation as it allows IoT businesses to offload
all of a server’s typical operational backend responsibilities [20]. Moreover, such
system is a natural fit for edge computing applications as serverless comput-
ing also supports the protocols which IoT devices require in actual deployment
conditions.
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For a map of state-of-the-art research on the topic of FaaS platform and
tooling engineering together with analysis of relations of the proposed concepts
to existing solutions, the reader is referred to [35]: the mapping study on en-
gineering FaaS platforms and tools provides insights on publication trends, the
common challenges and drivers for research as well as information on industry
participation in research publications.

2 Service Models

Serverless computing is linked to mainly two service models [35], similar to the
ones that originally emerged with the rise of cloud computing:

1. Backend as a Service(BaaS): This refers to services that offer features tra-
ditionally implemented by back-end applications such as databases or API
servers. Users can incorporate them in their front-end web applications with-
out the provisioning, setup and management of servers [11]. Although similar
to Platform as a Service (PaaS), they are more full-featured, implementing
server side logic such as user authentication or push/pull notifications which
PaaS offerings forego in favor of more flexibility.

2. Function as a Service(FaaS): This model allows users to develop their ap-
plication logic by compositing event-driven executable elements called func-
tions. These functions are executed inside ephemeral containers, taking ad-
vantage of container virtualization to quickly provision resources for the
duration of the execution. Most notably these containers are managed by
the providers and scale automatically in number based on demand. FaaS is
the most prominent model of serverless computing and has seen widespread

3 Commercial Offering

Serverless computing has seen widespread adoption from tech industry giants
such as Amazon [1], Microsoft [7] and Google [5]. Amazon AWS Lambda is a
service for executing stateless functions in the cloud, triggered by events, with
transparent provisioning and no infrastructure management from users [1]. It has
since grown into one of the most widely used and researched FaaS platforms,
as evidenced by the extensive literature on performance evaluation [22] and
investigations into its viability in various application domains [18].

Similarly, Microsoft have general availability of their own FaaS service, Azure
Functions, citing a much wider service-function binding capability, allowing func-
tions to be triggered by events from external services. Azure Functions is built
on top of Microsoft’s PaaS offering, Azure App Service, and theWebJobs SDK
with a runtime layer on top to support multiple programming languages. Google
also have Cloud Functions, their own brand of serverless, and so does IBM which
developed of what would eventually become OpenWhisk, the open-source server-
less platform that embraces community collaboration. OpenWhisk was released
to the general public and admitted into the Apache Foundation and was the
basis for IBM’s commercial FaaS product, Cloud Functions.
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4 Open Source Solutions

Serverless computing has also seen adoption from the public domain, with open-
source projects like Apache OpenWhisk [2], Fission [4], OpenFaas [8], IronFunc-
tions [6] and more.

OpenLambda [21] is an open-source platform for building web services appli-
cations using the serverless computing model. OpenWhisk [2] follows a simple
event-driven architecture – functions are being triggered in response to events
originating from direct invocations to the OpenWhisk API, or external ser-
vices that are integrated in the platform through specialized packages. These
community-developed packages allow functions to be triggered when an external
action is being performed, such as when a new commit is pushed to a GitHub
repository, or a file has finished uploading to a Dropbox folder. Every action in
OpenWhisk is transformed and routed through its RESTful HTTP-based API
that serves as the platform’s single point of entry.

5 Research Categories

An investigation of the challenges and drivers that motivate researchers to engi-
neer new or extend existing FaaS platforms and platform-specific tools is found
in [35]. The state of the art on the topic of developing new or enhancing exist-
ing FaaS platforms and tools engineering focuses on the following: 1) Function
Execution; 2) Platform deployment environment; 3) Testing and observability;
4) Benchmarking; 5) Costs optimisation; 6) Programming models; 7) Research-
centric platforms; 8) Deployment automation; 9) Migration, and 10) Continuous
integration / Continuous delivery pipeline.

One of the findings in [35] is that the challenges tackled by researchers are
heterogeneous and target different layers of the FaaS platform, with a bulk of the
work focusing on optimizing the performance of function execution aspects using
various strategies, e.g., optimize or replace function runtime, improve function
scheduling and resources allocation.

Moreover, underlying metrics that are considered in the literature include
[34]:

– Communication performance: this is important in function composition, and
is particularly used for complex serverless applications such as sequence and
nested chain;

– Startup latency: although function execution time is usually short, a 15×
factor differential is noted between cold and warm times [26]. To avoid start-
up latency, the underlying virtualisation technology must be optimised to
decrease the start-up latency of cold start and can be tackled by suitable
managing of the function instances in the serverless platform, e.g., reusing
launched instances by keeping them warm for a period of time [25], or re-
duction of the container image size.
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– Stateless overhead: serverless functions are by defnition stateless. Two op-
tions are considered for an application that wants to preserve state across
function executions: 1) the state can be fully encapsulated within the event
message passing between the function executions. If there are multiple func-
tions executing in a workflow, each function will find the full application
state it needs in the event message it receives, operate on it, and pass it on
to the next function, and 2) persist state across function executions is to
utilise a storage system, e.g. AWS S3.

