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A robust method for approximate
visual robot localization in
feature-sparse sewer pipes

S. Edwards, R. Zhang, R. Worley, L. Mihaylova, J. Aitken and
S. R. Anderson*

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United
Kingdom

Buried sewer pipe networks present many challenges for robot localization
systems, which require non-standard solutions due to the unique nature of
these environments: they cannot receive signals from global positioning systems
(GPS) and can also lack visual features necessary for standard visual odometry
algorithms. In this paper, we exploit the fact that pipe joints are equally spaced
and develop a robot localization method based on pipe joint detection that
operates in one degree-of-freedom along the pipe length. Pipe joints are
detected in visual images from an on-board forward facing (electro-optical)
camera using a bag-of-keypoints visual categorization algorithm, which is
trained offline by unsupervised learning from images of sewer pipe joints.
We augment the pipe joint detection algorithm with drift correction using
vision-based manhole recognition. We evaluated the approach using real-
world data recorded from three sewer pipes (of lengths 30, 50 and 90 m) and
benchmarked against a standard method for visual odometry (ORB-SLAM3),
which demonstrated that our proposed method operates more robustly and
accurately in these feature-sparse pipes: ORB-SLAM3 completely failed on one
tested pipe due to a lack of visual features and gave a mean absolute error in
localization of approximately 12%–20% on the other pipes (and regularly lost
track of features, having to re-initializemultiple times), whilst ourmethodworked
successfully on all tested pipes and gave a mean absolute error in localization of
approximately 2%–4%. In summary, our results highlight an important trade-off
betweenmodern visual odometry algorithms that have potentially high precision
and estimate full six degree-of-freedom pose but are potentially fragile in feature
sparse pipes, versus simpler, approximate localization methods that operate in
one degree-of-freedom along the pipe length that are more robust and can lead
to substantial improvements in accuracy.

KEYWORDS

robot localization, sewer pipe networks, feature-sparse, visual odometry, bag-of-
keypoints, pipe joint detection

1 Introduction

Sewer networks transport waste products in buried pipes. They are an essential part
of our infrastructure but are prone to damage such as cracks, with an estimated 900
billion gallons of untreated sewage discharged into United States of America waterways
each year (American Society of Civil Engineers, 2011). Therefore, sewer pipes need regular
monitoring and inspection so that repairs can be effectively targeted and performed. The
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traditional way of performing inspection in sewer pipes is via
manually operated, tethered, CCTV rovers. There is an opportunity
to make this process more efficient via autonomous robot
inspection. One of the key challenges to overcome for this is to solve
the robot localization problem so that the location of damage is
known.

There are a number of different methods developed for robot
localization in pipes (Aitken et al., 2021; Kazeminasab et al., 2021).
The methods can be divided based on sensor type: the most simple
are dead-reckoning methods based on inertial measurement units
(IMUs) and wheel or tether odometry (Murtra and Mirats Tur,
2013; Chen et al., 2019; Al-Masri et al., 2020). The main limitation
of these methods is that they drift, and so some authors have
introduced drift correction methods based on known landmarks
including pipe joints (where accelerometers are used to detect the
vibration as the robot moves over the joint) (Sahli and El-Sheimy,
2016; Guan et al., 2018; Wu et al., 2019; Al-Masri et al., 2020), and
above-ground reference stations (Wu et al., 2015; Chowdhury and
Abdel-Hafez, 2016).

Cameras are another widely-used method of localization in
pipe robots, using monocular visual odometry (VO) (Hansen et al.,
2011a; Hansen et al., 2013; Hansen et al., 2015), visual simultaneous
localization and mapping (vSLAM) (Evans et al., 2021; Zhang et al.,
2021), stereo VO (Hansen et al., 2011b), and RGB-D cameras
(Alejo et al., 2017; Alejo et al., 2019). Laser scanners have been used
in pipes for recognising landmarks such as manholes, junctions
and elbows (Ahrary et al., 2006; Lee et al., 2016; Kim et al., 2018)
although not, it would appear, for the odometry problem. Finally,
acoustic and radio frequency (RF) signals such as ultrasonic
(Ma et al., 2015), hydrophone (Ma et al., 2017a; Ma et al., 2017b;
Worley et al., 2020a), RF (Seco et al., 2016; Rizzo et al., 2021),
low frequency acoustic (Bando et al., 2016) and acoustic-echo
(Worley et al., 2020b; Yu et al., 2023) methods have been used, but
these are still emerging technologies.

The sensor technology that is most of interest in this paper
for localization is cameras. This is because sewer pipe inspection
is often conducted using vision-based methods (Duran et al.,
2002; Myrans et al., 2018) and most pipe inspection robots
developed to date include cameras for visual inspection, e.g.,
MAKRO (Rome et al., 1999), KANTARO (Nassiraei et al., 2006),
MRINSPECT (Roh et al., 2008), PipeTron (Debenest et al., 2014),
EXPLORER (Schempf et al., 2010) and recent miniaturized pipe
inspection robots (Nguyen et al., 2022). Therefore, it is appealing to
make dual use of a camera for both inspection and localization.

The main challenge facing camera-based localization in pipes
is that standard visual odometry algorithms for localization based
on keyframe optimisation methods, e.g., Hansen et al. (2011a);
Hansen et al. (2013, 2015); Zhang et al. (2021); Evans et al. (2021)
tend to fail in environments that lack visual features, and this is
particularly the case for newer sewer pipes, although we have shown
in aged sewer pipes that sufficient features exist for these methods to
work well (Evans et al., 2021). We will go on to show in the results
that a standard feature-based keyframe optimisation method for
visual SLAM,ORB-SLAM3 (Campos et al., 2021), fails in these types
of feature-sparse sewer pipe. There is a key research gap, therefore,
in developing a visual odometry method for sewer pipes that lack
visual features, which is the problem that we address here.

