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a b s t r a c t

This article presents a distributed implementation of a model predictive controller with information
exchange to manage a distributed networked system of coupled dynamic subsystems. We propose a
coalitional control method, where local controllers coalesce into clusters to improve performance, as
a tool to solve plug-and-play problems. Our main contribution is a tube-based coalitional approach
that employs online optimized invariant sets. These sets are instrumental in guaranteeing recursive
feasibility and stability when faced with plug-and-play operations, i.e., subsystems joining or leaving
the network. We also explore the inherent robustness properties to absorb disturbances not covered by
the tubes without the need to group local controllers. Finally, the simulation results show the benefits
of our proposed control method.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Networked systems are composed of numerous physically
coupled distributed subsystems. Controlling the overall system
while satisfying constraints and guaranteeing stability is not
straightforward. For that reason, many studies have focused on
distributed model predictive control (MPC) schemes (Christofides
et al., 2013; Maestre & Negenborn, 2014), in which these chal-
lenging issues can be successfully handled.

The idea behind distributed control schemes is that each sub-
system is managed by a local controller that forms the so-called
agent (see Fig. 1), which can exchange information to improve
global performance. Typically, the control network follows a
fixed topology with prearranged enabled communication links
between agents, where the cooperation effort sets a trade-off
between conservatism and performance. Exploiting this trade-
off by changing the control topology is the essence of coalitional
MPC strategies (Chanfreut et al., 2021; Fele et al., 2017). Ac-
cording to how clusters of agents —the so-called coalitions—
are selected, coalitional control schemes can be sorted into:
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(i) top-down architectures, if a supervisory controller decides

the control topology (Barreiro-Gomez & Zhu, 2022; Jain et al.,

2018; Núñez et al., 2015), and (ii) bottom-up structures, if the

formation of coalitions is chosen at the agent level without global

knowledge (Baldivieso-Monasterios & Trodden, 2021; Maxim &

Caruntu, 2021; Mi et al., 2019). In the current work, we follow a

top-down control architecture.

One of the key challenges in coalitional control, and indeed

distributed control, is handling the disturbances that each agent

experiences owing to the dynamic coupling between subsystems.

Robust control techniques have been used to address this chal-

lenge. A first approach when designing local controllers is to

consider couplings as bounded additive uncertainties to ensure

stability and a suitable global performance (Richards & How,

2007). The most conservative way to model the presence of

uncertainties is the Min–Max MPC (Scokaert & Mayne, 1998),

which optimizes the control input for worst-case disturbances.

The idea of rigid tubes proposed by Langson et al. (2004) has

also become popular to guarantee robust stability for constrained

linear systems (Mayne et al., 2005; Trodden & Richards, 2010).

However, a significant drawback is induced by the tightening of

local constraint sets by margins that may conservatively outer-

bound the disturbances a local subsystem will experience. Further

methods have been developed to minimize the conservatism

of tube-based methods; e.g., Riverso and Ferrari-Trecate (2012)

propose applying tube-based control twice to exploit the region

of attraction of the subsystem for the planned state trajecto-

ries of neighbors. Lucia et al. (2015) present a contract-based

https://doi.org/10.1016/j.automatica.2023.111053
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Fig. 1. Coalitional control scheme of a networked system composed by N agents,

which can cluster into coalitions: {c1, c2, . . . , cC }.

distributed MPC strategy with recursive feasibility and input-to-
state stability, where subsystems communicate to their neighbors
the sequence of future values of coupling variables. Raković et al.
(2012) introduce homothetic tubes in which the diameters of
the state and control tubes are optimized online. In Trodden and
Maestre (2017), coupling disturbances are rejected via optimized
tubes, which are reconfigured online in order to more accurately
outer-bound the disturbance set a subsystem experiences. A sim-
ilar idea to the latter is the one pursued in the current work but
expanded to a coalitional scheme.

Another major challenge of controlling distributed networked
systems is that they are subject to changes in instrumentation
(e.g., sensors, and actuators) and subsystems that can be added
or removed. Most control approaches lack flexibility to handle
these changes and may require a redesign of the entire control
system, which might not be feasible due to the costs of shutdown
and start-up processes. In this context, the term Plug-and-Play
(PnP) control is defined as a way to automatically reconfigure
the controller after plug-in or plug-out of the system components.
Several interpretations of PnP control have emerged in the lit-
erature over the last decades. For example, both Bendtsen et al.
(2011) and Stoustrup (2009) explore a gradual reconfiguration of
the control system after identifying the new hardware. Regarding
fault-tolerant control, Bodenburg et al. (2014), Patton et al. (2007)
and Riverso et al. (2016) employ PnP operations to automatically
recover the control objective after process failures. In the field
of microgrid applications (Dörfler et al., 2014; Lou et al., 2016),
the PnP capability of the controller allows one to handle un-
known and variable network conditions. Another interpretation
made by Bodenburg et al. (2016), Lucia et al. (2015), and Riverso
et al. (2014) proposes the design of distributed control schemes
capable of dealing with plug-in and plug-out subsystems, guaran-
teeing global performance and stability. These schemes involve
information transmission for the adaptation of local controllers
affected by the PnP operation. Additionally, any PnP operations
that negatively impact the feasibility and stability of the entire
system are rejected.

Unlike the previously mentioned approaches, this article ad-
dresses the formation of clusters to avoid rejection of PnP oper-
ations. We also investigate the inherent subsystems’ robustness
not to redesign the controllers affected by PnP events. In par-
ticular, we cover this gap by proposing a tube-based coalitional
MPC method with plug-and-play features for distributed lin-
ear networked systems. The subsystems, which are physically
coupled, present constraints sets that can be scaled down by
each agent, similar to what is proposed by Trodden and Maestre
(2017) but with the difference that the agents here employ two
scaling factors to build an inherent robust margin in order to
absorb additional disturbances arisen from the PnP operations.
In contrast to earlier studies where trajectories are exchanged
among agents, our methodology allows sharing scaling factors
among neighbors to reconfigure the disturbance sets. Stability

guarantees for closed-loop control of the system are also pro-
vided by a terminal constraint formulation with positively invari-
ant sets. Whereas previous studies proposed offline PnP opera-
tions (Riverso et al., 2014), we consider that they are performed in
real time, and switching dynamics can be introduced. Therefore,
the control topology can be reconfigured online in response to
physical changes in the system. The main contributions of our
work are:

• A tube-based coalitional MPC scheme in which agents can
group in coalitions to find a trade-off between performance
and communication costs. Moreover, coalitions are formed
if agents cannot tolerate their local disturbances and dis-
banded when the feasibility is not spoiled and cost benefits
are obtained.

• The introduction of plug-and-play operations by adding and
removing subsystems in real time, while the controllers are
automatically reconfigured to adapt to new characteristics
of the network.

• The use of public and private scaling factors for constraint
sets. Public information is broadcast in the system, while
private information is individual and confidential for each
subsystem. The rationale for these separate factors is to
explore the inherent robustness properties to accommodate
disturbances not covered by the tubes (e.g., plug-and-play
events) without the need for grouping local controllers.

Index of contents: Section 2 defines the problem settings. Sec-
tion 3 formulates the tube-based MPC approach for the system
in a distributed coalition setting. Section 4 details the coalitional
control algorithm. Section 5 presents plug-and-play operations.
Section 6 analyzes the recursive feasibility and stability. Section 7
illustrates the simulation results. Section 8 summarizes the main
findings.

Notation. N0+ and N+ are the sets of non-negative and positive
integers. Rn refers to an n-dimension set of real numbers. I
denotes the identity matrix. For sets X ,Y ⊆ Rn, the Minkowski
sum is X ⊕Y ≜ {x+ y : x ∈ X , y ∈ Y}; the Pontryagin difference
is X ⊖ Y ≜ {z ∈ Rn : Y ⊕ {z} ⊆ X } for Y ⊆ X ; the subtraction
operation is X \Y = {x ∈ X : x ̸∈ Y}; and the Cartesian product is
X ×Y ≜ {(x, y) : x ∈ X , y ∈ Y}. If {Xi}i∈N is a finite family of sets
indexed by N = {1, . . . ,N}, then the Cartesian product

∏

i∈N Xi

is defined as X1 × · · · × XN = {(x1, . . . , xN ) : x1 ∈ X1, . . . , xN ∈
XN}. The image of a set X ⊆ Rn under a linear mapping A : Rn ↦→
Rm is given by AX ≜ {Ax : x ∈ X }, and the diameter of the set
is denoted as diam(X ) = sup{|x − y| : x, y ∈ X }. The la-norm of
the vector x ∈ Rn with a ∈ N+ is ∥x∥a, and ∥x∥2

Q = x⊤Qx with Q
being a weighting matrix. The cardinality of A is denoted by |A|;
∅ denotes the empty set. A polytope P is a bounded intersection
of a finite set of half-spaces defined as P = {x ∈ Rn : Gx ⩽ g}
with G ∈ Rm×n and g ∈ Rm. A set Ω ∈ Rn is a robust positively
invariant (RPI) set for system x+ = f (x, w) with constraints X

and W if ∀x ∈ Ω ⊂ X and ∀w ∈ W , the system evolution fulfills
x+ ∈ Ω . A set Ω is robust control invariant (RCI) for dynamics
x+ = Ax + Bu + w with constraint sets (X ,U,W) if for any
x ∈ Ω ⊆ X , there exists a control law u = µ(x) ∈ U such that
x+ ∈ Ω , for all w ∈ W; the control law µ(·) is said to induce
invariance over the set Ω . A function α :R → R is K continuous,
if it is non-decreasing, and α(0) = 0; it is K∞ if it is also a radially
unbounded function.

