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ON THE COFINALITY OF THE LEAST λ-STRONGLY COMPACT

CARDINAL

ZHIXING YOU AND JIACHEN YUAN

Abstract. In this paper, we characterize the possible cofinalities of the least λ-strongly

compact cardinal. We show that, on the one hand, for any regular cardinal, δ, that carries a

λ-complete uniform ultrafilter, it is consistent, relative to the existence of a supercompact

cardinal above δ, that the least λ-strongly compact cardinal has cofinality δ. On the other

hand, provably the cofinality of the least λ-strongly compact cardinal always carries a

λ-complete uniform ultrafilter.

1. introduction

In [1, 2], Bagaria and Magidor introduced the notion of λ-strong compactness (see

Definition 2.1), which generalized the well-known notion of strong compactness.

λ-strong compactness shares some similarities with strong compactness. For example,

λ-strong compactness can be characterized in terms of compactness properties of infinitary

languages, elementary embeddings, ultrafilters, etc. (see [1, 2, 13]).

It turns out that the notion of λ-strong compactness, especially for the case λ = ω1, pro-

vides a weaker large cardinal strength, which can be used to prove various results known to

follow from strong compactness. For example, the SCH holds above the least ω1-strongly

compact cardinal (see [1]). Using this fact, recently Goldberg [8] proved a celebrated con-

jecture of Woodin1 by showing that if the conjecture fails, then there exists an ω1-strongly

compact cardinal, and the conjecture holds if the SCH holds above some cardinal, and

in particular, if there is an ω1-strongly compact cardinal. Besides these consequences, λ-

strong compactness also corresponds to the exact large cardinal strength of some natural

properties of interest in different areas (see [1, 2]).

The least λ-strongly compact cardinal is of particular interest, because it may have very

odd properties. Bagaria and Magidor [1] showed that this cardinal must be a limit cardinal.

But surprisingly, it may not be weakly inaccessible. Namely, they showed that the first ω1-

strongly compact cardinal can be singular (see [2]). Also recently Gitik [7] constructed a

model of ZFC, relative to the existence of a supercompact cardinal, in which the least λ-

strongly compact cardinal is not strongly compact, but stays regular. He also constructed a

model of ZFC, relative to the existence of two supercompact cardinals, in which the least

λ-strongly compact cardinal is not a strong limit cardinal.

2010 Mathematics Subject Classification. 03E35, 03E55.

Key words and phrases. λ-strongly compact cardinal, Cofinality, Iterated ultrapower, Radin forcing.
1The conjecture states that, in second-order set theory, every two elementary embeddings j0, j1 : V → M

into the same inner model M agree on ordinals, i.e., j0 ↾ Ord = j1 ↾ Ord.
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2 ZHIXING YOU AND JIACHEN YUAN

However, there are some limitations about the cofinality of the least λ-strongly compact

cardinal. By a standard argument in [1], one can see the cofinality must be greater than or

equal to the least measurable cardinal.

Following the results of Bagaria-Magidor, we became very curious about the exact

limitations of the cofinality of the least λ-strongly compact cardinal. This is how our work

got started.

In this paper, Theorem 4.2 extends the consistency result of Bagaria-Magidor ([2, The-

orem 6.1]) to λ-measurable cardinals, and Proposition 4.7 shows this result is optimal. As

a corollary (Corollary 4.6), we show that relative to the existence of two supercompact

cardinals, for any regular cardinal δ between them, it is consistent that δ is the cofinality

of the least ω1-strongly compact cardinal.

The structure of the paper. In Section 2 we cover some basic technical preliminaries

about λ-strongly compact cardinals, Radin forcing and iterated ultrapowers. We give the

main idea of the proof of our consistency result in Section 3. Finally, in Section 4 we prove

the consistency result and show that it is optimal.

2. preliminaries

We use V to denote the ground model in which we work. For any ordinals α < β, we

use [α, β], [α, β), (α, β], and (α, β) for the corresponding standard interval notation. Let

idM denote the class identity function from M to M , and we will simply write id when

M is clear from the context. For a sequence u, let lh(u) denote the length of u. For an

elementary embedding j : V → M with M transitive, crit(j) denotes the critical point of

j.

For every γ with Cantor normal form γ = ωγ1 + · · · + ωγn , where γ1 ≥ · · · ≥ γn, we

let βγ := 1 + γn. By induction, one may easily show that if γ is a successor ordinal, then

βγ = 1; and if γ is a limit ordinal, then βγ = lim supα<γ(βα + 1).

For a cardinal θ, a sequence ⟨Cα | α < θ+⟩ is a □θ,ω-sequence if and only if whenever

α is a limit ordinal with θ < α < θ+,

(1) 1 ≤ |Cα| ≤ ω, and

(2) for all C ∈ Cα,

(a) C is a club subset of α.

(b) C has order type at most θ.

(c) If η is a limit point of C, then C ∩ η ∈ Cη.

For every A with |A| ≥ κ, let Pκ(A) = {x ⊆ A | |x| < κ}. A set U ⊆ Pκ(A) is a

measure if it is a non-principal κ-complete ultrafilter on Pκ(A). A measure U on Pκ(A) is

fine if for every x ∈ Pκ(A), {y ∈ Pκ(A) | x ⊆ y} ∈ U . A measure U on Pκ(A) is normal

if for any function f : Pκ(A) → A with {x ∈ Pκ(A) | f(x) ∈ x} ∈ U , there is a set in U

on which f is constant.
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A cardinal κ is α-supercompact if there exists an elementary embedding j : V → M

with M transitive such that crit(j) = κ, j(κ) > α and M is closed under sequences of

length α. A cardinal κ is supercompact if it is α-supercompact for every α. Equivalently,

κ is supercompact if and only if for every α ≥ κ, there is a normal fine measure on Pκ(α)

(see [11, §22]).

2.1. λ-strongly compact cardinals.

Definition 2.1. ([1, 2]) Suppose δ ≥ λ are uncountable cardinals.

