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a b s t r a c t

We analyse spillovers between the real and financial sides of the US economy, and between

those in the US and other advanced economies. The approach developed allows for differ-

ences in sampling frequency between financial and macroeconomic data. We find that

financial markets are typically net transmitters of shocks to the real side of the economy,

particularly during turbulent market conditions. This result holds both for domestic US

macro-financial spillovers, and also those between the US and other advanced economies.

Our macro-financial spillover measures are found to have significant predictive ability for

future macroeconomic conditions in both in-sample and out-of-sample forecasting envi-

ronments. Furthermore, the predictive ability frequently of our macro-financial measures

frequently exceeds that of purely financial systemic risk measures previously employed

in the literature for the same task.

� 2023 Published by Elsevier Ltd.

1. Introduction

Over the last decade, there has been significant interest in financial contagion, spillovers and systemic risk, both in the
academic community and monetary and financial regulatory authorities. The 2008–2009 financial crisis was previously a
key driver of this interest, and the current COVID-19 pandemic has also highlighted its importance. A primary topic of
research within this literature has been the development of quantitative measures and statistical tests for spillovers and sys-
temic risk in financial markets, with examples including Allen et al. (2012),Billio et al. (2012),Diebold and Yılmaz (2014),
Adams et al. (2014),Engle et al. (2015), Adrian and Brunnermeier (2016) and Brownlees and Engle (2017).
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Meeting, seminar participants at Bilkent University, Boğaziçi University, University College Dublin, University of Essex, University of Konstanz, University of

Liverpool, University of Stirling, the Central Bank of Ireland, University of Groningen, Aarhus University, European Securities and Markets Authority, Vienna

University of Economics and Business, and Abhinav Annand, Turan Bali, Michael Brennan, Christian Brownlees, Eric Ghysels, Maureen O Hara, Matt Spiegel

and Josef Zechner for valuable feedback and comments. John Cotter and Mark Hallam gratefully acknowledge the support of Science Foundation Ireland

under grant number 16/SPP/3347 and 17/SPP/5447. Kamil Yilmaz and Mark Hallam gratefully acknowledge the support of The Scientific and Technological

Research Council of Turkey under grant number TUBITAK 114K954.
⇑ Corresponding author at: Department of Economics and Related Studies, University of York, York, England, UK.

E-mail addresses: john.cotter@ucd.ie (J. Cotter), mark.hallam@york.ac.uk (M. Hallam), kyilmaz@ku.edu.tr (K. Yilmaz).

Journal of International Money and Finance 133 (2023) 102824

Contents lists available at ScienceDirect

Journal of International Money and Finance

journal homepage: www.elsevier .com/locate / j imf



This literature on the quantitative measurement of spillovers and systemic risk has provided valuable insights into the
strength and structure of financial market linkages at both the firm and market-level, but has largely ignored the real or
non-financial side of the economy. This leaves unanswered the key question of the magnitude and direction of the linkages
between Main Street (the real economy) andWall Street (financial markets) and how they vary over time. This paper directly
estimates spillovers between the financial and real sides of the economy with a new approach designed specifically for this
macro-financial context.

We perform a detailed empirical investigation of macro-financial spillovers for the US economy, estimating both the
aggregate level of US macro-financial spillovers and also disaggregated directional measures in a dynamic estimation envi-
ronment. This allows us to decompose spillovers in detail and analyse how the level and composition of macro-financial spil-
lovers have evolved over time. We then expand this analysis to consider pairs of economies comprised of the US and one of
five other advanced economies, allowing us to study the international dimensions of macro-financial spillovers. Finally, we
also investigate the predictive ability of our macro-financial spillover measures for future US macroeconomic conditions,
finding that they outperform existing purely financial systemic risk measures used for this task in the literature.

Despite the previously noted lack of work on the quantitative measurement of macro-financial spillovers specifically,
there is an extensive literature on macro-financial linkages in a more general sense that helps to motivate the current work.
Examples include, amongst others, Ellington (2018) who examines the links between financial market illiquidity and
macroeconomic dynamics for UK data; Prieto et al. (2016) who examine time variation in linkages between US GDP and
financial data including stock prices and credit spreads; Galvão and Owyang (2018) who detail the links between a panel
of key financial variables and industrial production growth and inflation; and Hubrich and Tetlow (2015) who examine
the behaviour of the macroeconomy under periods of varying financial stress.

A second, and generally more structural, strand of the literature focuses on specific examples of macro-financial linkages.
For example, a deterioration in financial conditions is expected to negatively impact the real side of the economy through a
reduction in the willingness of financial firms to extend credit to corporate clients, which may, in turn, suppresses invest-
ment and thus economic output. This is supported empirically by work such as Ivashina and Scharfstein (2010),Cingano
et al. (2016) and Li et al. (2019). Likewise, shocks to the real side of the economy may feed back into financial markets by
increasing corporate defaults or reducing firm equity values. In particular, there is significant literature studying the
response of financial markets to macroeconomic news and announcements, such as the work of Brenner et al. (2009) and
Savor andWilson (2013). Furthermore, adverse feedback loops may develop between the financial and real sides of the econ-
omy, amplifying the effect of negative shocks through mechanisms such as the financial accelerator of Bernanke et al. (1996).
Given that we seek to estimate and analyse macro-financial shock transmission and spillovers in a general sense arising as a
result of all these linkages collectively, our work lies closer to the non-structural side of the literature noted in the previous
paragraph than these more structural studies.

Our work also clearly has strong links to the literature on the estimation and quantitative measurement of systemic risk
and spillovers in financial markets such as Allen et al. (2012), and others cited above, but in a macro-financial context. The
vast majority of the past work in this field has ignored the non-financial side of the economy, despite the potential impor-
tance of the macro-financial dimension being frequently noted (see, for example, Brunnermeier et al., 2011). The few excep-
tions include Baur (2012) and Claessens et al. (2012); however, in these cases, the real side of the economy enters only via
financial data for non-financial firms, rather than through conventional aggregate real economy series. Similarly, both Allen
et al. (2012) and Brownlees and Engle (2017) create non-financial variants of their respective systemic risk indices by util-
ising data for non-financial firms. However, these non-financial indexes are used for robustness checks and minor extensions
to the core empirical analysis, not to study the interaction between the two sides of the economy as we do here. The disad-
vantage of such approaches in our context is that financial data for non-financial firms provide a less direct and much nar-
rower measure of conditions in the real sector of the economy than aggregate macroeconomic series.

Our approach is thus explicitly developed for combinations of financial and real economy1 variables. A key practical issue
encountered in this context is that most financial series are available at much higher sampling frequencies than the monthly or
quarterly frequencies of most real economy series. Standard econometric methods for the estimation of models in such a con-
text impose the use of a common frequency for all indicators, requiring the financial series to be aggregated to the lower fre-
quency of the real economy series, discarding potentially relevant high-frequency information. Our approach instead uses
mixed-frequency methods developed by Ghysels (2016) to allow monthly macroeconomic series to be used alongside weekly
financial series. Ghysels (2016) and Schorfheide and Song (2015), amongst others, have found that in several settings, mixed-
frequency approaches can provide gains in estimation and forecasting compared to a common-frequency approach.

For the quantitative measurement of spillovers, we employ the Diebold-Yilmaz spillover measures previously used in the
context of financial markets (see Diebold and Yılmaz 2009,2012 and 2014), but we modify and extend the approach appro-
priately for the mixed-frequency context we work in. The Diebold-Yilmaz (DY) approach provides a set of spillover measures
at various levels of aggregation. The most aggregated measure is the total spillover index, which provides a single numerical
value that measures the overall level of spillovers between the series of interest and is thus analogous to many of the other
financial spillover or systemic risk measures proposed in the literature, such as the CATFIN and SRISK measures of Allen et al.

1 Throughout the current work, we use the terms ‘real economy’ and ‘macroeconomic’ interchangeably when referring specifically to series and variables.

More generally, the term macroeconomic could also refer to certain financial series types, but this is not the case in the current context.
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(2012) and Brownlees and Engle (2017) respectively. We also employ the most disaggregated pairwise spillover indexes,
which provide a set of indexes measuring spillovers from a specific series to each of the other series. The pairwise measures
are directional in nature and so allow for a detailed analysis of spillover structure that would not be possible with non-
directional alternative measures that account for the majority of the existing literature. This ability to construct a set of pair-
wise directional spillover indexes is also shown to be valuable when using our measures to forecast future macroeconomic
conditions.

In our analysis of US macro-financial spillovers we focus on equity and bond markets for the financial side of the economy
and a broad measure of economic conditions for the real side of the economy, namely the Chicago Fed National Activity Index
(CFNAI). Our sample period spans 1980–2020, thus including many significant economic and financial events such as the
2008–2009 financial crisis and the beginning of the COVID-19 pandemic. The dynamics and magnitude of estimated US
macro-financial spillovers obtained from our new mixed-frequency extension of the DY approach differ significantly from
those obtained from a more straightforward, but otherwise equivalent, common-frequency modelling approach that dis-
cards additional high-frequency financial information. Perhaps most notably, the magnitude of spillovers estimated by
our new mixed-frequency DY approach is typically substantially higher than that implied by the similar common-
frequency approach. This finding suggests that using a common-frequency modelling approach that discards additional
high-frequency financial information within each month results in estimated macro-financial connectedness being lower
on average. Exploiting this additional financial information also results in estimated spillover indexes whose dynamics
are generally more consistent with known historical events, such as those during the 2008–2009 financial crisis, than
common-frequency estimates.

We also find that financial markets are typically net transmitters of shocks to the real economy regardless of whether our
mixed-frequency approach or the equivalent common-frequency approach is used, but that the role of financial markets in
spillover transmission is more significant when employing the former. These findings are particularly evident when markets
face turbulence, most notably during the 2008–2009 crisis and the COVID-19 pandemic.

Following the US analysis, we study international macro-financial spillovers between the US and other major advanced
economies. For this component of the analysis we study pairs of countries consisting of the US and one of five other advanced
economies, namely Canada, France, Germany, Japan and the UK. In each case we employ returns on a major national equity
index for each of the countries and industrial production growth for each country for the financial and non-financial sides of
the economy respectively. The key findings for the US are also shown to hold more generally in this international context.
Firstly, estimates of the overall level of international macro-financial spillovers are again substantially higher when employ-
ing our mixed-frequency approach than the equivalent common-frequency approach. Second, cross-country spillovers from
financial variables constitute the majority of overall spillovers on average over the sample period. However, we find that
cross-country real economy to real economy spillovers, rather than financial spillovers, were the largest single source of
the increase in international macro-financial spillovers observed during the start of the COVID-19 pandemic.

The final dimension of our empirical analysis is motivated by past work In the literature on systemic risk such as Allen
et al. (2012),Giglio et al. (2016) and Brownlees and Engle (2017), who have found empirical evidence that systemic risk mea-
sures have forecasting ability for future macroeconomic conditions. Motivated by these studies, we perform a detailed
empirical analysis to see if the same is true for our macro-financial spillover measures. A key advantage of our DY-based
approach in this context is that it directly provides a set of pairwise directional spillover measures rather than just a single
higher-level numerical measure. This allows us to straightforwardly construct combination forecasts from these individual
pairwise measures, an approach which has been found to provide gains in predictive ability relative to forecasts based on
individual predictors elsewhere in the finance literature, such as Rapach et al. (2010) and Paye (2012).

We find that our measures provide consistently stronger predictive ability for macroeconomic conditions across a range
of forecast horizons than existing systemic risk measures, including the CATFIN and SRISK measures proposed by Allen et al.
(2012) and Brownlees and Engle (2017) respectively. This outperformance over existing systemic risk measures is especially
pronounced in an out-of-sample context or when forecasting more specific aspects of macroeconomic conditions rather than
aggregate macroeconomic conditions. Our measures’ improvements in predictive accuracy are substantial during the 2008–
2009 crisis.

The remainder of the paper is organised as follows. Section 2 introduces the methodology we develop for quantitatively
measuring the strength and structure of macro-financial spillovers. Section 3 applies our methodology to perform a detailed
empirical analysis of macro-financial spillovers in the US and a more concise analysis for a set of five other advanced econo-
mies. Section 4 examines the predictive ability of our macro-financial spillover measures for future macroeconomic condi-
tions and finally Section 5 concludes.
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2. Macro-financial spillover estimation

Our quantitative measures of spillovers are based on the established DY spillover methodology first proposed by Diebold
and Yılmaz (2009) and developed further by Diebold and Yılmaz (2012, 2014)2, which has been applied extensively to study
financial spillovers but has not been employed in a macro-financial context. The DY approach relies on the forecast error vari-
ance decomposition from a standard vector autoregressive (VAR) model, in which all series are observed at a common sampling
frequency. However, the combinations of the real economy and financial time series of interest here will typically contain series
at different sampling frequencies, with financial series generally available at much higher sampling frequencies than macroe-
conomic series.

The traditional solution would be to aggregate all high-frequency financial series to the sampling frequency of the lowest
frequency real economy series employed before applying the standard DY methodology to the transformed data. Whilst sim-
ple, the obvious drawback of such an approach is the potentially relevant information lost when aggregating the higher fre-
quency financial series. Instead, we avoid these issues by replacing the standard common-frequency VAR model with a
mixed-frequency VAR (MF-VAR) model. This allows us to employ high and low-frequency series together, estimating our
spillover measures directly from a mixed-frequency macroeconomic and financial dataset.

It is worth noting that, as with the works on financial spillovers and systemic risk measurement pointed out in the Intro-
duction, our DY-based approach to spillover estimation does not make any assumptions about the source of these macro-
financial spillover channels or their theoretical underpinnings. Whilst more theoretical or structural approaches have poten-
tial advantages in other contexts, they are problematic for our objective of analysing macro-financial spillovers at an
economy-wide level given the difficulties in formulating a structural model that is simultaneously plausible and tractable
for this goal.

