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• Socioeconomic development indices can
explain variability in cities' wastemanage-
ment performance.

• SDG11.6.1 indicator: controlled recovery
and disposal: median ca 45 % for cities
in low-income countries.

• Improvements in service quality often lag
those in service coverage (i.e. extent).

• No overall evidence of decoupling socio-
economic growth with waste generation.

• Machine learning and non-linear regres-
sion models each provide different
insights
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Mismanagedmunicipal solidwaste (MSW), themajor source of plastics pollution and a key contributor to climate forc-
ing, in Global South cities poses public health and environmental problems. This study analyses the first consistent and
quality assured dataset available for cities distributed worldwide, featuring a comprehensive set of solid waste man-
agement performance indicators (Wasteaware Cities Benchmark Indicators – WABI). Machine learning (multivariate
random forest) and univariate non-linear regression are applied, identifying best-fit converging models for a broad
range of explanatory socioeconomic variables. These proxies describe in a variety of ways generic levels of progress,
such as Gross Domestic Product – Purchasing Power per capita, Social Progress Index (SPI) and Corruption Perceptions
Index. Specifically, the research tests and quantitatively confirms a long-standing, yet unverified, hypothesis: that
variability in cities' performance on MSW can be accounted for by socioeconomic development indices. The results
provide a baseline for measuring progress as cities report MSW performance for the sustainable development goal
SDG11.6.1 indicator: median rates of controlled recovery and disposal are approximately at 45 % for cities in low-
income countries, 75 % in lower-middle, and 100 % for both upper-middle and high-income. Casting light on aspects
beyond the SDG metric, on the quality of MSW-related services, show that improvements in service quality often lag
improvements in service coverage. Overall, the findings suggest that progress in collection coverage, and controlled
recovery and disposal has already taken place in low- and middle-income cities. However, if cities aspire to perform
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better on MSW management than would have been anticipated by the average socioeconomic development in their
country, they should identify ways to overcome systemic underlying failures associated with that socioeconomic
level. Most alarmingly, ‘business as usual’ development would substantially increase their waste generation per capita
unless new policies are found to promote decoupling.
1. Introduction

The concept of ‘waste’, its management to protect public health and the
environment and its reduction through the circular economy, is key to
sustainable development. Solid waste collection was introduced as part of
the public health response to cholera epidemics (Strasser, 1999), and envi-
ronmental controls explicitly associated with waste recovery and disposal
were introduced from the 1970s (Wilson, 2007), yet substantial amounts
of mismanaged MSW remain, particularly in the low- and middle-income
countries that are still perceived as environmentally developing (often
collectively referred to as ‘Global South’) (UNEP and ISWA, 2015).
Mismanaged MSW is the major source of plastics entering the oceans
(Jambeck et al., 2015; Lau et al., 2020), and contributes substantially to
climate change via biodegradation of food wastes generating methane
(Bogner et al., 2008) and open burning of plastics generating black carbon
(Wiedinmyer et al., 2014; Reyna-Bensusan et al., 2019).

To progress further towards sustainable waste and resource manage-
ment, and wider circular economy, in cities, requires an understanding of
the current baseline and of how a city's performance varies with its socio-
economic conditions. Previous global comparisons have been limited and
constrained by scarce and inconsistent data, due to a lack of standard
definitions, measurements, and standard methodologies and systems for
reporting (UNEP and ISWA, 2015, Kaza et al., 2018a, 2018b). Key recent
reports by the World Bank Group ‘What a Waste 2.0’ (WaW2.0, hereafter)
(Kaza et al., 2018a, 2018b) and a related update (Kaza et al., 2021), com-
piled available country and city data, featured curve-fitting only for waste
generation and associated with just country level to Gross Domestic Prod-
uct – Purchasing Power Parity (GDP-PPP) and it remains unclear whether
point by point quality control was applied. Significant recent general world-
wide overview analyses (Kawai and Tasaki, 2016; Bundhoo, 2018; Das
et al., 2019) do not include new statistical analysis; only one used econo-
metrics to relate waste treatment/disposal at country level to GDP-PPP
(Tisserant et al., 2017). A still untested theoretical proposal 20 years
ago suggested that solid waste management could be a useful and visible
proxy indicator of urban governance (Whiteman et al., 2001). An empiri-
cally informed theorising on stages of progression of waste management
systems in association with developmental level was published recently
but features no quantitative data analytics (Whiteman et al., 2021).
Much-needed future scenarios studies (Gómez-Sanabria et al., 2022)
therefore are inevitably based largely on questionable baselines and specu-
lated or indirect associations with level of socioeconomic development.

In this original data analytics a database is used (VelisEtAl2023_WABI_
Input.xlsx), generated specifically to allow the comparison of cities' Solid
WasteManagement (SWM) systems on a consistent basis. This city profiling
methodology was developed for UN-Habitat (Scheinberg et al., 2010); the
data for the original 20 cities was later analysed with very limited curve-
fitting against Gross National Income (GNI) per capita andHumanDevelop-
ment Index (HDI) (Wilson et al., 2012). The methodology was further
developed to become the Wasteaware Benchmark Indicators (WABI)
(Wilson et al., 2015a), explained also in a detailed user manual (Wilson
et al., 2015b). WABI include a comprehensive set of quantitative and
qualitative indicators, covering the ‘physical’ and ‘governance’ aspects of
integrated sustainable waste management, and organised within six differ-
ent topic categories. They measure the performance of waste and resources
management across global cities.

This study uses a sub-set of the set of quantitative WABI that are linked
to the sustainable development goal (SDG) indicator 11.6.1 within SDG11
on sustainable cities (United Nations (UN), 2015) (Section 2.1: Data
2

sources), which relates to the proportion of MSW collected and managed
as a fraction of total MSW by cities (Fig. 1). Collection and disposal are
assessed by traditional extent of service indicators coupled with novel com-
posite indicators attempting to assess the quality of the services provided. In
this context, theWABI database for 40 cities, the only current source of data
on ‘controlled recovery and disposal’, with the data moderated to ensure
comparability, is used to deliver a baseline for analysing the performance
of cities. In the coming years, results will bemade available for a newmeth-
odology called Waste Wise Cities Tool (WaCT), which is inspired in part by
the WABI, and intends to provide a standardised methodology for data
gathering just on SDG11.6.1 (UN-Habitat, 2020) (https://unhabitat.org/
waste-wise-cities). Beyond the narrow reporting for the SDGs, the service
level indicators corresponding to the SDG 11.6.1 are complemented here
by parallel indicators of the quality-of-service provided, allowing deeper
comparative insights between cities. These advantages outweigh the rela-
tively small sample size of cities available to analyse – a side effect of the
data-intensive nature of the WABI composite indicators. The WABI also
include indicators for the 3Rs (reduction, reuse and recycling). These are
clearly important for the overall performance of a city's combined solid
waste and resource management system, but this paper focuses on aspects
linked to SDG target 11.6.

