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It is usually assumed that information cascades are most likely

to occur when an early but incorrect opinion spreads through

the group. Here, we analyse models of confidence-sharing

in groups and reveal the opposite result: simple but

plausible models of naive-Bayesian decision-making exhibit

information cascades when group decisions are synchronous;

however, when group decisions are asynchronous, the early

decisions reached by Bayesian decision-makers tend to be

correct and dominate the group consensus dynamics. Thus

early decisions actually rescue the group from making errors,

rather than contribute to it. We explore the likely realism of

our assumed decision-making rule with reference to the

evolution of mechanisms for aggregating social information,

and known psychological and neuroscientific mechanisms.

1. Introduction
Information cascades, where individuals follow others’ decisions

regardless of self-sourced evidence, are usually assumed to occur

in asynchronous decision-making, in which early decisions tend to

be incorrect and dominate the decision dynamics so that the group

decision is incorrect. Previous work assumed cascades to happen

only when the first responding individual exerts disproportionate

influence on other group members [1–4]. The converse assumption

© 2023 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.
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would be that synchronous group decision-making mechanisms offer the best protection from information

cascades.

Here, we explore the optimal pooling of information in synchronous and asynchronous group

decision-making mechanisms. A standard assumption in behavioural ecology, psychology and

neuroscience is that individuals apply optimal probabilistic computational rules where possible (e.g.

[5–10]). If optimal computation is infeasible, it is argued that rules that approximate optimal

computations in typically encountered scenarios will be used. Similarly, in behavioural ecology and

psychology, research focuses on the optimal pooling of information by groups (e.g. [11,12]).

In evolutionary terms, theneurologicalmechanismstoprocess asocial environmental informationmust have

developed earlier than sociality appeared. Thus, we assume that when group living began, evolution led to the

adaptation of pre-existing Bayesian heuristics [7] to also process social information.We study the implications of

such assumptions on group decisions in two scenarios: collective detection of an instantaneous signal with

synchronous interaction among individuals, and continuous environmental sampling with asynchronous

interaction. Our analysis shows that for the synchronous case, in which there are no early decisions, decision-

making is unstable and negative information cascades are observed. In the asynchronous case, however, early

decisions tend to be correct and lead to positive information cascades. This observation is the opposite to the

usual assumption that early decisions are erroneous and lead to negative information cascades, showing how

group leaders can spontaneously emerge for the benefit of collective decisions.

1.1. Problem formulation
We study the problem of a single-shot collective decision in which N individuals pool information to

make a decision on the correct state of the world S. We assume the choice is binary, i.e. there are two

possible states of the world S∈ {S+, S−}. We assume that each state of the world has a prior

probability, P(S+) and P(S−). We assume that the cost matrix for classifications is symmetric, i.e. the

cost of an error, as well as the reward for the correct classification, is the same for either state of the

world. We consider two types of collective decisions: signal detection and sequential sampling (figure 1).

In signal detection, at time t0, individuals are exposed to a signal emitted by an instantaneous event,

which they categorize as S+ or S− (figure 1a). Through optimal signal detection theory, individuals

compare the estimated signal with a threshold as described in §1.2.1. Therefore, each individual i, at

time t0, has an independent opinion xt0i [ fSþ ¼ 1, S� ¼ �1g on the true state of the world S and the

relative confidence ct0i on the accuracy of its opinion (figure 1b). Every individual i repeatedly

exchanges its opinion and confidence with its neighbours Mi defined by a communication network

topology G, which can be static or time-varying. Individuals, at each synchronous social interaction,

update their opinion and confidence in order to determine the correct state S (figure 1c).

In sequential sampling, each agent integrates evidence from the environment over time inorder to correctly

classify the state of the world. As in neuroscientific studies [16], the statistically optimal process of evidence

integration is represented as a drift diffusion model (DDM), [17,18], which describes the evolution over time

of the individual i’s decision evidence yi(t) as a biased Brownian motion process that is governed by two

terms: the drift Ai and the diffusion W (figure 1d). The former term models the evidence integration

towards the correct decision, while the latter term models the noise in the integration process (implemented

as a Wiener process with standard deviation σ equal for every agent). Individuals integrate evidence yi(t)

until one of the two thresholds z+ > 0 or z− < 0 has been reached (i.e. we model a free-response scenario).

The individual’s decision corresponds to the sign of the crossed threshold, or equivalently of the integrated

evidence, i.e. xti ¼ signðyiðtÞÞ. Individuals making a decision communicate it to their neighbours Mi on G

(figure 1e,f ), who combine the received information with their accumulated evidence as described in §1.2.2.

1.2. Weighted Bayes Consensus
We formulate how naive Bayes-optimal individuals can employ the statistically optimal Bayes’ rule [19]

to update their opinion xtþ1
i and confidence ctþ1

i from their neighbours’ opinions in the two scenarios

considered, collective signal detection and collective sequential sampling. We describe updates as

naive-Bayes because they neglect correlations in social information [20].