2. Problem formulation

This section describes the dynamics and constraints of the
system, subsystems, and coalitions. We also describe how the
information is exchanged amongst members of the network and
the control objective.
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2.1. System dynamics and constraints

Let us define a linear time-invariant (LTI) networked system:

x+
N = AN xN + BNuN + we

N , (1)

where xN ∈ Rq is the current state and x+
N its successor, uN ∈ Rr

is the control input, and we
N is the external disturbance. The

system can be decomposed into a set of dynamically coupled
subsystems N = {1, 2, . . . ,N}, whose dynamics are

x+
i = Aiixi + Biiui + wi,

wi =
∑

j∈Mi

(Aijxj + Bijuj) + we
i ,

(2)

where xi ∈ Rqi and ui ∈ Rri are the state and control input of
subsystem i ∈ N , and wi ∈ Rqi is the sum of the coupling through
states and inputs with its neighbors j ∈ Mi ≜ {j ∈ N \ {i} :
[Aij Bij] ̸= 0} plus the external uncertainty we

i , which is assumed
to be bounded by We

i .

Assumption 1 (Controllability). The pair (Aii, Bii) is controllable
for each i ∈ N .

Each subsystem i ∈ N has restricted its states xi ∈ Xi and
inputs ui ∈ Ui.

Assumption 2 (Constraints Sets). The sets Xi ⊂ Rqi , Ui ⊂ Rri , and
We

i ⊂ Rqi are compact convex sets that contain the origin in their
non-empty interiors.

2.2. Coalition dynamics and constraints

The approach of this work is to let subsystems cluster in
the so-called coalitions to improve performance and deal with
unexpected disturbances, such as plug-and-play operations.

Definition 1 (Cooperation Topology). A cooperation topology Λ
organizes the set of subsystems N = {1, . . . ,N} into a set of
coalitions C = {c1, . . . , cC } with C ⩽ N , satisfying:

• A coalition c ∈ C is a non-empty cluster of subsystems with
c ⊆ N , i.e., it can range from a subsystem c = {i} to the
grand coalition c = N .

• Coalitions are non-overlapping: c ∩ d = ∅ for all c ̸= d and
c, d ∈ C.

• C defines a covering of N , i.e.,
⋃

c∈C c = N .

The discrete-time dynamics of coalition c ∈ C is

x+
c = Accxc + Bccuc + wc,

wc =
∑

d∈Mc
(Acdxd + Bcdud) + we

c ,
(3)

where xc = (xi)i∈c and uc = (ui)i∈c are the aggregate state and
control input of the subsystems within the coalition c , which
are, respectively, constrained by the sets Xc and Uc . The state
and input matrices are Acc = [Aij]i,j∈c and Bcc = [Bij]i,j∈c , and
wc ∈ Wc is the disturbance term due to the coupling with other
coalitions plus external noise. The set of neighbors of coalition c
is Mc ≜ {d ∈ C \ {c} : [Acd Bcd] ̸= 0}.

Assumption 3. The constraints sets of coalition c are Xc =
∏

i∈c Xi

and Uc =
∏

i∈c Ui.

2.3. Control network

Let us define a cooperation control network described by an
undirected graph G = (N ,L), where N is the set of agents and
L ⊆ N × N is the set of links. Each enabled link lij = lji ∈ L

connecting agents i and j is assumed to provide a bidirectional

Table 1
Relationship between the cooperation topologies and their sets of

coalitions for a networked system N = {1, 2, 3, 4}.

T l12 l23 l34 C

Λ1 0 0 0 {{1}, {2}, {3}, {4}}

Λ2 0 0 1 {{1}, {2}, {3, 4}}

Λ3 0 1 0 {{1}, {2, 3}, {4}}

Λ4 0 1 1 {{1}, {2, 3, 4}}

Λ5 1 0 0 {{1, 2}, {3}, {4}}

Λ6 1 0 1 {{1, 2}, {3, 4}}

Λ7 1 1 0 {{1, 2, 3}, {4}}

Λ8 1 1 1 {{1, 2, 3, 4}}

Fig. 2. The partially ordered set of cooperation topologies for a networked

system N = {1, 2, 3, 4}.

information flow that involves a fixed cooperation cost clink ∈
R0+. The set of active links in the control network defines the
controller cooperation topology Λ. Thus, the cardinality of the
topology, i.e., |Λ|, denotes the number of active links. Note that
if clink = 0, there will be no incentive to adopt a different
topology from the centralized one because it provides the best
performance from a control point of view.

Given the total number of links |L|, there are 2|L| differ-
ent cooperation topologies, which are grouped into a set T =
{Λ1,Λ2, . . . ,Λ2|L|}. For convenience, Λ1 = Λdec represents
the decentralized topology (all links are disabled), and Λ2|L| =
Λcen denotes the centralized topology (full cooperation). As an
example, Table 1 shows the relationship between the topologies
and their coalitional structures for a networked system N =
{1, 2, 3, 4}. The set T is a partially ordered set of cooperation
topologies regarding active cooperation links, as shown in Fig. 2.

Assumption 4 (Controllability of Coalitions). For any Λ ∈ T , each
pair (Acc, Bcc) is controllable for any c ∈ C.

Note that there could exist systems that satisfy Assumption 1
but not Assumption 4. If there are topologies that do not meet
Assumption 4, they can be removed from the set of topologies
we consider.

2.4. Optimal control problem

The control objective of MPC is to regulate the state of the
networked system to its origin while satisfying all constraints and
minimizing the following system-wide cost function in a finite
prediction horizon Np:

JN (xN , uN ,Λ) =

Np
∑

k=0

ℓ
(

xN (k), uN (k)
)

+ g(Λ),

3
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where ℓ(·) measures the distance to the origin and g(Λ) =
clink|Λ| penalizes the amount of communication needed in the
cooperation topology Λ ∈ T .

3. Tube-based coalitional MPC

In this section, we formulate the tube-based MPC approach
for the system in a distributed coalition setting. First, we define
the notion of time-varying constraint and disturbance sets based
on the scaling factors that reduce the conservatism of the tube
approaches. Second, we explain the coalitional MPC problem.
Finally, we detail the ingredients of the tube approach.

3.1. Time-varying sets

For a topology Λ with coalitional structure C, by Definition 1,
the constraint sets for each c ∈ C can be scaled by αc, βc ∈ R0+:

Xc(αc) = αcXc, Uc(βc) = βcUc, (4)

where the sets of hard constraints are given by Xc = Xc(1)
and Uc = Uc(1). Clearly, any state and control pair satisfying
(xc, uc) ∈ Xc(αc) × Uc(βc) satisfies the hard constraints if αc ∈
[0, 1] and βc ∈ [0, 1]. Taking into account the dynamics (3) and
the constraints (4) of coalition c , the disturbance wc is bounded
by the set:

Wc(α, β) =
( ⨁

d∈Mc

AcdXd(αd) ⊕ BcdUd(βd)
)

⊕ W
e
c , (5)

where the external disturbances are also assumed to be bounded
by We

c . The set Wc(α, β) depends on all of c ’s neighbors, i.e.,
(αd, βd) for all d ∈ Mc ; the notation Wc(α, β) makes this depen-
dency explicit and aims to simplify the notational burden. Given
any compact set Wc ⊂ Rqc , the triplet (Xc(αc),Uc(βc),Wc) defines
an RCI set Ωc(Wc), if it exists, such that Ωc(Wc) ⊆ Xc(αc) and
⋃

xc∈Ωc (Wc )
µ(xc) ⊆ Uc(βc). The set Ωc(·) can be parameterized

by the disturbance set that affects the dynamics.
In our context, the existence of invariant sets determines

a measure of robustness against the disturbances arising from
the coupling; this is evident in a tube MPC setting, where the
constraints are tightened according to their invariant sets. In
our setting, we aim to use scaling factors to reduce conser-
vative behaviors arising from aggressive constraint tightening
to improve performance. However, this improvement of perfor-
mance requires a starting point, and for this reason, we invoke
the following assumption for each subsystem (current and fu-
ture plug-in subsystems) to guarantee the existence of a family
of RCI sets corresponding to the original constraints and the
decentralized topology.

Assumption 5. There exists an RCI set Ωc(Wc(1, 1)) ⊂ Xc(1)
with 1 = (1, . . . , 1) ∈ R|Mc | for all c ∈ C for the decentralized
cooperation topology Λdec.

3.2. Coalitional MPC problem

A tube-based approach has two main components: a nominal,
i.e., disturbance-free dynamics z+

c = Acczc + Bccvc regulated
by an MPC controller with tightened constraints; and the error
dynamics e+

c = Accec+Bccµ(ec)+wc where ec = xc−zc is confined
to an invariant set that, in our case, is the RCI set Ωc(Wc(α, β)).
The nominal constraint sets are functions of this invariant set
such that

Zc(αc) ≜ Xc(αc) ⊖Ωc(Wc(α, β)),

Vc(βc) ≜ Uc(βc) ⊖ µ
(

Ωc(Wc(α, β))
)

.
(6)

Let us define V o
c = {voc (0), . . . , v

o
c (Np − 1)} and Zo

c = {zoc (0), . . . ,

zoc (Np)}, respectively, as the optimal control and state sequences

on a prediction horizon Np. The control objective of coalition c is

to regulate the nominal state zc to the origin whilst minimizing

the Np-horizon cost Jc(Zc, Vc), defined in the next section, subject

to constraints:1

V o
c = argmin

Vc

Jc
(

Zc, Vc

)

,

s.t. zc(0) = z̃c,
zc(t + 1) = Acczc(t) + Bccvc(t),
zc(t) ∈ Zc(αc), vc(t) ∈ Vc(βc),

zc(Np) ∈ Ω f
c,

(7)

where t = 0, . . . ,Np − 1, z̃c is the current value of the nominal

state, and αc, βc are the coalition scaling factors for state and

input constraint sets, respectively. From Assumption 3 and the

properties of the Cartesian product, the coalition scaling factors

are the corresponding values to be fulfilled: αcXc =
∏

i∈c αiXi,

and βcUc =
∏

i∈c βiUi. When a coalition is disbanded, αcXc =
∏

i∈c αcXi, which implies that individual scaling factors αi = αc

for all i ∈ c . A similar observation holds for the input scaling

factor βc . Moreover, the set Ω f
c is a terminal set that depends on

the scaling factors and is assumed to satisfy the following.