(1) For every α ≥ δ, δ is λ-strongly compact up to α if there exists a definable elemen-

tary embedding j : V → M with M transitive, such that crit(j) ≥ λ and there

exists a D ∈ M such that j′′α ⊆ D and M |= |D| < j(δ).

(2) δ is λ-strongly compact if δ is λ-strongly compact up to α for every α ≥ δ.

It is easy to see that if δ is λ-strongly compact, then it is λ′-strongly compact for every

uncountable cardinal λ′ < λ, and any cardinal greater than δ is also λ-strongly compact.

We say that δ is λ-measurable if and only if it is λ-strongly compact up to δ.

Usuba gave a characterization of λ-strongly compact cardinals in terms of λ-complete

uniform ultrafilters [13, Theorem 1.2], which generalized a result of Ketonen. The follow-

ing proposition is a simple local version of the characterization.

Proposition 2.2. Suppose δ ≥ λ are uncountable regular cardinals. Then δ isλ-measurable

if and only if δ carries a λ-complete uniform ultrafilter, i.e., there is a λ-complete ultrafilter

U over δ such that every A ∈ U has cardinality δ.

Proof. If δ is λ-measurable, then there exists a definable elementary embedding j : V →

M with M transitive, such that crit(j) ≥ λ and there exists a D ∈ M so that j′′δ ⊆ D and

M ⊨ |D| < j(δ). Since δ is regular, we have j(δ) is regular in M . Hence sup(j′′δ) < j(δ).

Now we may define a λ-complete uniform ultrafilter U over δ by X ∈ U if and only if

X ⊆ δ and sup(j′′δ) ∈ j(X).

Conversely, if δ carries a λ-complete uniform ultrafilter, say U , then the canonical em-

bedding jU : V → MU
∼= Ult(V, U) satisfies crit(jU) ≥ λ and sup(j′′δ) ≤ [id]U < j(δ).

Thus jU witnesses that δ is λ-measurable. □

Theorem 2.3. ([1]) The least λ-strongly compact cardinal is a limit cardinal.

2.2. Radin forcing. We will generally follow [2, Section 6.1] for the presentation of

Radin forcing. For the sake of completeness, we also review its definition and some re-

lated basic properties, including the coherence of measure sequences (Lemma 2.5), the

characterization of Radin generic objects via the geometric conditions (Theorem 2.9), and

the construction of Radin generic objects via iterated ultrapowers (Theorem 2.12). For the

readers’ convenience, we also give proofs for some of these properties. Readers who are

familiar with Radin forcing may skip these details.

We first define measure sequences, which are the building blocks of the Radin forcing.
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Definition 2.4. A non-empty sequence u = ⟨u(α) | α < lh(u)⟩ is a measure sequence if

there exists a definable elementary embedding j : V → M with M transitive such that

u(0) = crit(j), and for each α with 0 < α < lh(u), u ↾ α ∈ M and u(α) = {A ⊆

Vu(0) | u ↾ α ∈ j(A)}.

For simplicity of notation, we write κ(u) for u(0), F(u) for
⋂

0<α<lh(u) u(α) if the

length of u is greater than 1, and F(u) for {∅} otherwise.

The following lemma is a mild modification of a lemma of Cummings and Woodin [6,

Lemma 5.1], which shows that every measure sequence u with lh(u) < κ(u) is coherent.

Lemma 2.5. Suppose u = ⟨u(α) | α < lh(u)⟩ is a measure sequence with 1 < lh(u) <

κ(u). For every α with 0 < α < lh(u), let jα : V → Nα
∼= Ult(V, u(α)) be the canonical

embedding. Then u ↾ α ∈ Nα and the measure sequence of length α + 1 given by jα is

exactly u ↾ (α + 1).

Proof. Let κ := κ(u). Since u is a measure sequence, we may find a definable elementary

embedding j : V → N with N transitive such that for every α with 0 < α < lh(u),

u ↾ α ∈ N and u(α) = {A ⊆ Vκ | u ↾ α ∈ j(A)}.

Fix any α with 0 < α < lh(u). For any x ∈ Nα, we can find a function f : Vκ → V

representing it, and we denote x by [f ]α. Now we will define an embedding k : Nα → N .

Let k([f ]α) = j(f)(u ↾ α) for every [f ]α ∈ Nα. Then it is easy to see k is well-defined

and elementary, and j = k ◦ jα.

Claim 2.6. u ↾ α = [id]α ∈ Nα.

Proof. By the definition of k, k([id]α) = j(id)(u ↾ α) = u ↾ α. So we only need to prove

that k(u ↾ α) = u ↾ α.

We will first prove k(κ) = κ. Note that for every β < κ, k(β) = k(jα(β)) = j(β) = β,

so crit(k) ≥ κ. Meanwhile, k([id]α(0)) = u(0) = κ since k([id]α) = u ↾ α with α > 0.

But since k(β) = β < κ for every β < κ, it follows that [id]α(0) ≥ κ. Thus [id]α(0) = κ.

Consequently, k(κ) = κ and crit(k) > κ.

Now let us prove k(u ↾ α) = u ↾ α. It is easy to see Nα ∩ Vκ+1 = Vκ+1 = N ∩ Vκ+1

and

∀X ∈ Nα ∩ Vκ+1(k(X) = X). (1)

Take any η < α. Then u(η) = k′′u(η) ⊆ k(u(η)) by (1). Since Nα ∩ Vκ+1 = Vκ+1 =

N ∩ Vκ+1, and by the maximality of u(η) as a filter, we have k(u(η)) = u(η). Note also

that as k fixes the length of u ↾ α, we have k(u ↾ α) = u ↾ α. □

Now we can prove that the measure sequence of length α+ 1 obtained from jα, say v,

is exactly u ↾ (α + 1) by induction on β with β ≤ α. Obviously, v(β) = κ = u(β) ∈ Nα

if β = 0. Now suppose inductively that v ↾ β = u ↾ β ∈ Nα. For every X ∈ Vκ+1,

X ∈ v(β) ⇔ u ↾ β = v ↾ β ∈ jα(X) ⇔ u ↾ β = k(u ↾ β) ∈ k(jα(X)) = j(X) ⇔ X ∈ u(β).
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The first and last “ ⇔ ” hold by definition, the first equality holds by induction, the second

“ ⇔ ” holds by elementarity of k, and the second equality was proved above. Hence

v = u ↾ (α + 1). □

We define next the class U∞ of measure sequences as follows. Let U0 = {u | u is a

measure sequence}, and for every n < ω, let Un+1 = {u ∈ Un | Un ∩ Vκ(u) ∈ F(u)}.