1.2.1. Collective signal detection

In signal detection, individuals form an opinion in favour of either S+ = 1 or S− =−1 by comparing the

estimated signal with a threshold specific to each agent (figure 1a). We assume that each agent i has an
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estimate of its accuracy αi in determining the true state of the world. This information can have been

acquired by the individual, for example through previous experience and decisions in the same

environment. In this experimental scenario, at time t0, each individual synchronously makes an

independent estimate xt0i of the world’s state. Following optimal signal detection theory [11], each

agent i can also compute its confidence ct0i as the log-odds ratio

confidence ¼ ln
accuracy

error rate

� �

, ð1:1Þ

where the error rate is the complementary probability of being correct, i.e. 1− accuracy, thus

ct0i ¼ lnðai=ð1� aiÞÞ, figure 1b.

After the individual decisions, every iteration t > t0 the individuals share with each other their opinion

xti and confidence cti , and use the received information to update their new opinion xtþ1
i and new

confidence ctþ1
i (figure 1c). Statistically optimal individuals compute the new aggregate opinion xtþ1

i

following optimal confidence weighting theory presented in [11,21,22] as

xtþ1
i ¼ sign xti c

t
i þ

X

j[Mi

ðxtj ctjÞ

0

@

1

A: ð1:2Þ
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Figure 1. We consider two types of collective decisions—(a–c) signal detection and (d–f ) sequential sampling—characterized,
respectively, by synchronous and asynchronous social interactions. (a) An instantaneous event at time t0 produces a signal that all
individuals estimate and compare with a threshold to make a decision between the red and green alternatives (signal detection
theory). (b) We assume that each agent has an estimate of its accuracy (e.g. through previous experience), with which it can
estimate its confidence ct0i as the log-odds ratio, equation (1.1), Marshall et al. [11]. (c) Individuals synchronously exchange
options and confidence ci with their nearest neighbours (i.e. information spreads on a random geometric graph [13]), and, in
order to reach a consensus decision, they update their opinions by locally optimal Bayesian integration of confidence-weighted
votes (Weighted Bayes Consensus rule). The arrows indicate bidirectional synchronous interactions, the colours are the
individuals’ opinions. (d ) In sequential sampling, each individual optimally integrates noisy evidence from the environment
until it has enough information to make a decision. This process is modelled as a drift diffusion model (DDM). The graphics
show examples of DDM trajectories for drifts sampled from a random distribution biased towards the correct decision as
positive drift. The expected decision time is shorter for correct decisions (positive threshold) and longer for incorrect decisions
(negative threshold), because, as indicated in [14], errors are in most cases caused by low drift-diffusion ratios which take
longer, on average, to reach the decision threshold than DDMs with high drift-diffusion ratios which lead in most cases to
correct decisions. (e) When the individual does not know its DDM’s drift but can only estimate its expected sampling ability,
its confidence (computed with equation (1.4)) is high when the accumulated evidence hits the decision threshold early (a
quick decision is a proxy of higher DDM’s drift-diffusion ratio, in agreement with neurological mechanisms [15]) and low when
it hits the threshold late. ( f ) An individual (node) only communicates once it makes a decision, which it communicates to its
neighbours (in the graphics, the green node with one-way communication arrows; the red node has reached its decision earlier
and does not continue communicating).
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This leaves, however, the problem of how individuals update their confidence in their new opinion.

We start by noting that the neighbours’ confidences can be used to derive the neighbours’ accuracies (or,

equivalently, vice versa). Assuming that all agents update their confidence through the same

computation, the inverse of the confidence computation of equation (1.1) gives the accuracy of each

neighbour (see Material and methods). We label this update rule as Weighted Bayes Consensus, and in

Material and methods we show it can be reduced to linear summation

ctþ1
i ¼ xti c

t
i þ

X

j[Mi

ðxtj ctjÞ þ pðxtþ1
i Þ

�

�

�

�

�

�

�

�

�

�

�

�

, ð1:3Þ

where the operator |−| is the absolute value, and pðxtþ1
i Þ is the log of the prior ratio in favour of S ¼ xtþ1

i ,

i.e. pðxtþ1
i Þ ¼ lnðPðSþÞ=PðS�ÞÞ for xtþ1

i ¼ þ1, and the reciprocal of the log argument for xtþ1
i ¼ �1.

Therefore, the Weighted Bayes Consensus rule is a simple linear update rule for both opinion

(equation (1.2)) and confidence (equation (1.3)).

1.2.2. Collective sequential sampling

In the sequential sampling scenario, individual i makes a decision xti ¼ signðyiðtÞÞ when the integrated

evidence yi(t) reaches the threshold z+ > 0 or z− < 0 in favour of the positive or negative world state

hypotheses, respectively, at time t (figure 1d ). The thresholds are optimally set as a function of the

priors P(S+) and P(S−), and the cost matrix, following [16] (for details, see text ST1 in the electronic

supplementary material). Note that the thresholds are set to an equal and fixed value for all

individuals, as every individual has the same knowledge at the beginning of the decision-making

process. We assume that agents know the integration noise σ, the cost matrix, and the world state

priors P(S+) and P(S−), which are the same for the entire population, in agreement with previous

theory [7]. Individuals do not know their drift Ai—which represents the individual’s accuracy in

sampling the state of the world [16]—but they know the random distribution from which the drifts’

magnitudes, ~Ai, are sampled (assuming no systematically misinformed individuals, the sign of Ai is

always equal to the correct state S). In other terms, individuals know the group accuracy distribution,

but do not know the accuracy of any specific individual.