Assumption 6. The terminal set Ω f
c is positively invariant (PI) for

the nominal dynamics z+
c = Acczc+Bccvc , that is, (Acc+BccK

f
c)Ω

f
c ⊆

Ω f
c with Ω f

c ⊆ Zc(αc) and K f
cΩ

f
c ⊆ Vc(βc) under a control law

vc = K f
c zc .

Note that although the terminal set is considered to be merely

PI and not RPI, we can selectΩ f
c = 0 if needs be in order to reduce

computation efforts in high-order dynamics.

3.3. Coalition cost function

The arguments of the finite-horizon cost Jc
(

·, ·
)

for each c ∈

C are the Np–sequence of control actions Vc , and the Np + 1–

sequence of states Zc . This cost function is defined as:

Jc
(

Zc, Vc

)

=

Np−1
∑

t=0

(

ℓc
(

zc(t), vc(t)
)
)

+ fc
(

zc(Np)
)

, (8)

where ℓc(zc, vc) ≜ ∥zc∥
2
Qc

+ ∥vc∥
2
Rc

is the stage cost, which

penalizes nominal state zc and input vc weighted by matrices

Qc ≻ 0 and Rc ≻ 0. The function fc(zc) = ∥zc∥
2
Pc

with Pc ≻ 0 is the

terminal cost designed such that z⊤
c Pczc − z+

c
⊤
Pcz

+
c ⩾ ℓc(zc, K

f
czc).

Therefore, z⊤
c Pczc is a control Lyapunov function, and the local

stability of coalition c is guaranteed around the origin.

3.4. Outer bounding of RCI sets

The explicit computation of RCI sets is computationally costly

and increases as the size of the coalition grows. Since the RCI

sets tighten the constraint sets as (6), we can employ an outer

bound of the RCI set with the idea of reducing the computa-

tional burden and making the approach suitable for high-order

dynamics (Baldivieso-Monasterios & Trodden, 2021). One can rely

on the implicit existence of an RCI set to guarantee closed-loop

feasibility and stability.

1 The control problem of each coalition can be solved by a local controller

that works as a leader or distributed among the agents in the coalition (Franzè

et al., 2018).
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As proposed by Raković et al. (2007), we can formulate a linear

programming (LP) problem to find an RCI set Ωc as:

min{ϵ : φ ∈ Φ}, (9)

where φ = (MHc , ac, bc, ϵ) and Φ = {φ : MHc ∈ MHc , Ωc ⊆
acXc, µc

(

Ωc

)

⊆ bcUc, (ac, bc) ∈ [0, 1] × [0, 1], qxac + qubc ⩽ ϵ}

with weights qx and qu to provide the constants (ac, bc) that

scale the state and input constraint sets, and matrices MHc =

(M0, . . . ,MHc−1), with Ml ∈ Rqc×rc and l = 1, . . . ,Hc − 1,

characterizing the optimized RCI set for a system x+
c = Accxc +

Bccuc + wc constrained in (Xc,Uc,Wc) as

Ωc =

Hc−1
⨁

h=0

Dh(MHc )Wc, and µc

(

Ωc

)

=

Hc−1
⨁

h=0

MhWc .

The set of control inputs that induce invariance µc

(

Ωc

)

is defined

as µc

(

Ωc

)

≜ {uc ∈ Uc : x
+
c ∈ Ωc,∀wc ∈ Wc}. For h = 0, . . . ,Hc ,

matrices Dh(MHc ) are defined as

Dh(MHc ) =

⎧

⎪
⎨

⎪
⎩

I if h = 0,

Ah
cc +

h−1
∑

l=0

Ah−1−l
cc BccMl if h ⩾ 1,

such that DH (MHc ) = 0 provided that Hc is greater than or equal

to the controllability index of (Acc, Bcc). The set of matrices that

meet these criteria is MHc ≜ {MHc : DHc (MHc ) = 0}. Constraint
satisfaction is guaranteed if Ωc ⊆ acXc and µc

(

Ωc

)

⊆ bcUc .

Consequently, the constraint sets (6) can be replaced with

Zc(αc, ac) = Xc(αc) ⊖ acXc(αc) = (1 − ac)Xc(αc),
Vc(βc, bc) = Uc(βc) ⊖ bcUc(βc) = (1 − bc)Uc(βc),

(10)

which implies that, in (7), terminal set Ω f
c also depends on

αc, βc, ac, bc , that is, Ω
f
c(αc, βc, ac, bc).

3.5. Tube-based approach

We propose an MPC strategy based on optimized tubes to

control the coalition dynamics (3) through the control law:

uc = voc (zc) + µc(xc − zc), (11)

where voc is the first element in the optimized input sequence

(i.e., V o
c (1)), and µc(xc − zc) is the RCI control law. Moreover, each

coalition c has constraint sets that can be scaled down by its con-

troller. Our approach goes a step further than that of Trodden and

Maestre (2017) by separating the scaling factors for constraint

sets into two types: public and private. The core idea behind this

segregation of factors is to create an extra robustness margin to

handle uncertainties not covered by the tubes, such as PnP events.

This approach allows for the accommodation of uncertainty lo-

cally, without requiring any significant reconfiguration of the

control system. Conversely, the method that uses a single scaling

factor (Trodden & Maestre, 2017) may require full cooperation

to address disturbances caused by PnP events, or these events

may even cause infeasibility of the controllers/optimal control

problems.

The rationale of two scaling factors is that agents maintain

and optimize private scaling factors that tightly bound their pre-

dicted trajectories but communicate larger public scaling fac-

tors to neighbors; thus, the gap between private and public

values allows agents to absorb locally disturbances. In particu-

lar, sets (Xc,Zc,Uc,Vc,Wc,Ωc,Ω
f
c) are parameterized by time-

varying public scaling factors (α
pub
c , β

pub
c ), and private scaling

factors (α
priv
c , β

priv
c ) are added as optimization variables to the

following nominal problem, which replaces (7):

JoN,c(zc) = min
Vc , α

priv
c , β

priv
c

Jc
(

Zc, Vc

)

+ τα α
priv
c + τβ β

priv
c ,

s.t. (αpriv
c , βpriv

c ) ∈ [0, 1]2, zc(0) = z̃c,

zc(t + 1) = Acczc(t) + Bccvc(t), t = 0, . . . ,Np − 1,

zc(t) ∈ αpriv
c Zc(α

pub
c , ac), t = 1, . . . ,Np − 1,

vc(t) ∈ βpriv
c Vc(β

pub
c , bc), t = 0, . . . ,Np − 1,

zc(Np) ∈ Ω f
c(α

pub
c , βpub

c , ac, bc),

(12)

where JoN,c(zc) is the value function and weights τα, τβ ∈ R+.
As a consequence of allowing the constraints sets to shrink,

the dynamics of public scaling factors arise naturally, as detailed
in the next lemma.

Lemma 1. Given topology Λ, each coalition c ∈ C has public scaling

factors (α
pub
c , β

pub
c ) at time instant k, which parameterize constraint

sets
(

Xc(α
pub
c ), Uc(β

pub
c )

)

and evolve as:

α
pub
c

+
= α

pub
c

(

ac + α
priv
c (1 − ac)

)

,

β
pub
c

+
= β

pub
c

(

bc + β
priv
c (1 − bc)

)

.
(13)

Proof. By solving problem (12), the successor state x+
c = z+

c + e+
c

depends on the nominal state z+
c ∈ α

priv
c Zc(α

pub
c , ac) and the state

mismatch e+
c ∈ acXc(α

pub
c ). Taking into account (10):

x+
c ∈

(

α
priv
c (1 − ac)Xc(α

pub
c )

)

⊕ acXc(α
pub
c )

∈
(

α
priv
c (1 − ac) + ac

)

α
pub
c Xc

∈ α
pub
c

+
Xc .

Therefore, the state constraint set Xc at instant k + 1 is scaled

by a parameter α
pub
c

+
= α

pub
c

(

ac + α
priv
c (1 − ac)

)

. In a similar
way, the successor control input: u+

c = voc (0) + µc(e
+
c ), where

voc ∈ β
priv
c Vc(β

pub
c , bc) and µc(e

+
c ) ∈ bcUc(β

pub
c ), satisfies u+

c ∈

β
pub
c

+
Uc . □

The significance of Lemma 1 is that since 0 < ac < 1,

(ac +α
priv
c (1− ac)) is a number less than one whenever α

priv
c < 1,

thus public scaling factors are reduced at a rate given by α
priv
c . If

α
priv
c = 1, then the public scaling factor will remain constant.

4. Top-down control algorithm

We implement a top-down coalitional MPC algorithm, which
is divided into an upper and a lower control layer.

4.1. Upper control layer

Every Tup ∈ N+ time steps, a central supervisor executes Alg. 1
to select the best cooperation topology that ensures recursive fea-
sibility. Since the number of topologies increases combinatorially
with the number of subsystems, we consider a suitable subset of
T to reduce this potential bottleneck.

Definition 2 (Set of Potential Successor Topologies). Let Λcur be
the current topology, we define the set of the potential successor
topologies Tnew ⊆ T based on the Hamming distance between
two topologies:

Tnew ≜ {Λ ∈ T : dist(Λcur,Λ) ⩽ 1}. (14)

For example, if Λcur = Λ5, the set of potential successor
topologies whose distance is less than or equal to 1 is Tnew =
{Λ1,Λ5,Λ6,Λ7}, as shown in Fig. 2.
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Alg. 1: Upper control layer

Initial data: Xi,Ui,Hi, K
f
i , ∀i ∈ N , Tup, Np, τα, τβ , clink.