In this paper, we propose a new solution to the problem of
robot localization in feature-sparse sewer pipes based on joint
and manhole detections using camera images. Joint detection can
be used for localization because joints occur at regularly spaced
intervals where the inter-joint distance can be known a priori
from installation data records, or estimated from odometry. The
robot location along a pipe length, in one-degree of freedom, can
be approximately obtained from scaling the count of pipe joints
by the inter-joint distance. This transforms the problem of robot
localization to one of pipe joint detection. Manholes can be mapped
from above-ground to serve as drift-correcting landmarks when
detected from inside the pipe to further improve the localization
system.

Joint detection in pipes has been previously addressed
using vision methods for the purpose of damage detection (not
localization), using forward facing cameras (Pan et al., 1995), omni-
directional cameras (Matsui et al., 2010; Mateos and Vincze, 2011)
and fusion of laser scanners with cameras (Kolesnik and Baratoff,
2000). For forward facing cameras, the standard approach to pipe
joint detection is to apply circle detection using theHough transform
to each image frame (Pan et al., 1995). However, in exploratory
analysis we found the Hough transform approach was unreliable,
often detecting spurious circles. Instead, here we use SURF for image
feature extraction (Bay et al., 2008), followed by feature selection for
pipe joints using a bag-of-keypoints method (Csurka et al., 2004),
followed by circle fitting to detect the joint. The key advantage
of our approach is that it enables us to train the feature selection
algorithm on representative examples of sewer pipe joints (in an
unsupervised manner), whilst the Hough transform does not have
access to this prior information that specializes the method to the
sewer pipe environment. We make our procedure even more robust
by performing joint detections across a window of frames.

A potential limitation of only using pipe joints for localization
is that detection errors can be made, such as a joint being missed (a
false negative), or counted when not present (a false positive). To
address this challenge, we develop a modular extension based on
manhole detection to correct for drift in the localization algorithm:
we assume the manhole locations are known or can be mapped
from above-ground offline, and then use a linear classifier to
detect the manholes from within the pipe. We use the same SURF
image features as input to both the joint and manhole detection
systems, making the approach more computationally efficient than
using completely separate systems. Overall, the joint detection with
manhole drift correction produces an accurate and robust method
for localization.

To test and evaluate the method, we use real sewer pipe
data taken from three different types of pipe to demonstrate
its effectiveness (Figure 1), data available at The University of
Sheffield data repository ORDA https://figshare.shef.ac.uk/articles/
dataset/Visual_Odometry_for_Robot_Localisation_in_Feature-Spa
rse_Sewer_Pipes_Using_Joint_and_Manhole_Detections_--_Data/
21198070. We benchmark against ORB-SLAM3 (Campos et al.,
2021) as a standard method for visual odometry.

In summary, the main contributions of the paper are as follows.• A robust vision-based method for approximately localizing a
robot (to the nearest pipe joint) along the lengths of feature-
sparse sewer pipes using joint detections combined with a
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FIGURE 1
Sewer pipe environment and CCTV rovers used in testing and evaluation. (A) Aerial view of the three pipe used in testing (of diameters approximately
Pipe 1: 600 mm, Pipe 2: 300 mm and Pipe 3: 150 mm). (B–D) Example images from inside the three pipes used in testing - note the general lack of
visual features. (E,F) Example CCTV rovers used in testing. (G) Example manhole image. (H) Example manhole image viewed from above.

method for drift correction at manhole locations using vision-
based automated manhole detection.• A method for robustly detecting joints in pipes using a bag-of-
keypoints visual categorization algorithm that is benchmarked
against a standard method for detecting pipe joints in images -
the Hough transform.• Experimental testing and evaluation of the localization method
using real-data gathered from three live sewer pipes.• Benchmarking of the localization method against a well-
known, state-of-the-art visual SLAM algorithm - ORB-SLAM3
(Campos et al., 2021).

The paper is structured as follows. In Section 2 we describe the
methods and particularly our new algorithm for localization using
pipe joint detections and manhole detections, as well as the dataset
for evaluation. In Section 3 we give the results of the algorithm on
real-world sewer pipe data and include a benchmark comparison to
ORB-SLAM3. In Section 4we provide a discussion and in Section 5
we summarise the main achievements of the paper.

2 Methods

In this section we describe the joint detection algorithm,
manhole detection and the experimental data collection used to

evaluate the algorithm in a real-world live sewer pipe. The link
between vision-based joint detection and robot localization along
a pipe length is described in Figures 2, 3 gives an overview of the

FIGURE 2
Diagram demonstrating how joint detection can be used to calculate
the approximate robot location along the pipe length. The focus of
this paper is on developing a robust vision-based method for detecting
pipe joints from camera images to determine the joint count Nk.
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FIGURE 3
Overview of the robot localisation algorithm using joint and manhole detection. The pipe image Ik undergoes SURF features extraction to produce the
features Zk. These features are transmitted to both the input of Algorithm 1 for joint detection and feature pre-processing in the Manhole detection
pathway. Algorithm 1 for joint detection produces the flag Jk indicating presence or absence of a joint, which is the input to the windowed joint
detection, described in Algorithm 2, which more robustly detects presence/absence of a joint from across a sliding window of individual joint
detection. Both the output of windowed joint detection Rk and manhole detection ŷk are analysed to check if a manhole is detected: if so then the
robot location is updated using the manhole location and if not the robot location X̂k is approximately updated using the most recent joint detection
information, by calculating distance travelled from the joint count and inter-joint distance.
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methods used for vision-based joint and manhole detection, and
robot localization.

