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Abstract—A deep transfer learning method is presented 
for establishing the aggregated system frequency response 
(SFR) model of wind-thermal hybrid power systems (HPSs). 
In order to deal with nonlinearities and non-Gaussian 
disturbances, the quadratic survival information potential 
(QSIP) of the squared identification error is employed to 
construct the performance index when training recurrent 
neural networks (RNNs). A pre-trained SFR model is then 
obtained by the improved RNNs using the source domain 
data collected from the HPS in historical scenarios. 
Subsequently, the maximum mean difference is utilized to 
test the similarity of the HPS in historical and current 
scenarios. After that, the pre-trained SFR model is fine-
tuned by adding some nodes to the recurrent layer and a 
functional link to the input layer. The SFR model of the HPS 
operating in current scenario can then be built based on the 
transferred source domain pre-trained SFR model. 
Simulation results illustrate that the proposed data driven 
modelling method can obtain accurate, effective and timely 
SFR model for a wind-thermal HPS with different wind 
speeds and load disturbances. 

 
Index Terms—System frequency response; Power 

system modelling; System identification; Deep neural 
networks; Transfer learning 

I. INTRODUCTION 

N order to incorporate more renewable energy based 

generation units in power grids, the concerns on frequency 

response are raised [1-2]. The imbalance between power 

generation and load will potentially cause frequency deviations. 

As a result, it is necessary to study the dynamic characteristics 

of system frequency under the disturbance of generation or 

load. 

Investigation on power system frequency response (SFR) can 

reveal the dynamic characteristics of system frequency under 

the disturbance of generation or load, some approaches to SFR 

modelling have been presented [3-19]. 
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The existed power system frequency response modelling 

approaches can be classified as three categories: direct 

measurement method [3-6], mechanism analysis method [7-15] 

and data-driven method [16-19].   

1) Direct measurement method. This nonparametric method 

mainly investigates SFR by using Wide-Area Measurement 

System (WAMS) Data [3-5] and direct current load flow [6]. It 

is convenient and with low computational complexity, 

however, the relationship between frequency and 

generation/load can’t be revealed explicitly, although the 

variations of frequency, generation and load along with time 

can be plotted clearly. 

2) Mechanism analysis method. This method usually builds 

physical model to characterize dynamic SFR based on 

mechanism analysis. Some necessary assumptions and 

simplifications are required. The dynamic characteristics of 

each element of the HPS is taken into account, the overall 

physical model is then obtained by integrating all elements. Full 

model is usually established for developing power system 

simulation software, although this physical model has higher 

accuracy, however, it leads to larger computation burden. As a 

consequence, some equivalent models which take less 

computation cost have been built. Three kinds of average SFR 

model were presented in terms of delay model, canonical and 

hybrid delay-canonical model [7], in which all generators are 

aggregated into one equivalent rotor model, while the governor 

model of each generating unit is retained. Later, under the 

assumption that the generation is dominated by reheat steam 

turbine generators, a low order SFR model was proposed for 

large power systems in which most of the generating units are 

reheat steam turbine units [8]. Following the SFR models in [7] 

and [8], several extended SFR models were built for HPSs with 

renewable energy sources [9-14]. A modified average SFR 

model was presented for bulk power systems with doubly fed 

induction generator (DFIG)-based wind farms [9], this SFR 

model was used to evaluate short-term frequency regulation for 

the power system with wind farm. Authors in [10] and [11] 

integrated simplified models of wind turbines with other 

conventional sources. A low-order SFR model was built to 

represent AC frequency and DC voltage interaction for wind 

farms and voltage source converter-based high voltage direct 

current participating in primary frequency regulation [12]. The 

work in [13] established an extend SFR model for hybrid power 

systems (HPSs) with high penetration wind power considering 
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operating regions and wind speed disturbance. Reference [14] 

studied SFR of HPSs in the presence wind power and built a 

state-space model instead of transfer functions. Recently, an 

extended SFR model was proposed to evaluate SFR of cold load 

pickup following a large-scale blackout, in which a reduced 

first-order governor model was employed while the load model 

was built for considering time-dependent characteristic of 

inrush power surges [15]. These aforementioned low-

dimension SFR models sacrifices model accuracy without 

considering nonlinearities and stochastic disturbances.     

3) Data-driven method. This empirical approach usually 

utilizes input-output data to reveal the relationship between the 

inputs (generation and/or load) and the output (system 

frequency), which can significantly simplify the model 

structure with fewer computation resources. The data-driven 

model, also named as a black-box, needn’t fully understand the 
detailed mechanisms of SFR. A generic SFR model was 

proposed for HPSs including thermal, hydro and renewable 

generation, in which the model parameters were identified 

using least square method [16]. The study in [17] developed a 

parabolic approximation of the SFR to obtain an explicit 

function of the frequency nadir using three points, subsequently, 

photovoltaic system power reserve was determined based on 

the approximated SFR. Authors in [18] utilized support vector 

regression (SVR) to predict power system frequency dynamics 

and its nadir after disturbances. In [19], an improved radial 

basis function neural networks was employed to model SFR of 

a wind-thermal hybrid power system (HPS). The data-driven 

model in [16-19] described frequency behavior in the vicinity 

of a certain scenario based on collected input-output data. The 

accuracy of the data-driven model is related to the number of 

samples available to train the model. However, in practical 

HPSs, the operating scenario always varies, the constructed off-

line model doesn’t necessarily describe SFR in another scenario 
properly due to lacking of extrapolating capability. Under this 

circumstance, the data-driven model should be established by 

training the collected input-output data corresponding to new 

scenario. To acquire enough data is time-consuming, difficult 

even in a short time. Unfortunately, the accuracy of the data-

driven SFR model may not be guaranteed when the input-output 

data is inadequate. 