– Resource efficiency: from the platform perspective, this is the ability to co-
locate serverless functions with other workloads for utilisation improvement.
For users, the aim is to provision resources for Quality of Service and econ-
omy benefit.

6 Research Challenges

There are a number of research challenges in serverless computing such as unre-
liability, large overheads and an absence of benchmarks [16]. Investigations into
various aspects of serverless architectures are therefore required to guide the de-
cision making process. In the following, some of these challenges are discussed.

6.1 Performance

There has been extensive research around factors affecting function execution
performance [31] as well as some evaluations of commercial and open-source
serverless frameworks. A comprehensive evaluation of Apache OpenWhisk is
evaluated in [14], with a series of experiments designed and implemented to as-
sess its performance in terms of effectiveness and efficiency. Two metrics were
of interest in experimentation: function runtime and resource utilisation. Ex-
periments also involved creation of two alternate solutions used as benchmarks
for the results produced by OpenWhisk to provide some context and means
for comparison: Docker [3] and native. The results of experiments showed that
OpenWhisk could outperform a solution which employed similar functionality,
through use of container-based virtualisation.

Another important point to consider in the context of performance is virtual-
isation technology. For example, AWS Lambda uses Firecracker micro-VMs [17]
which provide enhanced security and workload isolation over traditional VMs,
while enabling the speed and resource efficiency of containers.

6.2 Serverless Composition

Serverless applications can be made of multiple functions in a chain, and conse-
quently unreasonable composition may incur high communication overhead. For
example, network functions are usually short-lived and in most scenarios, they
are chained together to form a Service Function Chain (SFC) [12]. The devel-
opment and performance tuning of SCFs are difficult and should be considered
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in designing the more complex application scenarios. Considering serverless par-
allelism , especially in the context of autoscaling can benefit applications with
high efficiency. How to control and manage such parallelism remains an open
question.

6.3 Utilisation

Serverless functions are usually scaled up and down on-demand in a serverless
platform. Load balancing manages resource utilisation by distributing the func-
tion executions to available resources. Function efficiency heavily depends on
the resources allocated but at the same time maximising resource utilization is a
hard problem, especially in a large scale environment, e.g. cloud computing [34].

As noted previously, an application can be launched as multiple orchestrated
functions. To avoid undesired latency and network overhead (and therefore en-
ergy consumption), the function executions belonging to the same session can
be assigned to the same server. For latency sensitive communication, locality
requirements are considered to group functions as a single application.

6.4 Programming Models

Serverless platforms are typically focused on FaaS, where applications need to
be redesigned as a set of event-triggered functions implemented in a supported
programming language. Consequently, this requires additional effort for the de-
velopers as many applications cannot be easily redesigned as a set of functions.

The adoption of serverless computing in Big Data has attracted the atten-
tion of researchers and developers. Examples of data analytics over serverless
platforms are found in [19] to perform data processing with Spark over Apache
OpenWhisk Ooso is an open source tool based on managed cloud services, Ama-
zon S3 and AWS Lambda that allows running MapReduce jobs in a serverless
way [29]. Another open-source framework for building serverless applications is
AWS Serverless Application Model (SAM) [10] which provides shorthand syn-
tax to express functions, APIs, databases, and event source mappings as well as
application modelling using YAML. A programming model designed to create
highly-parallel event-driven file-processing serverless applications for serverless
architectures is presented in [28]. This programming model allows the user to
run generic applications, including legacy ones, on serverless platforms .

6.5 Energy Efficiency

Applications’ performance lies with not only efficient node-level execution but
energy consumption as well as these applications, e.g. IoT, may operate in a low
energy computing environment. A serverless platform does not take into account
energy savings in resource management decisions, and therefore addressing per-
formance concerns combined with availability and energy efficiency concerns in
serverless computing becomes important.
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Serverless platform can be extended to support resource mapping and load
balancing to increase resource utilisation by distributing the function executions
to available resources with the aim to minimise power consumption. A load bal-
ancing strategy should consider functions interactions by assigning the function
executions belonging to the same session to the same server. Latency sensitive
communication services require careful placement of functions by allowing local-
ity requirements for grouping functions as a single application. Containers image
sizes are reduced to speed up the start of a function execution thus avoiding cold
start.

The work in [24] proposes RAEF, a function-level runtime system for allo-
cating the resources required by serverless functions in order to minimize power
consumption, and which consists of predictors, resource explorer, monitor and
coordinator. The work in [12] describes a modular, and micro-service based Soft-
ware Defined Network (SDN) architecture that applies network programmability
within the context of Network Function Virtualisation (NFV) and explores how
it could benefit from the serverless computing paradigm. Experimental results
show that the serverless paradigm can decrease service latency for disaggregated
architectures, and also provide on-demand and scalable resource management.
The reduction in the execution time and the average resource usage of microser-
vices allows for many optimizations from the resource management point of
view. Follow-up work addresses performance concerns combined with energy
efficiency support in serverless computing [9]. To this aim, a number of experi-
ments are conducted to compare the power consumption of a serverless platform,
OpenFaaS, against Docker containers with the consideration of applications and
benchmarks, driven by SDN and NFV requirements. The experimental results
show that OpenFaaS is more power efficient than Docker when the processor
and memory are under stress.