2.1 Joint detection

The robot location along the pipe, X̂, i.e., in one degree of
freedom, can be obtained from joint detections because joints
occur at regularly spaced intervals, where we assume the inter-
joint distance is known a priori or we assume can be estimated.
The joint detection algorithm proposed here has a few main steps
described below: feature extraction, circle fitting andwindowed joint
detection.

The purpose of the feature extraction step in the algorithm is to
find points of interest within the current test image frame Ik at time
step k, to check for a joint. In this paper we use a method inspired
by visual categorization with bags of keypoints (Csurka et al., 2004),
because it is simple, fast and effective and therefore well suited to
small, low-powered robots for the pipe environment. The method
operates by first extracting features from a test image Ik using
speeded up robust features (SURF) (Bay et al., 2008),

Zk = {zk,1,…,zk,n} (1)

Where zk,i ∈ ℝd is a SURF feature of dimension d, and n is the total
number of SURF features found in an image.We then use a threshold
test to retain only those features sufficiently similar to keypoints
previously seen in joints in training data,

Z
*
k = {zk,i:d(zk,i,kj) ≤ β} ∀i, j (2)

Where d(zk,i,kj) is a distance-metric (Euclidean in this case) of
feature zk,i from keypoint kj and β is a threshold parameter tuned
offline. The keypoints, kj, are obtained offline by using a set of
training data with a K-means clustering algorithm, similar to
(Csurka et al., 2004).The use ofmultiple clusters enables themethod
to be robust to the variation in appearance of pipe joints, whilst also
excluding non-joint features from detection. Identifying a joint does
not require a large number of features, therefore it is more important
to exclude false detections than to detect every relevant feature, so
the threshold, β for selection is tuned to be more exclusive than
inclusive. Additionally, points lying within regions of an image that

are known to not contain joints, such as the centre, can be excluded
automatically using a mask,M.

We perform the actual joint detection by fitting a circle to the
extracted features, Z*

k , to test whether the features resemble a joint.
This is justified because it is known that sewer pipes are cylindrical,
and the position of the robot’s camera is relatively central in the pipe
during normal forward motion. As such, the pipe joints will appear
close to circular in images captured by robots in pipes. Note that
we only check for a joint if the number of features in Z

*
k is greater

than a threshold parameter, γ. Note also that the objective here is
to detect the pipe joint, not obtain an optimal model of a circle,
therefore we avoid computationally intensive circle fitting based on
iterative optimisation (Gander et al., 1994), and opt for a more rapid
and simple estimate: we take the average of all feature points as the
circle centre, ck, and the average distance from the centre of each
point as the radius, rk,

ck = (ū, v̄) (3)

rk = 1
N

N∑
i
√(ui − ū)2 + (vi − v̄)2 (4)

where (ui,vi) is the horizontal-vertical image coordinates
corresponding to feature zk,i, ū is the mean of the u-coordinates
and v̄ is the mean of the v-coordinates. This circle fitting method
is computationally efficient but its disadvantage is that it will fit
the circle to any set of points it is given, regardless of the actual
geometry of the points (Gander et al., 1994). To compensate for this,
the joint is only detected if the centre and radius of the fitted circle
are within predefined threshold parameters δ1 and δ2 respectively.
This procedure for detecting a joint in a single image frame Ik is
described in Algorithm 1 (Figure 4).

The procedure for detecting a joint is made more robust here by
performing detections across a window of frames. This reduces the
impact of false detections, whilst also providing robustness against
multiple correct, but discontinuous, detections of a single joint. To
raise a joint detection flag, Rk = 1, the method simply requires that
the number of positive joint detections from Algorithm 1, over a
window of frames of size nw, is greater than a threshold parameter ζ
and that the variances of the centre and radius of the detected joints
are below thresholds, σ2c ≤ η1 and σ2r ≤ η2. The reverse procedure
is used to lower the joint detection flag, Rk = 0. This procedure is
described in Algorithm 2 (Figure 5).

FIGURE 4
Algorithm 1: Joint detection in a single image frame.
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FIGURE 5
Algorithm 2: Detecting a joint in a window of frames.

All parameters in Algorithms 1 and 2 were tuned using a grid
search across real sewer pipe data (except γ,δ1,δ2 and ζ that were
tuned manually). The grid search took a number of days to evaluate
because it involved a relatively long distance with a large number
of parameters (β,η1,η2,nw,λ1,λ2) and although reaching a global
optimum could not be guaranteed, as a global search method a
grid search is relatively robust to not well-distinguishable local
optima, and testing on independent validation data ensured good
generalization.

The robot location X̂k along a pipe, can be obtained relative
to a starting position by using the joint detections, Rk, to count
the number of joints detected up to the current time step, Nk,
and then taking the product of the joint count with the inter-joint
distance, L,

X̂k ≈ NkL. (5)

2.2 Manhole detection

Manhole detections can be used to correct drift in the
joint localization algorithm. Manhole locations can be known a
priori or mapped from above-ground, and then detected from
within the pipe. While many potential methods of detecting
manholes exist, we continue to rely on camera data and use a
bag-of-features image recognition system to detect manholes.
The advantage of this approach is that the same SURF features
extracted for joint detections, Zk, can be used for manhole
detection. This makes the approach more computationally
efficient than using a separate feature extraction/classification
method.