2.1. The mixed-frequency VAR model

We follow Ghysels (2016) for the specification and estimation of the MF-VAR. To illustrate the approach, we assume for
simplicity that there are only two distinct sampling frequencies (high-frequency and low-frequency). We also assume that
the number of high-frequency time periods is the same in each low-frequency period. Both of these are true for the empirical
analysis here. However, it should be noted that the methodology is generally applicable and that these assumptions can be
relaxed at the cost of more complex notation and implementation.

Formally, we observe a K-dimensional mixed-frequency vector process, which contains KL < K low-frequency macroeco-
nomic or real economy series and KH ¼ K � KL high-frequency financial series. In terms of low-frequency time periods, which
we index by sL, the low-frequency macroeconomic series are observed once per period and collected in the KL-dimensional
vector process xL sLð Þ. Each high-frequency financial series is observed m times every low-frequency time period. We group
the high-frequency observations within each low-frequency period by series, with them-dimensional vector xH;i sLð Þ contain-

ing the m values for the i-th high-frequency series that are observed in low-frequency time period sL. In total we therefore
have KH m-dimensional vectors xH;1 sLð Þ; . . . ; xH;KH

sLð Þ of high-frequency observations in each low-frequency time period.

We create a stacked vector for each low-frequency time period that contains both the KL-dimensional vector of low-
frequency real economy observations, xL sLð Þ, and the KH m-dimensional vectors containing all the high-frequency financial
data observed during the same low-frequency time period. The resulting stacked vector is denoted by x sLð Þ and is of dimen-
sion Kx, where Kx � mKH þ KLð Þ:

x sLð Þ � xH;1 sLð Þ0; . . . ; xH;KH
sLð Þ0; xL sLð Þ0

� �0

Following Ghysels (2016), we then specify a standard VAR model for the stacked mixed-frequency vector x sLð Þ.The general
form of the p-th order MF-VAR is thus given by:

x sLð Þ ¼ A0 þ
X

p

j¼1

Ajx sL � jð Þ þ e sLð Þ ð1Þ

where A0 is an Kx-dimensional parameter vector, Aj; j ¼ 1; . . . p are Kx � Kxð Þ parameter arrays and e sLð Þ is an Kx-dimensional

vector of errors. Despite the somewhat non-standard composition of the vector x sLð Þ, the model is mathematically equiva-
lent to a standard VAR. As such, standard methods for estimation and analysis of VAR models can be employed.

In addition to the stacked mixed-frequency vector process x sLð Þ introduced above, we will also consider the associated K-
dimensional low-frequency vector process denoted by x sLð Þ, which contains both the KL low-frequency real economy series
and the KH high-frequency financial series appropriately aggregated down to the lower frequency of the real economy series:

x sLð Þ � xHtL sLð Þ0; xL sLð Þ0
� �0

2 Numerous extensions to the original DY spillover methodology have also been proposed, with notable examples including factor-augmented VARs (Claeys

and Vašíček, 2014), asymmetries in spillovers (Barunik et al., 2015), frequency-domain methods (Barunik and Křehlík, 2018), and quantile connectedness (Ando

et al., 2022).
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where xHtL sLð Þ is used to denote the set of high-frequency series aggregated to the lower frequency in the sL-th time period.
We primarily employ return levels as financial series in the current work, with return volatilities also considered in the
Appendix. As such, the high-frequency financial series contained in the vectors xH;1 sLð Þ; . . . ; xH;KH

sLð Þ will be weekly returns

(or return volatilities) and those in the aggregated low-frequency vector xHtL sLð Þ are monthly returns (or return volatilities).
We also specify a standard common-frequency VAR model for the low-frequency vector process x sLð Þ, which we will refer to
as the common-frequency VAR (CF-VAR).

While the MF-VAR and CF-VAR are both technically specified at the lower sampling frequency, the MF-VAR also incorpo-
rates higher frequency information available within each low-frequency time period that is not used by the CF-VAR. We use
a combination of monthly macroeconomic series and weekly financial series, allowing the MF-VAR to incorporate potentially
relevant intra-month information on financial market behaviour at the weekly frequency. In the case of the CF-VAR, this
high-frequency information is discarded when the financial series are aggregated down to the monthly frequency. As noted
during the introduction, Ghysels (2016),Schorfheide and Song (2015) and others have previously shown that the use of
mixed-frequency methods may provide gains in accuracy for both estimation and forecasting in the context of VAR models
relative to a common-frequency approach. During our empirical analysis, we will directly compare the DY spillover mea-
sures obtained from the traditional CF-VAR with those from the MF-VAR to investigate the impact of including this addi-
tional high-frequency information.

2.2. Forecast error variance decomposition and spillover measures

After the specified VAR model has been estimated, the next step when computing the DY spillover measures is to com-
pute the forecast error variance decomposition (FEVD) arrays for the VAR. Following Diebold and Yılmaz (2012), we employ
the approach of Pesaran and Shin (1998) to compute generalised FEVD values. This approach is widely employed in the lit-
erature, and so numerical details are relegated to Appendix A.1.

For a generic K-dimensional VAR, the FEVD arrays are of dimension K � Kð Þ and of the form:

/11 Hð Þ � � � /1K Hð Þ

.

.

.
.
.

.
.
.
.

/K1 Hð Þ � � � /KK Hð Þ

2

6

6

4

3

7

7

5

for H ¼ 1;2; . . . ð2Þ

where /kl Hð Þ for k; l ¼ 1; . . . ;K is the fraction of the H-step-ahead error variance in forecasting series k that is attributable to
shocks in series l. The FEVD array elements thus have a clear interpretation as measures of spillovers and shock transmission
between the series in the system. More specifically, the pairwise DY spillover from series i to series j is given by:

Sij Hð Þ ¼
100

K
� /ji Hð Þ ð3Þ

Multiplying the relevant FEVD element /ji Hð Þ by the factor 100=K ensures that each pairwise spillover value is expressed as a

percentage of the total forecast error variance across all series in the VAR3.
The DY spillover measures are complementary to alternative systemic risk measures as tools for monitoring market con-

ditions. It is worth emphasising again that the DY pairwise spillover measures are directional in the sense that Sij – Sji for

i– j. This is a key theoretical advantage compared to most common measures of pairwise association such as correlation,
which are non-directional and measure only the strength of association between two series. Indeed this is also an important
difference between the DY spillover measures and other established measures of systemic risk employed in the finance lit-
erature, such as the CATFIN measure of Allen et al. (2012) or the SRISK measure of Brownlees and Engle (2017). While some
of these measures have a directional aspect, the nature or scope of the directionality measured is restricted by construction.
For example, SRISK, when computed at the firm or market level, corresponds to the contribution of that firm or market to the
overall systemic risk within the system conditional on a systemic market decline occurring.

The fact that the DY approach naturally produces a set of pairwise spillover measures rather than simply a single numer-
ical measure also emerges as an important advantage when we employ the measures to forecast macroeconomic conditions
in Section 4. As demonstrated later, the fact that each of the directional pairwise spillover measures contains different infor-
mation concerning the structure of macro-financial spillovers allows us to exploit the use of combination forecasts, which
have had much success in the previous literature on predictability.

Whilst the pairwise spillover measures of Eq. (3) permit a detailed analysis of the direction and structure of spillovers,
more aggregated measures may also be helpful to quantify the overall strength of spillovers concisely. We, therefore, employ
both the disaggregated pairwise measures above and the most aggregated measure proposed by Diebold and Yılmaz (2012).
This is referred to as the total spillover index and provides a single numerical measure of the overall level of spillovers
between the series included in the underlying VAR. The measure is thus similar in spirit to many of the economy-wide sys-
temic risk measures proposed elsewhere in the literature, such as CATFIN and the aggregate variants of SRISK and CoVaR. The
total spillover index is computed as:

3 This follows because, as discussed in Appendix A.1, the sum of the elements in each row of the FEVD array equals one, giving a sum over all elements equal

to K.
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S Hð Þ ¼
100

N

X

K

i;j¼1
i–j

/ji Hð Þ ð4Þ

The total spillover index gives the percentage of the total H-step-ahead forecast error variance for all series that is attribu-
table to shocks across series, i.e. excluding the direct effect of shocks to each given series on itself.

As shown by Diebold and Yılmaz (2014), parallels can be drawn between the DY spillover measures and other systemic
risk measures proposed in the literature, such as the CoVaRmeasure of Adrian and Brunnermeier, 2016 and the MESmeasure
that features in the work of both Acharya et al. (2016) and Brownlees and Engle (2017). Besides the slightly different aspect
of connectedness being measured by the different approaches, the key difference is that CoVaR, MES and the majority of the
other systemic risk measures in the literature focus on tail risk or connectedness conditional on the market or financial insti-
tution being in an adverse state. The DY approach, on the other hand, measures unconditional connectedness in the sense
that it considers the average or mean state of the market. This average state is then allowed to change over time through
the use of a dynamic estimation environment as discussed in Section 3.

2.3. Transformation of mixed-frequency forecast error variance decomposition

The FEVD arrays for the MF-VAR model are computed as in the common-frequency case. However, they will have a non-
standard structure arising from the non-standard composition of the stacked vector, x sLð Þ. Whilst the standard DY spillover
measures can be computed directly from these mixed-frequency FEVD arrays, the interpretation of the measures obtained
will differ from the standard common-frequency case.

The relevant issues and concepts are best illustrated using a simple example that is closely related to the empirical anal-
ysis in the following sections. Specifically, we employ a bivariate model with one low-frequency monthly macroeconomic

series and one high-frequency financial weekly series for exposition. We thus havem ¼ 4;KL ¼ 1andKH ¼ 1, giving a stacked

mixed-frequency vector of dimensions Kx ¼ 5, with the form x sLð Þ ¼ xH sL;1ð Þ; . . . ; xH sL;4ð Þ; xL sLð Þ½ �0. For the corresponding

common-frequency VAR, we have a 2� 1ð Þ vector process x sLð Þ ¼ xHtL sLð Þ; xL sLð Þ½ �0. This results in 5� 5ð Þ FEVD arrays for
the MF-VAR and 2� 2ð Þ arrays for the CF-VAR, given respectively by:

h11 Hð Þ . . . h15 Hð Þ

.

.

.
.
.

.
.
.
.

h51 Hð Þ . . . h55 Hð Þ

2

6

6

4

3

7

7

5

and
/11 Hð Þ /12 Hð Þ

/21 Hð Þ /22 Hð Þ

� �

for H ¼ 1;2; . . . ð5Þ

with the differences in notation used only to distinguish the FEVD elements for the MF-VAR and CF-VAR.
It is clear that the FEVD arrays for the MF-VAR in (5) will be larger than those for the corresponding CF-VAR, since Kx > K.

This arises because the weekly high-frequency series observed in each low-frequency monthly time period are treated math-
ematically as separate series when estimating the MF-VAR but enter the CF-VAR as a single monthly series. As a result, in the
common-frequency case a single FEVD element completely characterises the directional spillovers at the chosen forecast
horizon between a given pair of macroeconomic or financial series. In contrast, in the mixed-frequency case, it will generally
be characterised by multiple FEVD array elements.

We, therefore, develop an approach for transforming the FEVD arrays obtained from the MF-VAR to produce new
FEVD arrays with the same structure and dimensions as those for the corresponding CF-VAR. We can then compute
DY spillover measures from these transformed arrays that are directly comparable to those in the standard
common-frequency case. The basic intuition of the transformation approach is outlined here, with mathematical details
found in Appendix A.2.

Intuitively we exploit the correspondence between the elements of the FEVD arrays for the mixed-frequency and
common-frequency cases. More specifically, for the current example we group the MF-VAR FEVD elements in (5) into
sub-arrays as follows:

H11 Hð Þ H12 Hð Þ

H21 Hð Þ H22 Hð Þ

� �

for H ¼ 1;2; . . . ð6Þ

where:

H11 Hð Þ �

h11 Hð Þ . . . h14 Hð Þ

.

.

.
.
.

.
.
.
.

h41 Hð Þ . . . h44 Hð Þ

2

6

6

4

3

7
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Each of the sub-arraysHkl Hð Þ in (6) can be viewed as a mixed-frequency analogue of the corresponding scalar element /kl Hð Þ

from the CF-VAR FEVD array in (5). For example, the 4� 1ð Þ sub-vector H12 Hð Þ characterise the effects of shocks to the

monthly low-frequency series (series 2) on the weekly high-frequency series (series 1). Specifically, hi5 for i ¼ 1; . . . ;4 mea-
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sures the fraction of the H-step-ahead error variance in forecasting the high-frequency series in week i of the month that is
attributable to shocks in the low-frequency series. The scalar element /12 Hð Þ for the common-frequency case describes the
same directional pairwise relationship for the case where both series are observed at the lower monthly frequency.

The approach detailed in Appendix A.2 transforms each of the sub-arrays Hkl Hð Þ in (6) into a scalar value, whose inter-
pretation is directly comparable with the corresponding element /kl Hð Þ in the standard common-frequency case. This com-
parability of the values is ensured by directly basing the transformation used on the mathematical definition of the
generalised FEVD elements.

3. Macro-financial spillovers

Our empirical analysis of macro-financial spillovers focuses primarily on the United States, given the central role that the
country plays in global economic and financial markets. We examine over four decades of data ending in June 2020, thus
covering many significant economic and financial events, including the 2008–2009 global financial crisis and the large
shocks resulting from the onset of the COVID-19 pandemic. In Section 3.3 we also more briefly examine the international
dimension of macro-financial spillovers using data for five other advanced economies, namely Canada, France, Germany,
Japan and the United Kingdom.

Section 3.1 begins by describing the data and implementation of the approach employed to estimate spillovers. Section 3.2
presents a graphical analysis of the US macro-financial spillover measures obtained using our approach. In this subsection,
we also include measures obtained from the existing common-frequency approach to assess the practical effects of ignoring
the high-frequency financial data when using a more traditional modelling approach.