High accuracy of SFR model and low computation effort are 

expected when modelling SFR of the wind-thermal HPSs. To 

address the gaps in the present literature, recurrent neural 

networks (RNNs) and transfer learning (TL) are employed to 

model SFR for HPSs. 

Recurrent neural networks contain feedback connections 

among the neurons and can be used as identifiers and predictors 

in nonlinear dynamical systems [20-22]. In this context, RNNs 

is employed to build discrete state space SFR models for wind-

thermal HPSs. Moreover, minimum mean squared error (MSE) 

adaptation is replaced by survival information potential (SIP) 

of the squared identification error to deal with non-Gaussian 

disturbances [23]. Although building RNNs based SFR model 

needs adequate and effective training data, however, to collect 

enough data from a new scenario is time-consuming and 

economically inefficient. As a result, it is necessary to 

investigate data driven SFR modelling method when lack of 

adequate data. 

Transfer learning can improve learning performance by 

avoiding much expensive data-collecting efforts and make 

some progress for solving classification, regression and 

clustering problems [24]. An attempt to build transfer learning 

based process model has been appeared in literature [25], in 

which source knowledge was incorporated based on Gaussian 

process model, and a dynamic transfer modelling approach was 

then proposed. In [26], transfer learning was used to improve a 

new building energy prediction accuracy by utilizing the 

collected data from other similar buildings when only limited 

data can be collected for the new building. It has been observed 

that deep transfer learning technology offers benefits in the area 

of fault diagnosis [27-28]. In [27], deep transfer learning based 

machine fault diagnosis method was presented, in which the 

pre-training network was employed to extract low-level 

features while the high-level network structure was fine tuned. 

In [28], a new method for fault diagnosis of machines with 

unlabelled data was proposed by using a deep convolutional 

transfer learning network. 

Following the advancement in RNNs and deep transfer 

learning, we proposed a novel data driven modelling method to 

embrace the existing challenges when modelling SFR for HPSs. 

The main contributions include: 

1) By incorporating transfer learning into RNNs with 

functional link, a data-driven modelling method is proposed to 

build SFR model for wind-thermal HPSs.  

2)  The pre-training RNNs can establish discrete state space 

SFR model for HPSs operating in specific scenarios by 

minimizing the quadratic survival information potential (QSIP) 

of the squared identification error. 

3)  Based on the maximum mean discrepancy (MMD) 

criterion, transfer learning is employed to improve the 

transferability of the fine-tuned RNNs based SFR model.  

4) Compared with recent deep learning approaches, the 

proposed data driven SFR modelling method leads to more 

accurate results. Moreover, based on Sobol sensitivity analysis, 

the impact of the uncertainties of load and wind speed on 

modelling SFR is assessed, and the robustness of the proposed 

method to the impact of uncertainties is validated. 

The rest of the paper is organized as follows. Section II 

reports the data-driven SFR intelligent modelling scheme of 

HPSs. Section III describes the deep transfer learning based 

SFR modelling method, followed by the simulation results and 

analysis in Section IV. Section V concludes this paper. 

II. DATA-DRIVEN SFR INTELLIGENT MODELLING SCHEME 

Deep transfer learning is a promising way to build SFR 

model for HPSs. The dynamic characteristics of wind-thermal 

HPSs are complicated in terms of time-varying, nonlinearities, 

uncertainties, intermittence and so on. Therefore, a deep 

transfer learning based intelligent modelling scheme is 

presented for HPSs in this section. 

Figure 1 illustrates the schematic diagram of deep transfer 

learning based SFR modelling for a wind-thermal HPS. The 

overall load would be balanced by a wind-thermal hybrid power 
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plant at the point of common coupling. The hybrid power plant 

consists of a wind farm and a thermal power plant. There are 

multiple doubly fed induction generator (DFIG) based wind 

turbine generators and their primary frequency controls in the 

wind farm. The thermal power plant includes multiple 

synchronous generators and their steam governor controls. 

The goal of this work is to build a deep transfer learning 

based system frequency response model that can accurately and 

quickly analyse the frequency dynamics of HPSs in the time 

scale of primary frequency regulation. To achieve the goal, the 

SFR model with three input variables (wind farm power change 

Δ𝑃𝑊 , mechanical power change of thermal power plant 

Δ𝑃𝑀 and load change Δ𝑃𝐿 ) and one output variable (system 

frequency deviation Δ𝑓) will be obtained at offline and online 

stage respectively. Denote the identified system deviation as 𝑦(𝑘). For a start, an improved RNNs is employed to obtain the 

pre-trained SFR model at offline stage. Afterwards, nonlinear 

input transformation and transfer learning are incorporated into 

the pre-trained RNNs based SFR model, the fine-tuned strategy 

is presented for building SFR model at online stage. As a result, 

the dynamic frequency characteristics of an HPS can be 

analysed with the aid of the on line SFR model. 