To detect manholes, we define a standard binary classification
problem of manhole versus no manhole, using a linear support
vector machine (SVM). We construct a visual vocabularly of
features offline along with clusters using K-means clustering
(Wang and Huang, 2015), and then in online operation the
SURF features, zk, extracted from image frame Ik, undergo hard
quantization by representing each local feature by the nearest

visual word, which produces the classifier input features xk.
The classifier training/validation dataset of input-output pairs is
therefore represented as

D = {(x1,y1) ,…,(xm,ym)}, (6)

where the binary output yk ∈ {+1,−1}, represents the classes
manhole and no manhole respectively. We use a standard linear
(soft margin) SVM to classify the presence of a manhole, where the
decision hyperplane is defined as

f (xk) = wTxk + b = 0, (7)

wherew and b are the parameters that define the decision hyperplane
and the classifier predicts the class label using the sign of f(xk).
Optimal parameters for the soft-margin SVM were estimated
here using sequential minimal optimization (Cervantes et al., 2020)
using a balanced dataset of sample images taken from pipes
1, 2 and 3, and performance was evaluated using 10-fold
cross-validation.

In online operation detections of manholes are windowed
similarly to joints (as in Figure 3) in order to limit the impact
of single errant frames. Finally, the robot location, X̂k, can be
determined from the any detected manhole because manhole
locations are assumed known.

2.3 Experimental data

Tests were conducted on data gathered from real-world, live,
buried sewer pipes at The Integrated Civil and Infrastructure
Research Centre (iCAIR), at The University of Sheffield, UK,
using tethered mobile CCTV platforms commonly used in pipe
inspections. As can be see in Figure 1, three different platforms were
used to allow a variety of pipes to be tested.

The pipe lengths were approximately 90 m for pipe 1, 50 m
for pipe 2 and 30 m for pipe 3. Diameters were approximately
600 mm for pipe 1, 300 mm for pipe 2 and 150 mm for
pipe 3.
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The data used to train both the joint detection and manhole
detection systems was selected in part from the data used to test the
systems, but also from data in other pipes at the same location and
collected in the same experiment.

Ground truth localization was obtained from the robot tether,
which measured distance travelled.

2.4 Testing and evaluation

The localization system proposed here was compared and
benchmarked against a standard method for visual odometry, ORB-
SLAM3. To do this, the camera intrinsics were obtained from a
standard checkerboard calibration procedure.

To evaluate the overall effectiveness of the robot localization
system using our proposed method and ORB-SLAM3 we used the
mean absolute error in localization,

MAE = 1
n

n∑
i=1 |Xi − X̂i|, (8)

where Xi is the true robot location in terms of distance travelled
along the pipe map (as measured using the tether on the robot) and
X̂i is the estimated robot location.

We also used the percent of operating time spent with an error
below a threshold,

E% = 100n n∑
i=1 g(Xi) , (9)

where

g(Xi, X̂i) = {{{{{{{{{
1 |Xi − X̂i| ≤ Ethresh
0 |Xi − X̂i| > Ethresh (10)

and where Ethresh is the known distance between each pipe joint,
which would be the maximum error if the system was performing
ideally.

To evaluate the manhole classifier and joint detections we used
the metrics accuracyA (manholes only), recall R, precision P and F1

FIGURE 6
ORB feature extraction and matching in (A–C) sewer pipes versus (D) and outdoor scene from the KITTI dataset (matched points are shown in red and
green pairs connected by yellow lines). (E) Quantification of feature matching normalised by 1000 pixels (note the logarithmic scale).
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score F1 (Powers, 2011).

A = TP+TN
TP+TN+ FP+ FN , (11)

P = TP
TP+ FP , (12)

R = TP
TP+ FN , (13)

F1 = 2 P.R
P+R , (14)

Where TP is true positive, TN is true negatives, FP is false positives
and FN is false negatives.

3 Results

3.1 Feature detection in sewer pipes vs
urban environments

In this section we analyse the nature of the sewer pipe
environment with regard to the prevalence of features and compare
to outdoor urban environments where visual odometry is often
applied. We compare ORB feature extraction and matching in
our sewer pipes to a sequence from the well-known KITTI
dataset (Geiger et al., 2013): as can be seen in Figure 6A–C versus

TABLE 1 Comparison of joint detection using the bag-of-keypoints method versus the Hough transform (where the edge threshold and sensitivity of the Hough
transform are varied systematically). Note that in certain instances the Hough transform fails to detect any circles therefore Precision and F1-score are undefined,
which is indicted with a“-”.

Joint detection with bag-of-keypoints Hough transform

EdgeThresh - 0 0.25 0 0.25 0 0.25 0 0.25

Sensitivity - 0.85 0.85 0.9 0.9 0.95 0.95 1 1

Accuracy 84.65% 57.35% 58.01% 24.67% 58.01% 5.38% 58.01% 5.77% 0.66%

Precision 0.85 0.00 - 0.08 - 0.05 - 0.06 0.01

Recall 0.73 0.00 0.00 0.16 0.00 0.14 0.00 0.16 0.02

F1-score 0.78 - - 0.11 - 0.08 - 0.08 0.01

FIGURE 7
Pipe joint detection using our proposed method based on a bag-of-keypoints feature recognition method versus the Hough transform. (A) Hough
transform: the single joint is correctly detected but there are also multiple false positive circle detections (with different radii). (B) Bag-of-keypoints
method: the single joint is correctly detected with no false positives. (C) Hough transform: there is no joint present in the frame but the Hough
transform still detects circles. (D) Bag-of-keypoints method: no joint is present in the frame, which the method correctly detects.
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Figure 6D, images frompipe interiors often contain significantly less
regions of high texture than those in outdoor environments where
visual SLAM systems are known to work well. Figure 6E shows that
the number of features matched often an order of magnitude lower
than in an outdoor environment.This causes frame by frame feature
matching algorithms to frequently fail in sewer pipes.