3.1. Data and spillover estimation

On the real side of the economy, our series of interest is the Chicago Fed National Activity Index (CFNAI) of the Federal
Reserve Bank of Chicago.4 The CFNAI is employed at its regular monthly frequency and is constructed to have a mean value of
zero, with positive (negative) values corresponding to growth above (below) its historical trend. We work with the level of the
CFNAI series, given that this corresponds in a broad sense to the change in macroeconomic conditions5.

On the financial side, we focus on equity and bond markets, represented by the S&P500 equity index and the 10-year US
Treasury Note, respectively. Although the strength and structure of spillovers between bond markets and the real economy
may vary with bond maturity and type (as suggested by Brenner et al., 2009), for simplicity, we restrict our attention to US
sovereign bonds, specifically the 10-year Treasury Note.

We focus primarily on return levels for the financial series, assuming that changes in macroeconomic conditions will be
linked to changes in asset values. However, we do repeat the core analysis of Section 3.2 using return volatilities for the sake
of completeness, with the results found in Appendix C.2. Whilst the switch to return volatilities does induce some changes in
the levels and dynamics of the various spillover indexes, the key empirical findings for return levels follow through primarily
unchanged.

For the non-US analysis of Section 3.3, we use month-on-month industrial production growth as our macroeconomic vari-
able for the real side of the economy given the lack of an equivalent index to the CFNAI for other countries. To provide results
that are entirely comparable across countries, we also repeat the US analysis using monthly IP growth in place of the CFNAI.
Similar to the US, for the financial side of the economy, we use return levels for the major national equity index for each
country6 and generic national 10-year government bond indexes obtained from Bloomberg.

For the US analysis in the current section, our sample period spans 1975:01 to 2020:06, thus including many significant
economic and financial events of recent decades. Due to limited data availability for the non-US government bond index ser-
ies, the sample period for the international analysis begins in 1990:01 and ends in 2020:04.

Whilst the inclusion of the massive shock associated with the COVID-19 pandemic is of much interest; it has been noted
by recent work such as Lenza and Primiceri (2020) and Schorfheide and Song (2020) that its sheer magnitude leads to chal-
lenges for parameter estimation and forecasting using standard econometric methods. This is relevant both for the estima-
tion of the underlying VAR model used to compute the spillover measures and also the predictive regressions used for the
forecasting exercise in Section 4. Given the size of the shock and its unique nature, these studies have suggested that it
should be explicitly considered at the estimation stage, such as using some form of down-weighting. We do not pursue such
approaches given that it is not the focus of the current work, but we acknowledge the challenges posed for standard econo-
metric methods such as those we employ. Notwithstanding these issues, analysing spillovers between the real economy and
financial markets during this period is of interest. Furthermore, given the rolling window approach used to estimate the spil-

4 CFNAI is frequently used in empirical work to provide a single numerical measure of US macroeconomic activity that is broader and less noisy than specific

series such as industrial production (see for example Allen et al., 2012). It is a composite index derived from 85 underlying macroeconomic indicators grouped

into four categories: production and income, employment unemployment and hours, consumption and housing, and sales, orders and inventories.
5 We also repeated the analysis performed in the current section using the four CFNAI subcomponents in place of the aggregate CFNAI index. These results

are not reported here to conserve space but are available upon request. These CFNAI subcomponents are, however, employed during the forecasting exercise of

Section 4, with further details of their characteristics found in the associated discussion.
6 S&P/TSX for Canada, CAC40 for France, DAX for Germany, Nikkei 225 for Japan, FTSE100 for the UK and as before the S&P500 for US.

J. Cotter, M. Hallam and K. Yilmaz Journal of International Money and Finance 133 (2023) 102824

7



lover indexes, this issue affects only the spillover values obtained for the pandemic time periods. Therefore, in the current
section, we choose to include these observations in our analysis.

The raw data for the two financial series consists of daily closing prices, from which we produce a closing price series at a
weekly frequency. To sidestep the practical issues caused by the variation in the number of weeks per month, we employ a
data pre-processing and transformation approach to the daily series to produce weekly series with a constant four weeks per
month. These weekly closing prices are used to compute weekly returns. Further details of the data processing approaches,
together with plots of all the US series employed, can be found in Appendix B. It is interesting to note particular events asso-
ciated with substantial movements and volatility in the series, including the 1980–1981 recession, the Asian and Russian
financial crisis, 9/11, the 2008–09 global financial crisis and the recent onset of COVID-19. We will discuss the associated
spillovers from these and other events in more detail below.

Our interest lies in obtaining dynamic estimates of macro-financial spillovers, rather than static full-sample estimates, to
investigate how the strength and structure of spillovers have varied over time. To achieve this, we use a standard rolling win-
dow estimation approach in which the parameters of the MF-VAR and the connectedness measures are re-estimated for each
window. A window length of 60 months is employed since it appears to offer a good balance between providing a sufficient
sample size to estimate the parameters of the underlying MF-VAR to an appropriate level of accuracy and allowing dynamics
of connectedness to be captured. We have, however, checked our results’ robustness to reasonable changes in the window
length, and there is no qualitative impact on the results7. When computing the spillover measures, we primarily considered
forecast horizons of 3, 6 and 12 months, consistent with most previous studies. However, we found that the estimates did not
show significant sensitivity to the choice of the forecast horizon, and so reported results only for the horizon of 3 months.

3.2. US macro-financial spillovers

We begin in Fig. 1 by plotting the total spillover indexes obtained from both the mixed-frequency and common-frequency
approaches. It can be seen that the estimated total spillover indexes obtained from the two methods show broadly the same
movements over the sample period. However, despite the high correlation between the indexes, the level of total macro-
financial spillovers implied by the new mixed-frequency approach is, with one or two exceptions, consistently higher than
that obtained from the common-frequency approach. For example, the average values of total spillovers for the mixed-
frequency and common-frequency approaches are 25.79% and 15.12%, respectively, representing the proportion of the total
forecast error variance in the entire system due to shocks across series. Thus by aggregating the financial data to monthly
frequency and ignoring the additional intra-monthly information it contains, one obtains substantially lower estimates of
the level of spillovers across the real and financial sectors.

A possible explanation for this finding of higher average spillover levels for the mixed-frequency case can be found in the
previous literature on the effects of macroeconomic announcements on financial markets. Studies such as Andersen et al.
(2003) and Green (2004) have employed high-frequency intraday financial data to study the effects of macroeconomic news
and announcements over short time periods and have found significant intraday effects. However, they note that lower fre-
quency daily data prevents these effects from being observed and thus may bias estimates of the response in the financial
markets downwards. Intuitively an analogous explanation can be applied in the current analysis, in which the arrival of
intra-month shocks to either the financial or real series may result in significant within-month spillovers that are visible
through the use of weekly data for some series in the mixed-frequency case, but are either ignored entirely or underesti-
mated when using purely monthly data in the common-frequency approach.

Considering the dynamics of the total spillover indexes briefly, we see substantial fluctuations over the sample period,
many of which coincide with major economic or financial events. Some notable examples are marked in Fig. 1, with the most
significant spikes in spillovers occurring during the 2008–2009 global financial crisis, particularly around the collapse of Leh-
man Brothers, the bailout of AIG and Fannie Mae and Freddie Mac being placed in government conservatorship.

As can be seen in Fig. 1, the most significant spike in macro-financial spillovers during our sample period has occurred
with the onset of the COVID-19 pandemic, dominating even the 2008 global financial crisis. Between February and March
2020, the common-frequency and mixed-frequency estimates rose from 16 to 37 and from 25 to 44, respectively. This is
expected given that the shock resulting from the COVID-19 pandemic has been the largest negative shock to hit the global
economy since the Great Depression of 1929.

In addition, except the global financial crisis of the last quarter of 2008, April-May 2010, and the COVID-19 pandemic, the
movements in the mixed-frequency spillover measure are typically substantially smoother than the common-frequency
spillovers, which frequently exhibits significant upward or downward jumps such as those in October 1987, September
1992 and August 1998. This likely results from incorporating intra-month financial information in the mixed-frequency
analysis, which results in the effects of sustained shocks to financial series being spread across consecutive weeks and grad-
ually incorporated into the spillover index. On the other hand, in the common-frequency case, only the accumulated shock is
observed at the end of the month, leading to a more significant jump in the index when this information is incorporated into
the new value of the index.

7 This point is illustrated in Appendix C.3 with equivalent plots to Fig. 2 using window sizes of 45 and 90 months.
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The total spillover index provides an informative but highly aggregated measure that potentially hides many exciting
details of the structure of macro-financial spillovers. We decompose the total spillover measures of Fig. 1 into their compo-
nent pairwise directional spillover measures. We first represent this information in the form of spillover decomposition plots
in Fig. 2. Given that the total spillover index equals the sum of all pairwise measures, the top of the complete shaded area
corresponds to the relevant total spillover index (as previously plotted in Fig. 1), and the shaded areas beneath represent the
contribution of each pairwise spillover. These spillover decomposition plots thus provide an effective way to visualise the
relative importance of each directional spillover channel in total spillovers over time. Panels (a) and (b) present the
mixed-frequency and common-frequency spillover decomposition plots for the entire sample period, whereas panels (c)
and (d) span only 2008:06 to 2020:12, allowing more precise analysis of the 2008–2009 crisis and the start of the
COVID-19 pandemic.

For the mixed-frequency case in panels (a) and (c), it is immediately apparent that the vast majority of the (total) spil-
lovers originates in financial markets, represented by the bottom four shaded areas of the spillover decomposition plots.
The contribution of the real side of the economy (the sum of the areas represented by the yellow and orange colours)
accounts for only a tiny part of the total spillovers in this context, whereas for the common-frequency case in panels (b)
and (d) they are larger. Whilst there is a clear difference in the average levels of real to financial spillovers over the sample
period for mixed-frequency and common-frequency (1.94% and 2.69% respectively), this difference is most notable during
the late 1980s, during the 2008–2009 financial crisis and the COVID1-9 pandemic (see panels (c) and (d)), and to a lesser
extent in the early 1980s and late 1990s.

As discussed above, we hypothesise that this difference is due to the common-frequency index not incorporating higher
frequency financial information. Thus the estimates obtained suggest a relatively more minor role for financial markets. This
is expected given that financial markets can respond much more quickly to either economic or financial shocks than real
economy variables. The incorporation of weekly financial data allows our mixed-frequency approach to detect these high-
frequency intra-month responses in financial markets, which would be ignored by the common-frequency approach using
only monthly information.

The pairwise spillover measures can also be presented as standard line plots. This complements the spillover decompo-
sition plots of Fig. 2, with the latter being more suited to analysing the relative contribution of the individual spillover mea-
sures to the total level, and the former more suited to exploring the dynamics of specific spillover measures in absolute
terms.8

Fig. 1. Total spillover indexes between the financial and real economy series. Total spillover indexes for mixed-frequency (denoted MF) and common-

frequency (denoted CF) approaches are presented for the sample period 1980:01 to 2020:06. Return levels are employed for the financial S&P500 and 10-

year Treasury Note series, and levels for the real economy CFNAI series. Values are computed using a 3-month forecast horizon and a 60-month rolling

window. The points marked are as follows. A: Asian financial crisis, Jul ’97, B: Russian financial crisis and LTCM collapse, Aug to Sept ’98, C: September 11,

Sept ’01, D: the collapse of Bear Stearns, Mar ’08, E: Lehman Brothers collapse, AIG bailout and Fannie Mae and Freddie Mac being placed in government

conservatorship, May ’09, F: start of the EU debt crisis in April ’10, flash crash of May ’10, G: tapering of QE in December 2013, and H: COVID-19 pandemic,

March ’20. Shaded areas correspond to NBER US recession dates..

8 To conserve space, the line plots and the associated discussion are included in Appendix C.1, where we examine how changes in pairwise spillovers relate to

significant historical events as we did previously for the total spillover index in Fig. 1.
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3.3. International macro-financial spillovers

The international dimension of macro-financial spillovers is clearly of interest given the connectedness of modern finan-
cial and economic markets across national borders. This is an extensive topic for possible future research, but here we take
an initial step towards a fuller examination of international macro-financial spillovers.

We perform a series of two-country analyses consisting of the US and one other advanced economy, considering in turn
Canada, France, Germany, Japan and the UK. For each estimated two-country VAR model, we include on the financial side
weekly returns for the S&P500 and the respective major non-US national equity index detailed previously in footNote 5.
On the real side, we employ monthly IP growth for the US and non-US advanced economy due to the data limitations pre-
viously noted in Section 3.1. These four variables allow us to examine directional cross-country financial-to-financial, real-
to-real, financial-to-real and real-to-financial spillovers, without the number of pairwise spillover measures becoming
impractically large for discussion.

The practical issue encountered is that common global shocks drive some of the movements in variables of the same type
across countries e.g. the S&P500 and FTSE100. This makes it difficult in some periods to separate out the spillover effects of,
for example, shocks to the S&P500 on UK IP growth and shocks to the FTSE100 on UK IP growth. To minimise this, we restrict

Fig. 2. Decomposition of total macro-financial spillover indexes into pairwise components. The figure presents area plots in which the top of the complete

shaded area corresponds to the relevant total spillover index and each shaded area below representing the contribution of each specific pairwise spillover to

the value of the total spillover index. The relevant spillover measures for the mixed-frequency case are plotted in panels (a) and (c) and those for the

common-frequency case in panels (b) and (d). Return levels are used for the financial S&P500 and 10-year Treasury Note series and levels for the real

economy CFNAI series. Values are computed using a 3-month forecast horizon and a 60-month rolling window for the sample period 1980:01 to 2020:06 in

panels (a) and (b) and 2008:06–2020:06 in panels (c) and (d).
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the error covariance matrix of the estimated VAR such that shocks that are both cross-country and cross-variable, for exam-
ple US IP growth to UK equity returns, are contemporaneously uncorrelated. Correlation between shocks within each country
(e.g. UK IP growth and UK equity returns) and shocks to the same variable type for different countries (e.g. US and UK IP
growth) are unrestricted.