III. DEEP TRANSFER LEARNING BASED SFR MODELLING 

In this section, deep transfer learning based SFR modelling 

method is elaborated, whose schematic diagram is depicted in 

Fig. 2. In Section III-A, the pre-trained offline SFR model is 

obtained by RNNs using source data. In Section III-B, the 

principle of transfer learning is presented, and then the deep 

transfer learning based online SFR model is obtained by fine- 

tuned RNNs using target and source data together.   
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Fig. 1.  Schematic diagram of building the SFR model. 

The procedures including offline and online stages are 

described as follows: 

Step 1: Historical input-output data is collected from the 

hybrid power system operating in some specific scenarios and 

pre-processed, denote it as source data. 

Step 2: An improved RNNs are employed to build pre-

trained SFR model by training source data. 

Step 3: The online input-output data is collected from the 

hybrid power system operating in current scenario and pre-

processed, denote it as target data. 

Step 4: Analyze the data distribution discrepancy between 

source and target domain using MMD criterion. 

Step 5: Make re-training strategy by fine tuning and 

determine the frozen layer, the transferred knowledge or 

reinitialized information.  

Step 6: Based on the pre-trained SFR model, the above re-

training strategy in step 5 is used to obtain online SFR model 

using source data and target data together. 
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Fig. 2. Deep transfer learning based SFR modelling. 

A. Pre-trained Offline SFR Model 

The pre-trained SFR model is developed based on the 

collected data in the source domain. In this work, the collected 

data from the HPSs operating in some specific scenarios are 

pre-processed and saved in the source domain. The RNNs 

consists of one input layer, three hidden layers, and one output 

layer respectively, whose signal flow chart is shown in Fig. 3. 

The pre-trained offline SFR model is obtained by the RNNs 

shown in Fig. 4. RNNs can build mapping and capture time 

correlation in data sequence. A sequence of length 3𝑇 included 

by wind farm power change Δ𝑃𝑊, mechanical power change of 

thermal power plant Δ𝑃𝑀  and load change Δ𝑃𝐿  is input to the 

RNNs, i.e. 𝑢(𝑘) = [Δ𝑃𝑀(𝑘 − 𝑇 + 1), Δ𝑃𝑊(𝑘 − 𝑇 +1), Δ𝑃𝐿(𝑘 − 𝑇 + 1), Δ𝑃𝑀(𝑘), Δ𝑃𝑊(𝑘), Δ𝑃𝐿(𝑘)] 𝑇 ∈ 𝑅 3𝑇×1  is 

the input sequence at instant 𝑘. Three hidden layers shown in 

Fig. 3 is composed of one recurrent layer and two fully 

connected layers. The unique output in the output layer is the 

identified frequency deviation of the wind-thermal HPS at 

instant 𝑘 . Consequently, the frequency deviation can be 

identified via the RNNs using the collected data from the wind-

thermal HPS operating in some specific scenarios. 

( ) ( ( ) )
iu i

I k g W k b= +u                            (1) 

( ) ( ( ) ( 1) )
xi xx x

k g W k W k b= + − +X I X              (2) 

( ) ( ( ) )
cx c

C k g W k b= +X                           (3) 

( ) ( ( ) )
fc f

F k g W k b= +C                           (4) 

      ( ) ( )
yf y

y k W k b= +F                               (5) 

where 𝐼(𝑘) is the output of the input layer. 𝑿(𝑘), 𝐶(𝑘) and 𝐹(𝑘)  are the output of the hidden layers at instant k
respectively. 𝑾𝑖𝑢 , 𝑊𝑥𝑖 , 𝑊𝑥𝑥 , 𝑊𝑐𝑥 , 𝑊𝑓𝑐 and 𝑊𝑦𝑓 stand for the 

corresponding weights between adjacent layers. 𝑏𝑖 , 𝑏𝑥 , 𝑏𝑐 , 𝑏𝑓 

and 𝑏𝑦 are the corresponding biases. The activation function is 

a sigmoid function 𝑔(𝑧) = 11+𝑒−𝑧 . Hence, the following state 

space model (6) can be established from (1) and (2). In addition, 

the output (7) can be obtained by substituting (3) and (4) to (5). 

( ) ( ( 1), ( ))k f k u k= −X X                    (6) 
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( ) ( ( ), ( ))y k h k u k= X                           (7) 

Most of the existing works have assumed that the stochastic 

disturbances in HPSs are Gaussian, the mean value and 

variance of the signal are used to describe its randomness. 

However, the system frequencies of HPSs with renewable 

energy are non-Gaussian [31]. Hence, the mean value and 

variance of the system sequency cannot describe it completely 

and precisely.  