Finally, set U∞ =
⋂

n<ω Un. The point is that if u ∈ U∞, then for every α with 0 < α <

lh(u), u(α) concentrates on U∞ ∩ Vκ(u).

The class U∞ is non-empty if there exists a j : V → M with crit(j) = κ, Vκ+2 ⊆ M ,

and M is closed under sequences of length κ, for then we can get a measure sequence u

from j with lh(u) ≥ (2κ)+ and for everyα < (2κ)+, u ↾ α ∈ U∞ (see [6] or [5] for details).

In particular, this also holds for every α-supercompact embedding with α ≥ |Vκ+2|.

In the sequel, if we say u is a measure sequence, we mean that u is in U∞. Given a

measure sequence u of length at least 2, we may now define the Radin forcing Ru.

Definition 2.7. Ru consists of finite sequences p = ⟨(u0, A0), · · · , (un, An)⟩, where

(1) For every i ≤ n, ui ∈ U∞, Ai ∈ F(ui), and Ai ⊆ U∞.

(2) For every i < n, (ui, Ai) ∈ Vκ(ui+1).

(3) un = u.

(We say u0, · · · , un occur in p).

The ordering on Ru is defined as follows. If p = ⟨(u0, A0), · · · , (un, An)⟩ and q =

⟨(v0, B0), · · · , (vm, Bm)⟩ are in Ru, then p ≤ q if and only if

(1) {v0, · · · , vm} ⊆ {u0, · · · , un}.

(2) For each j ≤ m and i ≤ n, if vj = ui, then Ai ⊆ Bj .

(3) If i ≤ n is such that ui /∈ {v0, · · · , vm} and if j ≤ m is the least such that

ui(0) < vj(0), then ui ∈ Bj and Ai ⊆ Bj .

Given an Ru-generic filter G over V , let gG := ⟨gα | α < lh(gG)⟩ be the generic

sequence given by G. Namely, gG is the unique sequence consisting of all measure se-

quences w, such that w ̸= u and w occurs in some p ∈ G; and if α < β < lh(gG), then

κ(gα) < κ(gβ). Also let CG = {κ(gα) | α < lh(gG)}. Then CG is a club subset of κ(u).

In addition, if lh(u) < κ(u), then there is a condition p ∈ Ru such that p forces that the

order type of CG is ω−1+lh(u). (See [6] for details.)

It is not hard to see that G can be recovered from gG, so we may view gG as the generic

object. Indeed, G consists of all p ∈ Ru such that

(1) If v occurs in p and v ̸= u, then v = gα for some α < lh(gG).

(2) For every α < lh(gG), gα occurs in some q ≤ p.

Definition 2.8. SupposeM is an inner model of ZFC and δ is a limit ordinal. Letw(δ) be a

measure sequence in M , and let w = ⟨w(α) | α < δ⟩ be a sequence of measure sequences

in M . Then w is geometric with respect to w(δ) and M if and only if the following holds:
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(1) The sequence ⟨κ(w(α)) | α ≤ δ⟩ is increasing continuous.

(2) For every limit α ≤ δ and every A ∈ M ∩ Vκ(w(α))+1, A ∈ F(w(α)) if and only if

w ↾ α is eventually contained in A, i.e., there exists an αA < α such that for every

γ with αA < γ < α, w(γ) ∈ A.

The following theorem, due to W. Mitchell, characterizes Radin generic sequences in

terms of the geometric condition. We follow the notation of Definition 2.8 in the statement

of the next theorem.

Theorem 2.9 ([9]). A sequence w is geometric with respect to w(δ) and M if and only if

w is a Radin generic sequence given by some Rw(δ)-generic filter over M .

According to (2) of Definition 2.8, for the case δ < κ(w(0)), if w is geometric w.r.t.

w(δ) and M , i.e., w is a Radin generic sequence given by some Rw(δ)-generic filter over

M , then F(w(α)) concentrates on measure sequences of length less than lh(w(α)) for

every α ≤ δ. Hence, it is easily seen that lh(w(α)) = 1 if α < δ is a successor ordinal,

and lh(w(α)) = lim supγ<α(lh(w(γ)) + 1) if α < δ is a limit ordinal. In other words,

lh(w(α)) = βα for every α ≤ δ, where βα is defined at the beginning of this section.

Now we may define u-iterated ultrapowers as follows.

Definition 2.10. Suppose lh(u) < κ(u), and δ ≤ ω−1+lh(u) is a limit ordinal.

(1) ⟨Mα, πα,α′ | α ≤ α′ ≤ δ⟩ is an iterated ultrapower if and only if

(a) M0 = V and πα,α = idMα
for every α ≤ δ.

(b) Mα+1
∼= Ult(Mα,Wα) is a transitive class, where Wα ∈ Mα is a κα-complete

ultrafilter over κα (orMα∩Vκα
) for some κα, and the ultrapower is constructed

in Mα; πα,α+1 : Mα → Mα+1
∼= Ult(Mα,Wα) is the canonical embedding,

and for every γ < α, πγ,α+1 = πα,α+1 ◦ πγ,α.

(c) If γ ≤ δ is a limit ordinal, then Mγ is the direct limit of ⟨Mα, πα,α′ | α ≤ α′ <

γ⟩, and for every α < γ, πα,γ : Mα → Mγ is the corresponding embedding.