Start: zi(0) = xi(0); Λcur = Λcen; α
pub
i , α

priv
i , β

pub
i , β

priv
i =

1, ∀i ∈ N .
Inputs: Λcur, α

pub
i , β

pub
i ,∀i ∈ N . Output: Λnew

1: Given Λcur, measure the current values of states x̃c and
z̃c,∀c ∈ C.

2: Calculate Tnew as (14).
3: for each Λnew ∈ Tnew do:
4: Compute Wc as (5), Ωc by (9), and Ω f

c,∀c ∈ C.
5: if ∄Ωc for any c then:
6: Mark this Λnew as infeasible, and go to Step 3.
7: end if
8: for each c ∈ C do:
9: Solve (12) setting τα, τβ = 0 and α

priv
c , β

priv
c = 1

to obtain the control sequence Uc via (11).

10: Gauge Γc ≜
∑Np

t=1

(

ℓc(xc(t), uc(t)) + clink|Λc |
)

.
11: end for
12: Compute the cost ΓΛ =

∑

c∈C Γc for Λnew.
13: end for
14: if all Λnew ∈ Tnew are marked as infeasible then:
15: Any c with ∄Ωc clusters with the neighbor d ∈ Mc

with the largest diameter of Wd, and update Λcur.
16: Go to Step 2.
17: else
18: Select topology Λnew ∈ Tnew with the lowest cost ΓΛ.
19: Send Λnew to the lower layer (Alg. 2).
20: end if

4.2. Lower control layer

Each time instant k, each coalition c ∈ C execute Algorithm 2
according to the current public scaling factors and topology Λcur:

Alg. 2: Lower control layer

Initial data: Xc,Uc, K
f
c , Np, Hc , τα, τβ , σc = 0.

Inputs: Λcur, xc, α
pub
c , β

pub
c , ∀c ∈ C

Outputs: α
pub
c

+
, β

pub
c

+
, x+

c

1: Calculate Wc as (5), Ωc by (9), and Ω f
c .

2: Solve (12) to obtain V o
c , α

priv
c , and β

priv
c .

3: Apply voc = V o
c (1) to attain z+

c , and uc to obtain x+
c .

4: Get α
pub
c

+
and β

pub
c

+
as (13), and share them with Mc .

5: Compute W+
c and then Ω+

c .
6: if Ω+

c do not exist or x+
c − z+

c /∈ Ω+
c , for any c ∈ C then:

7: Active a flag σc = 1 and share it to the network.
8: end if
9: if any σc is active in the network then:

10: Set α
pub
c

+
and β

pub
c

+
with the current scaling values.

11: end if

5. Plug-and-play operations

Adding (removing) subsystems to (from) the system changes
the physical configuration of the network. Consequently, it may
force the redesign of the cooperation control topology for stability
and performance reasons. We consider the following:

(a) Instants k−
plug and k+

plug are, respectively, infinitesimal instants
before and after a plug-and-play operation.

(b) Plug-in and plug-out are allowed: N (k)2 can grow or shrink
and, correspondingly, each Mi(k) can grow or shrink owing
to the addition or removal of subsystems.

(c) Plug-and-play operations in which the subsystems are par-
tially disconnected (connected) from (to) the network,
e.g., N (k−

plug) = N (k+
plug) but Mi(k

−
plug) ̸= Mi(k

+
plug) for some

i ∈ N (k−
plug), are not permitted.

(d) The PnP operations are executed sequentially and requested
to the supervisor, which triggers the execution of the upper
layer and may adapt the cooperation topology to the new
system scenario for stability and performance reasons. If
there were several PnP operation requests at k−

plug, these may
be queued and executed in a FIFO fashion. Furthermore, one
could let agents form a coalition to, for example, connect to
the system altogether at once.

5.1. Adding subsystems

The current cooperation topology Λ for system N has a coali-
tional structure CΛ. Consider a new subsystem N +1 dynamically
defined by its corresponding state and input matrices, constraint
sets (XN+1,UN+1) and K f

N+1 that is plugged into the system, which
yields the following set of dynamically coupled subsystems:

N (k) =

{

{1, 2, . . . ,N} if k < kplug,
{1, 2, . . . ,N,N + 1} if k ⩾ kplug.

Therefore, the new topology Λ̃ for N ∪ {N + 1} has a coalitional
structure CΛ̃ = CΛ ∪ {N + 1}. The PnP operation changes the
dynamics of the overall system, and also the set of possible
cooperation topologies from T to T̃ . Due to the couplings, the
disturbances of its neighbors MN+1 grow and the recursive fea-
sibility may be lost. To prevent that from happening, at k+

plug, we
allow the cooperation topology to change according to Alg. 1.

Assumption 7. The new subsystem N + 1, with neighbors MN+1

⊂ N and constraint sets (α
pub
N+1XN+1, β

pub
N+1UN+1) with (α

pub
N+1, β

pub
N+1)

∈ (0, 1)2, joins the system at time kplug > 0, i.e., N (k) =

N ∪ {N + 1}. Moreover, there exists an RCI set ΩN+1

(

WN+1

(αpub, βpub)
)

for the new element, and its initial state xN+1 is
feasible.

5.2. Removing subsystems

Let us assume that a subsystem i is unplugged from the system
at the instant kunplug:

N (k) =

{

{1, 2, . . . , i, . . . ,N} if k < kunplug,
{1, 2, . . . , i − 1, i + 1, . . . ,N} if k ⩾ kunplug.

This PnP operation changes the dynamics of the overall sys-
tem, the graph from G to G̃, and the set of potential successor
topologies from T to T̃ . Since the disturbances of their neighbors
j ∈ Mi(k) decrease, the recursive feasibility and stability are
not endangered. We could then execute Alg. 1 to select another
topology that improves performance or maintains the current
cooperation setting, which is computationally less expensive.

6. Feasibility and stability

In this section, we describe the properties of recursive fea-
sibility and stability of the proposed algorithm. First, we focus
on the recursive feasibility side of the problem. We highlight
the potential issues that may arise and how the operations of

2 Henceforth, explicit time-dependent notation will be employed in the case

of ambiguity.
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adding and removing elements of the network affect the overall
feasibility. Then, leveraging the feasibility results, we study the
stability of the closed-loop system with respect to a compact
neighborhood of the equilibrium.

6.1. Feasibility sets

Our feasibility analysis of the closed-loop system begins with a
characterization of the feasible sets of optimization problem (12)
for each coalition c associated with a topology Λ. The feasible
input set of (12) contains all control sequences {vc(0), . . . , vc(Np−

1)} and scaling factors (α
priv
c , β

priv
c ) that can be parameterized by

the initial nominal state, i.e., VN
c (zc) ⊂ VN

c × [0, 1]2. The feasible
state set for coalition c is therefore ZN

c (α
pub, βpub) = {zc ∈

Zc(α
pub
c , ac) : V

N
c (zc) ̸= ∅}; since the public scaling factors are

not necessarily constant, the feasible set varies over time. The
feasible state set for the true dynamics of coalition c ∈ C is
simply XN

c = ZN
c (α

pub, βpub) ⊕ Ωc(Wc(α
pub, βpub)). A state xc =

zc + ec ∈ XN
c is said to be recursively feasible if VN

c (z
+
c ) ̸= ∅ and

e+
c ∈ Ωc(Wc(α

pub+
, βpub+

)) where z+
c , e+

c , α
pub
c

+
, and β

pub
c

+
are,

respectively, the successor nominal state, the error, and the state
and input scaling factors. In the case of constant scaling factors,
we recover the traditional definition of recursive feasibility. In the
following, we study the nuances of the recursive feasibility of our
proposed scheme.

6.2. Recursive feasibility for unchanging coalitions

Parameterization of constraints by scaling factors results in
changes in the RCI sets used by the tube-based controller. In the
next lemma, we explore the relationship between these scaling
factors and the RCI sets.

Lemma 2 (Smaller Wc Implies Smaller Ωc(Wc)). Suppose that
Ωc(γcWc) is RCI w.r.t. the constraint sets (αcXc, βcUc) and dis-
turbance γcWc where Wc is a compact and convex set and γc
is the smallest positive number such that γcWc ⊇ Wc(α, β) =
(⨁

d∈Mc
AcdαdXd ⊕BcdβdUd

)

⊕We
c . Suppose, in addition, that α+

c ⩽

αc and β+
c ⩽ βc for all c ∈ C, then γ+

c ⩽ γc and Wc(α
+, β+) ⊆

Wc(α, β) with γ+
c a scaling factor associated with α+ and β+.

Furthermore, Ωc(γ
+
c Wc) ⊆ Ωc(γcWc) is the RCI with disturbance

set γ+
c Wc and constraint sets (α+

c Xc, β
+
c Uc).

Proof. The smallest outer scaling γc is the tightest scaling factor
such that γc = arg inf{λ(ξWc \ Wc(α, β)) where λ(·) is the
Lebesgue measure in Rqc . Since α+

c ⩽ αc and β+
c ⩽ βc for all

coalitions, then it is straightforward to show that Wc(α
+, β+) ⊆

Wc(α, β). The optimality of γ+
c implies that λ(γ+

c Wc \ Wc

(α+, β+)) ⩽ λ(ξWc \Wc(α
+, β+)) for all ξ > 0; in particular, this

relation holds for ξ = γc . The standard properties of the Lebesgue
measure imply λ(ξWc \ Wc(α

+, β+)) = λ(ξWc) − λ(Wc(α
+, β+))

and λ(ξWc) = ξ qcλ(Wc). Using these properties with λ(Wc) > 0
implies γ+

c ⩽ ξ ; in particular, ξ = γc . The RCI condition of Ωc(Sc)
holds for all Sc ⊆ γcWc , especially for Sc = γ+

c Wc . □

Lemma 2 guarantees that the RCI set Ωc(Wc(α
pub, βpub)) re-

mains an RCI set when the disturbances seen by coalition c ∈ C

shrink as a result of optimization (12). The following ancillary re-
sult is a key element of the feasibility properties of our proposed
controller.