In terms of spillovers, this implies that contemporaneous (i.e. 0-step-ahead) pairwise spillovers for these cross-country
cross-variable combinations are zero, leaving any cross-country contemporaneous spillovers to occur via the financial-to-
financial or real-to-real channels. Whilst the restrictions imposed do impact the spillover measures obtained at longer hori-
zons of H P 1, which are the object of interest here and in most other DY-based analyses, these spillovers will be non-zero
unlike those for H ¼ 0. To implement these restrictions a feasible GLS estimation approach is used. All other aspects of the
methodology are identical to that discussed previously.

This two-country four-variable setup allows us to analyse key cross-country macro-financial spillovers without the set of
spillover measures to be discussed becoming impractically large for the current subsection. It also has the benefit of min-
imising the parameter proliferation issues encountered in larger VAR models. As demonstrated by Demirer et al. (2018), this
issue can be solved in the context of DY spillover measures even for extremely large VARs by using shrinkage based methods
such as LASSO, but this would take us beyond the scope of the current work.

We present the mixed-frequency and common-frequency total spillover indexes for the five pairs of countries in Fig. 3.
Similar to the single country US case, whilst the total spillover indexes based on the mixed-frequency and common-
frequency approaches tend to follow similar trajectories over time in each country, the values for the mixed-frequency
approach are almost always higher than the corresponding index based on the common-frequency approach. For concise-
ness, the remainder of the discussion below refers to the mixed-frequency indexes only.

During the 2008–09 global financial crisis the total spillover indexes for all country pairs increased significantly to values
within the range 40–45%. For the US-Germany pair, total spillovers continued to rise further late 2014, presumably due to a
combination of the effects of the EU sovereign debt crisis and Germany’s strong economic and financial links with US and
world markets. Interestingly however, whilst total international spillovers for the US-France and US-UK pairs also remain
high during the same period, they do not show the same sustained increase as the case of Germany. For the UK this can
be attributed to its lack of membership of the Eurozone, but the lack of a similar rise in France is more difficult to explain
outside of lower economic and financial integration with US markets. Total spillovers for the US-Japan pair begin to drop
much quicker from 2011 onwards, due to the relative isolation from the turbulence occurring in the EU.

For all country pairs, the response of the mixed-frequency index to the shock caused by the beginning of the COVID-19
pandemic in Spring 2020 was broadly similar to that observed in the US, with a very sharp elevation of total spillovers. We
observe that for US-France and US-Germany, the peak in the total spillover index occurred in March 2020, whereas in the
remaining country pairs, the current peak is recorded in April. This timing is consistent with the spread of the pandemic,
given that most large mainland European countries such as France and Germany imposed strict lockdown measures earlier
than the other countries, including the UK. The size of the increases relative to their February 2020 levels are similar across
countries, typically in the range of 20–25 percentage points. However, there is some variation that appears related to
country-level variation in the severity and timing of the pandemic, and the scale of measures imposed to limit its spread
in the non-US country. In particular, the largest increase of approximately 27 percentage points is observed for the US-
France pair, and the lowest of 19 percentage points for the US-Japan pair, which is consistent with the level of cases and
restrictions imposed in these countries at the time. As noted in the US analysis, extending the sample period would allow
international macro-financial spillovers during later stages of the pandemic to be studied, but this is not the primary focus
of the current analysis and so is left for future work.

Next, we examine international macro-financial spillover structure in more detail using a subset of the pairwise spillover
measures from which the total index is obtained9. To conserve space we restrict attention to three pairs of countries, namely
US-Germany, US-Japan and US-UK, with results for Canada and France being similar and available upon request. Fig. 4 plots the
relevant cross-country or international pairwise spillovers for the selected country pairs.

Beginning with the relative importance of the various pairwise spillover types, as was true in the previous US analysis, the
majority of total macro-financial spillovers are comprised of spillovers originating in financial markets, represented by the
top two rows of subplots in Fig. 4. International equity to equity market spillovers in the second row are substantially higher
than other spillover sources on average across the sample period, typically within the range of 6% to 10%.

Although lower on average, cross-country spillovers from equities to the real sector in the first row are also large relative
to other pairwise spillover types during the 2008–09 global financial crisis, frequently reaching sustained levels of 4–6%.
International financial to real spillovers also clearly pick up the early stages of the COVID-19 pandemic at the end of the cur-
rent sample period, with large spikes observed for both the US-Germany and US-UK pairs and a smaller peak for US-Japan,
consistent with the lower case numbers and level of restrictions in Japan at the time.

In this first row, spillovers from non-US equities to US IP exceed those from US equities to non-US IP in all three cases in
the period preceding the 2008–09 global financial crisis. Given the global importance and size of US financial markets, it
might be assumed that spillovers from US financial to non-US real variables should naturally be larger than those from

9 We do not produce spillover decomposition plots analogous to Fig. 2 because with four series in the VAR we obtain 12 pairwise measures rather than the

previous 6, making the decomposition plot difficult to interpret.
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non-US financial markets to US IP. At least in the case of Germany and the UK, it may be the case that the DAX and FTSE100
equity returns are acting as a proxy for financial conditions within Europe more generally and thus viewing these as being
Germany- or UK-specific spillovers is not entirely valid.

It should also be remembered that directional spillover magnitude depends not only on the importance of shocks from
the transmitting variable, but also the responsiveness (or lack of responsiveness) of the receiving variable to those shocks.
It may be that US industrial production in the period preceding the crisis was more sensitive to shocks in international finan-
cial conditions than IP in other countries. This could be due to the composition (both in terms of sectors and the importance
of exports), or size of manufacturing output, which varies significantly across these four countries; in 2015 manufacturing
output as a proportion of global manufacturing in Germany, Japan, the UK and the US was 7%, 10%, 2% and 18% respectively,
making total US manufacturing output significantly higher than that of the other countries. Likewise, the small size of UK
industrial production both as a proportion of national output and globally, provides a possible explanation for its lack of
responsiveness to shocks in US financial conditions, particularly during the 2008–09 global financial crisis. It should be noted
that while spillovers from the FTSE100 to US IP look high, they are actually around 4% during this episode, which is only
slightly greater than those observed for Germany from the DAX to US IP.

Whilst cross-country real to equity spillovers are typically low and in the range of 0–1%, increases are nonetheless
observed consistent with key events. The most consistently visible example is the 2008–09 crisis and subsequent recession,
but the 2011 Tohoku earthquake and associated recession is also very clearly visible as a large increase in spillovers from
Japanese IP to the S&P500. The start of the pandemic is again visible as an increase in real to financial spillovers, but to a
lesser extent than the financial to real spillovers discussed above.

Finally, the international real to real spillovers in the final row of Fig. 4 have no direct analogue in the previous single
country US analysis. For much of the sample period, cross-country spillovers between IP growth fluctuate within the 0–
2% range. Increases in spillovers from US IP to German IP and to UK IP are visible during the global financial crisis, as is
the impact of the 2011 Tohoku earthquake and recession on spillovers from Japanese IP to US IP. Perhaps most notably, dur-
ing the start of the COVID-19 pandemic, real to real international spillovers showed larger spikes than any other spillover
type despite their relatively low levels over the rest of the sample period. For the US-Germany and US-UK pairs, cross-
country IP growth spillovers increased from close to zero up to 8% and 6% for the case of US-Japan as industrial output
dropped dramatically with lockdowns and the sharp contraction in production and trade.

4. Macro-financial spillovers as predictors of future macroeconomic conditions

A reoccurring question of interest in the literature on systemic risk is whether the quantitative measures developed have
predictive ability for future macroeconomic conditions. In particular, it is often suggested (see, for example Allen et al., 2012

Fig. 3. International total spillover indexes between the financial and real economy series. The figure presents total spillover indexes for mixed-frequency

(denoted MF) and common-frequency (denoted CF) approaches for the sample period 1995:01 to 2020:04. Return levels are employed for the financial

series, using the S&P500 and a major equity index for the chosen non-US country (S&P/TSX for Canada, CAC40 for France, DAX for Germany, Nikkei 225 for

Japan and FTSE100 for the UK). For the real economy series, month-on-month growth rates of industrial production for the US and chosen non-US country

are employed. Spillover index values are computed using a 3-month forecast horizon and a 75-month rolling window..
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and references therein) intuitively that an increase in systemic risk may hurt current and future economic conditions, pri-
marily through a reduction in lending from banks to the non-financial sector. Allen et al. (2012),Giglio et al. (2016) and
Brownlees and Engle (2017) amongst others have found empirically that various quantitative measures of systemic risk
do have forecasting ability for essential macroeconomic series. Motivated by these findings, we perform a similar exercise
to examine whether the current level of macro-financial spillovers also exhibits predictive power for future macroeconomic
conditions.

4.1. Forecasting environment and predictive regressions

Our empirical approach closely follows those of Allen et al. (2012) and Brownlees and Engle (2017), and we focus on the
problem of forecasting macroeconomic series, specifically the level of the CFNAI and its subcomponents, using predictive
regressions of the form:

ytþn ¼ an þ bnst þ
X

q

i¼0

cn;iyt�i þ dnXt þ �t ð7Þ

where yt is the value of the macroeconomic series of interest, st is the value of the chosen macro-financial spillover measure
and Xt is a vector of financial control variables commonly used in the literature as simple predictors of future macroeco-
nomic conditions. The vector of control variables Xt consists of the current values of the default spread, the term spread,
the return on the S&P 500 equity index and the credit-to-GDP gap10. The forecast horizon is denoted by n and we consider
forecast horizons from one month (n ¼ 1) up to a maximum of 12 months (n ¼ 12).

Given that both Allen et al. (2012) and Brownlees and Engle (2017) comprehensively investigated the ability of the CAT-
FIN and SRISK measures, respectively, to forecast future macroeconomic conditions, we also consider forecasting models

Fig. 4. International total spillover indexes between the financial and real economy series. The figure presents total spillover indexes for mixed-frequency

pairwise spillover measures for the sample period 1995:01 to 2020:04. Return levels are employed for the financial series, using the S&P500 and a major

equity index for the chosen non-US country (DAX for Germany, Nikkei 225 for Japan and FTSE100 for the UK). For the real economy series, month-on-month

growth rates of industrial production for the US and chosen non-US country are employed. Spillover index values are computed using a 3-month forecast

horizon and a 75-month rolling window..

10 Data on the credit-to-GDP gap are quarterly, however, as suggested by an anonymous referee, we produce a monthly series by interpolating the quarterly

values. This approach can be justified on the basis that the series is slow moving.
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which include CATFIN or SRISK in place of our macro-financial spillover measures in the relevant predictive regressions11. In
contrast to our macro-financial measures that incorporate information from the financial and real sides of the economy, both
CATFIN and SRISK are more traditional financial systemic risk measures. The former measures the aggregate level of systemic
risk in the financial system estimated via value-at-risk or expected shortfall, whereas SRISK utilises market and balance sheet
data to estimate the expected capital shortfall of financial firms subject to the occurrence of a systemic event. Following the
empirical analysis in Allen et al. (2012) and Brownlees and Engle (2017) respectively, CATFIN enters the predictive regressions
in level form and SRISK as a log first difference or growth rate. It should be noted that data availability constraints for SRISK
require us to start our sample period in June 2000, rather than January 1975 as in the previous section.

To examine the incremental value of our macro-financial spillover measures and the existing SRISK and CATFIN measures
for forecasting macroeconomic conditions, we focus on evaluating forecast performance attainable when including these
measures relative to an otherwise identical benchmark forecasting model that excludes the spillover or systemic risk mea-
sures. The form of the predictive regressions for the benchmark model is thus given by (7) with the bnst term excluded.

We have noted the challenges of model estimation and forecasting in the current economic environment due to the
COVID-19 pandemic. Econometrically there is debate as to whether the extreme observations introduced by these events
represent outliers, and as such, should either be down-weighted or even removed. For the plots of macro-financial spillover
indexes in Section 3, we chose to include these pandemic observations in our sample period since they only affect the values
of the spillover measures for those specific time periods and not those for the remainder of the sample period. In contrast, the
formal tests of predictive ability we employ in the current section are based on the complete set of forecasts and will there-
fore be affected by this small number of extreme observations. We therefore evaluate predictive ability over two alternative
sample periods ending in December 2019 and June 2020 respectively.

4.2. Evaluation of predictive ability

To formally evaluate forecast performance, we use the commonly employed test for equal predictive accuracy of Clark
and West (2007), henceforth CW07, which provides a test of the null hypothesis that the forecasts obtained from two (pos-
sibly nested) forecasting models perform equally. In all cases, we compare the performance of forecasts produced by the
models augmented with the various macro-financial spillover and financial systemic risk measures against those from the
benchmark model described above. The rejection of the null hypothesis of equal predictive accuracy implies that the simpler
benchmark model is outperformed by the extended model that incorporates spillover or systemic risk measures.

We begin with an in-sample forecasting environment, in which all forecasting models are estimated using data spanning
the entire evaluation periods, and the predictive accuracy of the resulting in-sample forecasts over these periods is evalu-
ated. Sample p-values for the CW07 test are reported in Table 1 for both our total and pairwise macro-financial spillover
measures. We also include two combination forecasts obtained from the set of pairwise macro-financial spillover measures
(columns ‘PWmean’ and ‘PWmed’), which are constructed as described below. Finally, we include forecasts that employ the
existing SRISK and CATFIN systemic risk measures.