This paper reports thefirst comprehensive quantified analysis to test the
hypothesis that variability in cities' performance on MSW can be accounted for
by indices of socioeconomic development, by applying a variety of regression
analyses and machine learning models to a broad range of explanatory
variables. The results offer statistically evidenced insights to permit debate
on the performance of world cities in managing their waste, and why some
cities appear to ‘over-’ ‘or ‘under-’ perform compared to their socioeco-
nomic development level.

2. Methods

2.1. Data sources

We collected and analysed data for the Wasteaware Benchmark Indica-
tors (WABI) cities. The WABI methodology is a comprehensive set of indi-
cators, aimed at measuring the overall performance of a city's municipal
solid waste management (MSW) system (Wilson et al., 2015a). The
WABIs methodological approach is available in a detailed manual (Wilson
et al., 2015b) and is summarised here: WABIs overall methodological ap-
proach is based on a ‘city profiling’ process where the city's solid waste
and resources management performance is assessed for a reference year
by collation and analysis of mainly secondary data, complemented with
on-site investigations. The assessment is performed for a series of indica-
tors, many of which are composite. Those composite indicators in WABIs
were generated by assessing against five or six criteria, with scores against
each assessed at one of five levels, corresponding to zero, low, medium,
medium/high or high level of compliance.

2.1.1. WABIs sub-set
We limited the analysis to the sub-set of WABI indicators relevant to the

SDG 11.6.1 (‘Waste Wise Cities’ methodology, developed by the UN-
Habitat as the custodian of SDG 11.6.1 (UN-Habitat, n.d.), defined as:
‘Proportion of municipal solid waste collected and managed in controlled
facilities, out of total municipal solid waste generated, by cities’). The WABI
approach can be considered as one of the main formative key bases for
informing the recently released WaCT methodology, and are therefore
directly relevant. The five relevant indicators are: (1) Waste Collection

https://unhabitat.org/waste-wise-cities
https://unhabitat.org/waste-wise-cities


Fig. 1. A, B. (A): 40 cities across the World, covering all World Bank country income categories, for which their waste and resources management performance was
consistently assessed with the Wasteaware Benchmark Indicators (WABI) methodology (Wilson et al., 2015a; Wilson et al., 2015b). Performance for five WABI indicators
is stated for each by colour coding, from most well performing (green) to least well performing (pink), in line with the WABI methodology bands, banding which are also
detailed in Figs. 3, 4 and 5. Dark grey denotes missing data. Colour coded country income categories showing cities in Low (L), Lower-Middle (L-M), Upper-Middle (U-M)
and High (H) countries, as per the World Bank Atlas methodology (Section 2.1.2: WABI city cases dataset). (B): The 5 WABI used in this study – they all relate to aspects
of the SDG indicator 11.6.1, defined as: ‘Proportion of municipal solid waste collected and managed in controlled facilities, out of total municipal solid waste generated, by cities.’

C.A. Velis et al. Science of the Total Environment 872 (2023) 161913
Coverage indicator (I-1.1), measuring directly or via a proxy the proportion
of households served with a regular and reliable collection service;
(2) Quality of Waste Collection Service (I-1C), which assesses the quality of
the waste collection service against a set of six criteria using a standardised
protocol; (3) Controlled recovery and disposal (I-2) indicator that measures
the proportion of waste collected that is received at controlled recovery
and disposal facilities (excluding what is reused or recycled); (4) Degree of
environmental protection in controlled recovery and disposal (I-2E), the comple-
mentary to I-2, ‘quality’ indicator. We also included accompanying data on
MSW generation, reported as part of the same city profiling efforts:
3

(5) Waste generation rate (I-0), reported as total MSW generated per year
per person (Kg.y−1.p−1), which is part of the background data collected,
checked and reported when implementing the WABIs methodology.

2.1.2. WABI city cases dataset
The data were collected through the WABI profiling of 40 cities over a

period of years (2009–2016) (VelisEtAl2023_WABI_Input.xlsx) facilitated
by co-authors' custodianship (D.C.W, C.A.V and A.D.W.). Therefore, some
of the cities were profiled with a previous version of the WABI, which did
not include information on I-1C and I-2E: for these two indicators a smaller
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dataset was available. Selection of cities for profiling was random and ad-
hoc, not identified with an up-front prescribed stratified sampling plan,
but informed by the willingness of the city authorities and the availability
of resources to conduct the WABI profiling. Despite this potential method-
ological limitation, the city profiling resources and quality assurance efforts
were allocated so that the cities sample accounts for major variabilities en-
countered on the ground. First, dispersion of the case cities geographically
covers the entire world (six inhabited continents) (Fig. 1), encompassing
cultural variability. Second, they are spread across the entire socioeco-
nomic development spectrum, as estimated via the GNI per capita, as rec-
ommended by the World Bank by categorising countries into four main
development groups using their World Bank Atlas methodology (https://
datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-
the-world-bank-classify-countries): Low (L), Lower-Middle (L-M), Upper-
Middle (U-M) and High (H). Third, the case cities also are spread across
different population sizes: from 27 thousand, Ghorahi, Nepal, to 16 million
for Delhi, India.