An individual j communicates its decision xtj [ f�1, þ 1g to its neighbours Mj once—when its

integrated evidence yj(t) reaches either threshold (z+, z−), see figure 1f. The information about another

individual reaching threshold is additional evidence that the neighbours can use during their

continuous evidence integration. Therefore, an individual i that receives the neighbour’s decision xtj at

time t and has not yet made a decision (i.e. z− < yi(t) < z+), integrates xtj as a ‘kick’ k into its evidence

accumulator yi(t). The optimal size of this kick corresponds to the neighbour’s confidence in

its decision, which depends both on the quantity of integrated evidence and the integration time

(figure 1e). In general, quick decisions are considered as an indication of high confidence (due to a

high drift-diffusion ratio ~Ai=s), conversely slow decisions are likely to be influenced by high levels of

noise (low ~Ai=s); see figure 1d and [14]. Note that there is no difference if the decision-maker

computes its own confidence (k) and sends this information, or if every agent infers k once receives a

neighbour’s decision. Assuming identical thresholds in the population and simultaneous start of

evidence integration, an agent receiving a neighbour’s decision has information on both the

integration time t (i.e. communication time) and on the integrated quantity y jðtÞ ¼ zsignðx
t
jÞ (i.e. z+ for

xtj ¼ þ1 and z− for xtj ¼ �1). Therefore, the optimal kick size, for example assuming xtj ¼ þ1, is

k ¼ ln
PðSþj1st hit threshold is zþ at tÞ
PðS�j1st hit threshold is zþ at tÞ

� �

: ð1:4Þ

Again, applying Bayesian theory [19], we obtain

k ¼ ln
PðSþ j zþ, tÞ
PðS� j zþ, tÞ

� �

¼ ln
Pðt j zþ, SþÞ
Pðt j zþ, S�Þ

� �

þ ln
Pðzþ jSþÞ
Pðzþ jS�Þ

� �

þ ln
PðSþÞ
PðS�Þ

� �

:

ð1:5Þ

The three terms of the r.h.s. of equation (1.5), respectively, are the log-odds of the first passage time of the

DDM through z+ at t, the log-odds of hitting z+ before z−, and the log-odds of the prior on the states of

the world. The precise DDM parameters are unknown to the individual, thus, as proposed in [15], the

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

10:
230175

4

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

1
 M

ar
ch

 2
0
2
3
 



individual averages the probability for any possible DDM weighted by the prior probability of such

DDM parameters to manifest. See Material and methods for the detailed derivation and figure 1e for a

graphical illustration of equation (1.5).

More sophisticated agents could aggregate social information with more advanced computation that

uses the absence of decision from neighbours as informative data [23]. Similarly, an individual could

refine the computation of equation (1.5) by observing the social network on its neighbours and

treating differently the case in which the neighbour makes a decision based solely on its personal

information or after receiving social information [20]. Such nuanced calculations are likely to be

unrealistic to be implemented in the brain, hence in our study, we assume naive individuals that

neglect previous social interactions. Signals from neighbours making their decisions are treated

independently, thus each neighbour is implicitly considered as the first decider, consistent with the

naive-Bayes assumption. We base our assumptions on the argument that mechanisms for optimal

evidence integration of asocial cues have been co-opted to the social case, without any refinement.

2. Results
We quantified the effect of the proposed rules on a group of N individuals that cooperate through

social signalling with each other. In both tested scenarios—collective signal detection and sequential

sampling—we assumed individuals communicate on a partially connected network, i.e. each

individual i has a limited number of neighbours Mi <N. We conducted our tests on random geometric

graphs (RGG) [13], which are constructed by locating the N nodes at uniform random locations in a

unit square, and connecting two nodes when their Euclidean distance is smaller than δ. The value of

δ determines the average degree connectivity κ—that is, the average number of neighbours each

individual has. We chose to study interaction on an RGG topology as it closely relates to systems

embedded in a physical environment, thus matching the characteristics of several biological systems.

Results for other types of network topologies are reported in the electronic supplementary material.