6.6 Language Runtimes

One of the most detrimental factors affecting performance in serverless architec-
tures is the notion of cold start that takes place when the first incoming request
to an application leads to a time-consuming allocation of resources which de-
lays the response and leads to bad user experience [11]. Research has shown
that the choice of language runtime plays a non-trivial role in the performance
of serverless applications. In particular, the cold start times differ significantly
across different languages and platforms [15] . Various papers have investigated
the performance impact the choice of language runtime has on function execu-
tion as well as measured runtime overhead through the consideration of differ-
ent use cases, e.g. a performance and cost analysis of language choice on AWS
Lambda and Azure Functions [23]; a just-in-time dynamic language outperform-
ing the compiled alternatives [27]; identification of factors influencing function
performance, interpreted languages, effect of cold and warm start [32]; effect of
resource provisioning and how it affects performance on commercial platforms
(AWS Lambda, Azure, Google Functions) [33]; and comparison of dynamic and
compiled languages [30] .
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Some areas for further research include: 1) the evaluation of more trigger
types for invoking functions (e.g. database updates, timers, message queues);
2) the evaluation of additional serverless platforms (e.g. Knative, OpenFaaS,
Kubeless and Iron Functions), and 3) the investigation custom runtimes when
serverless platforms offer the ability for a custom executable to be used as a
runtime environment.

7 Conclusion

This paper has introduced Serverless Computing, a cloud computing model
where the exact amount of resources needed by applications is dynamically allo-
cated on-demand. Function-as-a-service (FaaS) is the service model that allows
developers to run code directly in the cloud without the need to build packages
or maintain any infrastructure. The paper has surveyed and elaborated the re-
search domains in the serverless context and provided useful insights into the
main challenges that motivate researchers to work on this topic.

Acknowledgements

The author would like to thank the Next Generation Internet Program for Open
INTErnet Renovation (NGI-Pointer 2) for supporting this work under contract
871528 (EDGENESS Project).

References

1. Amazon Web Services. AWS Lambda (2019), https://aws.amazon.com/lambda/
2. Apache Openwhisk. Open Source Serverless Cloud Platform (2019),

https://openwhisk.apache.org/
3. Docker. Empowering App Development for Developers (2019),

http://www.docker.com
4. Fission - Open source, Kubernetes-native Serverless Framework (2019),

https://fission.io
5. Google. Google Cloud Functions (2019), https://cloud.google.com/functions
6. IronFunctions - Open Source Serverless Computing (2019), https://open.iron.io/
7. Microsoft Azure. Azure Functions (2019), https://azure.microsoft.com/en-

us/services/functions/
8. OpenFaaS - Serverless Functions, Made Simple (2021), https://openfaas.com/
9. Alhindi, A., Djemame, K., Banaie, F.: On the power consumption of serverless

functions: an evaluation of openfaas. In: Proceedings of the 15th IEEE/ACM In-
ternational Conference on Utility and Cloud Computing (UCC’2022). IEEE, Van-
couver, Washington (Dec 2022)

10. Amazon: AWS Serverless Application Model (AWS SAM) (2022),
https://github.com/awslabs/serverless-application-model

11. Baldini, I., Castro, P.C., Chang, K.S., Cheng, P., Fink, S.J., Ishakian, V., Mitchell,
N., Muthusamy, V., Rabbah, R.M., Slominski, A., Suter, P.: Serverless computing:
Current trends and open problems. CoRR abs/1706.03178 (2017)



8 K. Djemame

12. Banaie, F., Djemame, K.: A serverless computing platform for software defined
networks. In: Proceedings of the 19th International Conference on the Economics
of Grids, Clouds, Systems and Services (GECON’2022). Springer, Izola, Slovenia
(Sep 2022)

13. Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: Serverless programming
(function as a service). In: 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). pp. 2658–2659 (2017)

14. Djemame, K., Parker, M., Datsev, D.: Open-source Serverless Architectures: an
Evaluation of Apache OpenWhisk. In: 2020 IEEE/ACM 13th International Con-
ference on Utility and Cloud Computing (UCC). pp. 329–335 (2020)

15. Djemame, K., Datsev, D., Kelefouras, V.I.: Evaluation of language runtimes in
open-source serverless platforms. In: van Steen, M., Ferguson, D., Pahl, C. (eds.)
Proceedings of the 12th International Conference on Cloud Computing and Ser-
vices Science, CLOSER 2022,, Online Streaming, April 27-29, 2022. pp. 123–132.
SCITEPRESS (2022)

16. van Eyk, E., Iosup, A.: Addressing performance challenges in serverless computing.
In: Proceedings of ICT.OPEN 2018. ACM, Amersfoort, The Netherlands (March
2018)

17. Firecracker: Firecracker: Secure and fast microVMs for serverless computing
(2021), https://firecracker-microvm.github.io/

18. Giménez-Alventosa, V., Moltó, G., Caballer, M.: A framework
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