Lemma 3. Suppose Assumption 2 holds. Consider ac, bc, α
pub
c , β

pub
c

∈ [0, 1] for all c ∈ C with dynamics (13). The following holds:

(i) a+
c ⩽ ac ⇐⇒ α

priv
c Z(α

pub
c , ac) ⊆ Z(α

pub
c

+
, a+

c ),

(ii) b+
c ⩽ bc ⇐⇒ β

priv
c V(β

pub
c , bc) ⊆ V(β

pub
c

+
, b+

c ).

Proof. if: Taking into account definition (10), the inclusion α
priv
c

α
pub
c (1 − ac)Xc ⊆ α

pub
c

+
(1 − a+

c )Xc holds if and only if α
pub
c

+
(1 −

a+
c ) − α

priv
c α

pub
c (1 − ac) ⩾ 0. We now prove the above inequality.

From (13),

α
pub
c

+
(1 − a+

c ) − α
priv
c α

pub
c (1 − ac) =

α
pub
c

(

1 − (1 − ac)(1 − α
priv
c )

)

(1 − a+
c ) − α

priv
c α

pub
c (1 − ac),

further manipulation and our hypothesis, a+
c ⩽ ac , yield

α
pub
c

+
(1 − a+

c ) − α
priv
c α

pub
c (1 − ac) ⩾

α
pub
c (1 − ac)

(

1 − (1 − ac)(1 − α
priv
c ) − α

priv
c

)

⩾

α
pub
c ac(1 − ac)(1 − α

priv
c ) ⩾ 0.

only if: We prove it using properties of the Lebesgue measure

λ
(

Zc(α
pub
c

+
, ac

+) \ Zc(α
pub
c , ac)

)

=

λ
(

Zc(α
pub
c

+
, ac

+)
)

− λ
(

Zc(α
pub
c , ac)

)

=

(α
pub
c

+
(1 − a+

c ))
qcλ(Xc) − (α

priv
c α

pub
c (1 − ac))

qcλ(Xc) ⩾ 0,

that is,

αpub
c

+
(1 − a+

c ) ⩾ α
priv
c αpub

c (1 − ac).

Since α
pub
c ⩾ α

pub
c

+
, we have: 1 − a+

c − α
priv
c + α

priv
c ac ⩾ 0 for all

α
priv
c ⩽ 1. Taking the limit as α

priv
c → 1 yields a+

c ⩽ ac . The proof

of the input set follows mutatis mutandis. □

The above lemma has profound implications; it gives us a way

to assess how the nominal sets change when the RCI sets are

updated or when the disturbances created by coupling dimin-

ish as the state evolves. We are now in a position to establish

our first result concerning recursive feasibility under unchanging

coalitions.

Proposition 1 (Feasibility of the Tail). Suppose (α
pub
c , β

pub
c ) ∈

[0, 1]2, and V o
c = {voc (0), . . . , v

o
c (Np − 1)} is feasible for xc =

zc + ec ∈ XN
c (α

pub, βpub). Consider α
pub
c

+
⩽ α

pub
c and β

pub
c

+
⩽ β

pub
c

by Lemma 1. If a+
c ⩽ ac and e+

c ∈ Ωc(Wc(α
pub+

, βpub+
)), then

Ṽ+
c = {voc (1), . . . , v

o
c (Np − 1), K f

czc(Np)} is feasible for x+
c .

Proof. Fix (α
pub
c , β

pub
c ) ∈ [0, 1]2 for all c ∈ C. Given a feasible

state xc , the successor nominal state and error satisfy z+
c ∈

Zc(α
pub
c , ac) and e+

c ∈ Ωc(Wc(α
pub, βpub)), respectively. The fea-

sibility of the tail relies on the fact that z+
c ∈ Zc(α

pub
c

+
, a+

c )

by Lemma 3, and the hypothesis e+
c ∈ Ωc(Wc(α

pub+
, βpub+

)).

We note that the set Ω f
c(α

pub
c , β

pub
c , ac, bc) remains an invari-

ant set that satisfies Assumption 6 for the successor constraint

pairs (Zc(α
pub
c

+
, a+

c ),Vc(β
pub
c

+
, b+

c )). This leads to the tail being a

feasible solution for z+
c . □

Following Proposition 1, we always meet the assumption

e+
c ∈ Ωc(Wc(α

pub+
, βpub+

)) because of Step 6 of Alg. 2 which

checks x+
c − z+

c ∈ Ωc(Wc(α
pub+

, βpub+
)) before updating α

pub
c

+
,

β
pub
c

+
, ∀c ∈ C. In this way, we obtain the recursive feasibil-

ity for the case of unchanging coalitions. These results are the

cornerstone of the results concerning a change of coalitions or

when plug-and-play operations occur. Another consequence of

Proposition 1 is that for each topology Λ that admits a family of

RCI sets {Ωc}c∈C , the value function of (12), i.e., JoN,c(·) for all c ∈ C,

is a Lyapunov function for the nominal dynamics as summarized

in the next corollary.

Corollary 1. Suppose Assumptions 1, 2, and 6 hold, for all c ∈ C for

a fixed topology Λ with Jc(·, ·) continuously differentiable, positive

7
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definite, and strictly convex in its arguments. Then, for all zc ∈

ZN
c (α

pub, βpub),

JoN,c(zc) ⩾ η1,c(|zc |), (15a)

JoN,c(zc) ⩽ η2,c(|zc |), (15b)

JoN,c(z
+
c ) ⩽ JoN,c(zc) − η1,c(|zc |), (15c)

where η1,c(·) and η2,c(·) are K∞.

Proposition 1 and Corollary 1 for constant scaling factors re-

cover the traditional notions of recursive feasibility and stability

of MPC controllers. In fact, given an initial state xΛ(0) ∈ XN
Λ(1, 1),

any point in its time evolution xΛ(k) ∈ XN
Λ(α

pub(k), βpub(k)) is

also feasible for the initial time. This observation serves as the

cornerstone of future analysis.

6.3. Recursive feasibility for changing coalitions

Given a topology Λ with coalitions C = {c1, . . . , cC }, the

overall Np–step feasible set is given by the product of individual
feasible sets XN

Λ =
∏

c∈C XN
c . To ensure the recursive feasibility

of our proposed strategy, it is enough to guarantee that for a

given topology Λ, and feasible state xΛ = (xc1 , . . . , xcC ) ∈ XN
Λ,

the successor state satisfies x+
Λ ∈ XN

Λ+ where Λ+ is the succes-

sor topology. However, as mentioned in Baldivieso-Monasterios

et al. (2019), the feasible sets corresponding to two different

topologies Λ1 and Λ2 do not have a direct relationship between

them. In fact, there exist feasible points for a topology that are

infeasible for a different one. To characterize recursive feasibility

for the case of changing coalitions, we rely on the concepts of

feasibility and the strong feasibility of a state xΛ, introduced

in Baldivieso-Monasterios and Trodden (2021). A state xΛ is said

to be recursively feasible if xΛ ∈ XN
Λ, and it is strongly recursively

feasible if xΛ ∈
∏

c∈C ZN
c (α

pub, βpub). Proposition 5.5 in Baldivieso-

Monasterios and Trodden (2021) states that feasibility becomes

a strong feasibility if the coupling between coalitions is suffi-

ciently weak. The concept of strong feasibility coupled with the

monotonicity of the scaling factor dynamics (13) will help us

characterize feasible topology switches.

On the other hand, following Alg. 1, the topologies contained

in Tnew differ by a maximum of one communication link from

the current topology, i.e., dist(Λ,Λ′) ⩽ 1 for Λ′ ∈ Tnew. This

implies that for Λ with CΛ = {c1, . . . , ck, ck+1, . . . , cC }, the

new topologies Λ′ can have either {c1, . . . , {ck, ck+1}, . . . , cC } or

{c1, . . . , ck′ , ck′′ , ck+1, . . . , cC } as coalition structures. This obser-

vation motivates the following definition:

Definition 3. Given two topologies Λ1,Λ2 ∈ T , Λ1 refines Λ2

(or Λ2 coarsens Λ1) if every member of Λ1 is contained in some

member of Λ2.

For refinement, coalition ck of Λ1 has been split into ck′ and

ck′′ inΛ2. Without loss of generality, we can assume that only one

subsystem separates from the coalition i.e., ck = {ik}∪ck′ . We note

that the state and control input of coalition ck are, respectively,

xck ∈ Rqck and uck ∈ Rrck , where qck = qik + qck′ and rck = rik +

rck′ . The disturbance sets satisfy:3 Wik = (
⨁

e∈Mck
∪{ck′ }

AikeXe ⊕

BikeUe) ⊕ We
ik

and Wck′
= (

⨁

e∈Mck
∪{ik}

Ack′ e
Xe ⊕ Bck′ e

Ue) ⊕ We
ck′
.

Following the properties of the Minkowski sum and the Cartesian

3 In the following, we drop the dependency on the scaling factors to ease

the notational burden, e.g., Wc = Wc (α
pub, βpub).

product, the disturbance set for finer coalitions W̃ck is:

W̃ck = Wik × Wck′

= (
⨁

e∈Mik

AikeXe ⊕ BikeUe) × (
⨁

e∈Mc
k′

Ack′ e
Xe ⊕ Bck′ e

Ue)

⊕ (Aikck′
Xck′

⊕ Bikck′
Uck′

) × (Ack′ ik
Xik ⊕ Bck′ ik

Uik )

⊕ W
e
ck

= Wck ⊕ Wck′ ik
⊇ Wck .

