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Abstract—Convolutional Neural Networks (CNNs) model long-
range dependencies by deeply stacking convolution operations
with small window sizes, which makes the optimizations difficult.
This paper presents region-based non-local (RNL) operations
as a family of self-attention mechanisms, which can directly
capture long-range dependencies without using a deep stack
of local operations. Given an intermediate feature map, our
method recalibrates the feature at a position by aggregating
the information from the neighboring regions of all positions.
By combining a channel attention module with the proposed
RNL, we design an attention chain, which can be integrated into
the off-the-shelf CNNs for end-to-end training. We evaluate our
method on two video classification benchmarks. The experimental
results of our method outperform other attention mechanisms,
and we achieve state-of-the-art performance on the Something-
Something V1 dataset.

I. INTRODUCTION

With the rapid development of the Internet, videos have

become the main multimedia resource of information, and

the analysis of video information is in high demand. Video

classification attracts increasing research interest, given the

numerous applications for this area. As Convolutional Neural

Networks (CNNs) demonstrated high capability for learning

visual representations in the image domain, it is natural to

attempt to apply CNNs to the video area. An effective way to

extend CNN from image to video domain is by changing the

convolution kernels from 2D to 3D, aka 3D CNN [1], [2] or

by adding recurrent operations to CNNs [3], [4].

The models based on convolutional or recurrent operations

capture long-range dependencies by deeply stacking local

operations with small window sizes. However, the deep stack

of local operations limits the efficiency of message delivery to

distant positions, and makes the optimization difficult [5], [6].

To mitigate the optimization difficulties, Wang et al. proposed

the non-local (NL) operation [7] that works as a self-attention

mechanism [8] to capture long-range dependencies directly by

exploiting the inner-interactions between positions regardless

of their positional distance, which we revisit in Section III-A.

However, in the non-local operation, the calculation of the

relation between two positions only relies on the information

from these two positions while not fully utilizing the infor-

mation around them. As a result, its calculation of positional

relationships is not robust to noise or unrelated features,

especially in high resolution, which has been emphasized in

[9].

In this paper, we investigate the non-local operation [7]

and propose a region-based non-local (RNL) operation based

on the non-local mean concept [9], which enhances the

calculation of positional relationships by fully utilizing the

information from neighboring regions. The proposed RNL

operation endows CNNs with a global view of input features

without needing a deep stack of local operations to ease the

optimization difficulties. In Figure 1, we illustrate an example

to demonstrate that the proposed RNL operation can better

capture positional relationships than NL operation. There are

two advantages of the proposed RNL compared with the

original NL: first of all, RNL is more robust to noise or

unrelated features; secondly, the RNL is more computationally

efficient. Meanwhile, we present various instantiations of the

RNL operation to meet different application requirements.

By adding RNL operation into the off-the-shelf CNNs, we

obtain a new video classification architecture named region-

based non-local network. In order to evaluate the effectiveness

of our method, we conduct video classification experiments

on two large-scale video benchmarks, Kinetics-400 [2] and

Something-Something V1 [10]. Our models outperform the

baseline and other popular attention mechanisms, and achieve

state-of-the-art performance on Something-Something V1.

II. RELATED WORK

Spatio-temporal Networks. With the tremendous success

of CNNs on image classification tasks [5], [11]–[18]. Some

research studies have attempted to extend the applications of

CNNs to video-based classification tasks [2], [3], [19]–[21].

Among them, the two-stream model [19] and its variant [22]

learn temporal evolution by using jointly the optical flow

stream and the RGB stream for video classification. The

recent video models [2]–[4], [20] leverage long short-term

memory (LSTM) to fuse frame-level CNN representations

for modeling long-term temporal relationships. However, 2D

CNN+LSTM [2] empirically shows lower performance than

two-stream architectures. CNNs employing 3D convolution

processing [1], [2], [23] represent a promising research

direction for spatio-temporal representation learning, but the

training of 3D CNNs has huge computational demands. Some

research studies have devoted to simplifying 3D CNNs, such

as P3D [24], TSM [25], S3D [26], CSN [27], X3D [28].