(2) ⟨Mα, πα,α′ | α ≤ α′ ≤ δ⟩ is a u-iterated ultrapower if and only if it is an iterated

ultrapower, and in (1b), κα = π0,α(κ(u)) and Wα = π0,α(u)(βα).

For simplicity of notation, we write πα for π0,α for every α ≤ δ, π for πδ and M for

Mδ. Here we require that the length δ of a u-iterated ultrapower is less than or equal to

ω−1+lh(u), because βα should be less than lh(u) for every α < δ.

Next, following the notation of the definition above, let ⟨Mα, πα,α′ | α ≤ α′ ≤ δ⟩ be the

u-iterated ultrapower of length δ, letw = ⟨πα(u) ↾ βα | α < δ⟩, and letw(δ) = πδ(u) ↾ βδ.

We will use u-iterated ultrapowers to construct a Radin generic sequence over some

target model. We first prove the following lemma.

Lemma 2.11. Suppose θ ≤ δ is a limit ordinal. If η < θ satisfies that βα < βθ for every

α with η ≤ α < θ, then for every Ā ∈ F(πη(u) ↾ βθ), we have

{w(α) | η ≤ α < θ} ⊆ πη,θ(Ā). (2)
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In particular, for every limit θ ≤ δ, if A ∈ F(πθ(u) ↾ βθ) = F(w(θ)), then

w ↾ θ is eventually contained in A. (3)

Proof. For every α with η ≤ α < θ, since Ā ∈ F(πη(u) ↾ βθ) and πη,α is elementary, we

have Mα |= πη,α(Ā) ∈ F(πα(u) ↾ βθ). By our assumption, βα < βθ, so Mα |= πη,α(Ā) ∈

πα(u)(βα). Meanwhile, by the definition of the u-iterated ultrapower ⟨Mα′ , πα′,α′′ | α′ ≤

α′′ ≤ δ⟩, we have πα,α+1 : Mα → Mα+1
∼= Ult(Mα, πα(u)(βα)). Note also that πα(u)

is a measure sequence in Mα, and the measure sequence of length βα + 1 obtained from

πα,α+1 is exactly πα(u) ↾ (βα + 1) by Lemma 2.5. Hence,

Mα+1 |= w(α) = πα(u) ↾ βα ∈ πα,α+1(πη,α(Ā)) = πη,α+1(Ā).

Since πα+1,θ is elementary, and w(α) is fixed by πα+1,θ, i.e., πα+1,θ(w(α)) = w(α), we

have Mθ |= w(α) ∈ πη,θ(Ā). Hence w(α) ∈ πη,θ(Ā). So (2) holds.

Now take any limit θ ≤ δ, and we prove that (3) holds. Since A ∈ F(πθ(u) ↾ βθ),

we can pick a sufficiently large θ̄ < θ, so that βα < βθ for every α with θ̄ ≤ α < θ,

and there exists an Ā ∈ Mθ̄ such that πθ̄,θ(Ā) = A. Then Ā ∈ F(πθ̄(u) ↾ βθ). Hence

{w(α) | θ̄ ≤ α < θ} ⊆ A, which means w ↾ α is eventually contained in A. □

The point of the lemma above is that by Lemma 2.5, for every α < δ, the measure

sequence of length βα + 1 obtained from πα,α+1 is exactly πα(u) ↾ (βα + 1). So for any

iterated ultrapower ⟨Mα, πα,α′ | α ≤ α′ ≤ δ⟩, if the measure sequence of length βα + 1

obtained from πα,α+1 is πα(u) ↾ (βα + 1) for every α < δ, then the lemma above also

holds. For example, we may let πα,α+1 be the ultrapower map given by πα(u)(θ) for every

α < δ in (1b) if there is a θ with δ < θ < lh(u). Then the lemma above also holds for this

new iterated ultrapower.

The following theorem is essentially due to Radin [12], see also [5, Theorem 6.7.1].

Theorem 2.12 ([12]). The sequence w is geometric with respect to w(δ) and M (=Mδ),

and we have an Rw(δ)-generic filter over M given by w.

Proof. We only prove (2) of the geometric condition here, i.e., for every limit α ≤ δ and

everyA ∈ M∩Vκ(w(α))+1,A ∈ F(w(α)) if and only ifw ↾ α is eventually contained in A.

If A ∈ F(w(α)), then by Lemma 2.11, w ↾ α is eventually contained in A.

If A /∈ F(w(α)), then A /∈ πα(u)(γ) for some γ < βα. Let B = M ∩ Vκ(w(α)) \ {x ∈

A | lh(x) = γ}. Then B ∈ F(w(α)). Hence, w ↾ α is eventually contained in B. Note

also that ⟨η < α | βη = γ⟩ is unbounded in α, and we have that w ↾ α is not eventually

contained in A.

Therefore, w is geometric w.r.t. w(δ) and M , and we have an Rw(δ)-generic filter over

M obtained from w. □
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3. main idea of the consistency result (theorem 4.2)

Suppose κ is a supercompact cardinal and δ < κ is a λ-measurable cardinal. Let j :

V → M be a suitable supercompact ultrapower map, let i : M → N be an ultrapower

map given by some λ-complete uniform ultrafilter in M , and let π = i ◦ j. Let u be the

measure sequence of length δ obtained from j, and let G be a suitable Ru-generic filter

over V .

For the purpose of making this paper easier to read, we next give the idea of the proof

of Bagaria-Magidor from [2, Theorem 6.1], as well as our idea of the proof of Theorem

4.2.

In the proof of Bagaria-Magidor they only consider the case λ = δ, i.e., δ is measurable,

and take the Radin forcing Ru to turn κ into a λ-strongly compact cardinal.

To prove the λ-strong compactness of κ, they lift the composite embedding π = i◦ j in

a π(Ru)/ĠRi(u)↾δ
-generic extension of V [G]. Here, j grants the δ-strong compactness of κ

at the end, and i makes ⟨(i(u) ↾ δ, i(A))⟩ addible to π(⟨(u,A)⟩) for every ⟨(u,A)⟩ ∈ G.