2.1.3. Explanatory variables
Our hypothesis is that the variability in cities' performance onMSW can

be accounted for by indices of socioeconomic development. We have tested
this hypothesis by applying a variety of regression analyses and machine
learning models (Section 2.3: Data analysis – models and validation) to a
wide set of explanatory variables (independent predictors), each of them
broadly associated with level of socioeconomic development of a country.
An initial set of 30 potentially suitable explanatory variables was collated
based on the authors' expert opinion and by reference to the limited
relevant literature and preliminary runs of models led to progressive elim-
ination for the two-thirds of them down to 9 (Table S4 and Fig. 2) due to
Fig. 2. A, B. Model selection analysis for each WABI indicator. (A): Best-fit regression m
variables were the most important for the waste generation rate and waste collection c
controlled recovery and disposal aspect. Less dominance by a single variable was obser
formula. (B): Multivariate conditional random forest analysis (Section 2.3.2: Appro
predictive equations for best explanatory variable. Comparative: RMSE values are give
two approaches, but the multivariate approach predicts slightly better. I-0: There is an
good predictor by itself. I-1.1: Very strong unimodal dominance, and no agreement bet
in the univariate analysis, with a much better multivariate predictive performance.

4

data availability or because of not rendering any statistically converging
models. The key inclusion criterion for selecting thefinal set to run the com-
plete data analytics was the comparatively wide availability of these ex-
planatory variables for cities around the world: this could theoretically
enable future users of our results to interpolate for cities that were not
profiled by WABI, subject to suitable models been fit. Notably, such a
final set of explanatory variables had to be decided, because part of the
analyses conducted (Section 2.3.2: Approach 2: conditional random-
forest) accounts for potential ‘interactions’ between them.

The country for each city and reference year in which it was profiled was
used to obtain the corresponding value for each of the 9 independent explan-
atory variables, because these change over time. Notably, all 9 explanatory
variables assess performance across countries rather than of individual cities.
This is due to the absence of any comprehensive set of socioeconomic indica-
tors describing the performance of cities across the world. A possible alterna-
tive could have been use of the gridded city/ regional GDP-PPP and HDI
values (Kummuet al., 2018); however, these are available only for the biggest
metropolitan agglomerations of theworld and this would force us to limit our
analysis only to those, andwould render results not relevant for smaller cities
in our dataset. Furthermore, not even this indicator is measured at local level,
but estimated by an allocation process from regional level data, introducing
therefore different additional sources of uncertainty. In any case, the use of
country-level indicators here results in introducing a possible bias in each
of the independent explanatory variables, to the degree that the performance
of each city deviates from the country average. Therefore, it renders fitting
converging models and the examination of our hypothesis more difficult.
We speculate that if we were able to use socioeconomic indicators at city
level, it would have been easier to discover potential associations and the pre-
diction intervals should in principle decrease; yet this is still to be tested and
odel (Section 2.3.1: Approach 1: non-linear regression analysis): GDP PPP related
overage, and variables relating to social progress were the most important for the
ved for the quality of waste collection services. Bar colour indicates the regression
ach 2: conditional random-forest): Relative variable importance is listed for the
n in the lower corner of each panel. I-1c and I-2E: There is agreement between the
agreement, but univariate is slightly better than multivariate. GDP can be used as a
ween the approaches. Almost no difference in predictive ability. I-2: No dominance

https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-the-world-bank-classify-countries
https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-the-world-bank-classify-countries
https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-the-world-bank-classify-countries
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should be considered in the future, if suitable datasets are made available
in the literature.

2.2. Data preparation

2.2.1. WABI dataset quality assurance
The WABI dataset from published sources and background database

(Table S2) for the five indicators considered here (Table S1 and as detailed
elsewhere (Wilson et al., 2015a, Wilson et al., 2015b)), were cross-checked
and corrected if needed. The WABI profile of each city has been quality
assured via a triple stage process. First, the city profilers were selected to
possess the waste and resource management expertise to understand rele-
vant systems on the ground and trained on the WABI methodology; they
are typically consultant/practitioners or supervised researchers, and have
local knowledge. Second, the profiling outcome has been cross-checked
by a group of experts, comprising the authors of the methodology for qual-
ity assurance purposes. Acceptable source data pedigree and scoring justifi-
cations were verified. Typical checks included confirming that the numbers
reported resulted from accurate sourcing and were properly referenced,
and the indicator definitions and guidance were accurately applied by the
city profilers. For example, recurrent errors were identified, such as
reporting waste generation rates that included construction and demolition
waste. This step included checking the relevance for some indicators. For
example, inclusion of information on informal recycling sector is antici-
pated for cities in the Global South. Third, accuracy of the composite indi-
cator calculations was confirmed (in standard profiling process are largely
automated via a spreadsheet). So each of the WABI data points is based
on sourcing and collation of extensive secondary and primary data, rigor-
ous processing and scrutiny for quality assurance effort to be collated.

Post the triple quality assurance, descriptive statistics was performed on
each of the five dependent WABIs variables (WABI: I-0, I-1.1, I-1C, I-2, and
I-2E) summarised in Table S3. Any apparent outliers/extreme values were
examined for correctness. In very few certain occasions, this check revealed
a difficulty to accurately define the value, due to ambiguity in the WABI
definition or because of the special character of the city case. For example,
Ghorahi sits alongside Maputo, as a Low-income category city achieving a
comparatively high collection coverage. Here, the issue is where does one
set the ‘city’ boundary: if one considers just the ‘urban area’, then the collec-
tion coverage is at 88 %, used here; if one considers the whole administra-
tive area, including the unserved rural periphery, the collection coverage
would drop to 52 %, closer to the current average line of Fig. 4A. This
case also demonstrates the importance of a case by case quality manage-
ment, as it was applied here.

2.2.2. Apparent outlier handling
No apparent statistical outlier/extreme value that remained after the

quality control was excluded from the data analytics, despite the potential
difficulty that could arise infitting convergingmodels. Thesewere assumed
to be strong yet actual over- or under-performing cases, from which valu-
able insights could be gained. Where feasible, explanations were sought
in the contextual information about the waste and resources management
in that city either in the detailed WABI city profile justification or in the
literature. Any gaps in data (dependent and independent variables) were
suitably coded so that they do not affect the data analytics.

2.3. Data analysis – models and validation

Data analytics and plotting were performed in R (4.0.3) (https://www.
r-project.org/), including generic descriptive statistics, for example for the
statistics displayed the box-plots. To test our overarching hypothesis, we
used two complimentary approaches: (1) non-linear regression analysis,
and (2) conditional random-forest.