Therefore, W̃ck has extra terms of the form Wck′ ik
for each of the

missing interconnections, and the prediction model changes from
(Acc, Bcc) to (AD

cc, B
D
cc) = (diag(Aikik , Ack′ ck′

), diag(Bik ik , Bck′ ck′
)). The

overall disturbance sets for the system for both topologies satisfy
WΛ1

=
∏

c∈CΛ1
Wc ⊆

∏

d∈CΛ2
Wd = WΛ2

. As a result, topology

refinement introduces a counter-nesting of disturbance sets and
RCI sets. The latter follows from the observation: Wck ⊆ Wik ×
Wck′

implies Ωck (Wck ) ⊆ Ωck (Wck′
× Wik ). Using the definition of

an RCI set, it is straightforward to see that Ωck (Wck′
×Wik ) is also

an RCI for coalition ck′ ∪ ik.
Our study of the recursive feasibility of the system in closed

loop with Algorithms 1 and 2 hinges on the idea that state
constraint sets shrink as public scaling factors decrease. The fol-
lowing theorem tackles the problem of recursive feasibility when
the topology of the system is allowed to change according to
Alg. 1. In this theorem, we focus mainly on the case where the

public scaling factors strictly decrease i.e., α
pub
c

+
< α

pub
c ; the

case of equality has been addressed in Baldivieso-Monasterios
and Trodden (2021, Proposition 5.5, 5.6).

Theorem 1 (Recursive Feasibility). Suppose Assumptions 1, 2, 5,
and 6 hold. In addition, suppose that for all c ∈ C, Jc(·, ·) is
continuously differentiable, positive definite and strictly convex in
its arguments. Given a topology Λ, if the state pair (zΛ, eΛ) satisfies
(zΛ, eΛ) ∈

∏

c∈CΛ
ZN
c (α

pub, βpub) × Ωc(Wc(α
pub, βpub)) for some

α
pub
Λ = (α

pub
c1 , . . . , α

pub
cC ) and β

pub
Λ = (β

pub
c1 , . . . , β

pub
cC ). Considering

α
pub
c

+
< α

pub
c by Lemma 1, there exists a time k > 0 for which the

state pair satisfies
(

zΛ(k), eΛ(k)
)

∈
∏

c∈CΛ(k)
ZN
c

(

αpub(k), βpub(k)
)

×

Ωc

(

Wc

(

αpub(k), βpub(k)
))

with the successor topologyΛ(k) selected
according Algorithm 1.

Proof. Given an initial feasible state xΛ = zΛ + eΛ ∈ XN
Λ(α

pub,

βpub) with zΛ ∈ ZN
Λ(α

pub, βpub) and eΛ ∈ ΩΛ(WΛ(α
pub, βpub)),

the successor state satisfies x+
Λ ∈ XN

Λ(α
pub+

, βpub+
) ⊂ α

pub
Λ

+
X .

Furthermore, by hypothesis, the state enters the interior of the

feasible set at a rate γ = min{α
pub
Λ − α

pub
Λ

+
}; in fact, the solution

of (13) yields α
pub
c (h) = α

pub
c (1 − (1 − α

priv
c )(1 − ac))

h where

α
pub
c is the initial value of the public scaling factor. On the other

hand, the feasible state xΛ ∈ XN
Λ(α

pub, βpub) becomes strongly
feasible after a time h∗ > 0 such that xΛ ∈ ZN

Λ(α
pub, βpub)

with h∗ = inf{h > 0 : ac ⩽ maxc∈CΛ α
pub
c (h) − α

pub
c }. Follow-

ing Baldivieso-Monasterios and Trodden (2021, Proposition 5.2),
strong feasibility implies feasibility under topology coarsening.

Under refinement of the topologies, we have that ΩΛ

(WΛ(α
pub, βpub)) ⊆ ΩΛ′ (WΛ′ (αpub, βpub)) for Λ′ ∈ Tnew. Since

feasible regions for each topology are compact sets, we have
that there exists δ ∈ (0, 1) such that δZN

Λ(α
pub(g), βpub(g)) ⊂

ZN
Λ′ (α

pub, βpub). Now, there exists, similarly to the previous case,

g∗ = inf{g > 0 : δ ⩽ maxc∈CΛ α
pub
c (g) − α

pub
c }. After g∗

samples, the state satisfies xΛ(g
∗) ∈ δX and, by the recursive

feasibility of topology Λ, xΛ(g
∗) ∈ XN

Λ(α
pub, βpub). The choice of

g∗ implies xΛ(g
∗) ∈ XN

Λ′ (α
pub(g∗), βpub(g∗)). Therefore, the state

xΛ is recursively feasible after k = min{h∗, g∗}. □

Remark 1. Despite changes in cooperation topology and plug-
and-play operations, which alter the size of disturbance sets

8
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Wc , the recursive feasibility is maintained taking into account
Theorem 1. In general, unplugged operations compromise neither
the feasibility and stability of the system nor the satisfaction of
the constraints.

Corollary 2 (Recursive Feasibility with Plug-and-Play Operations).
Suppose the assumptions of Theorem 1 and Assumption 7 hold. When
a new subsystem N + 1 is added to the system, for all its neighbors
l ∈ MN+1, there exists γl ∈ (0, 1) such that:

Wl(α
pub, βpub) ⊕ Al(N+1)α

pub
N+1XN+1 ⊕ Bl(N+1)β

pub
N+1UN+1

⊂ γlWl(αh, βh),

for some (αh, βh) ∈ (0, 1)|N | and γl < diam(Wl(1, 1)), and thus the
new system N (k) is recursively feasible.

Proof. The dynamics of l ∈ MN+1 and N + 1 can be described,
respectively, as

x+
l = Allxl + Bllul + wl + wl(N+1),

x+
N+1 = A(N+1)(N+1)xN+1 + B(N+1)(N+1)uN+1 + wN+1,

where wl(N+1) = Al(N+1)xN+1 + Bl(N+1)uN+1 and wN+1 =
∑

j∈MN+1
A(N+1)jxj + B(N+1)juj. We note that the disturbance seen

by l satisfies wl + wl(N+1) ∈ Wl(α
pub, βpub) ⊕ Al(N+1)α

pub
N+1XN+1 ⊕

Bl(N+1)β
pub
N+1UN+1. By assumption, for l ∈ MN+1, the setΩl(Wl(α

pub,

βpub)) is non-empty and we note, following Theorem 1, that for a

time h < k there exist α
pub
l < αl,h < 1 and β

pub
l < βl,h < 1 with

Wl(α
pub, βpub) ⊂ Wl(αh, βh) and Ωl(Wl(αh, βh)) invariant. The

existence of γl ∈ (0, 1) that upper bounds Wl(α
pub, βpub)⊕Wl(N+1)

implies the invariance of Ωl(γlWl(αh, βh)) by Lemma 2.
By assumption, the set ΩN+1(WN+1(α

pub, βpub)) is invariant.
Then the setΩN+1(WN+1)×

∏

c∈CΛ
Ωc(γcWc(αh, βh)) is the RCI for

the system with topology Λ̃. These invariance conditions, coupled
with the feasibility of xN+1, allow us to conclude that the state
(xN , xN+1) is feasible at the time of connection of N + 1. The
recursive feasibility follows from Theorem 1. □

In the above corollary, the recursive feasibility of our approach
hinges on the idea of robustness. The initial tube is given by
the diameter of Ωc(Wc(1, 1)). The public scaling factors decrease
as time evolves if there are no plug-in operations and enough
time has elapsed, as seen in the proof of Theorem 1. Corollary 2
establishes that a plug-in operation can only occur when two
events happen: assuming that the plug-in takes place at a given
instant k > 0, the states of the system lie within the interior of
the feasible set; and the size of the perturbation generated by
the new subsystem is bounded and can be contained in the initial
tubes of its neighbors. With these two conditions, we allow Alg. 1
to find the most suitable topology Λ̃ ∈ T̃ for the system.

6.4. Stability analysis

In this section, we study the stability properties of the system
in closed-loop with Alg. 1 and Alg. 2. Traditionally, tube-based
MPC methods attack the stability analysis by establishing stability
conditions on the nominal system by interpreting the value cost
function as a Lyapunov function, i.e., similar to Corollary 1. More-
over, the error between the nominal and true systems remains
bounded within an invariant set, resulting in a notion of stability
with respect to a neighborhood of the origin. Our case, however,
is different in two aspects. First, the structure of the nominal
system is allowed to change every time the controller selects a
new operating topology. Second, the scaling factors used in our
framework lead to shrinking state constraints. Our analysis relies
on this last fact to establish a stronger notion of convergence to
the equilibrium point. A preliminary result towards our goal is
the following lemma, which allows us to quantify, in a functional
way, the effect of a changing RCI set.

Lemma 4. Suppose Assumptions 1 and 2 hold, the disturbance set
satisfies Wc = GcBdc ,∞ +pc for some matrix Gc ∈ Rqc×dc and vector
pc ∈ Rqc where Bdc ,∞ is the infinite ball in Rdc . For a topology Λ
admitting a family of RCI sets {Ωc}c∈C , for all c ∈ C the function
Ψc : Ωc → R+, where Ψc(x) = inf{λ > 0 : x ∈ λΩ∗

c } and
Ω∗

c = {ξ : ξ⊤x ⩽ 1 for all x ∈ Ωc}, satisfies, along the trajectories
of error dynamics e+

c = Accec + Bccµc(ec) + wc ,

Ψc(e
+
c ) − Ψc(ec) ⩽ −ψc(ec) + ϕc(α

pub
c )

with ψc(·) is K∞ and ϕc(·) is positive definite and continuous.