Namely, ⟨(i(u) ↾ δ, i(A)), (π(u), π(A)⟩ ∈ π(Ru) for every ⟨(u,A)⟩ ∈ G. In addition,

since Ru has a particular closure property, i′′gG can generate an Ri(u)↾δ-generic filter by

a variation of the transfer argument (see [2], also [3, Proposition 15.1]). Thus by Silver’s

criterion (see [3, Proposition 9.1]), a lifting embedding of π can be obtained. However,

this embedding is not definable in V [G]. To remedy this, Bagaria-Magidor use a closure

argument, which relies not only on the closure of the Radin forcing itself, but also on the

closure of N , to show that the filter generated by the lifted embedding is λ-complete. Thus

κ is λ-strongly compact in V [G] (here and next, actually κ is λ-strongly compact up to κ′

for some κ′, but a simple trick can solve this problem by lifting class-many embeddings

with the same u).

In our proof, we also take the Radin forcing Ru to turn κ into a λ-strongly compact

cardinal, but handle the general case (i.e., λ may not equal to δ). The major difference, or

the novelty of the proof, is the lifting argument. The argument is more complicated in the

general case, because δ is λ-measurable, and so it may have stronger consistency strength

than measurability (however, we don’t know if under the existence of a supercompact car-

dinal, it is possible to make some regular cardinal, for example, λ+, into a λ-measurable

cardinal). We next give more details about the lifting argument.

We start with the strategy of Bagaria-Magidor, and we still consider to lift the com-

posite embedding π by using Silver’s criterion. But there is a problem. There may exist

unboundedly many α < δ with sup(i′′α) < i(α) below δ, because δ may surpass the

critical point of π. Then for every such α, there will be a gap below π(gα) to be filled in,

namely, a generic object in a similar sense of π(Ru)/ĠRi(u)↾δ
. But there is no place to fill

in the gap below π(gα), since there are unboundedly many π(gγ) below π(gα). Hence, we

can’t lift the embedding π.
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To overcome the problem, we invoke Theorem 2.12, which states that a Radin generic

object can be generated by some iterated ultrapower, to fill in a gap. However, we may need

to fill in many gaps. Hence, a sequence of iterated ultrapowers should be taken to fill in all

these gaps (an iterated ultrapower above κ is also taken to fill in the gap above κ, i.e., the

counterpart of π(Ru)/ĠRi(u)↾δ
, so that we can avoid the closure argument).

So in the proof of Theorem 4.2, we may get an iteration given by a composition of em-

beddings: an ultrapower map given by a λ-complete uniform ultrafilter over δ, a sequence

of iterated ultrapowers for filling in gaps below κ, a supercompact embedding, and an it-

erated ultrapower for filling in gaps above κ. This iteration lives in V [G] since it is guided

by the Ru-generic object G over V . Then we can build a π(Ru)-generic object H over the

target model in V [G]. In addition, π′′G ⊆ H . So we may obtain a lifting embedding of π

in V [G] by using Silver’s criterion, which witnesses the λ-strong compactness of κ.

4. Main Results

The following proposition shows that Radin generic sequence above an ω1-strongly

compact cardinal destroys the ω1-strong compactness of the smaller cardinal.

Proposition 4.1. Suppose u is a measure sequence of length at least 2. Then in an Ru-

generic extension of V , there is no ω1-strongly compact cardinal below κ(u).

Proof. Let κ := κ(u) and let G be an Ru-generic filter. Suppose, towards a contradiction,

that there is a γ < κ such that γ isω1-strongly compact. Note that there is a Prikry sequence

contained in CG \ γ. Then there is a □θ,ω-sequence, say C⃗ = ⟨Cα | α < θ+⟩, for some

θ ∈ CG \ γ (see [4, Theorem 4.2]). By the ω1-strong compactness of γ, there exists an

elementary embedding k : V [G] → M ′ such that sup(k′′θ+) < k(θ+). Then k(C⃗) is a

□k(θ),ω-sequence in M ′. Let β := sup(k′′θ+), and pick a C ′ ∈ k(C⃗)(β). Then we have

(i) C ′ is a club subset of β.

(ii) C ′ has order type at most k(θ).

(iii) If α is a limit point of C ′, then C ′ ∩ α ∈ Cα.

It is easy to see that k′′θ+ is a stationary subset of β, so there are unboundedly many

α < θ+, such that k(α) is a limit point of C ′. For any such α, by (iii), we have C ′∩k(α) =

k(C ′

α) for some C ′

α ∈ Cα. Hence, these C ′

α are pairwise compatible, i.e., for any such

α < α′, k(C ′

α′) ∩ k(α) = k(C ′

α). By elementarity of k, we have C ′

α′ ∩ α = C ′

α. So the

union of these C ′

α, say C, is a club subset of θ+, and C∩α = C ′

α for any such α. Hence, C

has order type θ+. However, any such C ′

α has order type at most θ, a contradiction. Hence,

there is no ω1-strongly compact cardinal below κ. □

Theorem 4.2. Suppose κ is a supercompact cardinal, and δ < κ is a λ-measurable cardi-

nal for some uncountable cardinal λ. Then in a Radin generic extension of V that preserves

the λ-measurability of δ, κ is the least λ-strongly compact cardinal and has cofinality δ.
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Proof. First let us find a measure sequence u on κ of length δ in order to obtain a suitable

Radin forcing Ru.

For every κ′ > |Vκ+2|, let Uκ′ be a normal fine measure over Pκ(κ
′), and let jκ′ : V →

Mκ′
∼= Ult(V, Uκ′) be the corresponding supercompact embedding. Let uκ′ be the measure

sequence of length δ obtained from jκ′ . Since there are at most 22
κ

many such measure

sequences of length δ, there exists a proper class S of ordinals and a measure sequence

u = ⟨u(α) | α < δ⟩ such that for every κ′ ∈ S , u = uκ′ .