2.1. Synchronous updates lead to negative information cascades
As noted above, the naive Bayes-optimal signal detection rule, Weighted Bayes Consensus, gives linear

updating of both decisions (equation (1.2)) and confidence (equation (1.3)). In Material and methods, we

show that such linear updating of confidence leads to an unstable process on the agent network; this

means that decisions will be precipitated more rapidly than in stable processes, but at the expense of

accuracy. In figure 2, we numerically compare the speed and accuracy of Weighted Bayes Consensus

against the Belief Consensus algorithm [24], through which every individual, by iteratively averaging

weighted opinions over its neighbourhood, computes the weighted mean of the entire population (find a

detailed description of the algorithm in §5.3). On the one hand, Weighted Bayes Consensus is the locally

optimal solution, as individuals apply the Bayes-optimal signal detection rule on information locally

available at each moment; on the other hand, Bayes Consensus is the globally optimal solution, as after a

number of iterations every individual computes the global weighted average (equation (1.2) computed

on every member), which corresponds to the optimal solution to the collective signal detection problem

[11]. In both cases, optimality is defined in terms of accuracy only, assuming naive individuals. In the

Discussion, we consider the relevance of these algorithms for natural systems; for now, we note that, as

group heterogeneity varies, a speed–accuracy trade-off is described (figure 2). Compared with the Belief

Consensus algorithm, the Weighted Bayes Consensus is dominated on group accuracy but takes on

average a shorter time to reach consensus. This comparison makes it possible to appreciate the effect of

the unstable dynamics of the Weighted Bayes Consensus in contrast to the slower but stable dynamics of

the Belief Consensus algorithm. Figure 2 also shows that the group improves in collective accuracy with

increasing heterogeneity sa, as a consequence of higher mean individual accuracy (see also figure SF1 in

the electronic supplementary material).

2.2. Asynchronous updates prevent negative information cascades through the emergence
of informed leaders

In collective sequential sampling, individuals can be assumed to incur a cost that is a linear function of ωe

for erroneous decisions (assuming that correct decisions incur no cost) and ωt for the time taken to make

their decision. This can be defined according to the Bayes risk [16,25], enabling agents to set optimally
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their decision thresholds in order to minimize expected cost [16,26] (see text ST1 in the electronic

supplementary material). For collective decisions in sequential collective decision-making we find that,

contrary to the synchronous case, larger numbers of information cascades are triggered by the best

decision-makers (figure 3). This is because, on average, the best individuals are expected to reach their

decision threshold quicker than others (figure 1d, [14]). Such early signals cause a larger response

than delayed decisions (figure 3a). The resulting effect is that the best individuals—those that are

more accurate because they have a higher signal-to-noise ratio ~A=s—more often trigger a cascade of

decisions in the group (figure 3b), and the best decision-makers’ cascades are typically larger than the

ones triggered by the inferior individuals (figures 3c; electronic supplementary material, SF6).

Therefore, we observe that on average the best decision-makers have the highest influence on the

group, acting as emergent group leaders as a direct consequence of a combination of psychological

and neuroscientific mechanisms [14–16].

2.3. Model comparison
The goal of this study is to show that, contrary to common intuition [1–4], early decisions can have a

beneficial impact on the collective dynamics by triggering positive information cascades, even in

populations of naive-Bayesian agents, whereas in the absence of temporal ordering among decisions

(synchronous scenario), naive-Bayesian agents can frequently suffer negative information cascades.

Despite being biologically unrealistic (as further discussed in §4), the collective dynamics in the

synchronous scenario can be rescued by a simple change in the individual behaviour, by averaging

neighbours’ opinions rather than summing them (Belief Consensus algorithm). Our analysis also

explains the causes of our results. In particular, we compute the mathematical stability and instability

of the synchronous scenario systems when there is perpetual integration of social information and we

indicate how confidence can be inferred from the decision speed based on known neuroscientific

mechanisms [15,16].

Here, we explicate similarities and differences in the two models and in the assumptions on which the

two scenarios are based. Both scenarios describe how individuals integrate social information in order to

improve their own world’s estimate. Both scenarios are also based on the same assumptions that

individuals are naive because they neglect correlations in social information and locally integrate

social evidence through Bayes-optimal rules according to the information they have access to. Hence,
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Figure 2. Via synchronous updates of individuals’ confidence through the Weighted Bayes Consensus rule—which neglects
correlation of social information—the group reaches a consensus in less time than the optimal strategy (Belief Consensus).
However, quick runaways can lead to erroneous decisions, as shown by a lower group accuracy. Here, we show the results for
103 simulations of N = 50 individuals that have individual accuracy α drawn from a normal distribution N ðma ¼ 0:5, saÞ
( flipping to 1− α when α < 0.5), and varying heterogeneity sa (shaded areas are 95% confidence intervals). The Weighted
Bayes Consensus rule (WBC, blue lines) has a lower group accuracy than the Belief Consensus algorithm (BC, green lines);
however, it is quicker (heterogeneity level sa is indicated next to the curve; group accuracy is computed as the proportion of
runs with unanimous agreement for S+).
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the considered strategies are optimal in terms of accuracy on the presumption of naive individuals; we

further discuss the biological relevance of our assumptions in §4. Notwithstanding the strong similarities,

the two scenarios differ in terms of the environmental information the individuals integrate, how and

when they communicate with one another, and, consequently, in the rules to combine their opinion

and confidence with the ones of their neighbours (figure 1). As a consequence of such differences, the