Beginning with the predictive accuracy of the six pairwise spillover measures in columns 2 to 7, we observe numerous
increases in predictive accuracy over the benchmark model that are statistically significant across both sample periods.
Although performance varies over forecasting horizons and across the various pairwise spillover measures, the number of
statistically significant gains in predictive ability over the benchmark model for the pairwise spillover measures is margin-
ally higher in panel (b) than the pre-pandemic sample in panel (a). Given that the CW07 test assesses predictive ability rel-
ative to the benchmark model (rather than in an absolute sense), this could be partly attributable to poorer performance of
the benchmark model during the start of the pandemic.

The variation in predictive accuracy gains observed across spillover measures, sample periods, and forecasting horizons
for the pairwise spillover measures suggests potential performance improvements can be obtained by combining the infor-
mational content of the individual spillover measures. One way to achieve this would be to extend the predictive regression
in (7) to include multiple spillover measures simultaneously. However, it is frequently found in the literature that this
approach of combining multiple predictors results in poorer performing forecasts than combining the forecasts obtained
from distinct forecasting models containing different predictors. Examples from other areas of the finance literature include
Rapach et al. (2010) who consider the problem of forecasting the equity premium and Paye (2012) who considers forecasts
for equity market volatility using macroeconomic variables. The former also contains a concise discussion of the possible
reasons for the solid empirical performance of combination forecasts.

The construction of combination forecasts is possible because the DY spillover approach naturally provides a set of direc-
tional pairwise measures, each measuring different aspects of the spillover structure. This contrasts with most existing sys-
temic risk measures, which provide only higher-level summary measures in their standard form. Therefore we include two
simple combination forecasts obtained as the mean and median of the forecasts12 obtained from the six pairwise spillover
measures, which are denoted by ‘PW mean’ and ‘PW med’ respectively in Table 1. Both of these combination forecasts perform

11 Data for SRISK were kindly provided by the NYU V-Lab (https://vlab.stern.nyu.edu). Those for CATFIN were obtained from Turan Bali’s website (https://sites.

google.com/a/georgetown.edu/turan-bali).
12 More complicated forecast combination methods are possible, such as those that weight the individual forecasts based on past performance. However, in

practice, these are frequently found to perform similarly to the simple combinations such as the mean (see, e.g. Rapach et al., 2010).
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strongly, providing improvements in predictive accuracy over the benchmark model that are statistically significant at the 10%
level in all but 2 cases (both in panel (b)), and significant at either the 5% or 1% levels in the vast majority of cases. Inclusion of
the COVID-19 pandemic slightly reduces the statistical significance of the gains in predictive accuracy relative to the results in
panel (a), however the performance of the combination forecasts is still solid. Given their consistently strong performance, the
ability to easily construct these combination forecasts is a significant advantage of the DY approach in this context.

Turning next to forecasts based on the total macro-financial spillover index, it can be seen that the overall level of macro-
financial spillovers has relatively poor predictive accuracy for macroeconomic conditions in the in-sample context in panel
(a), failing to provide gains in predictive accuracy over the benchmark model that are statistically significant at the 10% level
at any of the forecast horizons. In panel (b) on the other hand, statistically significant gains are observed at all forecast hori-
zons longer than 2 months. As noted above, this may be attributable to a large drop in the predictive ability of the benchmark
model during the first half of 2020.

This lack of consistency in the forecasting gains from the total index relative to the individual pairwise measures indicates
that whilst the total spillover index provides a useful summary measure that is conceptually more similar to existing mea-
sures in the literature, the ability to decompose it into pairwise spillovers and construct combination forecasts is a valuable
benefit of our DY-based approach in this context.

Finally, moving on to the predictive ability of the existing SRISK and CATFIN measures, the former fails to produce sta-
tistically significant gains over the benchmark model except for a small number of longer forecast horizons. The CATFINmea-
sure, on the other hand, provides improvements in predictive accuracy across all forecast horizons except the shortest one-
month horizon in panel (a) that are significant at either the 5% or 1% levels. When the first half of 2020 is added in panel (b)
however, the relative predictive ability of CATFIN drops substantially, only providing statistically significant gains at hori-
zons of 8, 9 and 11 months.

We next evaluate the out-of-sample forecasting performance of the various models relative to the same benchmark
model used above. In all cases, out-of-sample forecasts are produced using a standard rolling-window approach with a fixed
window length of 60 months. Data within the window are used to estimate the parameters of the relevant predictive regres-
sion and produce the n-step-ahead forecast, with the model parameters re-estimated each time the window is rolled for-
ward. The out-of-sample combination forecasts are computed as the mean or median of the out-of-sample forecasts
obtained from the pairwise spillover measures. Such a pseudo-out-of-sample forecasting environment arguably better rep-

Table 1

In-sample predictive accuracy for macroeconomic conditions.

Horizon (n) Total S&P to TNX S&P to NAI TNX to S&P TNX to NAI NAI to S&P NAI to TNX PW mean PW med SRISK CAT- FIN

(a) Sample period 2000:06–2019:12

n = 1 0.279 0.147 0.470 0.133 0.489 0.030 0.039 0.002 0.012 0.151 0.268

n = 2 0.241 0.262 0.145 0.204 0.439 0.020 0.044 0.002 0.008 0.323 0.024

n = 3 0.123 0.098 0.153 0.046 0.408 0.049 0.028 0.005 0.013 0.401 0.010

n = 4 0.173 0.118 0.258 0.052 0.355 0.081 0.027 0.011 0.009 0.189 0.017

n = 5 0.165 0.160 0.166 0.080 0.377 0.127 0.036 0.027 0.024 0.192 0.008

n = 6 0.123 0.120 0.124 0.057 0.413 0.208 0.028 0.027 0.029 0.403 0.041

n = 7 0.130 0.133 0.118 0.062 0.314 0.463 0.046 0.053 0.064 0.180 0.014

n = 8 0.151 0.128 0.106 0.074 0.151 0.346 0.040 0.048 0.056 0.178 0.027

n = 9 0.183 0.133 0.120 0.076 0.071 0.298 0.036 0.040 0.045 0.137 0.005

n = 10 0.269 0.179 0.149 0.123 0.038 0.210 0.033 0.039 0.050 0.047 0.000

n = 11 0.341 0.189 0.101 0.160 0.019 0.325 0.027 0.029 0.033 0.016 0.002

n = 12 0.404 0.220 0.090 0.221 0.016 0.245 0.023 0.027 0.034 0.116 0.028

(b) Sample period 2000:06–2020:06

n = 1 0.108 0.126 0.109 0.157 0.106 0.060 0.082 0.095 0.087 0.103 0.089

n = 2 0.483 0.427 0.059 0.266 0.252 0.410 0.132 0.129 0.169 0.102 0.153

n = 3 0.039 0.039 0.101 0.057 0.194 0.062 0.063 0.057 0.069 0.148 0.118

n = 4 0.033 0.014 0.108 0.026 0.229 0.251 0.044 0.044 0.043 0.155 0.315

n = 5 0.037 0.026 0.111 0.009 0.226 0.439 0.475 0.066 0.097 0.153 0.406

n = 6 0.016 0.008 0.098 0.003 0.225 0.358 0.487 0.057 0.080 0.202 0.410

n = 7 0.010 0.011 0.090 0.005 0.203 0.408 0.310 0.053 0.075 0.046 0.370

n = 8 0.008 0.008 0.080 0.003 0.222 0.427 0.261 0.021 0.032 0.126 0.086

n = 9 0.012 0.007 0.077 0.004 0.353 0.344 0.223 0.012 0.030 0.422 0.046

n = 10 0.013 0.006 0.076 0.007 0.169 0.204 0.171 0.018 0.046 0.074 0.149

n = 11 0.011 0.008 0.071 0.004 0.130 0.135 0.474 0.038 0.048 0.210 0.055

n = 12 0.026 0.007 0.072 0.014 0.116 0.219 0.231 0.019 0.033 0.065 0.326

The table reports sample p-values for the CW07 test of equal predictive accuracy applied to in-sample n-step-ahead forecasts for the level of the CFNAI over

the sample periods 2000:06–2019:12 (panel (a)) and 2000:06–2020:06 (panel (b)). Forecasts are obtained using predictive regressions of the form given in

Eq. (7) containing the current value of a single spillover or systemic risk measure, with the exception of the combination forecasts. For pairwise spillovers,

equities, bonds and the real economy are denoted by S&P500, TNX and NAI respectively. The combination forecasts are labelled as ‘PWmean’ and ‘PW med’

and are constructed respectively as the mean and median of the forecasts obtained from the 6 pairwise spillover measures. The null hypothesis is that the

forecasts for the relevant model and the benchmark model have equal predictive accuracy. Rejection of the null implies that the extended model has

superior predictive accuracy to the benchmark model.
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resents how these measures would potentially be used in practice by an individual attempting to forecast future economic
conditions in real time and, as argued by Diebold (2015), can be used to assess forecasting performance during different his-
torical periods.

To evaluate out-of-sample forecasting performance, we again employ the CW07 test for equal predictive accuracy but

supplement this with the out-of-sample R2 measure of Campbell and Thompson (2008). For a series of out-of-sample fore-

casts produced for periods t ¼ 1; . . . ; S, the out-of-sample R2 measure is computed as:

R2
OS ¼ 1�

XS

t¼1
yt � ŷtð Þ

2

XS

t¼1
yt � ŷbt
� �2

where yt is the actual value of the series to be predicted, and ŷt and ŷbt are the forecasted values from the model under con-

sideration and the benchmark model respectively. As such, positive (negative) values of R2
OS imply that the forecasting model

under consideration has a lower (higher) mean-squared prediction error (MSPE) than the benchmark model.
Out-of-sample forecasting results are presented in Table 2, with those for the 2000:06–2019:12 sample period in Panel

(a) and the 2000:06–2020:06 sample in Panel (b). To conserve space, we exclude results for the predictive regressions con-
taining each of the individual pairwise macro-financial spillover measures13 and include only the combination forecasts
obtained from these pairwise forecasts.

Beginning with the Campbell and Thompson (2008) out-of-sample R2 values, in most cases, the forecasts obtained using
macro-financial spillover measures result in lower mean squared prediction errors than the benchmark model. Most notably,
the strong performance of the combination forecasts from the pairwise spillovers continues in the out-of-sample case, dom-

inating the benchmark model at all but the shortest horizons and displaying larger out-of-sample R2 values than those for
the total spillover index in almost all cases. These predictive gains relative to the benchmark model are typically larger at
longer forecast horizons.

In contrast, the predictive performance of SRISK and CATFIN is mixed. Forecasts incorporating SRISK often have a larger
MSPE than the benchmark model for forecast horizons of less than five months but typically outperform it for longer hori-

zons. In cases where the SRISK-based forecasts result in a lower MSPE than the benchmark, the out-of-sample R2 values
obtained are lower than those for the pairwise combination forecasts in every case. Furthermore, whilst CATFIN exhibited
strong forecasting power in-sample in Table 1, this largely disappears when we look at the out-of-sample results. The fore-

casts incorporating CATFIN result in out-of-sample R2 values that are negative or close to zero in almost every case.
The out-of-sample results for the CW07 test reinforce the strong in-sample predictive accuracy of the pairwise mean and

median combination spillover forecasts, with gains over the benchmark model that are statistically significant in almost all
cases, with the main exceptions being the shortest 1- to 3-month horizons. Interestingly, compared to the previous in-
sample forecasting environment, the out-of-sample forecasting performance of the total macro-financial spillover index rel-
ative to the benchmark model improves substantially, producing statistically significant gains at the 5% level for almost all
forecast horizons longer than three months. Indeed, forecasts utilising the total spillover index display the lowest p-values of
all methods for horizons of 5 to 12 months, including the two combination forecasts.

Turning finally to the forecasts obtained using the SRISK and CATFIN measures, the CW07 test results largely confirm the

general patterns discussed previously in the context of the out-of-sample R2 values. SRISK exhibits statistically significant
gains in predictive ability over the benchmark model at many of the longer forecast horizons, being broadly competitive with
the pairwise combination forecasts, but falling behind forecasts employing the total spillover index. The CATFIN-based fore-
casts, on the other hand, only provide statistically significant gains at the 10% level at a small number of horizons for the pre-

pandemic sample in panel (a) and at no horizons in panel (b). As previously noted for the out-of-sample R2, this is in contrast
to the previous in-sample environment where highly statistically significant improvements over the benchmark model were
observed at almost all horizons.

In a similar manner to Giglio et al. (2016) we next investigate the ability of the various spillover and systemic risk mea-
sures to forecast the four disaggregated subcomponents of the CFNAI index, which consist of production and income (PI),
employment, unemployment and hours (EUH), consumption and housing (CH), and sales, orders and inventories (SOI). This
allows us to investigate whether the relative predictive ability of the measures varies according to the specific aspects of
macroeconomic conditions that are being forecasted. Table 3 presents p-values for the CW07 test for both in-sample and
out-of-sample forecasts constructed using the same approach as employed above. To conserve space only results for a subset
of the previous forecasting horizons are presented.

Beginning with the in-sample results, the solid predictive accuracy of the pairwise spillover combination forecasts for the
aggregate CFNAI index in Table 1 carries through for the subcomponents of the index, with highly statistically significant
gains over the benchmark in all cases. For the total macro-financial spillover index, forecasting performance depends
strongly on the subcomponent to be forecasted, with predictive accuracy consistently strong when forecasting the EUH sub-
component and to a lesser extent the SOI subcomponent, but more variable across forecast horizons and weaker on average

13 These results are broadly similar to the previous in-sample case, with the pairwise measures providing statistically significant gains in predictive accuracy

over the benchmark model in many cases, but performance varying across horizons, spillover measures and sample periods.
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for the remaining subcomponents. We hypothesise that this arises because of differences in the responsiveness of the under-
lying macroeconomic series to changes in the specific dimension of current economic conditions that the total spillover
index proxies. For example, series within the consumption and housing subcomponent are likely to be sluggish and slower
to respond to changes in macro-financial conditions than sales or orders in the SOI subcomponent, or employee hours in the
EUH subcomponent. The same logic applies to the PI component, which is comprised primarily of industrial production ser-
ies, in addition to construction and personal income. This suggests that in the case of some predictors, the relative gains in
predictive accuracy do indeed depend on the specific aspect of macroeconomic conditions to be forecasted.