Let Ru be the Radin forcing for u. Pick a condition ⟨(u, C)⟩ ∈ Ru so that C∩Vδ+1 = ∅

and it forces lth(gĠ) = δ. Then C consists of measure sequences of length less than δ.

Let G be an Ru-generic filter over V with ⟨(u, C)⟩ ∈ G. Then G adds no new subsets of

δ, and so δ is also λ-measurable in V [G]. Let gG = ⟨gα | α < δ⟩ be the generic sequence

given by G. Then gG is geometric w.r.t. u and V by Theorem 2.9.

We will define a composite embedding π. Since δ is λ-measurable, by Proposition 2.2,

there exists a λ-complete uniform ultrafilter over δ, say W . Let i : V → N0 = Ult(V,W )

be the canonical map. W.l.o.g., we may assume crit(i) = λ. Otherwise, let λ′ = crit(i).

Then we can prove that κ is λ′-strongly compact with the same proof. Notice that as λ′ ≥ λ,

κ is also λ-strongly compact.

For simplicity of notation, let gδ := u. For every α ≤ δ, define

s(α) =

{

sup(i′′α), if α is a limit ordinal,

i(α), otherwise.
(4)

Then the intervals [s(α), i(α)] for α ≤ δ constitute a partition of i(δ) + 1 by (4). So for

every θ ≤ i(δ), we may let [θ] be the unique ordinal such that s([θ]) ≤ θ ≤ i([θ]).

Take any κ′ ∈ S and let U := Uκ′ . Then in V [G], we may construct an iterated ultra-

power ⟨Nθ, πθ,θ′ | θ ≤ θ′ ≤ i(δ)⟩ as follows:

(1) N0 = V .

(2) πθ,θ = idNθ
for every θ ≤ i(δ).

(3) If θ ≤ i(δ) is a limit ordinal, then Nθ is the direct limit of ⟨Nθ0 , πθ0,θ1 | θ0 ≤ θ1 ≤ θ⟩,

together with elementary embeddings πθ0,θ : Nθ0 → Nθ for all θ0 < θ.

(4) If θ ≤ i(δ) is a successor ordinal with s([θ]) ≤ θ < i([θ]), then Nθ+1 is the transitive

class isomorphic toUlt(Nθ, πθ(U)) if θ = s(δ), or isomorphic toUlt(Nθ, πθ(g[θ])(βθ)),

otherwise; πθ,θ+1 : Nθ → Nθ+1 is the corresponding ultrapower map, and for every

γ < θ, let πγ,θ+1 = πθ,θ+1 ◦ πγ,θ.

(5) If θ ≤ i(δ) is a successor ordinal with θ = i([θ]), then Nθ+1 = Nθ; πθ,θ+1 = idNθ
,

and for every γ < θ, let πγ,θ+1 = πγ,θ.

For simplicity of notation, let πθ = π0,θ ◦ i for every θ ≤ i(δ), let π = πi(δ) and N = Ni(δ).

Let w = ⟨πθ(g[θ]) ↾ βθ | θ < i(δ)⟩, let w(i(δ)) = πi(δ)(gδ) ↾ βi(δ) = π(gδ), and let κ⃗ =

⟨κ(w(θ)) | θ ≤ i(δ)⟩. Then κ⃗ = ⟨πθ(κ(g[θ])) | θ ≤ i(δ)⟩ since κ(w(θ)) = κ(πθ(g[θ])) =

πθ(κ(g[θ])) for every θ ≤ i(δ).

In the iteration π, these identity class functions in (5) are used for simplicity of notation.
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The iterated ultrapower ⟨Nθ, πθ,θ′ | θ ≤ θ′ ≤ i(δ)⟩ is well-founded (see [10, Theorem

19.30]), so Nθ is transitive for every θ ≤ i(δ).

Claim 4.3. In V [G], w is geometric with respect to w(i(δ)) and N . That is,

(1) The sequence κ⃗ is increasing continuous.

(2) For every limit θ ≤ i(δ) and every A ∈ N ∩ V [G]κ(w(θ))+1, A ∈ F(w(θ)) if and

only if w ↾ θ is eventually contained in A.

Proof. For every α ≤ δ with s(α) < i(α), note that ⟨Nθ, πθ,θ′ | s(α) < θ ≤ θ′ ≤

i(α)⟩ is the πs(α)+1(gα)-iterated ultrapower of length i(α) over Ns(α)+1, we have w ↾

(s(α), i(α)] is geometric w.r.t. w(i(α)) and Ni(α) by Theorem 2.12. Note also that Ni(α) ∩

V [G]κ(w(i(α)))+1 = N ∩V [G]κ(w(i(α)))+1 and w(i(α)) ∈ N , it follows that w ↾ (s(α), i(α)]

is also geometric w.r.t. w(i(α)) and N . Hence for the proof of (1) and (2), we only need

to consider the case that θ ≤ i(δ) is a limit ordinal and θ = s([θ]).

Fact 4.4. For every α ≤ δ, if γ ≤ s(α), then κ(gα) is fixed by πγ , i.e., πγ(κ(gα)) = κ(gα).

Proof. If γ < s(α), then the iterated ultrapower ⟨Nθ, πθ,θ′ | s(α) < θ ≤ θ′ ≤ γ⟩ is taken

in V [w ↾ [γ]]. Since κ(gα) > κ(πγ(g[γ])) is inaccessible in V [w ↾ [γ]], it is fixed by πγ .