3.2 Joint detection

In this section, we provide the results of our proposed joint
detection algorithm (Algorithm 1 only, i.e., no windowing) along
with a comparison to the Hough transform, which is a standard
method of circle detection in images (Yuen et al., 1990), as used in
the Matlab function imfindcircles and the OpenCV function cv2.
HoughCircles. To evaluate and compare the methods we used all
image frames from pipe 2 and varied the Hough transform tuning
parameters, edge threshold and sensitivity, systematically to search
out the best performance.The results demonstrate the problemswith
using the Hough transform compared to our method (Table 1) -
the edge threshold parameter requires tuning to a value of zero to
detect any circles, which leads to a large number of false positives.
Consequently, the accuracy is generally low, approximately 25%
using theHough transform (with edge threshold zero and sensitivity

0.9), mainly due to the detection of large numbers of false positives,
compared to 85%, using our proposed method of joint detection
(Figure 7A–D).

3.3 Manhole detection

In this section we provide results of manhole detections using
using linear SVM classification. Manhole detection performed well,
with an accuracy on 10-fold cross validation of 98.5% (with precision
0.97, recall 0.99 and F1-score 0.98): Figure 8A shows examples of
pipe and manhole environments which illustrates the high visual
difference between the two, as well as the spatial distinctions which
my be exploitable by other sensors. 10-fold cross validation was
performed on a selection of images from pipes and manholes across
a variety of pipes.

Thenetwork displays a high accuracy as can be seen inFigure 8B
as well as in Figure 8C which also indicates both a high specificity
and sensitivity. The shown accuracy is sufficient for the system
to reliably detect every manhole it encounters, and a windowing
method similar to that used in the joint detection algorithmprevents
any false positives or negatives from causing the samemanhole to be
detected twice.

FIGURE 8
Manhole detection results. (A) Example images from pipes 1, 2 and 3 (left to right) respectively of the pipe image (top) versus the manhole image
(bottom). (B) Classification confusion matrix from cross-validation data. (C) ROC curve for manhole detection.

Frontiers in Robotics and AI 09 frontiersin.org



Edwards et al. 10.3389/frobt.2023.1150508

3.4 Localization

Localization accuracy using the proposed joint detection
algorithm improved substantially over using ORB-SLAM3: the
average mean absolute error for the joint detection algorithm
was 1.8 metres, whilst for ORB-SLAM3 it was 11.5 m in pipes
1 and 2 and a complete failure in pipe 3 due to lack of
features. Joint detection, however, worked well in all pipes
tested with an F1-score of 0.72–0.95 (Table 2). It is worth also
emphasising that although ORB-SLAM3 produced a result in

pipes 1 and 2, it still frequently lost feature tracking and re-
initialised due to lack of feature matching. Figure 9 provides a
detailed illustration and comparison of localization methods in
pipe 1.

Table 2 also shows measured error metrics from the Joint
Odometry, both with and without manhole correction, and
compares them toORB-SLAM3.The localization results usingORB-
SLAM3 correspond to a mean absolute error of approximately
12%–20% on pipes 1 and 2 (failure in pipe 3), whilst our method
worked successfully on all tested pipes and gave a mean absolute

TABLE 2 Localization results from pipe joint detection versusORB-SLAM3 from three sewer pipes.

Joint detection results Localization accuracy

Pipe Recall Precision F1 Score
Mean Absolute Error (m) Time Spent Under Target Error (%)

Joint + Manhole Joint only ORB-SLAM3 Joint + Manhole Joint only ORB-SLAM3

Pipe 1 0.69 0.76 0.72 2.04 2.25 12.70 70.78 69.15 11.52

Pipe 2 1 0.80 0.89 2.11 4.23 10.36 72.90 37.30 15.38

Pipe 3 1 0.91 0.95 1.12 1.03 N/A 97.53 97.53 N/A

FIGURE 9
Localization results in Pipe 1. (A) Aerial view of pipe 1 with manhole locations highlighted as circles. (B) Example in-pipe view of a manhole, with
successful manhole detection highlighted in green. (C) Example in-pipe view of a pipe joint, with successful joint detection highlighted in green. (D)
Comparison of errors in localization using the method of joint detection with manhole correction versus ORB-SLAM3, with loss of tracking in
ORB-SLAM3 denoted as a dashed red line.
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error in localization of approximately 2%–4% across all pipes, which
was a substantial improvement.

4 Discussion

4.1 Overall performance

The aim of this paper was to develop a localization system
for feature-sparse sewer pipes based on visual joint and
manhole detection, to overcome the limitations of conventional
keyframe optimisation visual odometry systems. The results have
demonstrated that this objective was successfully achieved. While
the system lacks the precision often desired for odometry systems
due to its discrete nature, it is able to perform highly accurate
localization given relatively limited knowledge of the operating
environment. Additionally, discrete updates based on prior external
information free the system from problems such as scale ambiguity
and loss of tracking that are particularly difficult to overcome in pipe
environments. Finally, while still present in the system, errors are
accumulated every distance update rather than every frame and are
smaller relative to the update than in traditional visual odometry
systems, meaning that drift cannot accumulate quick enough to
cause system failure before manhole detection corrects the state
estimate.

The systemsmain cause of failure is lower precision and recall in
more varied pipe environments, however it should be noted that the
systems parameters can be optimised to improve performance in a
single pipe at the expense of others.

4.2 Future work

In future work, a number of improvements could be investigated
to the system presented here. The first improvement would be an
online adaptive method for adjusting the joint detection algorithm
parameters automatically while in operation, to account for minor
differences between pipes.