Both SRISK and CATFIN fail to exhibit consistent in-sample predictive power for the CFNAI subcomponents, providing sta-
tistically significant improvements over the benchmark approach in only a small number of cases across the various forecast
horizons and index subcomponents. For the case of CATFIN, this is limited to the 1- to 3-month horizons and contrasts shar-
ply to its consistently strong in-sample performance in Table 1 when forecasting the aggregate CFNAI index. This is partic-
ularly notable given that the pairwise spillover combination forecasts manage to preserve their previous performance for the
case of the CFNAI subcomponents.

Turning to out-of-sample forecasting performance, there is strong evidence of gains in predictive accuracy for the four
CFNAI subcomponents using either the total spillover index or the two pairwise spillover forecast combination schemes.
The various forecasts incorporating macro-financial spillover measures typically fail to provide statistically significant gains
in predictive accuracy over the benchmark model only at the shortest one and 2-month forecast horizons. As with the in-
sample case, CATFIN and SRISK only provide statistically significant improvements in out-of-sample predictive accuracy over
the benchmark model for the CFNAI in a small number of cases. For the SRISK-based forecasts, gains are observed only for
longer forecast horizons for the PI and EUH subcomponents.

Table 2

Out-of-sample R2 values and tests of equal predictive accuracy.

Total PW mean PW median SRISK CATFIN

Horizon (n) R2 CW R2 CW R2 CW R2 CW R2 CW

(a) Sample period 2000:06–2019:12

n = 1 -0.074 0.790 -0.007 0.393 0.003 0.164 -0.016 0.650 0.003 0.145

n = 2 -0.027 0.205 0.024 0.039 0.002 0.199 -0.017 0.665 0.005 0.093

n = 3 0.103 0.030 0.145 0.024 0.104 0.042 -0.041 0.929 0.031 0.048

n = 4 0.093 0.020 0.141 0.018 0.108 0.023 -0.006 0.239 0.033 0.075

n = 5 0.141 0.011 0.159 0.019 0.136 0.024 0.005 0.184 0.000 0.208

n = 6 0.127 0.007 0.151 0.015 0.136 0.023 0.014 0.030 -0.005 0.253

n = 7 0.153 0.010 0.216 0.027 0.223 0.050 0.011 0.094 0.007 0.196

n = 8 0.163 0.011 0.248 0.034 0.247 0.060 0.009 0.074 -0.018 0.467

n = 9 0.100 0.005 0.183 0.024 0.182 0.047 0.035 0.032 0.068 0.093

n = 10 0.086 0.001 0.222 0.023 0.193 0.036 0.118 0.013 0.012 0.142

n = 11 0.077 0.001 0.246 0.014 0.199 0.021 0.097 0.045 0.012 0.087

n = 12 0.058 0.006 0.242 0.021 0.195 0.017 0.070 0.067 -0.009 0.236

(b) Sample period 2000:06–2020:06

n = 1 -0.151 0.840 -0.096 0.852 -0.026 0.861 0.128 0.158 0.281 0.160

n = 2 -0.139 0.837 -0.004 0.719 0.035 0.151 0.018 0.161 0.059 0.150

n = 3 -0.017 0.415 0.005 0.226 0.007 0.081 -0.004 0.962 0.000 0.122

n = 4 0.009 0.032 0.019 0.024 0.013 0.038 -0.011 0.809 -0.001 0.215

n = 5 0.021 0.012 0.026 0.017 0.020 0.030 0.004 0.119 0.004 0.120

n = 6 0.017 0.014 0.025 0.026 0.018 0.058 0.002 0.065 -0.002 0.273

n = 7 0.022 0.017 0.032 0.066 0.029 0.124 0.003 0.052 -0.004 0.383

n = 8 0.031 0.013 0.046 0.044 0.049 0.066 0.002 0.061 0.015 0.157

n = 9 0.034 0.002 0.043 0.024 0.049 0.034 0.008 0.039 0.002 0.232

n = 10 0.017 0.002 0.052 0.018 0.041 0.039 0.014 0.110 0.000 0.225

n = 11 0.010 0.005 0.053 0.012 0.038 0.025 0.019 0.050 -0.001 0.146

n = 12 0.000 0.091 0.044 0.053 0.039 0.035 0.022 0.038 -0.003 0.283

The table reports Campbell and Thompson (2008) out-of-sample R2 values and sample p-values for the CW07 test of equal predictive accuracy from

predictive regressions for out-of-sample n-step-ahead forecasts for the level of the CFNAI over the sample periods 2000:06–2019:12 (panel (a)) and

2000:06–2020:06 (panel (b)). Forecasts are obtained using predictive regressions of the form given in Eq. (7) containing the current value of a single

spillover or systemic risk measure, with the exception of the combination forecasts. The combination forecasts are labelled ‘PWmean’ and ‘PWmed’ and are

constructed respectively as the mean and median of the forecasts obtained from the 6 pairwise spillover measures. Out-of-sample forecasts for all models

are obtained using a standard rolling window approach with a window length of 60 months. The Campbell and Thompson (2008) out-of-sample R-squared

values are computed for each model relative to the benchmark model that excludes spillover or systemic risk measures. For the Clark and West (2007) test

the null hypothesis is that the forecasts for the relevant model and the benchmark model have equal predictive accuracy. Rejection of the null implies that

the extended model has superior predictive accuracy to the benchmark model.
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4.3. Time-variation in predictive accuracy

Whilst the CW07 test and the Campbell and Thompson (2008) out-of-sample R2 measures are both employed widely in
the literature to compare predictive accuracy between competing forecasting models; they do not directly reveal anything
about how the relative performance of the alternative models may vary over the forecast evaluation period. In particular, it
may be the case that specific predictors of future macroeconomic conditions have a greater predictive ability during some
time periods than others, depending on the state of the economy.

To shed light on this and other related issues, we construct plots of the cumulative squared prediction errors (CSPEs) from
predictive regressions for the n-period-ahead values of the CFNAI relative to that of the benchmark model. Such plots are a
standard tool in the forecasting literature, with two examples including Rapach et al. (2010) and Paye (2012). We subtract
the values of the cumulative squared prediction errors obtained for the predictive regression of interest over the in-sample
or out-of-sample period from those obtained from the previous benchmark model that excludes all spillover and systemic
risk measures. Values larger (smaller) than zero imply that the forecasting model in question has a lower (higher) cumulative
squared prediction error than the benchmark model up to that point in time. An increase (decrease) during a specific time
period implies that the relevant model is currently outperforming (underperforming) the benchmark model.

To conserve space, we only consider a subset of the forecasting horizons and include results for the total spillover index,
the two combination forecasts constructed from the pairwise spillover forecasts, SRISK and CATFIN. Whilst we use the same
forecast evaluation periods as before for consistency, it should be noted that the vertical position or height of each line at a
given point in time is affected by the chosen start date for each plot (given that all must equal zero at the start of the chosen
evaluation period). However, the shape or gradient of each line is unaffected by this choice.

Fig. 5 plots the relative CSPEs for the previous 2000:06–2019:12 sample period. We observe strong performance for our
pairwise spillover combination forecasts, particularly during the 2008–2009 crisis. At the 1 and 2 month horizons, the fore-
casting performance of the total spillover index remains close to that of the benchmark model throughout the evaluation
period, deviating only slightly from zero. For horizons of greater than three months, forecasts obtained from the total spil-

Table 3

In-sample and out-of-sample predictive accuracy for alternative measures of macroeconomic conditions.

In-sample Out-of-sample

Horizon (n) Total PW mean PW med SRISK CAT- FIN Total PW mean PW med SRISK CAT- FIN

(a) Production and income (PI)

n = 1 0.355 0.004 0.017 0.105 0.071 0.810 0.158 0.017 0.365 0.122

n = 2 0.319 0.009 0.049 0.390 0.043 0.570 0.334 0.542 0.387 0.161

n = 3 0.148 0.018 0.051 0.466 0.047 0.045 0.026 0.062 0.937 0.080

n = 6 0.091 0.043 0.038 0.379 0.321 0.009 0.006 0.017 0.018 0.230

n = 9 0.173 0.088 0.118 0.167 0.031 0.008 0.009 0.032 0.058 0.107

n = 12 0.479 0.072 0.097 0.098 0.257 0.047 0.012 0.008 0.087 0.177

(b) Employment, unemployment and hours (EUH)

n = 1 0.301 0.000 0.009 0.115 0.203 0.811 0.008 0.119 0.331 0.046

n = 2 0.058 0.001 0.005 0.188 0.046 0.244 0.009 0.082 0.904 0.270

n = 3 0.019 0.001 0.003 0.418 0.204 0.017 0.005 0.012 0.368 0.151

n = 6 0.007 0.002 0.002 0.372 0.108 0.010 0.012 0.023 0.958 0.131

n = 9 0.009 0.004 0.011 0.188 0.052 0.001 0.007 0.021 0.044 0.104

n = 12 0.010 0.007 0.041 0.085 0.061 0.000 0.012 0.015 0.036 0.133

(c) Consumption and housing (CH)

n = 1 0.020 0.000 0.001 0.338 0.220 0.551 0.059 0.321 0.472 0.233

n = 2 0.222 0.000 0.000 0.442 0.058 0.552 0.029 0.042 0.726 0.152

n = 3 0.465 0.001 0.003 0.500 0.021 0.025 0.009 0.014 0.955 0.022

n = 6 0.330 0.000 0.000 0.490 0.192 0.004 0.002 0.007 0.861 0.221

n = 9 0.343 0.001 0.001 0.150 0.080 0.005 0.005 0.007 0.806 0.106

n = 12 0.472 0.001 0.001 0.441 0.335 0.056 0.006 0.004 0.637 0.057

(d) Sales, orders and inventories (SOI)

n = 1 0.177 0.003 0.040 0.484 0.151 0.721 0.343 0.473 0.973 0.175

n = 2 0.058 0.006 0.043 0.013 0.151 0.215 0.163 0.160 0.528 0.127

n = 3 0.048 0.010 0.018 0.268 0.013 0.008 0.012 0.042 0.921 0.198

n = 6 0.120 0.046 0.028 0.395 0.047 0.014 0.016 0.034 0.974 0.258

n = 9 0.162 0.072 0.057 0.227 0.168 0.030 0.027 0.040 0.580 0.280

n = 12 0.424 0.038 0.027 0.191 0.419 0.057 0.028 0.024 0.138 0.349

The table reports sample p-values for the CW07 test of equal predictive accuracy applied to in-sample and out-of-sample n-step-ahead forecasts for the

various subcomponents of the CFNAI index over the period 2000:06–2019:12. CFNAI subcomponents are production and income (PI), employment,

unemployment and hours (EUH), consumption and housing (CH), and sales, orders and inventories (SOI). Forecasts are obtained using predictive regressions

of the form given in Eq. (7) containing the current value of a single spillover or systemic risk measure, with the exception of the combination forecasts. The

combination forecasts are labelled ‘PW mean’ and ‘PW med’ and are constructed respectively as the mean and median of the forecasts obtained from the 6

pairwise spillover measures. Out-of-sample forecasts for all models are obtained using a standard rolling window approach with a window length of

60 months. The null hypothesis for the Clark and West (2007) test in each case is that the forecasts for the relevant model and the benchmark model have

equal predictive accuracy, with rejection of the null implying that the extended model has superior predictive accuracy to the benchmark model.
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lover index perform worse than the benchmark model in the early parts of the evaluation period, with the relative CSFE val-
ues becoming steadily more negative until around 2006. However, after the start of the financial crisis in 2008, there was a
large and sharp increase in the relative CSFE until the peak of the crisis had subsided in around 2010, suggesting substantial
gains in predictive accuracy for the total spillover index during the crisis. Even more substantial gains in predictive accuracy
are typically observed for the pairwise mean combination forecasts during the crisis period at the 3 to 12-month forecast
horizons. However, unlike the forecasts obtained from the total spillover index, they typically outperform the benchmark
over the pre-crisis period, too, resulting in substantially higher relative CSFEs when considered over the complete evaluation
period. Finally, the forecasts obtained from the pairwise median combination forecast typically lie between the total spil-
lover index and the mean combination forecast.

The performance of the SRISK-based forecasts is nearly identical to that of the benchmark model throughout the
2000:06–2019:12 evaluation period for the intermediate 2, 3 and 6-month forecast horizons. At the longer nine and 12-
month horizons, the dynamics of forecast performance are somewhat similar to those of the forecasts based on the total spil-
lover index, with performance inferior to the benchmark in the pre-crisis period, superior to it during the crisis and compa-
rable to it in the post-crisis period. Considering the CATFIN-based forecasts finally, we generally observe strong performance
at the start of the evaluation period followed by a further increase during the crisis period. However, this peak coinciding

Fig. 5. In-sample cumulative squared prediction errors relative to the benchmark model. The figure plots cumulative squared in-sample prediction errors of

the benchmark predictive regression model minus the cumulative squared prediction errors of the predictive regression models that include the total

macro-financial spillover index, the combination forecasts computed as the mean and median of the 6 individual pairwise spillover index forecasts, SRISK or

CATFIN. Larger values correspond to stronger performance of the relevant extended predictive regression model relative to the benchmark, with values

above (below) zero implying a smaller (larger) cumulative squared prediction error than the benchmark model up to that point in time. The sample period

considered is 2000:06–2019:12 and the dependent variable to be forecasted in all cases is the n-period-ahead level of the CFNAI..
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with the 2008 crisis is substantially less pronounced than that exhibited by the forecasts employing macro-financial spil-
lover measures and is typically followed by a decrease in performance relative to the benchmark model.