Minimum error entropy (MEE) criterion has been employed 

to design controller or filter for non-Gaussian systems because 

entropy provides generalized randomness measure by its 

dispersion instead of mean or variance [32]. The global 

minimum corresponding to 𝛿 distribution under MEE criteria 

locates any position, so an additional bias term is needed due to 

the shift-invariant property. Accordingly, the survival 

information potential (SIP) of error has been presented to 

replace MEE [19, 23]. 

 

 

Fig. 3. The signal flow chart of RNN. 

In this context, the quadratic survival information potential 

(QSIP) of the squared identification error is utilized to deal with 

non-Gaussian disturbances in HPSs. Denote the real frequency 

deviation as Δ𝑓(𝑘). Hence, the identification error is 

( ) ( ) ( )e k y k f k= −                  (8) 

the QSIP of the squared identification error is regarded as the 

cost function to train the RNNs. It can be estimated using the 

sequential data collected by sliding window technique 

2

1

( ) ( )
k

j

j k T

J k e j
= − +

=                             (9) 

where
2 2

1
j

k j k j

T T
 − + −   = −   

   
. 

 

Fig. 4. RNNs for pre-trained SFR model framework. 

 

The RNNs based SFR model is trained by backpropagation 

through time (BPTT) algorithm. Let the learning rate be 𝜂. The 

weights and biases of the RNNs can be obtained by minimizing 

the cost function (9).  

The input-output data were collected from HPSs operating in 

historical scenarios and stored in source domain. These data in 

the source domain are represented by 𝒟𝑆 = {𝑢𝑠, 𝑦𝑠}.The BPTT 

algorithm is used to build SFR models for wind-thermal HPSs. 
 

B. Deep Transfer Learning Based Online SFR Model 

Most of data-driven methods re-train model using online 

data. However, unnecessary data updating and re-training is 

usually costly and time-consuming. Transfer learning can be 

used to address this problem. In addition, when the input-output 

data of the investigated wind-thermal HPS operating in current 

scenario is limited, the sufficient data collected in historical 

scenarios are helpful to build the online SFR model for the HPS 

operating in current scenario. Transfer learning can transfer 

knowledge from historical data to improve online SFR 

modelling abilities. 

Denote the input-output data in current scenario as the target 

domain 𝒟𝑇 = {𝑢𝑡 , 𝑦𝑡}. Transfer learning is incorporated into 

the pre-trained RNNs to establish the online SFR model by 

using target data and source data together. 

In order to deal with a domain shift between source domain   𝒟𝑆 and target domain 𝒟𝑇, maximum mean discrepancy (MMD) 

based domain adaptation algorithm is presented for online SFR 

modelling. MMD defined in [29] is a distribution distance 

metric to compare the distributions between two datasets using 

a kernel two-sample test. 

( ) ( )

( )

2

2

1 1

,

, 1

1 1
[ , ] ( ) ( )

1 1
                        [ , ,

( 1) ( 1)
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(10)                  

where 𝜙 is the kernel function that maps the original data to a 
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reproducing kernel Hilbert space, 

2

2

'
( , ') exp

2

x x
k x x



 −
= − 

 
 

.  

Since MMD criterion can be used to measure the discrepancy 

between source domain 𝒟𝑆  and target domain 𝒟𝑇 , it can be 

regarded as the transfer criterion from 𝒟𝑆  to 𝒟𝑇 .  The pre-

trained RNNs can be fine-tuned while the parameters obtained 

in the pre-trained RNNs are migrated selectively. The domain 

adaption MMD is classified into three cases: 

Case 1: The data distributions of source domain 𝒟𝑆  and 

target domain 𝒟𝑇1  are similar if MMD is less than the pre-

specified threshold 𝛼, the parameters of the pre-trained RNNs 

can then be fine-tuned. The deep transfer learning based online 

SFR modelling process includes two stages: the pretraining on 

source domain 𝒟𝑆  and the fine-tuning on target domain 𝒟𝑇1. 

The pretrained RNNs based SFR model is frozen when 

finishing pretraining RNNs. The fine-tuning method in this case 

focuses on determining the additional recurrent nodes via 

transfer learning method. Subsequently, the additional recurrent 

nodes are integrated to the frozen pretrained RNNs. Denote the 

fine-tuned RNNs based SFR model as Model A. As a sequence, 

the online SFR model can be obtained via Model A. 

Case 2: The data distributions of source domain 𝒟𝑆  and 

target domain 𝒟𝑇2 are dissimilar if MMD is greater than the 

pre-specified threshold 𝛼  and less than the pre-specified 

threshold 𝛽 , the SFR modelling method is shown in Fig. 5. The 

transfer learning based online SFR modelling process includes 

two stages: the pretraining on source domain 𝒟𝑆 and the fine-

tuning on target domain 𝒟𝑇2. The fine-tuning method in this 

case not only adds appropriate recurrent nodes but also 

performs nonlinear input  transformation. Denote the fine-tuned 

SFR model shown in Fig. 5 as Model B. Nonlinear input 

transformation is performed on each input node by a 

trigonometric polynomial basis function {1， 𝑠𝑖𝑛( 𝜋𝑢(𝑘)， 𝑐𝑜𝑠( 𝜋𝑢(𝑘))， 𝑠𝑖𝑛( 2𝜋𝑢(𝑘), 𝑐𝑜𝑠( 2𝜋𝑢(𝑘)), . . . , 𝑠𝑖𝑛( 𝑁𝐿𝜋𝑢(𝑘), 𝑐𝑜𝑠( 𝑁𝐿𝜋𝑢(𝑘))}, which provides a compact representation of 