Nevertheless, the inefficiency of message delivery caused by

the deep stacking of local operations in 3D CNNs remains
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Fig. 1. Examples of visualizing the attention maps of RNL and NL operations in the res4 stage of ResNet on a video clip from Kinetics-400. Given a
reference position, an ideal non-local operation should only highlight the regions related to the reference position. In the same video clip, the NL operation has
almost the same attention maps at different reference positions while the proposed RNL operation presents query-specific attention maps, which demonstrate
that the proposed RNL operation can better compute the relationships between positions.

serious, and there is not much research on this problem,

which is the main theme of this paper.

Attention Mechanisms. Attention mechanisms have been

initally used for machine translation [29]. Recent works [7],

[30]–[32] would embed task-specific attention mechanisms to

CNNs to boost up performance and robustness in visual tasks.

In computer vision, attention mechanisms can be decomposed

into two components, channel attention - focusing on ’what’

is meaningful, and spatial (or spatio-temporal) attention -

focusing on ’where’ is informative [32]. For example, The

Squeeze-and-Excitation (SE) module is a representative chan-

nel attention mechanism, which utilizes global average-pooled

features to exploit the inter-channel relationships. Inspired by

the classic non-local mean algorithm [9] for image denoising,

Wang, et al. [7] introduced the self-attention concept [8] from

machine translation to large-scale visual classification tasks,

and proposed non-local (NL) operation for video classification.

The NL operation was initially designed to learn spatio-

temporal attention. However, Cao et al. [33] observe that NL

can only capture the global context of channels, aka channel

attention. Moreover, they demonstrate that the intrinsic natures

of the NL operation and SE module [30] are the same while

the implementation of the SE module is rather economical.

In this paper, we redesign the non-local operation and pro-

pose the region-based non-local operation which increases the

effectiveness and efficiency in capturing the spatio-temporal

attention. Yue et al. [34] also aimed to improve the NL

operation, proposing a compact generalized version of the NL

operation by integrating channel attention and spatio-temporal

attention into a compact module. However, their work do

not improve the effectiveness of NL operation. Instead of

simplifying the NL, we focus on improving the effectiveness

of NL for better capturing the spatio-temporal attention.

III. NON-LOCAL METHODS FOR VIDEO CLASSIFICATION

A. Revisiting the Non-local (NL) Operation

Intuitively, the non-local operation [7], illustrated in Fig-

ure 2 (b), strengthens the feature in a certain position via

aggregating the information from other positions. The esti-

mated value for a position, is computed as a weighted sum of

the feature values of all other positions. Formally, we denote

x,y ∈ R
THW×C as the input and output of an NL operation,

flattened along the space-time directions, where T , H , W

and C are temporal length (depth), height, width and the

number of channels, respectively. Then, the NL operation can

be described as:

yi =
1

C(x)

∑

∀j

wi,jWgxj ,

wi,j = f(xi,xj),

(1)

where xi,xj ∈ R
C are the i-th and j-th element of x, i is the

index of a reference position, and j enumerates all possible

positions. Wg is a learnable weight matrix that computes a

representation of xj , and C(x) is the normalization factor.

Meanwhile, wi,j is a weight, representing the relationship

between positions i and j, which is calculated by pairwise

similarity function f(·, ·). Regarding the form for f(·, ·),
Wang et al. [7] propose four instantiations for the non-local

operation, of which the embedded Gaussian form is described

as f(xi,xj) = eθ(xi)
Tφ(xj), C(x) = Σ∀jf(xi,xj), where θ

and φ represent linear transformations, implemented with

1× 1× 1 convolutions.