2.3.1. Approach 1: non-linear regression analysis
We relied on non-linear regression analysis under a model selection

approach to understand which explanatory variable best explains each
5

dependent variable, while allowing several potential forms of the relation.
As we were mostly interested in comparing the different explanatory
variables relation to each of the different WABI and less in generalization
to additional cities; and given the size of the dataset, we have not split
the data to separate training and validation sets. Instead, we repeated the
following procedure for each of the five dependent variables. First, we
removed from the dataset any case with missing values for the dependent
or any of the 9 explanatory variables. Next, we fitted for each pair of depen-
dent and explanatory variable four models, using either a linear, a second
order polynomial, a logarithmic or a sigmoid formulas (Table S5 and
VelisEtAl2023_WABI_Summary.xlsx). Non-linear regression analysis was
based on the Levenberg-Marquardt algorithm for model convergence
(package ‘minpack.lm’ in R). We assessed the performance of each fitted
model with both the Root mean square error (RMSE, Eq. (1)) and the
Symmetric mean absolute percentage error (SMAPE, Eq. (2)), as well as Akaike
Information Criteria Corrected for small sample size (AICc).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
n ŷn−ynð Þ2=N

h i
2

r
ð1Þ

SMAPE ¼ 2 � ∑N
n ŷn−ynj j= ŷnj j þ ynj jð Þ� �

=N ð2Þ

with N being the number of cases, byn the predicted value for case n and yn
the observed value of case n. We also estimated the confidence intervals at
significance level α= 0.05 (the range of a mean value for a given X: 95 %
that the truemean value falls within this intervals); and prediction intervals
(range of a single observation for a given X: 95 % that a new sample would
fall within these interval).We relied on the second order polynomial Taylor
expansion as implemented in the ‘propagate’ R package (propagate::
predictNLS).

After fitting a total of 36 models (4 shape functions and 9 explanatory
variables) per dependent WABI variable, we performed a two-step model
selection analysis using the calculated AICc values. In thefirst step,we iden-
tified for each explanatory variable the formula that had the lowest AICc
value (out of the four fitted model). We then kept only the single best
model of each explanatory variable and used it to identify the overall best
model and to calculate the AICc weight of each explanatory variable. We
have not taken all 36 models in a single model selection table, since some
of the formulas can converge to one another (e.g., second order polynomial
can become a linear model if the a3 coefficient converges to 0), thereby,
artificially inflating the relative importance of the explanatory variable.
The two-step model selection procedure allowed exploration of multiple
potential shapes of relation for each explanatory variable, while comparing
the explanatory variables with equal representation.

The advantage of the non-linear regression analysis elaborated here is
that projections can be made with a single variable, increasing therefore
the potential coverage tomany city cases for which we do not have detailed
data on the socioeconomic indices (explanatory variables). We note, how-
ever, that our dataset coverage is limited, and that we have not explored
quantitatively themodels' ability to generalize to non-sampled cities. None-
theless, basing the analysis on a single variable is considerably less demand-
ing on information availability for explanatory variables, e.g. possible data
gaps in HDI or any other socioeconomic index in comparison to ‘Approach
2’ where multiple explanatory variables are required.

2.3.2. Approach 2: conditional random-forest
A key limitation of the simple non-linear regression approach imple-

mented here (Approach 1) is that it does not account for potential interac-
tions between explanatory variables. Adding interaction to the candidate
model list would increase its length considerably, especially if we wished
to explore various potential curve forms for each explanatory variable
and interaction term, and/or allow complex interaction between more
than two explanatory variables. Therefore, we used conditional random for-
est (Strobl et al., 2008; Hapfelmeier and Ulm, 2013) to explore the relative
importance of the different explanatory variables, while allowing for com-
plex interactions between them. For each dependent variable we fitted a

https://www.r-project.org/
https://www.r-project.org/
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conditional random-forest algorithm against all explanatory variables as
implemented in the ‘party’ R package, using the maximum number of
cases with full data. Each conditional random-forest was based on 1000
trees,with theminimum sumofweights in a node to be considered for split-
ting (minsplit) and the minimum sum of weights in a terminal node
(minbucket) set to the number of cases divided by 4 and 6, respectively.
We then extracted for each explanatory variable the conditional variable
importance, based on the change in mean decrease in model accuracy
when conditionally permutating each variable. We used the RMSE index
to compare the predictive ability of conditional random forest model to
the top ranked model (high highest AICc weight) for each dependent vari-
able. Aswewere mostly interested in the comparative variable importance,
which necessitates permutation of the same data that is used to train the
model, we have not applied a cross-validation procedure for validation.

2.4. Comparison with WaW2.0 (waste collection coverage)

For the majority of theWABI indicators there are no published statistics
with worldwide coverage of cities to compare against in the literature.
The most relevant information pertains to the WABI Waste Collection
Coverage (I-1.1) indicator for which some partly comparable data were
released as part of the datasets of WaW2.0 publication of the World Bank
Group (WBG) (Kaza et al., 2018a, 2018b). However, these are only pre-
sented in bar-charts of individual values per WBG income category
(Figs. 3.4, 3.10, 3.16 and 3.21 in the WaW2.0 publication). To this we
have performed basic descriptive statistics to the WBG dataset (Kaza
et al., 2018a, 2018b). Before that the dataset was cross-checked for obvious
mistakes/typos (impossibly extreme values: e.g. only 40% collection cover-
age for Wellington, New Zealand, one of the most environmentally devel-
oped places around the world) and these were omitted from the analysis.

Caution should be exercised in the comparative assessment of these two
datasets due to methodological differences in the definition and wider data
processing. For the WABI definition,Waste Collection Coverage is measured
directly or via a proxy as the proportion of households servedwith a regular
and reliable collection service. For the WaW2.0 four different definitions
are possible and the maximum (least conservative) value of the four possi-
ble ones, whichever are available is selected as the true value. Another
methodological difference relies on the representativeness of the datasets:
while the WaW2.0 initially contained 250 cities (a much higher number
than the 40 in WABI), no quality control has been applied to cross validate
the individual data entries resulting in certain erroneous values, and there
is a potential positive bias towards Indian cities (39 in the database) in com-
parison with China (only one: Beijing); vs. WABI which are distributed all
over the world. As explained, no data analytics (statistics or curve fitting)
has been reported by the WBG.