the function in the mean square sense [30]. The input 

transformation with functional link has fast convergence rate 

and less computational burden [30]. Compromising between 

complexity and accuracy, the order of the nonlinear expansion 

using trigonometric functions 𝑁𝐿, is selected by trail and error 

method. In addition, the additional recurrent nodes RNNs 

shown in green is also fine-tuned using trail and error method. 

Case 3: If MMD is much greater than the pre-specified 

threshold 𝛽, the transfer learning based SFR model shown in 

Fig. 4 cannot obtain satisfactory model accuracy. Accordingly, 

the pre-trained SFR model should be modified using proper 

source data. 

IV. RESULTS AND DISCUSSIONS 

 The following tests were conducted to testify the 

effectiveness of the proposed deep transfer learning based SFR 

modelling algorithm. In addition, to provide a sufficient 

comparison, RNNs under MSE criterion, RNNs under SIP 

criterion are also implemented. The experimental wind-thermal 

HPS is shown in Fig. 1 (p=200, q=2). There are 200  1.5MW 

DFIG wind turbine generators in the wind farm. Each wind 

turbine generator adopts same primary frequency regulation. 

The constant gain of the droop control is set to 𝐾𝑤 =50 MW/Hz. The detailed general non-linear wind turbine 

generator model of a DFIG wind turbine generator is given in 

[33], the corresponding parameters are listed in Table I. There 

are two 600MW reheat steam generator units in the thermal 

power plant. Each reheat steam generator unit is equipped with 

a prime mover speed control system and excitation voltage 

regulator. The adjustment coefficients of the steam turbine 

governing system are set to 𝐾𝑡 = 20 MW/Hz. The model 

parameters of the reheat steam generator unit are given in Table 

Ⅱ. 

 

Fig. 5.  Transfer learning based Online SFR model. 

 

TABLE I 

PARAMETERS OF DFIG WIND TURBINE GENERATOR  

Variable 
Paramete

rs values 
Variable name 

Paramet

ers 

values 

Rated voltage 690V Rotor resistant 
0.016p.

u 

Rated power 1.5MW Rotor leakage inductance 
0.156p.

u 

Stator resistant 
0.00706p

.u 
Rated wind speed 12m/s 

Stator leakage 

inductance 
0.171p.u 

Performance coefficient of 

the turbine 
0.73p.u 

 

In this simulation, the sampling period is set to 0.1s. The 

width of the sliding window is set to 100, the data within the 

sliding window is used to estimate the SIP of the squared 

identification error. The length of the sequential data in the 

input layer is set to 𝑇 = 10 . The weights of the RNNs are 

initialized as random numbers within a range [-1, 1]. Two pre-

specified thresholds are set to 𝛼 = 0.1 and 𝛽 = 0.3 by trial and 

error respectively. 

 
TABLE Ⅱ 

PARAMETERS OF THERMAL  POWER UNIT  

Variable Value Variable Value 

Governor time constant 0.18s 
High-pressure turbine 

fraction 
0.33 
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Steam chest time 

constant 
0.2s 

Governor speed 

regulation 
0.05 

Reheat time constant 11.27s Load damping factor 0.02 

A. Typical Scenarios and Dataset Description 

The typical scenarios of the wind-thermal HPS are 

characterized by wind speed and load disturbance. Three kinds 

of typical scenarios are investigated as shown in Table Ⅲ. 

Random variables 𝛽1, 𝛽2, 𝛽3 and 𝛽4 uniformly distribute on the 

intervals [−0.5, 0.5] , [−100, 100] , [−110, 110] , and [−120, 120], respectively. In this work, k-fold cross-validation 

is utilized. The dataset 𝒟𝑆 , 𝒟𝑇1  and 𝒟𝑇2  are split into 10 

batches of similar sizes respectively. When looping over 𝑙 = 1, 2, . . . ,10, batch l is held out as validation data, and the model 

is trained on the remaining 9 data batches and the trained model 

is used to compute the performance evaluation metrics for the 

validation data. The final SFR model is trained using all 

available data, and the performance evaluation metrics for the 

final SFR model are the average of all loops. For brevity, not 

all the test results are summarized here, only the typical results 

in current case for each scenario are reported. 

B. Model Accuracy Evaluation 

In order to evaluate the accuracy of the established model, 

root mean square error (RMSE), mean absolute error (MAE), 

determination coefficient 𝑅2 and mean absolute percent error 

(MAPE) are used as performance evaluation metrics. 

(1) RMSE is the expected value of the square of the 

difference between the identified frequency deviation and 

actual frequency deviation.  