If γ = s(α), then γ = limξ<α i(ξ). So for every η < πγ(κ(gα)), there is a ξ < α and an

η̄ < πi(ξ)(κ(gα)) such that πi(ξ),γ(η̄) = η. Meanwhile, since CG is a club subset of κ and

πi(ξ)(κ(gα′)) = κ(gα′) for every α′ with ξ < α′ ≤ α, we have {πi(ξ)(κ(gα′)) | ξ < α′ <

α} = {κ(gα′) | ξ < α′ < α} is also a club subset of πi(ξ)(κ(gα)) = κ(gα). Hence, η̄ <

πi(ξ)(κ(gα′)) for some α′ < α. Then by elementarity of πi(ξ),γ , we have η = πi(ξ),γ(η̄) <

πγ(κ(gα′)) = πi(α′)(κ(gα′)) < πi(α′)(κ(gα)) = κ(gα). Hence, πγ(κ(gα)) = κ(gα). □

By the fact above, the sequence ⟨κ(w(s(α))) | α ≤ δ⟩ = ⟨κ(gα)) | α ≤ δ⟩ is increasing

continuous. Meanwhile, for every α < δ with s(α) < i(α), κ⃗ ↾ (s(α), i(α)] is between

κ(w(s(α))) = κ(gα) and κ(w(s(α+1))) = κ(w(i(α)+1)) = κ(gα+1), and κ⃗ ↾ (s(δ), i(δ)]

is above κ(gδ). Notice also that κ⃗ ↾ (s(α), i(α)] is increasing continuous, it follows that

(1) holds.

Take any limit θ ≤ i(δ) with θ = s([θ]).

Lemma 4.5. For every η ≤ θ, if B ∈ F(πη(g[θ])), then there is an m < [θ] such that

(i) For every α with m ≤ α < [θ], we have πη(gα) ∈ B;

(ii) For every limit α with m < α < [θ], we have B ∩ V [G]πη(κ(gα)) ∈ F(πη(gα)).

Proof. We prove (i) and (ii) by induction on η. If η = 0, then since πη = i : V → N0
∼=

Ult(V,W ), |W | < κ(g0), like in Case 2. below, we easily know that there is an m such

that (i) and (ii) hold for B. Now suppose (i) and (ii) hold for every ξ < η. Then there are

two cases for η (the case that η is a successor ordinal with η − 1 = i([η − 1]) is trivial

since πη−1 = id, so we omit it):
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Case 1. η is a limit ordinal. Then there is an η̄ < η and a B̄ ∈ Nη̄ such that πη̄,η(B̄) = B.

Since B ∈ F(πη(g[θ])) and πη̄,η is elementary, we have B̄ ∈ F(πη̄(g[θ])). Thus by induc-

tion, there is an m < [θ] such that (i) and (ii) hold for η̄ and B̄. Since πη̄,η is elementary, it

follows that for such an m, (i) and (ii) hold for η and B.

Case 2. η is a successor ordinal with s([η−1]) ≤ η−1 < i([η−1]). Then η < θ, [η] <

[θ] and πη−1,η is the ultrapower map given by πη−1(g[η−1])(βη−1). Since B ∈ F(πη(g[θ])) is

inNη, it can be represented by a function f ∈ Nη−1 with domainNη−1∩V [G]πη−1(κ(g[η−1])),

and for every x ∈ dom(f), f(x) ∈ F(πη−1(g[θ])). Now work in Nη−1, and let B̄ =
⋂

x∈dom(f) f(x). Then B̄ ∈ F(πη−1(g[θ])) since F(πη−1(g[θ])) is πη−1(κ(g[θ]))-complete

and πη−1(κ(g[θ])) > πη−1(κ(g[η−1])), By induction, there is an m < [θ] such that (i) and

(ii) hold for η − 1 and B̄.

Also, πη−1,η(B̄) ⊆ B since B̄ ⊆ f(x) for each x ∈ dom(f). Hence, since πη−1,η is

elementary, it follows that for such an m, (i) and (ii) hold for η and B as well.

So, in any case, (i) and (ii) hold. Hence by induction, the lemma holds. □

Now we will prove that (2) holds. If A ∈ F(w(θ)) = F(πθ(g[θ]) ↾ βθ), then w.l.o.g.,

we may assume A ∈ F(πθ(g[θ])) since for every sufficient large ξ < θ, the length of

w(ξ) is less than βθ. Since θ is a limit ordinal, there is a θ̄ < θ and an Ā ∈ Nθ̄ such that

πθ̄,θ(Ā) = A. Note that A ∈ F(πθ(g[θ])) and πθ̄,θ is elementary, we have Ā ∈ F(πθ̄(g[θ])).

Now by Lemma 4.5, there is an m with [θ̄] < m < [θ] such that the following holds:

(i) For every α with m ≤ α < [θ], πθ̄(gα) ∈ Ā;

(ii) For every limit α with m < α < [θ], Ā ∩ V [G]κ(πθ̄(gα))
∈ F(πθ̄(gα)).

For every α with m ≤ α < [θ], since (i) holds and πθ̄,θ is elementary, it follows that

w(i(α)) = πi(α)(gα) = πθ(gα) ∈ πθ̄,θ(Ā) = A. Hence,

{w(i(α)) | m ≤ α < [θ]} ⊆ A. (5)

For every limit α with m < α < [θ], since (ii) holds and πθ̄,s(α) is elementary, we have

πθ̄,s(α)(Ā) ∩ V [G]κ(πs(α)(gα)) ∈ F(πs(α)(gα)).

If s(α) < i(α), then βη < βi(α) for every η with s(α) ≤ η < i(α). Hence by Lemma 2.11,

{w(η) | s(α) ≤ η < i(α)} ⊆ πθ̄,i(α)(Ā) ∩ V [G]πi(α)(κ(gα)) ⊆ A. (6)

Therefore, we have {w(η) | i(m) < η < θ} ⊆ A by (5) and (6) for some m < [θ]. In other

words, w ↾ θ is eventually contained in A.