3. Results

3.1. Global baseline links to socioeconomics

The WABI database points used in this work (Fig. 1) provide a world-
wide baseline, mapping 40 cities, across the spectrum of population size,
the four major country income categories and all six inhabited continents.
For each city, data are shown for waste generation per capita, collection
coverage and controlled recovery (treatment) and disposal. This analysis es-
tablishes that it is possible to use country-level socioeconomic development
indices to explain the variability in performance of MSW management
systems in cities around the world.

Fig. 2 summarises the results for 5 WABIs included in Fig. 1, with the
best-fit regression model for each single explanatory variable (Fig. 2A)
and conditional variable importance from a multivariate conditional
random forest analysis (Fig. 2B) which takes as input all 9 explanatory var-
iables and accounts for potential interactions between them (Section 2.3.2:
Approach 2: conditional random-forest). GDP per capita (using the purchas-
ing power parity PPP definition) is the most powerful single explanatory
variable for two of the WABI, waste generation rate and collection
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coverage. Each of the other three WABI has a different dominant single
variable, namely social progress index - opportunity (SPI-3: measuring
‘opportunity’ aspects), corruption perception index (CPI) and gross national
income (GNI –Atlas definition) per capita. For themultivariate analysis, the
best fit models involve significant contributions from between four and
seven of the nine variables. Additional significant variables are human
development index (HDI), urban population in a country, adult literacy
rate and percent of population with at least secondary education. The
only variable that was intuitively considered relevant, but which showed
comparatively negligible explanatory power was the environmental protec-
tion index (EPI). Notably, the EPI version used here included measure of
waste management (Table S4), whichwas dropped in the recent EPI defini-
tion updates but the dimension, informed by the WABI evidence presented
here, should likely be reinstated in the future version.

Regarding predictive power, the random forest multivariate models
generally outperform the univariate models. For service quality indicators,
themultivariate root mean square error (RMSE) is 36% lower than the best
univariate model for collection, and 29 % lower for recovery and disposal;
while for the controlled disposal rate, RMSE is 14 % lower. For collection
coverage, the two approaches are similar: the sigmoid fit using GDP-PPP
has RMSE 1 % lower than the multivariate model, although the latter
makes minimal use of GDP-PPP. The exception is waste generation per
capita: the single variable GDP-PPP linear regression has RMSE 7 % lower
than the best multivariate model.

3.2. Socioeconomic development associated with a linear increase in MSW
generation

Waste generation rate per capita is one of the most important and
widely reported indicators for SWM systems, and is critical for formulating
waste management plans, investment projects and operations. Expressed
here it corresponds to the I-0: Waste generation rate, an addition to the
standard WABI. The MSW data for cities show a wide range, from 119 to
995 Kg.y−1.p−1, withmedian at 276 Kg.y−1.p−1. Low and Lower-middle in-
come countries show a similar median, within the ‘green’ band threshold of
250 Kg.y−1.p−1; which increases substantially with income level (Fig. 3D).

Several socioeconomic indices can serve as an explanatory variable
capable of modelling the variability in MSWwaste generation rate of cities
(Fig. 2). The best fit is linear with country-level GDP-PPP per capita
(Fig. 3A); followed by a second order polynomial relationship with HDI
(Fig. 3B); and third best a country-level GNI per capita (Fig. 3C). Each of
these univariate models has better predictive ability than the best fit
random forest multivariate model (Fig. 2). There is considerable variability
in the data, but a very strong positive correlation between the amount of
waste generated in urban environments by individuals and the wider
level of socioeconomic development of the country is observed. This
confirms previous positive correlations reported in the GWMO (UNEP
and ISWA, 2015) and WaW2.0 (Kaza et al., 2018a, 2018b). Most previous
analyses have been made at country level, and have been constrained by
poor and inconsistent data; indeed, researchers (Kawai and Tasaki, 2016)
concluded that their compiled national dataset was too ‘noisy’ tofit a corre-
lation with GDP. Predicted generation rates for cities from the model
applied here are consistently higher than those predicted for entire coun-
tries by WaW2.0 (Kaza et al., 2018a, 2018b), which concurs with expecta-
tions that living standards, consumption andwaste generation are higher in
urban than in rural areas, particularly in low- andmiddle-income countries.

From all available data waste generation per capita is much greater in
higher-income than lower-income countries. Historical data suggest sub-
stantial increases took place between 1980 and 2000 –with a 58% increase
in waste per capita observed for OECD data for the then EU-15 (The
Association of cities and regions for recycling and sustainable resource
management (ACR+), 2009), while GDP-PPP per capita over the same
period grew by around 100 % (OECD, 2020). In the following five years,
GDP increased by 70 % (USD $27,325 in 2005) (Macrotrends, 2020),
while waste per capita only grew by 4.6 % (The Association of cities and
regions for recycling and sustainable resource management (ACR+),



Fig. 3. A–D: Waste generation rate. (A): Waste generation rate is best explained by a linear model against the mean GDP-PPP per-capita associated with the country the city
belongs to and for the year of thewaste generation ratemeasurement. Black line is thefitted curve, dark grey shade the confidence interval and light grey shade the prediction
intervals, while points colour corresponds to the income categories of (D). (B): Second-best fit is by country level human development index (HDI). (C): Third-best fit is by
country-level Gross National Income (GNI) per capita (Atlas definition). (D): Summary statistics: overall and per GNI income category, as defined by the World Bank Group.
Boxes represent the inter-quartile range with the median as a horizontal line. Hinges are 1.5 times the inter-quartile range, while points outside the hinge are statistical
outliers. Colour coding in four performance bands: most well performing (green) to least well performing (pink), performance defined here for absolute quantities,
irrespective of socioeconomic category.
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2009), which led tomultiple claims that ‘decoupling’was taking place. Sev-
eral studies concluded at the time that the evidence for such decoupling
was at best weak (Mazzanti and Zoboli, 2008; Fell et al., 2010). Since
then, several authors have searched for evidence at a relatively local level
in for example Switzerland (Jaligot and Chenal, 2018) and Australia
(Madden et al., 2019). The notion of ‘decoupling’ despite dominating the
agenda for implementing the post-2015 SDGs, is loosely defined (Fletcher
and Rammelt, 2017). Even if decoupling is eventually proven to exist at
higher income levels, the strong link between waste generation and socio-
economic development still exists at lower-income levels.