       
2

1

1
( )

n

i i

i

RMSE y f
n =

= −       (11) 

(2) MAE can better reflect the actual situation of the 

predicted error 

1

1 n

i i

i

MAE y f
n =

= −                   (12) 

(3) The determination coefficient represents the quality of a 

fitting through the change of data. 

2

2 1

2

1

( )

1

( )

n

i i

i

n

i

i

y f

R

y y

=

=

− 
= −

−




                    (13) 

(4) MAPE is the summary measure for evaluating model 

accuracy 

                             
1

1 n
i i

i i

y f
MAPE

n f=

−
=

                 (14) 

 
TABLE Ⅲ  

THREE TYPICAL SCENARIOS IN THE TEST 

Scenario 
Group of time  

series data 

Wind speed 

m/s 

Load disturbance 

MW 

1 3500 in 
SD  10 + 𝛽1 1000 + 𝛽2 

2 

500 in 
1TD  10.5 + 𝛽1 1000 + 𝛽3 

Current case 10.5 1000±110 

3 

500 in 
2T

D  12 + 𝛽1 1000 + 𝛽4 

Current case 12 1000±120 

Scenario 1: The wind-thermal HPS operated in the vicinity 

of the operating point featured by wind speed 10 m/s and load 

1000 MW. The uniformly distributed random disturbances 

were imposed on wind speed and load, respectively, whose 

perturbation ranges are [-0.5m/s, 0.5m/s] and [-100MW, 

100MW] respectively. 3500 groups of input-output data were 

collected and denoted as source data 𝒟𝑆 . The appropriate 

learning rate and recurrent node number can be determined 

during training stage using trail and error method. 3150 groups 

training data selected from the dataset 𝒟𝑆  were input to the 

RNNs, the average RMSE of the RNN with different recurrent 

node number is shown in Table Ⅳ when the learning rate 𝜂 

=0.05 remains unchanged. It can be observed that 8 recurrent 

nodes can achieve the lowest RMSE. Table Ⅴ shows the 

average RMSE with different learning rates when the number 

of recurrent nodes is fixed to 8, it is clear that the learning rate 

can be set to 𝜂 =0.07. Finally, the pre-trained RNNs can model 

SFR of the wind-thermal HPS. 

 
TABLE Ⅳ 

AVERAGE RMSE WITH DIFFERENT NEURONS IN RECURRENT LAYER  
 

Number of neurons in 

recurrent layer 
5 6 7 8 9 

RMSE 
1.93e-

4 

1.55e-

4 

1.28e-

4 

9.62e-

5 

1.46e-

4 

Number of neurons in 

recurrent layer 
10 11 12 13 14 

RMSE 
1.63e-

4 

2.07e-

4 

2.23e-

4 

2.28e-

4 

2.96e-

4 

Note: The bold entities denote the lowest error among the various 

number of neurons in recurrent layer. 

 
TABLE Ⅴ 

AVERAGE RMSE WITH DIFFERENT LEARNING RATES  

The learning factor 0.01 0.02 0.03 0.04 0.05 

RMSE 3.89e-4 3.33e-5 2.65e-4 2.37e-4 1.63e-4 

The learning factor 0.06 0.07 0.08 0.09 0.1 

RMSE 8.68e-5 7.25e-5 9.61e-5 2.21e-4 4.23e-4 

Note: The bold entities denote the lowest error among the various 

learning rates. 

 

In addition, deep belief network (DBN) [34], deep temporal 

dictionary learning (DTDL) [35], sparse autoencoder (SAE) 

[36] and rough autoencoder (RAE) [37] are introduced for 

comparison. The performance evaluation metrics are listed in 

Table Ⅵ. It can be observed from Table Ⅵ that the proposed 

method can obtain the most accurate SFR model.  
 

TABLE Ⅵ 

PERFORMANCE EVALUATION METRICS OF FINAL MODEL  

Method 
Accuracy 

RMSE MAE R2 MAPE 

RNN-MSE 1.13e-4 8.28e-5 0.970 0.237 

RNN-SIP 8.79e-5 5.83e-5 0.982 0.149 
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DBN 4.171e-4 3.139e-4 0.515 0.982 

SAE 1.99e-4 1.41e-4 0.868 0.512 

DTDL 6.19e-4 6.01e-4 0.408 0.991 

RAE 2.14e-4 1.71e-4 0.849 0.835 

 

Scenario 2: The HPS operated in the vicinity of the operating 

point featured by wind speed 10.5 m/s and load 1000 MW. 500 

groups of input-output data with uniformly distributed random 

disturbances shown in Table III were collected and denoted as 

target data 𝒟𝑇1. It follows from Eq. (10) that the discrepancy 

between source domain and target domain can be obtained 

MMD=0.065.  

Frozen the pretrained RNNs obtained in scenario 1, the fine-

tuned SFR model A can be established by adding appropriate 

recurrent nodes to the frozen RNNs. 450 groups training data 

selected from the dataset 𝒟𝑇1  were input to the RNNs. Two 

additive recurrent nodes were selected by trial and error 

method. The transfer learning based SFR model A was obtained 

in the end.  