Proof. Using the standard properties of the polar set, we obtain
that Ψc(ec) = sup{e⊤

c r : r ∈ Ωc} for some ec ∈ Rqc is the support
function of the RCI set. Since, by construction, this set can be
expressed as a Minkowski sum of linear transformations of the
set Wc , then

Ψc(ec) =

Hc−1
∑

h=0

sup{e⊤
c Dh(MHc )wc :wc ∈ Wc}.

Given that Wc = GcBdc ,∞ + pc , where we can assume without
loss of generality pc = 0, the support function of the zonotope
Wc is hWc (ec) = ∥e⊤

c Gc∥1. Using this fact, together with norm

equivalence4 yields

Ψc(ec) =

Hc−1
∑

h=0

∥e⊤
c Dh(MHc )Gc∥1 ⩾

Hc−1
∑

h=0

∥G⊤
c Dh(MHc )

⊤ec∥2.

On the other hand, the RCI control law µc(ec) ensures e
+
c ∈ Ωc ⊂

acXc(α
pub
c ). However, by (4), the constraint set can be written as

Xc = α
pub
c Xc giving ∥e+

c ∥2 ⩽ α
pub
c ac

diam(Xc )

2
. The desired result

follows from the bound with ψc(ec) =
∑Hc−1

h=0 ∥G⊤
c Dh(MHc )

⊤ec∥2

and ϕc(α
pub
c ) = α

pub
c ac

diam(Xc )

2
, i.e.,

Ψc(e
+
c )−Ψc(ec) ⩽ −

Hc−1
∑

h=0

∥G⊤
c Dh(MHc )

⊤ec∥2+α
pub
c ac

diam(Xc)

2
. □

Theorem 2 (Monotonic Shrinking of Constraint Sets). Suppose As-
sumptions 1, 2, 5 and 6 hold. For all c ∈ C, Jc(·, ·) is continuously dif-
ferentiable, positive definite and strictly convex in its arguments. For

all i ∈ N , the sequence of public scaling factors {(α
pub
i , β

pub
i )(k)}k∈N

with (α
pub
i , β

pub
i )(0) = (1, 1) is monotonic, but in a finite number of

points. Furthermore, the sequence of sets {Xi(α
pub
i (k))}k∈N converges

to a compact and convex set Ω̄N ⊆
∏

i∈N Xi.

Proof. By construction and fixing a topology Λ ∈ T , each

constraint set is scaled at time step k as Xc(k) = α
pub
c (k)Xc and

Uc(k) = β
pub
c (k)Uc . These constraints induce disturbance and RCI

sets according to Lemma 2 for each coalition in Λ, i.e.,

Wc(k) =
( ⨁

d∈Mc

AcdXd(k) ⊕ BcdUd(k)
)

⊕ W
e
c ⊆ γcWc(1, 1)

for some γc ∈ (0, 1) and Ωc(Wc(k)) ⊂ acXc(k). These sets
lead to the definitions of the nominal tightened constraints of
(10); the solution of the optimal control problem (12) for a
nominal state zc(k) yields an optimal sequence V o

c (k) and two

private scaling factors (α
priv
c , β

priv
c )(k) that force zc(k + 1) ∈

α
priv
c (k)Zc(α

pub
c (k), ac(k)). Following Corollary 1, the value func-

tion of the nominal system behaves as a Lyapunov function,
which implies that zc(·) converges towards its equilibrium if the
coalition does not change. Furthermore,

xc(k + 1) ∈ αpriv
c (k)(1 − ac(k))α

pub
c (k)Xc ⊕ ac(k)α

pub
c (k)Xc

4 Let x ∈ Rn , α, β > 0 and a, b ⩾ 1, then β∥x∥a ⩽ ∥x∥b ⩽ α∥x∥a .

9
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since ec(k + 1) ∈ ac(k)α
pub
c (k)Xc by invariance of Ωc(Wc(k)). The

successor state then satisfies:

xc(k + 1) ∈ αpub
c (k + 1)Xc,

where α
pub
c (k+1) = α

pub
c (k)

(

ac(k)+α
priv
c (k)(1−ac(k))

)

, and forms

a decreasing sequence only if α
priv
c ∈ (0, 1) and ac decreases.

We note here that the sequence of {ac(k)}k∈N does not need to
converge toward zero because of exogenous disturbances We

c ; we
claim that there exists a lower bound aec on each ac(k) based on
the exogenous disturbance We

c . In fact, the RCI set Ωc(W
e
c ) ⊆

aecXc , following Lemma 2, is a minimal element in the RCI sets
with respect to the set inclusion since We

c ⊆ Wc(k) for all k ⩾ 0.
The implication of this is that ac(k) ⩾ aec for all k > 0 and
there exists a converging subsequence {ac(kj)}kj . This, together

with the fact that {(α
priv
c , β

priv
c )(k)}k∈N lies in the interior of [0, 1],

implies that {(α
pub
c , β

pub
c )(k)}k∈N has at least an accumulation

point (ᾱ
pub
c , β̄

pub
c ) ∈ (0, 1)2 since by definition all elements of

the sequence are less than 1. Therefore, the state constraints

satisfy Xc(k) → ᾱ
pub
c Xc following the standard arguments of

the set convergence theory (see Rockafellar & Wets, 1998). As
a consequence of Theorem 1, a change of topology implies that
the region of convergence is given by the union over all possible

topologies, i.e., Ω̄N =
⋃

Λ∈T

∏

c∈CΛ
ᾱ
pub
c Xc . □

The set where the constraint sets converge to an invariant set
is composed of two parts: the first one given by the exogenous
disturbance

∏

i∈N We
i and the second one

⋃

Λ∈T

∏

c∈CΛ

⨁

d∈Mc

ᾱ
pub
d AcdXd ⊕ β̄

pub
d BcdUd that captures the effect of using a dis-

tributed controller, i.e., the disturbance arising from exchanging
information between a coalition and its neighbors. The private
scaling factors do not necessarily need to converge; the only
requirement is for them to lie in the interior of the unit interval
to allow the convergence of the public factors. The fact that there
exists a subsequence of the scaling factors that converges implies
that we can allow these sequences to increase or stagnate for
a finite number of steps before returning to a monotonic one.
This fact follows from our recursive feasibility results, which
guarantee that Alg. 1 can find suitable topologies to cope with
the addition of new subsystems that may increase the size of the
disturbance sets.

Corollary 3 (Stability of a Neighborhood of the Origin). Suppose the
assumptions of Theorem 2 hold. The state for the system xN (·) is
asymptotically stable with respect to the set

⋃

Λ∈T

∏

c∈CΛ
Ωc(W

e
c ).

Proof. Given a feasible initial state xN (0), Theorem 1 guaran-
tees that the state evolution is contained within the feasible set
⋃

Λ∈T

∏

c∈CΛ
Xc(1) for all forward times. In addition, Theorem 2

ensures that these feasible sets monotonically converge towards
a compact set Ω̄N . These two facts together imply that there
exists a time k0 for which xN (k0) ∈ Ω̄N ⊕ Bq,2(ε) where Bq,2(ε)
is the 2−ball with radius ε > 0. For all k < k0, the state satisfies
∥xc(k)∥2 ⩽ diam(Xc(α

pub
c (k))) for all c ∈ CΛ for some Λ ∈ T ; the

right-hand side of the inequality is a decreasing function of the
scaling factors, which implies d(xN , Ω̄N ) → 0. Fixing a topology
Λ, using Corollary 1 and Lemma 4, the candidate for the overall
Lyapunov function within Bq,2(ε)⊕

∏

c∈CΛ
ᾱcXc for the composite

system (xN , zN ) is ΥΛ(xc, zc) =
∑

c∈CΛ
JoN,c(zc) + Ψc(xc − zc),

which is an Input-to-State stable Lyapunov function. Further-
more, applying LaSalle’s invariance principle, we can conclude the
asymptotic stability of a neighborhood of equilibrium point. □

7. Illustrative example

We consider the coupled-truck system presented in Trodden
and Maestre (2017), where trucks are coupled by dampers and
springs with their immediate neighbors, as shown in Fig. 3.

Fig. 3. System compound of an array of four coupled trucks. At time step kplug ,

a fifth truck is plugged into the system.

Table 2
Damping factors [N · s/m], spring constants [N/m], and masses [kg].

Damping [N · s/m] Spring [N/m] Mass [kg]

h12 = 0.3 k12 = 0.5 m1,m3 = 3

h23 = 0.4 k23 = 0.7 m2,m4 = 2

h34 = 0.3 k34 = 0.6

Case 1: h45 = 1 k45 = 1.5 m5 = 6

Case 2: h45 = 0.1 k45 = 0.08 m5 = 2

Each truck i is modeled by second-order dynamics:

[

ṙi
v̇i

]



ẋi

=

⎡

⎣

0 1

−
1

mi

∑

j∈Mi

kij −
1

mi

∑

j∈Mi

hij

⎤

⎦

  

Aii

[

ri
vi

]



xi

+

[

0
100

]

  

Bii

ui

+
∑

j∈Mi

⎡

⎣

0 0
1

mi

∑

j∈Mi

kij
1

mi

∑

j∈Mi

hij

⎤

⎦

  

Aij

[

rj
vj

]

+ we
i ,

where the state xi of each truck i is composed of its displacement

from the equilibrium position ri and its velocity vi. Each agent

can apply a horizontal force Fi = Biiui with ui being the control

input. Moreover, we consider a bounded exogenous disturbance

|we
i | ⩽ [0.0025, 0.0025]⊤ for all agents. Table 2 displays the

model parameters used in the simulations that will be performed

for two case studies. A discrete-time model with sample time

Ts = 0.2 s that approximates the continuous-time model is

employed to simulate and control each subsystem.