The second improvement would be to automatically estimate
inter-joint distances. Here we assume these distances are known a
priori, which is realistic for some pipes. However, this knowledge
might not always be available. We have found that simple odometry
methods, such as wheel odometry, may be accurate enough over the
short distances between pipe joints to derive this information during
operation. Alternatively, it should be possible to use the detection
of manholes, mapped from above-ground, to estimate the inter-
joint distances. These methods require development and testing
in future work. In addition, future work could address specific
problems where joints are irregularly spaced and pipe bends occur -
the latter problem could be addressed by combining joint detection
for measuring distance travelled with an IMU to sense changes of
direction.

Thirdly, false positives are primarily associated with manholes,
however, other predictable environmental features, such as
connecting pipes, are also known to reduce the accuracy of
the detection system. These other predictable features provide

opportunity for further improvement through their detection or
further exploitation of prior knowledge.

5 Summary

In this paper we developed a localization method for sewer
pipe inspection robots, operating in pipes with sparse visual
features. The method exploited the intrinsic characteristic of the
sewer pipe environment, that pipe joints occur at regularly spaced
intervals. Therefore the localization problem was transformed to
one of pipe joint detection. To further robustify the procedure,
manhole detectionwas also included, which enabled drift correction
based on manholes that could be mapped from above-ground.
The visual localization algorithm was evaluated on three different
real-world, live sewer pipes and then benchmarked against a
standard method for visual odometry - ORB-SLAM3. We showed
that our method substantially improved on the accuracy and
robustness of ORB-SLAM3. Whilst visual SLAM algorithms such
as ORB-SLAM3 are sophisticated, potentially very accurate and
estimate the full six degree-of-freedom robot pose compared to
our discrete, approximate localization method that only works in
one-dimension along the pipe length, we would note that there
is a trade-off in accuracy and robustness here, with ORB-SLAM3
regularly failing to track features in these feature-sparse sewer pipes.
Ultimately we might find both systems are used in parallel in
future to take advantage of the attributes of both approaches. The
developed method can be applied as part of real robot localization
systems, as part of digital twins for pipe networks with different
scale, under different environmental conditions and different prior
knowledge.

Data availability statement

The datasets presented in this study can be found in online
repositories.The names of the repository/repositories and accession
number(s) can be found below: https://figshare.shef.ac.uk/articles/
dataset/Visual_Odometry_for_Robot_Localisation_in_Feature-Spa
rse_Sewer_Pipes_Using_Joint_and_Manhole_Detections_--_Data/
21198070.

Author contributions

SE, JA, and SRA jointly conceived the approach to robot
localization; SE implemented the methods and obtained the
results; all authors analyzed the results; SE and SRA wrote
the manuscript; all authors commented on and edited the
manuscript.

Funding

The authors gratefully acknowledge the support of
EPSRC UK funding Council Grant, Pervasive Sensing

Frontiers in Robotics and AI 11 frontiersin.org



Edwards et al. 10.3389/frobt.2023.1150508

for Buried Pipes (Pipebots), Grant/Award Number: EP/
S016813/1.

Acknowledgments

The authors acknowledge the assistance of M. Evans, W.
Shepherd and S. Tait in organising the data collection.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Ahrary, A., Kawamura, Y., and Ishikawa, M. (2006). “A laser scanner for landmark
detection with the sewer inspection robot KANTARO,” in Proceedings of the
IEEE/SMC International Conference on System of Systems Engineering, Los Angeles,
CA, USA, 24-26 April 2006 (IEEE), 291–296.

Aitken, J.M., Evans,M.H.,Worley, R., Edwards, S., Zhang, R., Dodd, T., et al. (2021).
Simultaneous localization and mapping for inspection robots in water and sewer pipe
networks: A review. IEEE Access 9, 140173–140198. doi:10.1109/access.2021.3115981

Al-Masri,W.M. F., Abdel-Hafez, M. F., and Jaradat, M. A. (2020). Inertial navigation
system of pipeline inspection gauge. IEEE Trans. Control Syst. Technol. 28, 609–616.
doi:10.1109/tcst.2018.2879628

Alejo, D., Caballero, F., and Merino, L. (2019). A robust localization system for
inspection robots in sewer networks. Sensors 19, 4946. doi:10.3390/s19224946

Alejo, D., Caballero, F., and Merino, L. (2017). “RGBD-based robot localization
in sewer networks,” in Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, Vancouver, BC, Canada, 24-28 September 2017 (IEEE),
4070–4076.

American Society of Civil Engineers (2011). Failure to act: The economic impact
of current investment trends in water and wastewater treatment infrastructure.
Available at: http://www.asce.org/uploadedfiles/issues_and_advocacy/our_initiatives/
infrastructure/content_pieces/failure-to-act-waterwastewater-report.pdf (accessed 09
29, 2020).