If A /∈ F(w(θ)), then A /∈ w(θ)(η) for some 0 < η < βθ. Hence {γ < θ | w(γ) /∈ A

and βγ = η} is unbounded in θ, which means that w ↾ θ is not eventually contained in

A. □

In V [G], let H ⊆ π(Ru) be the filter given by w. Namely, H is the set of all p ∈ π(Ru)

such that

(i) If v occurs in p, then v = w(θ) for some θ ≤ i(δ);

(ii) For any θ ≤ i(δ), w(θ) occurs in some q ≤ p.
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It follows from Claim 4.3 that H is π(Ru)-generic over N . Now we will prove that

π′′G ⊆ H . Take any condition p = ⟨(gα1 , A1), ..., (gαn
, An)⟩ ∈ G, where αn = δ. We

need to prove that π(p) ∈ H . Let α0 = −1 for simplicity. Note that π(gαj
) = πi(αj)(gαj

) =

w(i(αj)) and π(Aj) = πi(αj)(Aj) for every 1 ≤ j ≤ n, so we have

π(p) = ⟨(w(i(α1)), πi(α1)(A1)), · · · , (w(i(αn)), πi(αn)(An))⟩.

Then by the definition of H , we only need to prove that for every m ≤ n, w(θ) ∈

πi(αm+1)(Am+1) for every θ with i(αm) < θ < i(αm+1). Take any such an m and a θ.

Since p ∈ G, we have

{gη | αm < η < αm+1} ⊆ Am+1. (7)

There are two cases:

Case 1. θ = i([θ]). Then [θ] < αm+1, and g[θ] ∈ Am+1. Since πi(αm+1) is elementary,

w(θ) = πi([θ])(g[θ]) = πi(αm+1)(g[θ]) ∈ πi(αm+1)(Am+1).

Case 2. s([θ]) ≤ θ < i([θ]). Then [θ] is a limit ordinal. By (7) and the characterization

of genericity, i.e., Theorem 2.9,Am+1∩V [G]κ(g[θ]) ∈ F(g[θ]). Since πθ is elementary, it fol-

lows that πθ(Am+1∩V [G]κ(g[θ])) ∈ F(πθ(g[θ])). Note also that βθ < βi([θ]), by Lemma 2.11

(for the case θ = s(δ), since the measure sequence πs(δ)(u) is obtained from πs(δ),s(δ)+1,

this lemma is also true), we have

w(θ) ∈ πi([θ])(Am+1 ∩ V [G]κ(g[θ])) = πi(αm+1)(Am+1 ∩ V [G]κ(g[θ])) ⊆ πi(αm+1)(Am+1).

Hence in any case, w(θ) ∈ πi(αm+1)(Am+1). So π′′G ⊆ H , and therefore, we may lift π

and obtain an elementary embedding π+ : V [G] → N [H] by using Silver’s criterion.

Let D = πs(δ)+1,i(δ)(π
′′

s(δ),s(δ)+1(πs(δ)(κ
′))). Since πs(δ),s(δ)+1 witnesses that πs(δ)(κ) is

πs(δ)(κ
′)-supercompact, we have π′′

s(δ),s(δ)+1(πs(δ)(κ
′)) ∈ Ns(δ)+1. Note also that πs(δ)+1,i(δ)

is elementary, we have D = πs(δ)+1,i(δ)(π
′′

s(δ),s(δ)+1(πs(δ)(κ
′))) ∈ N . Meanwhile, π′′κ′ ⊆

D and N |= |D| < π(κ). So π+ witnesses κ is λ-strongly compact up to κ′.

Since S is a proper class and κ′ ∈ S is arbitrary, κ is λ-strongly compact in V [G].

Now by Fact 4.1, we can see that κ is the least λ-strongly compact cardinal in V [G]

(actually, κ is the least ω1-strongly compact cardinal).

This concludes the proof of Theorem 4.2. □

Corollary 4.6. Suppose λ < κ are supercompact cardinals. Then for every regular car-

dinal δ with λ ≤ δ < κ, there exists a generic extension of V , in which κ is the least

λ-strongly compact cardinal and has cofinality δ.

Proof. Sinceλ is a supercompact cardinal and δ is regular, it follows that δ isλ-measurable.

By Theorem 4.2, in some Radin generic extension that adds a Radin generic sequence of

length δ, κ is the least λ-strongly compact cardinal and has cofinality δ. □

The following proposition generalizes [1, Theorem 2.3] and shows that our consistency

result (Theorem 4.2) is optimal.
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Proposition 4.7. Suppose κ is the least λ-strongly compact cardinal and has cofinality δ.

Then δ is λ-measurable. Namely, δ carries a λ-complete uniform ultrafilter over δ.

Proof. We first prove that there exists a definable elementary embedding j : V → M with

M transitive such that j(κ) > sup(j′′κ). Since κ is the least λ-strongly compact cardinal,

it follows that κ is a limit cardinal by Theorem 2.3, and for every γ < κ, there is an αγ > κ

such that γ is not λ-strongly compact up to αγ . Let α = sup({αγ | γ < κ})+. Then η is

not λ-strongly compact up to α for every η < κ.

By the λ-strong compactness of κ, there is a definable elementary embedding j : V →

M with M transitive, so that crit(j) ≥ λ and there is a D ∈ M such that j′′α ⊆ D

and M |= |D| < j(κ). If sup(j′′κ) = j(κ), then there is a cardinal η < κ such that

M |= |D| < j(η). Thus j witnesses that η is λ-strongly compact up to α, a contradiction.

Hence, sup(j′′κ) < j(κ).

For such an embedding j, we claim that sup(j′′δ) < j(δ). If not, j(δ) = sup(j′′δ).

Since κ is a limit cardinal and has cofinality δ, there is an increasing cofinal sequence

κ⃗ = ⟨κα | α < δ⟩ of cardinals converging to κ. By elementarity, j(κ⃗) is an increasing

cofinal sequence on j(κ) in M . Then in V , ⟨j(κ⃗)(j(α)) | α < δ⟩ is an increasing cofinal

sequence on j(κ), since j(δ) = sup(j′′δ). By elementarity, j(κ⃗)(j(α)) = j(κ⃗(α)) =

j(κα). So ⟨j(κα) | α < δ⟩ is an increasing cofinal sequence on j(κ), which means that

j(κ) = sup(j′′κ), a contradiction. Therefore, j(δ) > sup(j′′δ).

Hence, δ carries a λ-complete uniform ultrafilter by the proof of Proposition 2.2, and

it is also λ-measurable. □
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