Fig. 6 presents equivalent plots to Fig. 5 for the out-of-sample case, with all out-of-sample forecasts produced using the
rolling window approach discussed above. Given the rolling window approach used to produce out-of-sample forecasts and
the lead and lag values contained in Eq. (7), the forecast evaluation periods are shorter than the in-sample case and vary with
the forecast horizon.

In the out-of-sample forecasting environment, the differences in cumulative squared forecast errors for the augmented
models compared to the benchmark model tend to be relatively small at the beginning of the evaluation period and also from
2012–2014 (depending on the forecast horizon) until the start of the COVID-19 pandemic, as indicated by the relatively flat
CSPE plots during these periods. Indeed, the most significant differences in predictive accuracy amongst the various forecast-
ing models and the benchmark model occur during and immediately following the 2008 financial crisis and at the start of the
ongoing COVID-19 pandemic.

In most cases, the forecasts based on the total spillover index, the pairwise forecast combinations and those based on
CATFIN again exhibit apparent increases in predictive accuracy relative to the benchmark model during and following the
2008 crisis, though the size and duration of these increases vary substantially across forecast horizons. The main exceptions
are forecasts based on the total spillover index at the shortest 1-month horizon and those based on CATFIN at the longest 12-
month horizon. Both perform poorly during this period. In the case of the pairwise combination forecasts, these gains tend to
be substantial around the crisis and continue to accumulate gradually even after the financial crisis has passed and are main-
tained until the end of the sample period. By contrast, in the case of forecasts based on the total spillover index and CATFIN,
some or all of the gains in cumulative forecast accuracy over the benchmark model attained during the crisis are generally
lost in the post-crisis period, with overall cumulative performance falling below that of the benchmark model in some cases
from 2011 onwards. Finally, the SRISK-based forecasts exhibit gains during the 2008 crisis only for the longer nine and 12-
month forecast horizons.

5. Conclusion

We estimate and analyse the structure of macro-financial spillovers between equities, bonds and the real side of the econ-
omy. For this purpose, we develop a new approach for estimating macro-financial spillovers that combines established quan-
titative measures of financial spillovers with mixed-frequency econometric methods. Our approach permits the use of
mixed-frequency macro-financial datasets without the need to aggregate the higher frequency financial series down to
the lower frequency as the real economy series. This is in contrast to existing measures of spillovers and systemic risk pre-
viously proposed in the literature, which are purely financial in nature and so cannot directly estimate connectedness
between the real and financial sides of the economy. Furthermore, our methodology produces a set of different macro-
financial spillover measures that consider the direction of spillovers. The directionality of the measures obtained permits
a more detailed analysis of market linkages than other existing approaches that measure only the strength of association.

In our analysis of macro-financial spillovers in the US economy from 1975 to 2020, we find that the magnitude of the
mixed-frequency spillovers is substantially greater than those obtained from a similar common-frequency approach. This
suggests that the loss of high-frequency information incurred by using a common-frequency modelling approach results
in the financial and real sides of the economy appearing less connected. Furthermore, our mixed-frequency approach’s
preservation of additional high-frequency information results in spillover measures that appear more consistent with key
events that occurred during our sample period. The same empirical findings are also evident in a set of two-country analyses
of international macro-financial spillovers. The directional nature of our spillover measures demonstrates that the largest
magnitude of spillovers originates from the financial, rather than the real, side of the economy. This decomposition also
clearly shows that the relative importance of each financial market has changed over time.

Motivated by existing work such as Allen et al. (2012) and Brownlees and Engle (2017) that analyses the predictive ability
of financial systemic risk measures for future macroeconomic series, we explore whether our macro-financial spillover mea-
sures can be employed to forecast US macroeconomic conditions. Consistent with the financial measures in these existing
studies, we find that forecasts produced using our macro-financial spillover measures predict both broad measures of overall
macroeconomic conditions and also measures representing more specific aspects of the state of the macroeconomy.

Forecasting performance is particularly strong for the case of simple combination forecasts computed as the mean or
median of the individual forecasts obtained from our set of pairwise macro-financial spillover measures. In an in-sample
forecasting environment, these combination forecasts marginally outperform existing financial systemic risk measures when
forecasting aggregate macroeconomic conditions. However, they substantially outperform them when forecasting disaggre-
gated measures representing more specific aspects of economic conditions. When moving to an out-of-sample forecasting
environment, the gains in the predictive accuracy of our macro-financial spillover measures are typically even larger when
forecasting either aggregate or more specific aspects of macroeconomic conditions. When examining the dynamics of fore-
casting performance, we find that the gains in predictive accuracy provided by our spillover measures are especially large
during the 2008–2009 crisis, both relative to our chosen benchmark model and also relative to those provided by existing
financial systemic risk measures.
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Appendix A. Forecast error variance decomposition

A.1. Generalised forecast error variance decomposition

We denote the generalised FEVD values by hij Hð Þ, where hij Hð Þ measures the fraction of the total H-step-ahead error variance

in forecasting series i attributable to shocks in series j. Following Pesaran and Shin (1998), the generalised forecast error vari-
ance decomposition values are computed for any given forecast horizon H ¼ 1;2; . . . as:

Fig. 6. Out-of-sample cumulative squared forecast errors relative to the benchmark model. The figure plots cumulative squared out-of-sample forecast

errors of the benchmark predictive regression model minus the cumulative squared forecast errors of the predictive regression models that include the total

macro-financial spillover index, the combination forecast computed as the mean and median of the pairwise spillover index forecasts, SRISK or CATFIN.

Larger values correspond to the stronger performance of the relevant extended predictive regression model relative to the benchmark, with values above

(below) zero implying a smaller (larger) cumulative squared forecast error than the benchmark model. The dependent variable to be forecasted in all cases

is the n-period-ahead level of the CFNAI. Forecasts are produced using a rolling window scheme with a fixed window length of 60 months using data

spanning the period 2000:06–2019:12. Forecasts are produced up to 2019:12 in all cases, with the date of the first forecast to be evaluated varying from

2005:10 to 2006:09 depending on the forecast horizon..
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hij Hð Þ ¼
rjj

XH�1

h¼0
e0iBhRej
� �2

XH�1

h¼0
e0iBhRB

0
hei

� �

fori; j ¼ 1; . . . ;Kx ðA:1Þ

where R is the covariance matrix of the error vector e sLð Þ;rjj is the j-th diagonal element of R and ej is the Kx-dimensional

selection vector with a 1 in the j-th element and zeros elsewhere. The arrays Bi; i ¼ 1; . . . are the coefficient arrays from the
infinite order moving average (MA) representation of the MF-VAR in Eq. (1). These can be obtained from the coefficient
arrays of the standard representation of the VAR via a simple recursion (see Diebold and Yılmaz, 2014 for details).

It is worth noting that unlike other common approaches to computing the FEVD that rely on orthogonalisation to account
for potential correlation between shocks, such as the Cholesky decomposition, the values of the generalised FEVD arrays are
not affected by the ordering of the series within the VAR. Instead, the approach accounts for potential correlation between
shocks using the historical distribution of the errors.

A.2. Transformation of MF-VAR FEVD Arrays

We continue to employ the simple bivariate example from Section 2.3 for illustration, repeating some of the key details
here for convenience. With one low-frequency monthly series and one high-frequency weekly series we obtain a 5� 1ð Þ vec-

tor process with the form x sLð Þ ¼ xH sL;1ð Þ; . . . ; xH sL;4ð Þ; xL sLð Þ½ �0 for the MF-VAR, and a 2� 1ð Þ vector process

x sLð Þ ¼ xHtL sLð Þ; xL sLð Þ½ �0 for the corresponding CF-VAR. This results in 5� 5ð Þ and 2� 2ð Þ FEVD arrays, given respectively by:

h11 Hð Þ . . . h15 Hð Þ

.

.

.
.
.

.
.
.
.

h51 Hð Þ . . . h55 Hð Þ

2

6

6

4

3

7

7

5

and
/11 Hð Þ /12 Hð Þ

/21 Hð Þ /22 Hð Þ

� �

for H ¼ 1;2; . . . ðA:2Þ

We argued previously that the elements of the MF-VAR FEVD arrays can be grouped into sub-arrays as:

H11 Hð Þ H12 Hð Þ

H21 Hð Þ H22 Hð Þ

� �

for H ¼ 1;2; . . . ðA:3Þ

where:

H11 Hð Þ �

h11 Hð Þ . . . h14 Hð Þ

.

.

.
.
.

.
.
.
.

h41 Hð Þ . . . h44 Hð Þ

2

6

6

4

3

7

7

5

H12 Hð Þ �

h15 Hð Þ

.

.

.

h45 Hð Þ

2

6

6

4

3

7

7

5

H21 Hð Þ � h51 Hð Þ . . . h54 Hð Þ½ � H22 Hð Þ � h55 Hð Þ

such that each of the sub-arrays Hkl Hð Þ in (6) can be viewed as a mixed-frequency analogue of the corresponding scalar ele-
ment /kl Hð Þ from the CF-VAR FEVD array. Our transformation approach produces new FEVD arrays from the MF-VAR FEVD
arrays with the same structure and dimensions as those for the corresponding CF-VAR. We denote a generic element of the

new transformed FEVD arrays by wkl Hð Þ for k; l ¼ 1; . . . ;K.
The key is to perform the transformation such that the value and interpretation of each element wkl Hð Þ is directly com-

parable with the corresponding element /kl Hð Þ. This relies on the correspondence between the elements of the mixed and
common frequency arrays discussed above and the mathematical definition of the generalised FEVD elements in Eq. (A.1).
For ease of notation, we denote the numerator and denominator of (A.1) more compactly as:

hij Hð Þ ¼
kij Hð Þ

li Hð Þ
fori; j ¼ 1; . . . ;Kx ðA:4Þ

where:

kij Hð Þ � rjj

X

H�1

h¼0

e0iBhRej
� �2

and li Hð Þ �
X

H�1

h¼0

e0iBhRB
0
hei

� �

The denominator li Hð Þ corresponds to the total H-step-ahead forecast error variance for series i and the numerator is the

forecast error variance for series i due to shocks in series j (normalised such that the shock is one standard deviation in size).
We compute each element wkl Hð Þ in the transformed FEVD array as:

wkl Hð Þ ¼

X

i2Ik ;j2Jl

kij Hð Þ
X

i2Ik

li Hð Þ
k; l ¼ 1; . . .K;H ¼ 1;2; . . . ðA:5Þ

where Ik and Jl are sets containing the row and column indexes respectively for the elements in the MF-VAR FEVD array
that correspond to the element /kl Hð Þ in the sense discussed above.
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For the previous bivariate example, the elements in the MF-VAR FEVD array that correspond to /kl Hð Þ are those contained

in the sub-array Hkl Hð Þ in Eq. (A.3). For example, for k ¼ 1; l ¼ 1, we have I1 ¼ 1; . . . ;4f g;J1 ¼ 1; . . . ;4f g (the elements of
H11 Hð Þ) and thus:

w11 Hð Þ ¼

X

i2I1 ;j2J1
kij Hð Þ

X

i2I1
li Hð Þ

¼

X4

i¼1;j¼1
kij Hð Þ

X4

i¼1
li Hð Þ

H ¼ 1;2; . . .

Likewise, for k ¼ 2; l ¼ 1 we find I2 ¼ 5f g;J1 ¼ 1; . . . ;4f g (the elements of H21 Hð Þ) and thus:

w21 Hð Þ ¼

X

i2I2 ;j2J1
kij Hð Þ

X

i2I2
li Hð Þ

¼

X4

j¼1
k5j

l5 Hð Þ
H ¼ 1;2; . . .

Appendix B. Data

B.1. Construction of weekly financial series

The MF-VAR approach of Ghysels (2016) is applicable in situations where the number of high-frequency time periods per
low-frequency period varies deterministically over time. This does, however, somewhat complicate the implementation of
the method. As discussed in the main text, we employ a combination of monthly macroeconomic and weekly financial time
series for the empirical analysis. Working with monthly and weekly time intervals in a traditional sense, the number of
weeks per calendar month varies from month to month.

To avoid the complications of deterministic time variation in the number of weeks per calendar month, we pre-process
the data and work with what we term ‘pseudo weeks’ rather than standard calendar weeks. This approach is possible
because we observe all financial series at a daily frequency that is higher than the final desired weekly frequency. These
pseudo weeks are constructed by dividing the trading days within each month into four sub-periods whose lengths vary
but are as close as possible to being equal. For example, months with 20 trading days are divided into four 5-day sub-
periods, those with 19 trading days are divided into three 5-day periods and a 4-day period, those with 22 days are split into
two 5-day periods and two 6-day periods and so on. The vast majority of pseudo-weeks contain either 5 or 6 trading days.
However, Februarys or months with an unusually large number of weekday non-trading days due to holidays may have one
or more weeks with four trading days.

With the exception of months containing exactly 20 trading days (always split into four weeks of equal length), how the
weeks are ordered within a givenmonth will influence the values (e.g. returns) obtained. For example, months with 21 work-
ing days can be split into four pseudo-weeks with lengths 5–5-5–6, with lengths 5–5-6–5, with lengths 5–6-5–5 or with
lengths 6-5–5-5, each of which will produce different final values for prices, returns and return volatilities. Therefore to
avoid this issue, we compute values over all possible split orders for a given month and then average the resulting values.
Finally, while calculating pseudo-weekly returns or return volatilities for each period, we also adjust the return and volatility
values obtained to account that the length of the return period differs slightly from one pseudo-week to another (4, 5 or 6
trading days).