The control problem is to lead the subsystems from their initial

states: x1(0) = [1.5, 0]⊤, x2(0) = [−0.5, 0]⊤, x3(0) = [1, 0]⊤,

x4(0) = [−1, 0]⊤, and x5(kplug) = [1, 0]⊤ to the origin, while

satisfying constraints |ri| ⩽ 2m, |vi| ⩽ 1m/s, |ui| ⩽ 1N/kg and

handling a plugged subsystem. Therefore, the system is formed by

N = 4 trucks for k < kplug and composed of N = 5 for k ⩾ kplug. At

first, the maximum number of cooperation links is |L| = 3 and

there are eight cooperation topologies T = {Λ1, . . . ,Λ8}; after

the plug-in: |L| = 4 and T = {Λ1, . . . ,Λ16}.

The weighting matrices for the state and input for all i ∈

N are, respectively, Qi = I and Ri = 100, and aggregated

as Qc = diag(Qi)i∈c and Rc = diag(Ri)i∈c . The LQR terminal

controller K f
c = diag(K f

i )i∈c , where K f
1 = [−0.0365,−0.0460],

K f
2 = [−0.0334,−0.0443], K f

3 = [−0.0345,−0.0450], K f
4 =

[−0.0341,−0.0446], K f
5 = [−0.0370,−0.0462], and the terminal

weight matrix Pc = diag(Pi)i∈c , where

P1 =

[

4.3327 −2.7765

−2.7765 3.9817

]

, P2 =

[

4.2137 −2.7240

−2.7240 3.9148

]

,

P3 =

[

4.2571 −2.7424

−2.7424 3.9393

]

, P4 =

[

4.2411 −2.7359

−2.7359 3.9293

]

,

P5 =

[

4.3527 −2.7859

−2.7859 3.9931

]

.
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Fig. 4. Formation of coalitions in the two case studies.

7.1. Simulation results

Two simulations of length Nsim = 40 have been performed

using Matlab
®

on Windows with a PC Intel
®

Core™ i7-8700 CPU
at 3.20GHz and 16GB RAM. We have also used YALMIP (Lof-
berg, 2004) with quadprog solver, the MPT 3.0 (Herceg et al.,
2013), and the PnPMPC toolbox (Riverso et al., 2013). The MPC
methods consider a prediction horizon Np = 10, the upper-
layer period Tup = 5, the parameter τα = 5 · 10−5, and the
cost per active cooperation link clink = 0.1. Since we consider
external disturbances, our proposed tube-based coalitional MPC
algorithm is compared with two other tube-based methods that
do not employ scaling factors: centralized MPC (full cooperation
between agents) and decentralized MPC (without communication
between local agents).

Fig. 4 presents the evolution of the cooperation topology with
the coalitional MPC strategy in two case studies starting with the
great coalition c = {{1, 2, 3, 4}}. Every Tup = 5 time step from
k = 1, the supervisor decides the cooperation topology. In both
cases, for k < 6, there are two coalitions c1 = {1} and c2 =
{2, 3, 4}, and three coalitions c1 = {1}, c2 = {2, 3}, and c3 = {4}
for 6 ⩽ k < 11. Afterwards, in Case 1 (Fig. 4(a)), all agents work
decentralized until a new subsystem i = 5 is connected to the
system in kplug = 16. Since agent i = 4 cannot deal with its new
disturbances, it forms a coalition with agent i = 5 until the end
of the simulation. Conversely, in Case 2 (Fig. 4(b)), the coupling
between agents i = 4 and i = 5 is lower, thus agent i = 4
can handle the increase in disturbances caused by the plug-in
subsystem without collaborating with its neighbors.

The sequence of the outer bounds of RCI sets, the scaling fac-

tors, the volume of sets
(

α
pub
i Xi and α

priv
i Zi(α

pub
i , ai)

)

for Case 1
are depicted in Fig. 5. The outer bounds of the RCI sets are
calculated by solving the LP problem (9) with weights qx = 10

and qu = 1. As shown, the volume of set α
pub
i Xi monotonically

decreases for all i ∈ N despite changes in the scaling factors. The

values of ai and α
pub
i shown in Fig. 5a do not exactly converge

to zero due to the exogenous disturbances we
i , but to very small

values; at k = 40:

⎡

⎢
⎢
⎢
⎣

a1
a2
a3
a4
a5

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0.061
0.018
0.027
0.092
0.092

⎤

⎥
⎥
⎥
⎦

and

⎡

⎢
⎢
⎢
⎢
⎣

α
pub
1

α
pub
2

α
pub
3

α
pub
4

α
pub
5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0.023
0.033
0.030
0.027
0.184

⎤

⎥
⎥
⎥
⎦
.

These variables directly affect the RCI sets (i.e., the cross sections
of tubes), which represent the admissible disturbance set around

Table 3
Numerical results comparison for the two case studies.

(a) Costs in Case 1

Tube methods t̄c [s] Jperf Jcoop Jtotal Jtotal [%]

Cen. MPC 1.13 28.49 14.5 43.99 –

Coal. MPC 0.94 28.94 4 32.94 23.39%

Dec. MPC – – – – –

(b) Costs in Case 2

Tube methods t̄c [s] Jperf Jcoop Jtotal Jtotal [%]

Cen. MPC 1.19 28.57 15 43.57 –

Coal. MPC 0.89 28.93 1.5 30.43 30.16%

Dec. MPC 0.51 29.13 0 29.13 33.16%

the nominal trajectories and are defined as aiXi(α
pub
i ) (recall (10)).

As observed in Fig. 6, the tubes shrink and grow due to the coali-

tion breakups and changes in the scaling factors α
pub
i ,∀i ∈ N (k).5

When a coalition is disbanded or a new subsystem is plugged,
the agents involved or the neighbors are, respectively, subject
to further disturbances and, therefore, at that time instant, their
tubes can grow to cope with more uncertainty. For example, in
Fig. 6, the tubes of agents i = 2 and i = 3 grow at k = 11 due to
its coalition breakdown. At the end of the simulation, the tubes
are as small as possible to cover the external disturbances we

i that
affect each subsystem locally.

Fig. 7 depicts the evolution of position and velocity, and the
control inputs of the five trucks for coalitional MPC and central-
ized MPC in Case 1. As shown, the local states xi = [ri, vi]

⊤ reach
their origin despite the disturbances caused by the plug-in, the
coupling and the external noise.

Finally, Table 3 shows a comparison of the numerical results
obtained with all the MPC methods for the two case studies.

The total cost Jtotal is the sum of the accumulated performance
cost during the simulation:

Jperf =

Nsim∑

k=1

(

∥xN (k)∥2
QN

+ ∥uN (k)∥2
RN

)

,

and the accumulated cooperation cost, which penalizes the num-
ber of links of Λ at the instant k:

Jcoop =

Nsim∑

k=1

clink |Λ(k)|.

The average computing time per coalition, t̄c [s], is calculated as
follows:

t̄c =

∑Nsim
k=1

(
∑

c∈CΛ
tc(k) / |CΛ|

)

Nsim

,

where tc and |CΛ| denote, respectively, the time per coalition
and the total number of coalitions in topology Λ at time step k.
The average computation times of the supervisory layer (Alg. 2)
in the coalitional method for Case 1 and Case 2 are 43.2 s and
58.9 s, respectively. Note that faster implementations would re-
quire more computing power and more efficient programming

languages than Matlab
®
, such as C and C++ programming. Fur-

thermore, the proposed coalitional method brings several other
potential advantages compared to a fully centralized implemen-
tation (e.g., the removal of a single point of failure, and enhanced
privacy/security) that warrant the additional time spent on a
supervisory layer. In any case, a full comparison of the three
methods is more complex and nuanced, as computation time

5 The tube cross section of any agent within a coalition whose cardinality is

|c| ⩾ 2 will be in R⩾4 , so we have projected it in R2 to be able to represent it.
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Fig. 5. Results with the coalitional strategy for Case 1 (kplug = 16).

Fig. 6. Tube evolution of each agent for Case 1 (kplug = 16).

Fig. 7. State and input trajectory of each truck for Case 1 (kplug = 16).
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and closed-loop performance are just two of several aspects to
consider.

As shown in Table 3, our approach achieves close control per-
formance over centralized MPC, which provides the best. Adding
the cooperation costs, the coalitional MPC algorithm outperforms
the centralized MPC with a total cost reduction of 23.39% in
Case 1 (see Table 3a) and a 30.16% in Case 2 (see Table 3b). Note
that the decentralized approach is the most convenient option in
terms of cooperation and computation payload, but may result in
lower performance or even infeasibility due to the difficulty in
managing interactions (e.g., dynamic couplings between subsys-
tems and PnP operations) while ensuring constraint satisfaction.
As shown in the numerical results, the decentralized MPC only
outperforms the other methods in Case 2, where the dynamic
coupling —and especially that between the plugged-in agent and
its neighbor— is weak. However, decentralized control cannot be
implemented in Case 1 because it becomes infeasible due to the
increase in disturbances caused by the plug-in event. This fact
reinforces the need for coalitional strategies to control networked
systems with subsystems joining and leaving the network.

8. Conclusions

We propose a robust coalitional MPC based on optimized
tubes that can handle plug-and-play events. Our approach allows
agents to exchange information about their public scaled con-
straint sets —which shrink as long as the system comes close to
the origin— and to cluster into coalitions to reject disturbances
and improve performance. Scaling factors for constraint sets are
separated into public and private values to create an inherent
robustness margin that allows controllers to locally absorb dis-
turbances without a redesign of the control system. Furthermore,
plug-and-play operations are successfully performed in real time
while maintaining the recursive feasibility and stability of the
system. Another finding is the possibility of plug-in and plug-out
coalitions of agents.

Future research lines are the fully distributed implementation
of the proposed strategy and its application to potential real
systems, such as vehicle platoons and microgrids.
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