Bando, Y., Suhara,H., Tanaka,M., Kamegawa, T., Itoyama,K., Yoshii, K., et al. (2016).
“Sound-based online localization for an in-pipe snake robot,” in Proceedings of the
International Symposium on Safety, Security and Rescue Robotics, Switzerland, 23-27
October 2016 (Institute of Electrical and Electronics Engineers Inc.), 207–213.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features
(surf). Comput. Vis. Image Underst. 110, 346–359. doi:10.1016/j.cviu.2007.09.014

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, M., and Tardós, D., (2021).
ORB-SLAM3:An accurate open-source library for visual, visual–inertial, andmultimap
SLAM. IEEE Trans. Robotics 37, 1874–1890. doi:10.1109/tro.2021.3075644

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., and Lopez, A.
(2020). A comprehensive survey on support vector machine classification:
Applications, challenges and trends. Neurocomputing 408, 189–215.
doi:10.1016/j.neucom.2019.10.118

Chen, Q., Zhang, Q., Niu, X., andWang, Y. (2019). Positioning accuracy of a pipeline
surveying system based on MEMS IMU and odometer: Case study. IEEE Access 7,
104453–104461. doi:10.1109/access.2019.2931748

Chowdhury, M. S., and Abdel-Hafez, M. F. (2016). Pipeline inspection gauge
position estimation using inertial measurement unit, odometer, and a set of reference
stations. ASME J. Risk Uncertain. Part B 2, 21001. doi:10.1115/1.4030945

Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004). “Visual
categorization with bags of keypoints,” in Workshop on statistical learning in computer
vision (Prague, Czech Republic): ECCV).

Debenest, P., Guarnieri, M., and Hirose, S. (2014). “PipeTron series - robots for pipe
inspection,” in Proceedings of the 3rd International Conference on Applied Robotics
for the Power Industry (CARPI), Brazil, 14-16 October 2014 (IEEE), 1–6.

Duran, O., Althoefer, K., and Seneviratne, L. D. (2002). State of the
art in sensor technologies for sewer inspection. IEEE Sensors J. 2, 73–81.
doi:10.1109/jsen.2002.1000245

Evans, M. H., Aitken, J. M., and Anderson, S. R. (2021). “Assessing the feasibility of
monocular visual simultaneous localization and mapping for live sewer pipes: A field
robotics study,” in Proc. of the 20th International Conference on Advanced Robotics
(ICAR), Slovenia, 06-10 December 2021 (IEEE), 1073–1078.

Gander, W., Golub, G. H., and Strebel, R. (1994). Least-squares fitting of circles and
ellipses. BIT Numer. Math. 34, 558–578. doi:10.1007/bf01934268

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The
KITTI dataset. Int. J. Robotics Res. 32, 1231–1237. doi:10.1177/0278364913491297

Guan, L., Gao, Y., Noureldin, A., and Cong, X. (2018). “Junction detection based
on CCWT and MEMS accelerometer measurement,” in Proceedings of the IEEE
International Conference onMechatronics and Automation, China, 05-08 August 2018
(ICMA IEEE), 1227–1232.

Hansen, P., Alismail, H., Browning, B., and Rander, P. (2011a). “Stereo visual
odometry for pipe mapping,” in Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, USA, 25-30 September 2011 (IEEE), 4020–4025.

Hansen, P., Alismail, H., Rander, P., and Browning, B. (2011b). “Monocular visual
odometry for robot localization in LNG pipes,” in IEEE International Conference on
Robotics and Automation, China, 09-13 May 2011 (IEEE), 3111–3116.

Hansen, P., Alismail, H., Rander, P., and Browning, B. (2013). “Pipe mapping with
monocular fisheye imagery,” in Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, Jaban, 03-07 November 2013 (IEEE), 5180–5185.

Hansen, P., Alismail, H., Rander, P., and Browning, B. (2015). Visual
mapping for natural gas pipe inspection. Int. J. Robotics Res. 34, 532–558.
doi:10.1177/0278364914550133

Kazeminasab, S., Sadeghi, N., Janfaza, V., Razavi, M., Ziadidegan, S., and Banks,
M. K. (2021). Localization, mapping, navigation, and inspection methods in in-
pipe robots: A review. IEEE Access 9, 162035–162058. doi:10.1109/access.2021.
3130233

Kim, S. H., Lee, S. J., and Kim, S. W. (2018). Weaving laser vision system for
navigation of mobile robots in pipeline structures. IEEE Sensors J. 18, 2585–2591.
doi:10.1109/jsen.2018.2795043

Kolesnik, M., and Baratoff, G. (2000). Online distance recovery for a sewer
inspection robot. Proc. 15th Int. Conf. Pattern Recognit. 1, 504–507.

Lee, D. H., Moon, H., and Choi, H. R. (2016). Landmark detection methods
for in-pipe robot traveling in urban gas pipelines. Robotica 34, 601–618.
doi:10.1017/s0263574714001726

Ma, K., Schirru, M. M., Zahraee, A. H., Dwyer-Joyce, R., Boxall, J., Dodd, T. J.,
et al. (2017b). “Robot mapping and localisation in metal water pipes using hydrophone
induced vibration andmap alignment by dynamic time warping,” in Proceedings of the
IEEE International Conference on Robotics and Automation, Singapore, 29 May 2017
- 03 June 2017 (IEEE), 2548–2553.

Ma, K., Schirru, M., Zahraee, A. H., Dwyer-Joyce, R., Boxall, J., Dodd, T. J.,
et al. (2017a). “PipeSLAM: Simultaneous localisation and mapping in feature sparse
water pipes using the rao-blackwellised particle filter,” in Proc. of the IEEE/ASME
International Conference on Advanced Intelligent, Mechatronics, 03-07 July 2017
(IEEE), 1459–1464.

Ma, K., Zhu, J., Dodd, T., Collins, R., and Anderson, S. (2015). “Robot mapping
and localisation for feature sparse water pipes using voids as landmarks,” in Towards
autonomous robotic systems (TAROS 2015), lecture notes in computer science (Germany:
Springer), 9287, 161–166.