Attention Maps of the Non-local Operation. In the NL

operation, each output element yi is a weighted average of

the input features over all positions xj , and therefore each yi

has a corresponding attention weight map calculated by f(·, ·),
highlighting the areas related to position i. In Figure 1 (b), we

randomly pick one video from Kinetics-400 and visualize the

attention maps of NL at two different reference positions, one
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Fig. 2. Diagrams of implementing the NL and RNL operations in (b) and (a), respectively, indicating the shaping and the reshaping operations of a tensor
together with the connections. ⊗ denotes matrix multiplication while ⊕ denotes element-wise addition. The blue boxes denote 1× 1× 1 convolutions, and
the red box Fθ denotes a 3× 7× 7 channel-wise separable convolution or an average/max pooling layer.

of which is located in the background area while the other is

located in the region of the moving object. In the original NL

operation, its attention maps with different reference positions

are almost the same, which indicates that this fails to capture

the positional relations. The NL operation realistically learns

channel-wise attention rather than spatio-temporal attention.

We redesign the non-local operation as a spatio-temporal

attention mechanism, namely the region-based non-local op-

eration (RNL). Figure 1 (a) shows that our RNL operation only

highlights the regions related to the reference position, which

indicates that the proposed RNL operation can effectively learn

spatio-temporal attention.

B. Region-based non-local (RNL) Operation

The initial idea for the RNL operation is that the relation

between two positions in a video representation should not

rely on just their own features but also on those features from

their neighborhoods. Therefore, for each position i of input

sample x, we define a cuboid region Ni of fixed size centered

at position i. The calculation of the relationship wi,j between

positions i and j is redefined as:

wi,j = f(θ(Ni), θ(Nj)), (2)

where, θ(·) denotes an information aggregation function that

separately summarizes the features in a region for each chan-

nel. Function θ(·) is given by

θ(Ni) =
∑

k∈Ni

uk ⊙ xk, (3)

where ⊙ denotes element-wise multiplication and uk denotes a

vector shared by all cuboid regions Ni. As there is no channel

interaction in θ(·), it can be implemented as channel-wise 1

1Also referred to as “depth-wise”. We use the term “channel-wise” to avoid
confusions with the network depth.

separable convolutions [35], or as average/max pooling. By

replacing the expression of wi,j from equation (1) with the

expression from (2), the RNL operation can be written as:

yi =
1

C(x)

∑

∀j

f(θ(Ni), θ(Nj))xj . (4)

From equation (4), we can see that by employing the RNL

operation, the new feature of each position is a weighted

sum of the old features from all positions, where the weights

are calculated by the similarity function f(·, ·) according to

the similarity between the target region, and all the other

regions. The proposed RNL operation enhances the calculation

of positional relations by fully utilizing the information from

the neighboring regions, which increases the robustness to

noise or unrelated features, Hence, the RNL operation can

learn more meaningful representations in comparison with NL.

For the form of function f(·, ·), in addition to adopting the

Gaussian version and the Dot product version as in [7], we also

propose a new form, called the Cosine version. Specifically,

the Gaussian form of f(·, ·) is given by

f(θ(Ni), θ(Nj)) = eθ(Ni)
Tθ(Nj). (5)

The Dot product form of f(·, ·) measures the relation

between two regions by using the dot-product similarity:

f(θ(Ni), θ(Nj)) = θ(Ni)
Tθ(Nj). (6)

However, the dot-product similarity takes into account both

the vector angle and the magnitude, as θ(Ni)
Tθ(Nj) =

‖θ(Ni)‖‖θ(Nj)‖ cosψi,j , where ψi,j is the angle between

vectors θ(Ni) and θ(Nj). It is preferable to replace dot-

product similarity with the cosine similarity, ignoring the
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Fig. 3. Illustrations of the conventional convolution (a) and the channel-wise
separable convolution (b). The total number of connections of the channel-
wise separable convolution [35] is reduced to 1

C
of that of the conventional

convolution.

vector magnitude and resulting in a value within the range

[−1, 1]. The Cosine form of f(·, ·) is expressed as:

f(θ(Ni), θ(Nj)) = ReLU(
θ(Ni)

Tθ(Nj)
‖θ(Ni)‖‖θ(Nj)‖

)

= ReLU(cosψi,j).
(7)

When f(θ(Ni), θ(Nj)) < 0, it indicates that the features

in positions i and j are not related. As the new feature in a

cetrain position should only be determined by those related

features, we use the ReLU function to restrict the output of

f(·, ·) to be non-negative. The normalization factor is set as

C(x) =
∑

∀j f(θ(Ni), θ(Nj)) for the Gaussian version from

(5), and set as C(x) = THW for the Dot-product and Cosine

versions from equations (6) and (7), respectively.