performance of the two scenarios cannot be compared directly, rather we show how (mis-)information

cascades have a different impact on the two scenarios. Comparing quantitatively the speed-accuracy

results of both scenarios is impractical. In fact, in figure 2, we only analyse the runs of the signal

detection scenario that reached unanimous agreement; however, a condition of unanimous consensus

is rare in the sequential sampling scenario, because individuals do not change their decision once they

reached a threshold. Although there is no consensus, electronic supplementary material, figure SF2a,b

shows that, in sequential sampling, a large majority of the group makes correct decisions, more

frequently than in an asocial condition. The objective of our analysis is to show the negative impact of

quick runaways in the synchronous signal detection scenario (figure 2), and explain that the situation

is the opposite in the asynchronous sequential sampling scenario where the large majority of

information cascades are triggered by individuals making correct early decisions (figure 3). These

results generalize to different network topologies and all tested parameters, as shown in electronic

supplementary material, figures SF3, SF4, SF5 and SF6.

3. Previous work
Collective decision-making in groups of individuals that update their opinion beliefs has been widely

investigated, commencing with the seminal model of DeGroot [27]. Collective decision-making

models have been investigated in the social sciences in the form of social learning and in engineering

as consensus-averaging algorithms. We briefly review previous relevant approaches.
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Figure 3. Emergent leaders from psychological and neuroscientific mechanisms. (a) We report the expected impact of an individual
decision on its neighbours. In diverse groups, the most accurate individuals are expected to have a large impact on others. We
computed the expected decision time for each DDM with noise σ = 1 and drift sampled from the normal distribution
N ðmA, sAÞ (with μA = 0.2, and σA varied on the x-axis, with 3σA indicated with dashed lines). The threshold z is set to
optimize the Bayes risk with costs ωt = 1 and ωe = 100. Higher drifts are expected to reach the threshold earlier [16], and
earlier reactions are considered a sign of higher confidence [15]. For each case, we visualize the kick size k (equation (1.5)) at
the expected decision time, normalized by the threshold z, i.e. the colour indicates k/z. Therefore, larger values bring the
individual closer to its decision threshold. (b) In diverse groups, the best individuals—that is, with higher drift/noise ratio,
~A=s—more often trigger a cascade. We sort (on the x-axis) the individuals in decreasing order of drift/noise ratio and report
the number of cascades each individual triggers. We count as a cascade the triggering of a sequence of at least N/10
decisions. The results are from 500 simulation runs of a group of N = 50 individuals communicating on a sparse network
(connected random geometric graph with average degree κ = 10), and with drift sampled from N ðmA ¼ 0:2, sAÞ. In more
homogeneous groups (low σA), cascades are almost equally likely to be triggered by any individual. Instead, in highly
heterogenous groups (high σA), cascades are predominantly caused by the best individuals. (c) The most accurate individuals
trigger the largest cascades. We show the probability density function (PDF) for each individual, sorted in decreasing drift/noise
ratio order, to trigger a cascade of different sizes (on the y-axis). The PDF is computed from 500 runs for the case of σA = 0.5
and the same parameters of panel (b). Thus, in summary, leaders emerge in heterogeneous groups as their decisions are
followed (a) strongly, (b) more frequently and (c) by a larger portion of the population.
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3.1. Non-Bayesian social learning
A large amount of work has investigated social learning [1–4,28–41] in which individuals update their

beliefs with a Bayes-optimal rule that assumes correlation neglect, also referred to as non-Bayesian social

learning. The correlation neglect assumption is that individual agents do not take account of the fact that

incorporating neighbours’ social information with their own iteratively leads to correlated information.

Instead, when individuals know the full network topology, they can apply the actual Bayes-optimal

update rule, as in [42–44], or approximations of it [45,46], although even with full information doing so

may be computationally prohibitive. In studies of non-Bayesian social learning, various aspects have been

analysed, such as the conditions for polarization of the population [35,41], or how information cascades

can be the result of non-Bayesian update of local beliefs [1–4]. Studies showed how correlation neglect can

improve the performance of voting systems [47] or lead to the formation of extremists [37,38,41,48]. In

these studies, individuals sequentially make their rational decision based either on all previous individual

decisions [1–3] or only the previous [4]. As more individuals make the same decision, the probability the

next individuals will ignore their personal opinion and follow the social information becomes higher [49].

Individuals neglect correlation of information and the ordering of previous decisions, which can have

determining effects on the collective dynamics, as shown in [50]. In our work, we do not externally

impose the ordering of votes, rather we test both synchronous simultaneous voting and asynchronous

signalling with the ordering determined by the environmental sampling dynamics.

3.2. Consensus averaging algorithms
As a form of social learning, consensus averaging algorithms allow the nodes of a network, each having a

numeric value, to compute in a decentralized way the average of all these values. Therefore, through

these decentralized algorithms, each agent on a sparse graph can converge on the same average

confidence value. The Belief Consensus algorithm [24] uses a linear function, while other averaging

algorithms employ nonlinear [51–54] or heterogenous functions [55]. The advantage of consensus

averaging algorithms is a guarantee of convergence in a relatively small number of time steps.