Mateos, L. A., and Vincze, M. (2011). Dewalop-robust pipe joint detection. Proc. Int.
Conf. Image Process. Comput. Vis. Pattern Recognit. (IPCV) 47, 1. doi:10.3182/20120905-
3-HR-2030.00122

Matsui, K., Yamashita, A., and Kaneko, T. (2010). “3-D shape measurement of pipe
by range finder constructed with omni-directional laser and omni-directional camera,”
in Proc. of the IEEE International Conference onRobotics andAutomation, Anchorage,
AK, USA, 03-07 May 2010 (IEEE), 2537–2542.

Frontiers in Robotics and AI 12 frontiersin.org



Edwards et al. 10.3389/frobt.2023.1150508

Murtra, A. C., and Mirats Tur, J. M. (2013). “IMU and cable encoder data fusion
for in-pipe mobile robot localization,” in Proceedings of the IEEE Conference on
Technologies for Practical Robot Applications, USA, 22-23 April 2013 (TePRA IEEE).

Myrans, J., Everson, R., and Kapelan, Z. (2018). Automated detection of
faults in sewers using CCTV image sequences. Automation Constr. 95, 64–71.
doi:10.1016/j.autcon.2018.08.005

Nassiraei, A. A. F., Kawamura, Y., Ahrary, A., Mikuriya, Y., and Ishii, K. (2006).
“A new approach to the sewer pipe inspection: Fully autonomous mobile robot
”KANTARO,” in Proceedings of the 32nd Annual Conference on IEEE Industrial
Electronics, France, 06-10 November 2006 (IECON IEEE), 4088.

Nguyen, T. L., Blight, A., Pickering, A., Barber, A. R., Boyle, J. H., Richardson, R.,
et al. (2022). Autonomous control for miniaturized mobile robots in unknown pipe
networks. Front. Robotics AI 9, 997415–997417. doi:10.3389/frobt.2022.997415

Pan, X., Ellis, T. J., and Clarke, T. A. (1995). Robust tracking of circular features. Proc.
Br. Mach. Vis. Conf. 95, 553–562. doi:10.5244/C.9.55

Powers, D. (2011). Evaluation: From precision, recall and f-measure to ROC,
informedness, markedness and correlation. J. Machine Learning Technologies 2, 37–63.
doi:10.48550/arXiv.2010.16061

Rizzo, C., Seco, T., Espelosín, J., Lera, F., and Villarroel, J. L. (2021). An alternative
approach for robot localization inside pipes using RF spatial fadings. Robotics Aut. Syst.
136, 103702. doi:10.1016/j.robot.2020.103702

Roh, S., Lee, J.-S., Moon, H., and Choi, H. R. (2008). “Modularized in-pipe robot
capable of selective navigation inside of pipelines,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, France, 22-26 September
2008 (IEEE), 1724–1729.

Rome, E., Hertzberg, J., Kirchner, F., Licht, U., and Christaller, T. (1999).
Towards autonomous sewer robots: The MAKRO project. Urban Water 1, 57–70.
doi:10.1016/s1462-0758(99)00012-6

Sahli, H., and El-Sheimy, N. (2016). A novel method to enhance pipeline trajectory
determination using pipeline junctions. Sensors 16, 567–617. doi:10.3390/s16040567

Schempf, H.,Mutschler, E., Gavaert, A., Skoptsov, G., andCrowley,W. (2010). Visual
and nondestructive evaluation inspection of live gas mains using the explorer™ family
of pipe robots. J. Field Robotics 27, 217–249. doi:10.1002/rob.20330

Seco, T., Rizzo, C., Espelosín, J., and Villarroel, J. L. (2016). A robot localization
system based on RF fadings using particle filters inside pipes. Proc. Int. Conf. Aut. Robot
Syst. Compet. (ICARSC), 28–34. doi:10.1109/ICARSC.2016.22

Wang, C., and Huang, K. (2015). How to use bag-of-words model better for image
classification. Image Vis. Comput. 38, 65–74. doi:10.1016/j.imavis.2014.10.013

Worley, R., Ma, K., Sailor, G., Schirru, M., Dwyer-Joyce, R., Boxall, J., et al. (2020a).
Robot localization in water pipes using acoustic signals and pose graph optimization.
Sensors 20, 5584. doi:10.3390/s20195584

Worley, R., Yu, Y., and Anderson, S. (2020b). “Acoustic echo-localization for pipe
inspection robots,” in Proc. of the IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems, Germany, 14-16 September 2020 (IEEE),
160–165.

Wu, D., Chatzigeorgiou, D., Youcef-Toumi, K., and Ben-Mansour, R. (2015). Node
localization in robotic sensor networks for pipeline inspection. IEEE Trans. Industrial
Inf. 12, 809–819. doi:10.1109/tii.2015.2469636

Wu, Y., Mittmann, E., Winston, C., and Youcef-Toumi, K. (2019). “A practical
minimalism approach to in-pipe robot localization,” in Proceedings of the American
Control Conference, USA, 10-12 July 2019 (ACC IEEE), 3180.

Yu, Y., Worley, R., Anderson, S., and Horoshenkov, K. V. (2023). Microphone array
analysis for simultaneous condition detection, localization, and classification in a pipe.
J. Acoust. Soc. Am. 153, 367–383. doi:10.1121/10.0016856

Yuen, H., Princen, J., Illingworth, J., and Kittler, J. (1990). Comparative study
of Hough transform methods for circle finding. Image Vis. Comput. 8, 71–77.
doi:10.1016/0262-8856(90)90059-e

Zhang, R., Evans, M. H., Worley, R., Anderson, S. R., and Mihaylova, L. (2021).
“Improving SLAM in pipe networks by leveraging cylindrical regularity,” in Proc. Of
the annual conference towards autonomous robotic systems (Germany: Springer), 56–65.

Frontiers in Robotics and AI 13 frontiersin.org