By performing nonlinear input transformation and adding 

appropriate recurrent nodes to the frozen pretrained RNNs 

obtained in scenario 1, the fine-tuned SFR model B will be 

established. Two additive recurrent nodes were still selected 

using trial and error method. Three order trigonometric 

polynomial basis function applied to the input transformation is 

selected by trail and error method. In the end, the transfer 

learning based SFR model B was obtained. Table Ⅶ lists the 

performance evaluation metrics of model A and model B 

trained by the target data respectively. In current case, the wind 

speed was 𝑣 = 10.5m/s while the load disturbance Δ𝑃𝐿  shown 

in Fig. 6 fluctuated randomly between [-0.11, 0.11] p.u. Figure 

7 illustrates the real frequency deviation and the identified 

frequency deviations obtained by model A and model B.  It can 

be seen from Fig. 7 that model A can approximate real 

frequency better than model B. The PDFs of the identification 

error 𝛾𝑒 at typical instants is shown in Fig. 8. The PDFs of the 

identification error obtained by Model A are narrower and 

sharper. In addition, Table Ⅷ lists the performance evaluation 

metrics of Model A and Model B respectively. Obviously, 

model A outperforms Model B. 

Scenario 3: The HPS operated in vicinity of the operating 

point with the wind speed 𝑣 = 12m/s and load 1000 MW. 500 

groups of input-output data uniformly distributed random 

disturbances shown in Table III were collected and denoted as 

target data 𝒟𝑇2. MMD=0.224 can be obtained by Eq. (10).  

 

 

Fig. 6.  Load disturbances in scenario 2. 

 

Fig. 7.  Curves of frequency deviation. 

 

(a).  𝛾𝑒 at t=10s. 

 

(b).  𝛾𝑒 at t=20s. 

 

(c).  𝛾𝑒 at t=50s. 
Fig. 8.  𝛾𝑒 at typical instants. 

 

TABLE Ⅶ 

PERFORMANCE EVALUATION METRICS OF FINAL MODEL  

Model 
Accuracy 

RMSE MAE R2 MAPE 

Model A 9.86e-5 8.32e-5 0.970 0.236 

Model B 1.37e-4 9.55e-5 0.958 0.352 

 

TABLE Ⅷ 

PERFORMANCE EVALUATION METRICS IN CURRENT CASE 

Model 
Accuracy 

RMSE MAE R2 MAPE 

Model A 8.98e-5 6.02e-5 0.981 0.159 
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Model B 1.0e-4 7.55e-5 0.971 0.210 

 

Frozen the pretrained RNNs obtained in scenario 1, the fine-

tuned SFR model A can be built by adding appropriate recurrent 

nodes to the frozen RNNs. 450 groups training data selected 

from the dataset 𝒟𝑇2 were input to the RNNs.  Three additive 

recurrent nodes were selected using trial and error method, and 

then the transfer learning based SFR model A was obtained.  

By conducting nonlinear input transformation and fine-

tuning appropriate recurrent nodes to the frozen pretrained 

RNNs obtained in scenario 1, the fine-tuned SFR model B will 

be established using the dataset 𝒟𝑇2. Three additive recurrent 

nodes and three order of the nonlinear input transformation 

were selected by trial and error method. Table Ⅸ lists the 

average performance evaluation metrics of the transfer learning 

based SFR model A and model B. In current case, the wind 

speed was 𝑣 = 12m/s while the load disturbance Δ𝑃𝐿  shown 

in Fig. 9 varied in the vicinity of [-0.12, 0.12] p.u. Figure 10 

demonstrates the identified frequency deviations by model A 

and model B besides the real frequency deviation. It can be 

observed from Fig. 10 that Model B can approximate real 

frequency better than model A. The PDFs of the identification 

error 𝛾𝑒 at typical instants is shown in Fig. 11. The PDFs of the 

identification error obtained by Model B are narrower and 

sharper. Table Ⅹ lists the comparison between Model A and 

Model B. It is clear that model B is better than Model A in this 

scenario. 

In summary, these simulation results illustrate the 

relationship between the selected model and MMD. When the 

MMD of source domain 𝒟𝑆 and target domain 𝒟𝑇 is less than 

the pre-specified threshold 𝛼, the SFR model can obtain better 

performance using model A. It means that scenario 2 is close to  

 

Fig. 9.  Load disturbances scenario 3. 

 

 

 
Fig. 10. Identification curve of frequency deviation. 

 
(a).  𝛾𝑒 at t=10s. 

 
(b).  𝛾𝑒 at t=20s. 

 
(c).  𝛾𝑒 at t=50s 

 

Fig. 11.  𝛾𝑒 at typical instants. 

historical scenario in source domain, it is not necessary to add 

functional link. On the other hand, when the MMD in scenario 

3 is greater than the pre-specified threshold 𝛼 and less than the 

pre-specified threshold 𝛽, model fine-tuning shown in Fig. 4 

should be performed because of the dissimilarity between 

current scenario and historical scenario. It is clear that model B 

can reflect SFR of the wind-thermal HPS better than Model A. 
 