3.3. Assessment of quality of waste collection needed along with collection coverage

Collecting waste is a core utility service underpinning public health; is
embedded within SDG targets 1.4 and 11.6, and is explicitly measured as
a core part of SDG indicator 11.6.1: the proportion of total waste generated
that is collected (UN-Habitat, 2020). The WABI dataset names this Waste
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collection coverage (WABI: I-1.1), which sits alongside a parallel indicator
which assesses the Quality of waste collection service (WABI: I-1.C) against
a set of six criteria using a standardised protocol (Wilson et al., 2015a).
The results are summarised in Fig. 4 and descriptive statistics in Supple-
mentary Information (SI) (SI.3, Table S3). Fig. 4A shows the best fit curve
using a sigmoid model against GDP-PPP per-capita. The inflection point
of the curve indicates a division into two main parts. At lower-income
levels, collection coverage increases roughly linearly. At higher levels
most cities approach or reach the SDG target of universal waste collection;
this transition is estimated here as between USD 5000–8000 GDP-PPP per
capita. Some lower-income countries, however, are observed to perform
better than some high-income cities.

Assessing the performance of a city's waste collection requires indica-
tors for both service level (collection coverage) and service quality
(Fig. 4A and B, respectively). Data for the latter (WABI: I-1C) feature a min-
imum at 29 % and median at 66 %, unlike collection coverage, where the
one peak is around 100 % (histogram at Fig. S1 – WABI: I-1.1). Fig. 2



Fig. 4. A–E: Waste collection and quality. (A): Waste collection coverage was best explained by a sigmoid model against the GDP-PPP per-capita for the year in which the
variable was measured. (B): Quality of waste collection coverage was best fitted by a logarithmic model against the Corruption perceptions index. (C): Plotting the quality of
waste collection coverage against waste collection coverage reveals that most cases are below the line of unity (dotted black line). (D, E): Summary statistics for the two
WABI variables: overall and per GNI income category, as defined by the World Bank Group. Boxes represent the inter-quartile range with the median as a horizontal line.
Hinges are 1.5 times the inter-quartile range while points outside the hinge are statistical outliers. In (A) + (B), black lines are the fitted curve, dark grey shades are the
confidence interval and light grey shades are the prediction intervals. Points colour corresponds to the income categories of (D) and (E). Colour coding in five
performance bands: most well performing (green) to least well performing (pink), in line with the WABI methodology bands.
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showed that a relatively complex 7-variable multivariate model provides
the best fit, with an RMSE 36 % better than for the best fit regression
model, which was a logarithmic model of Corruption perceptions index
(Fig. 4B). Comparing the extent of coverage vs. quality in Fig. 4Cmost cities
lie below the line of unity, showing that improvements in service quality
often lag improvements in service coverage.

3.4. Progress through elimination of open dumping and burning

WABI indicator I-2 is Controlled recovery and disposal, that is the propor-
tion MSW remaining after recycling and reuse which goes to either a state-
of-the-art, engineered or ‘controlled’ recovery/disposal site (Table S1).
Achieving 100 % on this indicator eliminates open dumping and burning
of MSW; which aligns with the second part of SDG indicator 11.6.1
and an important step towards environmentally sound management (SDG
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target 12.4) (UNEP and ISWA, 2015). The definition of what is a
‘controlled’ facility focuses primarily on operational control, rather than en-
gineering/design (Wilson et al., 2015a; UN-Habitat, 2020). Fig. 2 shows
that a six variablemodel gives a 14% betterfit to the data than the best uni-
variate model: the dominant explanatory variables are percentage of urban
population in the country andHDI. Five different single variables show lim-
ited explanatory power: the best fit is logarithmic with GNI per capita
(Fig. 5A). The graph reflects two spikes in the distribution (bimodal) of
this indicator in the WABIs database (Fig. S1 – WABI: I-2), one at 100 %
(20 cities) and the other at 0 % (7 cities) – each facility is either controlled
or not, and many cities have relatively few recovery/disposal facilities, so
that many cities may be scored as either entirely ‘controlled’ or entirely
‘uncontrolled’. It should be noted that ‘controlled’ status is not an end in
itself, but corresponds to ‘basic control’ on the recent WaCT five point
‘control ladder’ (none, limited, basic, improved, full control) (UN-Habitat,



Fig. 5. A–E: Waste recovery and disposal. (A): WABI: I-2, the rate of controlled recovery and disposal was best explained by a logarithmic model against the social progress
index. (B): The quality indicator WABI: I-2E Environmental protection of waste recovery and disposal was best explained by a linear model against the social progress index 3
(opportunity). (C): Plotting the environmental protection against the controlled recovery and disposal a trade-off between the two (the dotted black line is the line of
unity). (D, E): Summary statistics for the two WABI indicators: overall and per GNI income category, as defined by the World Bank. Boxes represent the inter-quartile
range with the median as a horizontal line. Hinges are 1.5 times the inter-quartile range while points outside the hinge are statistical outliers. In (A) + (B), black lines are
the fitted curve, dark grey shades are the confidence interval and light grey shades are the prediction intervals. Points colour corresponds to the income categories of
(D) and (E). Colour coding in five performance bands: most well performing (green) to least well performing (pink), in line with the WABI methodology bands.
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2020), where full control relates to ‘environmentally sound management’
(ESM) as in SDG 12.4.