Consensus-averaging opinion dynamics models have also shown unbounded increases in individual

agent confidence, leading to the formation of extremists in populations [56–62].

3.3. Optimal evidence accumulation
The dynamics of a network of optimal evidence accumulators has been investigated in the form of coupled

DDMs [63] in which each accumulator can access the state of its neighbours prior to reaching its own

decision. Accessing the internal state of other agents is biologically implausible, and accordingly, in our

work, neighbours only share their decision when the decision threshold is reached. A similar recent

study, [20], has derived the theory to allow optimal decision-makers, modelled as DDMs, to update their

evidence based on neighbours’ decisions (once the neighbour’s evidence reaches the decision threshold).

However, this work makes the biologically unrealistic assumptions that agents are truly Bayes-optimal

and do not use correlation neglect as a computational short cut. These assumptions require the agents to

know the complete communication topology G in order to compute ‘second-order’ evidence integration

over the behaviour of the neighbours of neighbours. The calculations rapidly become very intricate.

Additionally, in integrating only neighbours’ decisions, but not the time take to reach those decisions, the

agents modelled by Karamched et al. [20] neglect an important information source, which we incorporate

into our model. In agreement with previous analysis [64], our model predicts that the mean collective

cost (computed from decision time and errors) decreases by increasing group heterogeneity and group

connectivity (see figure SF2 in the electronic supplementary material).

4. Discussion
We have shown analytically that for synchronous decisions locally optimal Bayesian integration of weighted

votes, in order to reach a group decision, is described by an unstable linear dynamical system in which

erroneous decisions dominate. As shown numerically in comparison with an existing linear consensus

algorithm with guaranteed convergence, this results in faster decisions but at the expense of group decision

accuracy. By contrast, when decisions are asynchronous early decisions tend to be correct, and hence, through

confidence-signalling, leaders can spontaneously emerge from the best informed members of a group and
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precipitate fast and accurate group decisions. That animal groups exploit the skills of the best individuals has

already been observed [65,66]; however, in our analysis, group leaders emerge from social interactions as the

consequence of applying confidence mechanisms from neuroscience [15,16] to social dynamics.

Our results can be interpreted through the lens of ‘information cascades’ in decision-making

groups of humans and other animals, in which early erroneous information is assumed to dominate

(e.g. [67–70]). In contrast to this accepted view, however, negative information cascades occur when

decisions are synchronous, so there are no ‘early’ decisions, but the move to asynchronous decisions

actually results in early decisions being correct more often than incorrect and, correspondingly, leads

to positive rather than negative information cascades on average. Our predictions are consistent with

the empirical observations of collective decision-making in fish [71], in which the first fish making a

decision is generally no less accurate than later fish. Despite standard theory on sequential choices

suggesting the first decision-maker should perform worse, empirical results [71] and our analysis

indicate the opposite: early responses are the consequence of having access to better information, and

thus acting on that information sooner. Correct and early responders can be individuals with better

abilities to discriminate between environmental stimulus and noise, either due to systematic higher

capabilities [65,66] or to occasional access to a better information source (e.g. due to a better position)

[71]. While our model is based on confidence mechanisms from neuroscience [15,16], we do not

exclude the possibility that in some species decision order may also be determined by individual

traits, such as boldness or impulsivity [72].

Our analysis assumes that optimal rules for asocial information integration may have been co-opted

to social scenarios where they are non-optimal, since they neglect correlated information. In the literature,

correlation neglect has been studied under different names, such as ‘bounded rationality’ [33], ‘imperfect

recall’ [40,73], ‘persuasion bias’ [30,35] or ‘naive inference’ [38]. Such correlation neglect has been

observed in experiments with humans, which are cognitively advanced organisms that could, in

principle, solve the correlation problem but still neglect to do so [74–77]. Thus, since natural selection

acts at the level of the individual rather than the group [78], our results may help provide a normative

explanation for such apparently non-adaptive behavioural outcomes. Indeed, evidence of maladaptive

social information leading to suboptimal group decision-making has been reported in several species

via empirical observations [69,70,79–83] and theoretical models [84,85].

As noted, a superior solution to decision-making under correlation neglect exists for the synchronous

decision case in the form of the Belief Consensus algorithm which averages rather than sums information

from neighbours. Changing to use this method of evidence integration would be straightforward even

for selection acting on individuals within groups, since the behavioural selection is at the level of the

individual, and membership of a group in which decisions are reached more effectively is

individually advantageous. If evolutionary stable, this change of strategy would globally improve

collective decision-making, but would not contradict our results, as interactions are synchronous and

there are no early decisions. It is important noting that, regardless of which strategy has a higher

selective advantage, in any case, the synchronous decision model is a very unrealistic abstraction of

biological reality. By contrast, for the more realistic scenario of asynchronous decisions, avoiding

correlation neglect is informationally and computationally very demanding [74–77], hence the

heuristic of applying naive-Bayesian evidence integration to social information is highly plausible, and

under this reasonable assumption early decisions tend to precipitate positive rather than negative

information cascades, in contradiction to previous assumptions.