TABLE Ⅸ 

PERFORMANCE EVALUATION METRICS OF FINAL MODEL 

Model 
Accuracy 

RMSE MAE R2 MAPE 

Model A 1.83e-4 1.36e-4 0.951 0.196 

Model B 1.66e-4 1.02e-4 0.964 0.188 

 

 TABLE Ⅹ 

PERFORMANCE EVALUATION METRICS IN CURRENT CASE 

Model 
Accuracy 

RMSE MAE R2 MAPE 

Model A 1.59e-4 1.02e-4 0.968 0.183 

Model B 1.46e-4 8.35e-5 0.973 0.179 
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C. Sensitivity Analysis 

In order to show the robustness of the proposed method to 

uncertainties from load and wind speed in HPSs, the sensitivity 

analysis (SA) is conducted. This study performs the SA using 

the variance-based Sobol indices [38] owing to its 

straightforward interpretation. And these indices represent the 

contribution of a parameter noised by uncertainties to the 

overall decrease of the SFR modelling accuracy. The Sobol 

indices 𝑆𝑖 measuring the sensitivity of the frequency deviation 

with respect to each input uncertain parameter 𝑋𝑖 are given as 

(15). 𝑆𝑖 = 𝜎2𝑋𝑖 (𝔼𝑋∼𝑖(𝑦 ∣ 𝑋𝑖))𝜎2(𝑦) (15) 

where the frequency deviation 𝑦 is a random variable ; 𝜎2(𝑦) 

is the unconditional variance, 𝔼𝑋∼𝑖(𝑦 ∣ 𝑋𝑖)  is the expected 

value of y conditional on 𝑋𝑖  (i.e., 𝑋𝑖  remains fixed), and 𝜎2𝑋𝑖 (𝔼𝑋∼𝑖(𝑦 ∣ 𝑋𝑖)) is the conditional variance of 𝑦 caused by 

a variation of 𝑋𝑖.  
In this work, two 500-samples of noisy validation datasets 

were collected to test the influence of uncertainties on the pre-

trained model, Model A and Model B established respectively. 

Denote two independent sampling matrices A  and B , with 𝑎𝑗𝑖  
and 𝑏𝑗𝑖 as generic elements. The index i runs from 1 to 2, where  𝑋1  and 𝑋2  are non-Gaussian disturbances from load and wind 

speed, respectively. The index j runs from 1 to 500. We 

introduce matrix �̅��̅�(𝑖)
 where all columns are from B  except the 

i-th column which is from A . 𝜎2𝑋𝑖 (𝔼𝑋∼𝑖(𝑦 ∣ 𝑋𝑖)) can then be 

computed as follows: 𝜎2𝑋𝑖 (𝔼𝑋∼𝑖(𝑦 ∣ 𝑋𝑖)) = 1𝑁 ∑  𝑁𝑗=1 𝑓(�̅�)𝑗𝑓(�̅��̅�(𝑖))𝑗 − 𝔼2(𝑦)  (16) 

where ‘𝑓’ is the model that links the inputs to the output, 𝔼(𝑦) 

is the expected value of 𝑦. 

The 𝑆𝑖 takes a value between 0 and 1 because it is normalized 

by 𝜎2(𝑦). 𝑆𝑖 = 0 indicates that the input uncertain parameters 

have no influence on the variance of output and 𝑆𝑖 = 1 

indicates that this input uncertain parameter is the full cause of 

the output variance. 

Table ⅩⅠ shows the Sobol indices for three SFR models. As 

observed in Table ⅩⅠ, non-Gaussian load and wind speed 

disturbances both have small Sobol indices. Therefore, the 

influence of uncertainties on the precision of SFR model can be 

ignored, the established SFR models are robust to uncertainties 

from load and wind speed in wind-thermal HPSs. 

 
TABLE ⅩⅠ 

SOBOL INDICES FOR THE THREE SFR MODEL 

Model S1 S2 

Pre-trained model 0.064 0.060 

Model A 0.092 0.074 

Model B 0.086 0.071 

V. CONCLUSIONS 

In this paper, a deep transfer learning based SFR modelling 

method is proposed for wind-thermal HPSs. It transfers source 

domain knowledge to the target domain, hence, the cost and the 

effort required to collect the SFR data are reduced. Simulation 

tests in a wind thermal HPS with different wind speeds and load 

disturbances have been conducted. The effectiveness of the 

established deep transfer learning based SFR model is also 

testified. The features of the proposed methods include: 

1) The pre-trained SFR modelling method is given based on 

an improved RNNs. The QSIP of the squared identification 

error is introduced to construct the cost function for training 

RNNs, non-Gaussian disturbances in wind-thermal HPSs can 

then be coped with. Thus, the discrete state space SFR model 

can be build using the data from the HPS operating in historical 

scenarios. 

2) The principle to transfer the knowledge of source domain 

is presented based on MMD. The transfer learning deals with 

transferring knowledge from historical scenarios to current 

scenario. The SFR of the HPS operating in current scenario can 

be represented by the fine-tuned RNNs, in which the nodes in 

recurrent layer are increased while the input nodes are expanded 

via functional link. 

3) The proposed data driven SFR modelling method can 

build more accurate model, moreover, the SFR model is robust 

to the impact of uncertainties from load and wind speed in 

wind-thermal HPSs. 
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