TheWABI indicator for controlled recovery and disposal (I-2) is accom-
panied by a complementary indicator of service quality, here termed the de-
gree of environmental protection (I-2E). Fig. 2 shows that the dominant
explanatory variable for the quality indicator is the social progress index
– opportunity 3 (SPI-3), which comprises sub-indicators on: Personal Rights;
Personal Freedom and Choice; Tolerance and Inclusion; andAccess to Advanced
Education. Including relatively small contributions from six other variables
enables the best fit multivariate model to provide a 30 % lower RMSE than
the linear best fit univariate model (Fig. 5B). As in all the correlations, all
the cities with available data have been included; including in this case,
the explainable high-performing case of Sofia, Bulgaria, which meets EU
standards for waste management. Fig. 5E shows that the median degree
of environmental protection increases with income level category.
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Comparing their rate of control with theirDegree of environmental protec-
tion (WABI: I-2 vs. 1-2E) in Fig. 5C, some lower-income cities sit above the
line of unity while most cities lie below. This can be explained as the WABI
definition of a controlled facility requires at least a medium rating (10 out
of 20) for three of the six ‘quality’ criteria, relating to the degree of control
over waste reception and general site management, and waste recovery and dis-
posal, and the degree of monitoring and verification of environmental controls.
Lower-performing cities often achieve some level of control, even though
the facilities remain ‘uncontrolled’, while cities first achieving ‘control’
have some way to go to reach a high rating on these criteria, to equate
with meeting the SDG target 12.4 of environmentally sound management
(ESM). Similarly,most low- andmiddle-income countries will achieve aver-
age scores against the remaining criteria relating to efficiency of energy
generation and use (where applicable); technical competence in planning,
management, and monitoring; and occupational health and safety.



Table 1
Comparing baseline values for waste collection coverage: our results vs. WaW2.0.

Socioeconomic
development level

Waste collection coverage

WABI
city
(Median)

WaW2.0 report WaW2.0
database***

National
averages*

Urban** Rural** Cities

Low income 57 % 39 % 48 % 33 % 60.5 %
Lower-middle 95 % 51 % 71 % 33 % 86.8 %
Upper-middle 96 % 82 % 85 % 45 % 98.5 %
High income 100 % 96 % 100 % 98 % 100 %

*Fig. 2.10 in the WaW2.0 publication. **Fig. 2.11 in the WaW2.0 publication.
WABI – Wasteaware benchmark indicators. WaW2.0 – What a Waste 2.0 (Kaza
et al., 2018a, 2018b) shown here only for completeness of information: there are
based on questionnaires for country-wide data and cannot be directly compared
with data pertaining to city administration boundaries, with which we deal here.
***Median values for the WaW2.0 database, post quality assurance performed in
this study. Country income levels according to year of profiling for WABI dataset,
and to reference year 2011 for WaW2.0 dataset. Socioeconomic development spec-
trum, as estimated via the GNI per capita, as recommended by the World Bank
Group by categorising countries in to four main development groups: Low (L),
Lower-Middle (L-M), Upper-Middle (U-M) and High (H).
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4. Discussion

4.1. Socioeconomic indices can model waste management variability

Using the first consistent and quality-assured dataset available for
global cities it is demonstrated that country-level socioeconomic indicators
can model much of the variability in performance of cities' MSW systems.
The plurality of methodological approaches (multivariate random forest
model vs. best univariate non-linear regression models) enabled the con-
verging best fit models to be found, within the constraints of the relatively
small dataset. These models provide a strong evidence-base for initial
benchmarking of SDG indicator 11.6.1, which should allow cities' MSW
performance to be compared using consistent and reliable data.

Specifically, the waste generation rate models developed can be used,
alongside forecasts of population increases and of migration from rural to
urban areas (United Nations (UN), 2018), to predict future waste arisings
in most cities around the world (Hoornweg et al., 2013). For cities in low-
and lower-middle income countries in particular, any business-as-usual
scenario that locks them in the pathway of average baseline performance
documented here will inevitably mean that waste generation per capita
will increase as income levels rise; given the forecasts for city population
growth and urban migration, this means that many cities in Africa and
Asia would double their total MSW over 20 years (UNEP and ISWA,
2015). To prevent that happening, new policies are urgently needed to
promote the ‘decoupling’ of waste growth from economic growth and the
transition to a circular economy in developing countries as well as in devel-
oped countries – a prospect that is far from well-defined and certain
(Preston and Lehne, 2017; Velis, 2017).

High variability for the waste generation rate is evident at each level of
socioeconomic development. Some of this variability can be attributed to
the degree of departure from the hypothesis that city-wide development
performance can be represented by the average socioeconomic develop-
ment of a country – an inevitable compromise in the analytical power
of our approach in the absence of better practicable alternatives
(Section 2.1.3: Explanatory variables). A next level of analysis would be
to identify suitable explanatory variables at the city rather than the country
level, which would allow comparison between cities within the same coun-
try, and to further extend the analysis to within the cities themselves to
identify discrepancies between service levels at the neighbourhood level.

These results suggest that developing country cities have made greater
progress in improving collection coverage than is generally acknowledged.
The WaW2.0 report (Kaza et al., 2018a, 2018b) still provides the most
extensive current baseline to date: in Table 1, the WABI median values
(Fig. 4D) are compared with the WaW2.0 reported data, expressed as
national average figures including both urban and rural areas. The much
higher values reported by the WABI, by comparison, is explained as the
dataset is derived for cities. The WaW2.0 database does include city as
well as national data, which does not appear to have been used in the
published report. Performing descriptive statistics here, however, using
the rawWaW2.0 city dataset shows (Table 1 - last column) the data appear
broadly to confirm the WABI results.

These data show that cities can make much more progress in extending
waste collection to all their citizens thanwould be ‘normal’ for their income
level. An example is Maputo, the capital of low-income Mozambique,
which is the positive ‘outlier’ in the top left corner of Fig. 4. The city and
its international technical assistance partners focused on extending collec-
tion coverage across the city as a priority in the early 2000s (Stretz, 2012;
Stretz, 2013), resulting in a comparatively high 83 % collection coverage.
Notably, as apparent outliers were not excluded (Section 2.2.2: Apparent
outlier handling) in this analysis, Maputo's influence largely explains the
apparent ‘flattening’ of the fitted curve towards higher values in Fig. 4A
at the lowest-income levels (GDP-PPP per capita: $826). It is therefore,
not anticipated that such flattening would hold in general.