5. Material and methods
Our method applies Bayes’ rule [19] to specify how the individual i should compute a Bayes-optimal

integration of its Mi neighbours’ opinions to update its opinion xtþ1
i and its confidence ctþ1

i .

5.1. Integrating neighbours’ confidence into collective signal detection
Each individual i communicates to its neighbours Mi its opinion xti and its confidence cti . Assuming all

individuals use the same computation of equation (1.1) to derive their confidence, its inverse gives the

accuracy of each neighbour

at
i ¼

ec
t
i

1þ ec
t
i

: ð5:1Þ
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Given the set of received votes Vt
i ¼ fXt

i , K
t
ig as the combination of received opinions Xt

i ¼ fxti , xtj[Mi
g at

time t and the set of accuracies Kt
i ¼ fat

i , a
t
j[Mi

g from equation (5.1), the agent i can compute its

confidence from the probability that the aggregated opinion xtþ1
i is correct (i.e. the true state of the

world S∈ {S+, S−} is equal to the individual’s opinion xtþ1
i [ fSþ ¼ þ1, S� ¼ �1g). The new

confidence ctþ1
i corresponds to the log-odds of being correct rather than incorrect,

ctþ1
i ¼ ln

Pðmy opinion is correctjreceived votesÞ
Pðmy opinion is incorrectjreceived votesÞ

� �

¼ ln
PðS ¼ xtþ1

i jVt
i Þ

PðS ¼ �xtþ1
i jVt

i Þ

 !

:

ð5:2Þ

Neglecting information correlations, a statistically optimal individual can compute the probability

PðS ¼ xtþ1
i jVt

i Þ that the aggregated opinion xtþ1
i is correct given the received votes Vt

i ¼ fXt
i , K

t
ig using

Bayes’ rule as

PðS ¼ xtþ1
i jVt

i Þ ¼
PðVt

i jS ¼ xtþ1
i ÞPðS ¼ xtþ1

i Þ
PðVt

i Þ
: ð5:3Þ

where the probability of observing the votes Vt
i assuming S ¼ xtþ1

i corresponds to a simple multiplication

of probabilities as

PðVt
i jS ¼ xtþ1

i Þ ¼
Y

j[fMi ,ig
k j, k j ¼

at
j if xtj ¼ xtþ1

i

1� at
j if xtj ¼ �xtþ1

i

(

: ð5:4Þ

From equations (5.1) and (5.4), we have that if xtj ¼ xtþ1
i then

at
j ¼

ec
t
j
xt
j

1þ e
ct
j
xt
j

,

and if xtj ¼ �xtþ1
i , then

1� at
j ¼ 1� e�ct

j
xt
j

1þ e
�ct

j
xt
j

¼ ec
t
j
xt
j

1þ e
ct
j
xt
j

:

Therefore, for equation (5.4), irrespective of the sign of xtj we have that

kþj ¼ ec
t
j
xt
j

1þ e
ct
j
xt
j

and k�j ¼ 1

1þ e
ct
j
xt
j

: ð5:5Þ

Using the above simplification, the update of equation (5.2) becomes

ctþ1
i ¼ ln

Y

j[Mi

ec
t
j
xt
j

0

@

1

Aþ pðxtþ1
i Þ

�

�

�

�

�

�

�

�

�

�

�

�

¼ xti c
t
i þ

X

j[Mi

ðxtj ctjÞ þ pðxtþ1
i Þ

�

�

�

�

�

�

�

�

�

�

�

�

, ð5:6Þ

where equation (5.6) corresponds to equation (1.3) in the main text.

5.2. Sequential sampling scenario
In the sequential sampling scenario, an individual i that is integrating evidence and receives at time t a

decision xtj from its neighbour j, updates its evidence variable yi(t) by k, which it computes with equation

(1.5). The first two terms of this equation are the log-odds of the first passage time of the DDM through

the threshold for xtj at t and the log-odds of hitting the threshold for xtj before the one for �xtj. If, without

loss of generality we assume xtj ¼ 1, the first-passage time through z+ is computed, following the results

of [86], as

Pðtjzþ, A, sÞ ¼ e�ðA2t=2s2Þ�ðAzþ=s2Þð1þ e2Az
þ=s2Þu t,

zþ

s
,
2zþ

s

� �

, ð5:7Þ
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where the function θ(t, u, v) is defined as

uðt, u, vÞ ¼
X

þ1

k¼�1

v� uþ 2kv
ffiffiffiffiffiffiffiffiffiffi

2pt3
p e�ððv�uþ2kvÞ2=2tÞ:

Instead, the probability of hitting z+ before z− is

PðzþjA, sÞ ¼ 1� 1

eð2Azþ=s2Þ þ 1
, ð5:8Þ

as from [16].