B.2. Plots of data series

The US financial and macroeconomic series used to estimate spillover measures are plotted for the full sample period in
Fig. A.1. Major economic and financial events during the sample period are clearly visible in the plots, either as substantial
increases in financial volatility or large changes in the CFNAI; examples include the 1980–1981 recession, the Asian and Rus-
sian financial crisis and the collapse of Long-Term Capital Management in the late 1990s, the dotcom bubble and 9/11 in the
early 2000s, the recent global financial crisis in the late 2000s and early 2010s, and the onset of the COVID-19 pandemic.

Appendix C. Supplementary empirical results

C.1. Additional plots of pairwise spillover measures

in Fig. A.2. Panel (a) plots financial to financial pairwise spillover estimates, panel (b) plots pairwise spillovers from each
of the two financial markets to the real economy and panel (c) shows the reverse from the real economy to financial markets.
Fig. A.2 complements the spillover decomposition plots of Fig. 2, with the latter being more suited to analysing the relative
contribution of the individual spillover measures to the total level, and the former more suited to analysing the dynamics of
specific spillover measures in absolute terms. In particular, Fig. A.2 allows us to more effectively examine how changes in
pairwise spillovers relate to key historical events as we did previously for the total spillover index in Fig. 1.

There are several instances of increases in total spillovers being driven by increased spillovers from the financial sector to
the real side of the economy. During the 1980 to 1982 inflationary period, spillovers from the bond markets to the real econ-
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omy increased substantially. They reached local peaks in three instances: March 1980, December 1980 and February 1982,
coinciding with federal funds target rate increases. These tightenings of monetary policy by the Volcker Fed led to higher
interest rates, generating immediate contractionary impacts on the real economy, as captured by the spillovers from bond
markets to the real economy reaching 8%. They subsequently declined gradually as inflation was brought under control lead-
ing to lower interest rates. These events are also visible from the mixed-frequency spillover measures in panel (a) of Fig. 2,
but not the equivalent common-frequency measures in panel (b).

The Federal Reserve implemented another rate hike cycle between December 1986 and September 1987, with the federal
funds target rate rising from 5.75% to 7.25% over this period. Consequently, spillovers from bond markets to the real econ-
omy increased from 3.2% in November 1986 to as high as 6.5% in May 1987. When the Federal Reserve lowered its policy rate
back to 6.75% in response to Black Monday, spillovers from bonds to the real economy declined to 4% as of December 1987.
However, the Federal Reserve returned to its rate hike cycle in March 1988 and increased the fed funds target rate to 9.75%
by the end of 1988 and kept it there for another year. As a result, spillovers from the bond market to the real economy stayed
above four percentage points until October 1990.

Increases in spillovers from equity markets to the real economy are visible after the Black Monday stock market crash in
October 1987. The same occurred in the mid and late 1990s due to the build-up to the Mexican Tequila crisis beginning at
the end of 1994, followed by the Asian and Russian financial crises and the collapse of LTCM in 1997 and 1998. During this
period, spillovers from the stock and bond markets to the real economy increased from two to 6 percentage points. Both
measures also increased in May 2000, when the Federal Reserve raised its policy rate from 6% to 6.5% despite the dot-
com bubble bursting in the first half of 2000.

Following this, spillovers from equities and bonds to the real economy declined. However, from mid-2006, both recorded
a sharp increase from around 2 to 8 percentage points when the Fed caught the markets off-guard by increasing the federal
funds target rate in both May and June. With the start of the 2008–2009 financial crisis, spillovers from both bond and equity
markets to the real economy increased sharply, with the latter being the most significant contributor to the sudden increase
in the total spillover index throughout this crisis. The effects of the 2013 Taper Tantrum episode are also visible in panel (a)

Fig. A.1. Time series plots of financial and real economy series. The financial (S&P500 and 10-year Treasury Bond) and real economy (CFNAI) series are

plotted for the full sample period 1975:01 to 2020:06. Returns and return volatilities are expressed in percentage terms for the weekly frequency, with

standard deviations plotted for the latter constructed using a range-based approach detailed in Appendix C.2. The CFNAI series is plotted in level form..
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as a sharp increase in spillovers from the bond market to equities, reflecting the negative shock to bond market investor sen-
timent and its potential for spillovers to the equity market.

As discussed above, both the mixed-frequency and common-frequency total spillover indices in Fig. 1 responded similarly
to the COVID-19 shock, with a significant spike in total spillovers. From Fig. A.2 it is clear that all of the individual compo-
nents of spillovers increase in response to the pandemic. The largest increases in an absolute sense are noted for spillovers
from financial markets to the real economy, particularly from the equity market. However, whilst smaller in absolute terms
(reaching a level of just under 7%), in panel (c), we observe very large increases in spillovers from the real economy to bond
markets relative to the pre-pandemic levels.

Fig. A.2. Pairwise macro-financial spillover measures. The figure presents plots of the pairwise macro-financial spillover measures for the sample period

1980:01 to 2020:06. All measures plotted are for the mixed-frequency case. Return levels are employed for the financial S&P500 and 10-year Treasury Note

series, and levels for the real economy CFNAI series. Values are computed using a 3-month forecast horizon and a 60-month rolling window. The points

marked are as follows. A: Black Monday, Oct ’87, B: Asian financial crisis, Jul ’97, C: Russian financial crisis and LTCM collapse, Aug to Sept ’98, D: September

11, Sept ’01, E: the collapse of Bear Stearns, Mar ’08, F: Lehman Brothers collapse, AIG bailout and Fannie Mae and Freddie Mac being placed in government

conservatorship, May ’09, G: start of the EU debt crisis in April ’10 and flash crash of May ’10, and H: COVID-19 pandemic, March ’20..
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C.2. Total spillover indexes for logarithmic return volatilities

We also computed our mixed-frequency macro-financial spillover index using logarithmic return volatilities in place of
return levels for the financial series as in Diebold and Yılmaz (2014). These previous studies employ the range-based esti-

Fig. A.3. Total spillover indexes between financial and real economy series obtained from logarithmic return volatilities. Total spillover indexes for mixed-

frequency (denoted MF) and common-frequency (denoted CF) approaches are presented for the sample period 1980:01 to 2020:06. Logarithmic return

volatilities are employed for the financial S&P500 and 10-year Treasury Note series, levels for the real economy CFNAI series. Values are computed using a

3-month forecast horizon and a 60-month rolling window. The points marked are as follows. A: Asian financial crisis, Jul ’97, B: Russian financial crisis and

LTCM collapse, Aug to Sept ’98, C: September 11, Sept ’01, D: the collapse of Bear Stearns, Mar ’08, E: Lehman Brothers collapse, AIG bailout and Fannie Mae

and Freddie Mac being placed in government conservatorship, May ’09, F: start of the EU debt crisis in April ’10, flash crash of May ’10 and G: COVID-19

pandemic, March ’20. Shaded areas correspond to NBER US recession dates..

Fig. A.4. Impact of rolling estimation window length on spillover measures. The figure presents area plots in which the top of the complete shaded area

corresponds to the relevant total spillover index and each shaded area below representing the contribution of each specific pairwise spillover to the value of

the total spillover index. The relevant spillover measures for the mixed-frequency case are plotted in the top row and those for the common-frequency case

in the bottom row. Return levels are used for the financial S&P500 and 10-year Treasury Note series and levels for the real economy CFNAI series. Values are

computed using a 3-month forecast horizon and 45-month (in column 1), 60-month (in column 2) or 90-month (in column 3) rolling windows for the

sample period 1980:01 to 2020:06..
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mator of return volatility proposed by Parkinson (1980), which estimates return volatility from the high and low prices dur-
ing the chosen return period. As daily data on high and low prices are not available during the earlier parts of the sample
period, we approximate this estimator by replacing the high, and low prices with the highest and lowest daily closing prices
observed each week. For the later parts of the sample period where both estimators can be computed, we confirm that our
volatility measure using only close prices is highly correlated with the Parkinson (1980) estimator, with a correlation coef-
ficient of just over 0.9 for the S&P500 and just under 0.9 for the 10-year Treasury Note series.

Fig. A.3 presents an equivalent plot to Fig. 1, for the case where logarithmic return volatilities are employed instead of
return levels for financial series. The total spillover index series display broadly similar dynamics to those observed for
the case of return levels. For the case of return volatilities, the spillover indexes typically display slightly more pronounced
spikes around adverse financial or economic events than the ones for return levels (particularly during the Asian and Russian
financial crises). Financial volatility spillovers typically rise in turbulent times and drop in tranquil times, whereas return
spillovers may increase in both situations. Finally, we again observe similar differences in the level of macro-financial spil-
lovers between the mixed-frequency and common-frequency cases, with the former implying a higher average level of spil-
lovers over the sample period.

C.3. Impact of rolling estimation window size

Fig. A.4 illustrates how the choice of rolling window length employed to estimate the spillover measures affects the spil-
lover measures obtained. It can be seen that the key results of Section 3.2 are qualitatively unchanged, with mixed-frequency
spillovers consistently higher than common frequency equivalents, spillovers of financial origin making up the majority of
total spillovers, and the indexes increasing during periods of economic or financial turbulence. As expected for any type of
rolling window estimation approach, longer (shorter) window lengths result in smoother (rougher) estimated indexes.
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Claeys, P., Vašíček, B., 2014. Measuring bilateral spillover and testing contagion on sovereign bond markets in Europe. J. Bank. Finance 46, 151–165.
Clark, T.E., West, K.D., 2007. Approximately normal tests for equal predictive accuracy in nested models. J. Econ. 138, 291–311.
Demirer, M., Diebold, F.X., Liu, L., Yılmaz, K., 2018. Estimating global bank network connectedness. J. Appl. Econ. 33, 1–15.
Diebold, F.X., 2015. Comparing predictive accuracy, twenty years later: a personal perspective on the use and abuse of Diebold–Mariano Tests. J. Bus. Econ.

Stat. 33, 1–9.
Diebold, F.X., Yılmaz, K., 2009. Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J. 119, 158–171.
Diebold, F.X., Yılmaz, K., 2012. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 28, 57–66.
Diebold, F.X., Yılmaz, K., 2014. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econ. 182, 119–134.
Ellington, M., 2018. Financial market illiquidity shocks and macroeconomic dynamics: Evidence from the UK. J. Bank. Finance 89, 225–236.
Engle, R.F., Jondeau, E., Rockinger, M., 2015. Systemic Risk in Europe. Rev. Finance 19, 145–190.
Galvão, A.B., Owyang, M.T., 2018. Financial stress regimes and the macroeconomy. J. Money, Credit Bank. 50, 1479–1505.
Ghysels, E., 2016. Macroeconomics and the reality of mixed frequency data. J. Econ. 193, 294–314.
Giglio, S.W., Kelly, B., Pruitt, S., 2016. Systemic risk and the macroeconomy: An empirical evaluation. J. Financ. Econ. 119, 457–471.
Green, T.C., 2004. Economic news and the impact of trading on bond prices. The Journal of Finance 59, 1201–1233.
Hubrich, K., Tetlow, R.J., 2015. Financial stress and economic dynamics: The transmission of crises. Journal of Monetary Economics 70, 100–115.
Ivashina, V., Scharfstein, D., 2010. Bank lending during the financial crisis of 2008. J. Financ. Econ. 97, 319–338.
Lenza, M., and G.E. Primiceri. 2020. How to Estimate a VAR after March 2020. Working Paper.
Li, D., Magud, N.E., Valencia, F., 2019. Financial Shocks and Corporate Investment in Emerging Markets. Journal of Money, Credit and Banking 52, 613–644.
Parkinson, M., 1980. The Extreme Value Method for Estimating the Variance of the Rate of Return. The Journal of Business 53, 61–65.
Paye, B.S., 2012. ‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables. J. Financ. Econ. 106, 527–546.
Pesaran, M.H., Shin, Y., 1998. Generalized impulse response analysis in linear multivariate models. Economics Letters 58, 17–29.
Prieto, E., Eickmeier, S., Marcellino, M., 2016. Time Variation in Macro-Financial Linkages. Journal of Applied Econometrics 31, 1215–1233.

J. Cotter, M. Hallam and K. Yilmaz Journal of International Money and Finance 133 (2023) 102824

27



Rapach, D.E., Strauss, J.K., Zhou, G., 2010. Out-of-sample equity premium prediction: combination forecasts and links to the real economy. Rev. Finan. Stud.
23, 821–862.

Savor, P., Wilson, M., 2013. How much do investors care about macroeconomic risk? Evidence from scheduled economic announcements. J. Finan. Quant.
Anal. 48, 343–375.

Schorfheide, F., Song, D., 2015. Real-time forecasting with a mixed-frequency VAR. J. Bus. Econ. Stat. 33, 366–380.
Schorfheide, F., Song, D., 2020. Real-time forecasting with a (standard) mixed-frequency VAR During a Pandemic. Working Paper.

J. Cotter, M. Hallam and K. Yilmaz Journal of International Money and Finance 133 (2023) 102824

28


	Macro-financial spillovers
	1 Introduction
	2 Macro-financial spillover estimation
	2.1 The mixed-frequency VAR model
	2.2 Forecast error variance decomposition and spillover measures
	2.3 Transformation of mixed-frequency forecast error variance decomposition

	3 Macro-financial spillovers
	3.1 Data and spillover estimation
	3.2 US macro-financial spillovers
	3.3 International macro-financial spillovers

	4 Macro-financial spillovers as predictors of future macroeconomic conditions
	4.1 Forecasting environment and predictive regressions
	4.2 Evaluation of predictive ability
	4.3 Time-variation in predictive accuracy

	5 Conclusion
	Declaration of Competing Interest
	Appendix A Forecast error variance decomposition
	A.1 Generalised forecast error variance decomposition
	A.2 Transformation of MF-VAR FEVD Arrays

	Appendix B Data
	B.1 Construction of weekly financial series
	B.2 Plots of data series

	Appendix C Supplementary empirical results
	C.1 Additional plots of pairwise spillover measures
	C.2 Total spillover indexes for logarithmic return volatilities
	C.3 Impact of rolling estimation window size

	References