Regarding quality of collection services (WABI: I-1C – see SI.1,
Table S1), this is based on six assessment aspects (sub-indicators (Wilson
et al., 2015b)) covering: (i-ii) two that relate to the degree of littering (at
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collection points or on the streets), (iii) uncollected wastes in lower-
income districts; (iv) controls over waste transport, (v) service planning/
monitoring, and (vi) health and safety provisions for collection workers.
Averaging a ‘medium’ score against each criterion would give an overall
50 % collection services quality indicator, while an average of ‘medium/
high’ would give 75 %. So, for cities with medium/high or high collection
coverage (>90%), it is understandable that service quality is extremely var-
iable, with a range from around 50 % to 100 %. Common weaknesses in
middle-income countries include lack of street-cleaning outside the central
business district and more prosperous areas, issues with uncollected wastes
in informal settlements and low usage of personal protective clothing and
equipment by collection workers. The inclusion of littering phenomena,
prevalent in disorderly urban settings (Weaver, 2015), may mean that
some cities in high-income countries do not achieve a perfect 100 % score
for service quality. For waste collection, SDG indicator 11.6.1 focuses on
improving collection coverage, extending the service to all citizens. There-
fore, the baseline level in cities is better than generally acknowledged, and
even when 100 % collection has been achieved, attention will likely be
required to continue to improve the quality-of-service provision.

On average, the income level of a country has a marked impact on the
rate of controlled recovery and disposal (Fig. 5D). The median rates of con-
trol are approximately at 45 % for cities in low-income countries, 75 % in
lower-middle, and 100 % for both upper-middle and high-income. These
stand in sharp contrast to the figures given for open dumping (uncontrolled
disposal) in the WaW2.0: 93 % (i.e. 7 % controlled disposal) in low-income
countries; 66 % (i.e. 34 % controlled) in lower-middle, and 30 % (i.e. 70 %
controlled) in upper-middle income countries (Kaza et al., 2018a, 2018b).
This clearly demonstrates that, although much remains to be done to har-
monise the methodological approaches to assessing city collection, recov-
ery and disposal systems performance, cities can and are making progress
in eliminating uncontrolled disposal and open burning of MSW.

Using the degree of environmental protection alongside the rate of
controlled recovery and disposal adds a useful dimension to the analysis,
certainly for middle-income countries, which are still journeying towards
full ESM. It may even be useful for some developed country cities which,
despite a near universal claim to a 100 % controlled disposal (or even
ESM) rate, still struggle with a small but significant level of fly-tipping/
illegal waste dumping and uncollected littering ‘leaking’ from their waste
management systems (Liu et al., 2017). Among the high-income cities in
the WABI database, Belfast is unusual in admitting to an estimated 2 %
‘leakage’, as it finds illegal disposal practices difficult to eliminate (Wilson
et al., 2015a).
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4.2. Evidence-based/targeted improvements are possible across the world

The raw data, descriptive statistics and multiple modelling attempts
presented here, for a set of comprehensive waste and resources manage-
ment indicators, allows us to start making sense in a more fundamental
way of how cities are managing their solid waste. They constitute a novel
and comparatively robust evidence base that can be used to put individual
city performance in national and international / geographical context. New
city profiles by theWABImethodology can be compared against this bench-
mark and used to revise this global analysis and benchmark with the
approach released here.

Most importantly, the results allow clear differentiation on the potential
priorities for cities around the world. Many cities at the higher end of the
development spectrum have already achieved near universal collection
coverage and ESM of the collected waste, but issues often persist around
littering/fly-tipping and the effectiveness of street sweeping. Focussing
efforts here could make a substantial difference to overall performance,
but in many contexts performance aspect is not regularly monitored, even
in the most affluent and data-driven cities. The analysis here demonstrates
the value of collecting and analysing data in a coherent and robust way,
and utilising such data in performance monitoring and management. In
addition, such improvements could considerably abate their small but non-
negligible contribution to the emerging global challenge of plastic pollution.

For cities towards the middle and lower developed end of the spectrum,
the results demonstrate both the challenge and the opportunity. The
challenge is that overall improvement in solid waste management perfor-
mance is correlated with socioeconomic level, and rates of development
can be slow, particularly outside of the most affluent / capital cities in
each country. The opportunity is that the detailed city data analysed here
clearly show substantial progress towards universal collection coverage (In-
dicator I-1.1, Fig. 4A) and towards controlled recovery and disposal (Indica-
tor I-1, Fig. 5A) (i.e. high performance on indicators for SDG11.6.1) even in
some low-income cities, with specific cases that outperform considerably
the average at their socioeconomic level. Therefore, major improvements
in performance towards indicator SDG 11.6.1 are achievable – we specu-
late, given local political will and effective development support. Cities
can buck the trend by seeking inspiration, lessons learned and transferrable
best practices from the outperformers documented here and beyond
(Scheinberg et al., 2010; Whiteman et al., 2021), especially from those
with similar or slightly higher socioeconomic development indices to
their own.

5. Conclusions and outlook

5.1. Casting light on SDG11.6.1

It is argued here that the WABI not only underpin, in part, the WaCT
that measures the SDG11.6.1 indicator, but also substantially compliment
the SDG assessment, by providing performance quality counterparts (qual-
ity-of-service) to the standard service level indicators of waste generation
per capita, collection coverage and controlled recovery and disposal. There-
fore, it offers additional insights, especially when a city achieves the initial
compliance target. Such complementarity could in principle be further en-
hanced by increasing the number of cities in the database to improve the
model fits; identifying suitable explanatory variables at the city rather
than the country level, which would also allow comparison between cities
within the same country; and extending the data analytics to the recycling
and governance aspects of a city's MSW performance, factors also covered
by the WABI.

5.2. A richer picture beyond SDG monitoring

This study demonstrates quantitatively that the global challenge of
waste management is inherently linked to a city's socioeconomic develop-
ment. If cities, however, aspire to perform better on MSW management
than would be anticipated by the average socioeconomic development in
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their country, they should identify ways to overcome systemic underlying
failures associated with that socioeconomic level which, in turn, can lead
to the unlocking of development potentials across other urbanmanagement
sectors. The variability encountered between cities at comparable level of
socioeconomic development demonstrates that this, in principle, is feasible.
Demonstrating the correlation between socioeconomic indices and SWM
performance in turn adds further weight to the theoretical proposals that
SWM could serve as a useful proxy of urban governance (Whiteman et al.,
2001).

The models fitted here can form a basis for future predictions based on
forecasting scenarios/modelling of socioeconomic development. Progress
in collection coverage and controlled recovery and disposal is shown to
be possible, and already taking place in low- and middle-income cities,
but ‘business as usual’ development will continue to increase waste genera-
tion per capita unless new locally relevant policies can be found to promote
decoupling and the transition to a more circular economy.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.161913.
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