The individual does not know the drift rate but only knows the random distribution from which the

drift is sampled. Therefore, the individual integrates all possible drifts over the given random

distribution and equation (1.4) can be rewritten as

kick size ¼ k ¼ ln
PðSþj1st hit threshold is zþ at tÞ
PðS�j1st hit threshold is zþ at tÞ

� �

¼ ln

Ð

1

0 Pðtjzþ, A, s, SþÞPðzþjA, s, SþÞPðAjs, SþÞdA
Ð

1

0 Pðtjzþ, A, s, S�ÞPðzþjA, s, S�ÞPðAjs, S�ÞdA

 !

:

ð5:9Þ

Recall that S+ determines the sign of A, and therefore

Pðt j zþ, A, s, SþÞ ¼ Pðt j zþ, þ ~A, sÞ and

Pðt j zþ, A, s, S�Þ ¼ Pðt j zþ, � ~A, sÞ,

and equivalently applies for equation (5.8).

5.3. Analytical comparison
We compare the dynamics of the proposed Weighted Bayes Consensus rule and the linear consensus

averaging algorithm from the literature, Belief Consensus [24]. Belief Consensus is a decentralized

algorithm which allows each agent on a sparse graph to converge on the same average value [24].

Each agent i runs the algorithm by repeatedly integrating information received from its neighbours

Mi. The algorithm implements linear updates that provably converge on global consensus in a finite

number of time steps. The algorithm is defined as

ytþ1
i ¼ xti c

t
i þ e

X

j[Mi

ðxtj ctj � xti c
t
iÞ,

xtþ1
i ¼ signðytþ1

i Þ, ctþ1
i ¼ jytþ1

i j, ð5:10Þ

where xti [ f�1, þ 1g is the option selected by agent i at time t, cti � 0 is its confidence at that time

defined according to equation (1.1), Mi are its neighbours, and e is a parameter. Given the Laplacian

matrix L of the connectivity graph G, in order to guarantee convergence the parameter e must be

chosen so that ðI � eLÞ is a doubly stochastic matrix (where I is the identity matrix of appropriate

dimensions). Metropolis–Hastings matrices are among the state-of-the-art techniques to compute e in a

decentralized fashion using the local neighbourhood only [87].

We focus on the dynamics of yti ¼ xtic
t
i , where xti ¼ signðytiÞ and cti ¼ jyti j, as from equations (5.10) and

(5.6). Let yt be the vector of ytis. Given a graph G without self-loops, we denote its adjacency matrix by A.

Using this notation, we can rewrite equation (5.6) as

ytþ1 ¼ ðI þ AÞyt , ð5:11Þ

where I is the identity matrix of appropriate dimensions. Similarly, we can rewrite the Belief

Consensus as

ytþ1 ¼ Fyt , ð5:12Þ

where F is a row stochastic matrix.

Both the Belief Consensus (equation (5.10)) and the Weighted Bayes Consensus (equation (5.11)) are

linear dynamical systems. It is known that if the underlying graph is connected, the dynamics of equation

(5.12) converge to the average of the initial values of y, i.e. to ð1=NÞPN
i¼1 y

0
i , where N is the number of

agents [24]. This convergence is a consequence of the fact that for a connected graph, the matrix R has one
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eigenvalue at 1 with associated eigenvector 1N, and all remaining eigenvalues are inside a unit disc

centred at the origin. In the context of hypothesis testing, the aggregate log-odds (log-odds of all

agents pooled together) is compared against a single threshold. In this sense, the dynamics of

equation (5.12) yields the correct statistic at each node which can be compared against the correct

threshold, which in our case is zero, (i.e. we need to simply determine the sign of yti ). Note that for

the consensus yt is always bounded.

The dynamics of equation (5.11) replace the action of averaging with the neighbours with the action of

simply adding the value of the neighbours to the current agent’s value. Note that the dynamics of

equation (5.11) are unstable for most graphs, i.e. the value of yt grows unboundedly. The agents

ignore this instability as the opinion xti is determined only by the sign of yti . The underlying idea is

that the projection of the initial condition onto the eigenvector associated with the largest eigenvalue

will dominate after a small initial transient, and will be indicative of the sign of the average pooled

statistic. However, the eigenvector associated with the largest eigenvalue of I +A is not the ones vector

1N except for regular graphs. Except for regular graphs, the dominant mode of yt will not be

associated with the average statistic and will not yield the desired accuracy, but since yt will grow

exponentially, it will be very quick in reaching a region in which the sign of yti will be stable.

Note that becausewe are only interested in the sign of the average of the initial conditions, we could also

leverage instability to reach quicker decisions in the case of the dynamics of equation (5.12). In equation

(5.10), we could destabilize equation (5.12) by introducing the tuneable parameter e . 0 as follows:

ytþ1 ¼ ðeI þ FÞyt , ð5:13Þ

where I is the identity matrix of appropriate dimensions. This dynamics will have the dominant eigenvalue

of 1þ e, and associated eigenvector 1N . Hence the dominant (unstable)modewill correspond to the average

of initial conditions.
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