C. Region-based non-local Block

In order to embed the RNL operation into the off-the-shelf

CNNs without influencing the results provided by the pre-

trained kernels, we embed the RNL operation into a residual

style block [5], named the RNL block. The Gaussian RNL

block, defined by (5), is written as a matrix form as:

z = yWz + x, (8)

y = softmax(Fθ(xWg)(Fθ(xWg))
T)xWg, (9)

where z is the output that represents the feature after recali-

bration, Wz ∈ R
C
2
×C and Wg ∈ R

C×C
2 are learnable weight

matrices, which are implemented as 1 × 1 × 1 convolutions,

and ’+x’ denotes a residual term. Fθ denotes the operation

that corresponds to the matrix form of function θ(·) from

equation (3). We present the architectures of the Gaussian

RNL block and the Gaussian embedding version of the original

NL block in Figure 2. We can observe that the original

NL block illustrated in Figure 2 (b) uses four 1 × 1 × 1
convolutions, while the proposed RNL block shown in Figure

2 (a) uses two 1 × 1 × 1 convolutions and one channel-

wise separable convolution, which reduces the computational

complexity significantly.

Next, we explain two main implementations of the region

information aggregation function Fθ in RNL operation.

1) Channel-wise Separable Convolutions. It is worthwhile

to note that, in principle, the candidates for implementing

Fθ should not fuse together information across channels.

Otherwise, the new feature embedding might fail to represent

TABLE I
THE ARCHITECTURE OF THE RNL NETWORK. THE KERNEL SIZE AND THE

OUTPUT SIZE ARE SHOWN IN THE SECOND AND THIRD COLUMNS,
RESPECTIVELY. THE RNL BLOCKS ARE INSERTED AFTER THE RESIDUAL

BLOCKS SHOWN IN BRACKETS, WHERE THE TEMPORAL SHIFT MODULES

[25] ARE EMBEDDED INTO THE CONVOLUTIONAL LAYERS.

Layer Operation Output size

conv1 1× 7× 7, 64, stride 1,2,2 8× 112× 112
pool1 1× 3× 3, 64, stride 1,2,2 8× 56× 56

res2





1× 1× 1, 64
1× 3× 3, 64
1× 1× 1, 256



 × 3 8× 56× 56

res3





1× 1× 1, 128
1× 3× 3, 128
1× 1× 1, 512





RNL

× 4 8× 28× 28

res4





1× 1× 1, 256
1× 3× 3, 256
1× 1× 1, 1024





RNL

× 6 8× 14× 14

res5





1× 1× 1, 512
1× 3× 3, 512
1× 1× 1, 2048



 × 3 8× 7× 7

its original information, which is why we cannot adopt conven-

tional convolutions. In contrast, channel-wise separable convo-

lution [35], exemplified in Figure 3, is a perfect candidate for

the implementation of Fθ, as there is no interaction between

the channels. An additional benefit that the channel-wise

separable convolution brings is that it reduces the computation

and the parameters by a factor of C, compared with the

conventional convolution. The kernel size of the channel-wise

separable convolution has a significant impact on performance,

as it corresponds to how large a region Ni is considered for

information aggregation. We will explore the effectiveness of

various kernel sizes, in Section IV-A.

2) Average/Max Pooling. The other implementation options

for Fθ are the average pooling and max pooling, which have

been widely adopted for information aggregation. Although it

shows a relatively weaker capability than the implementation

of channel-wise separable convolution, average/max pooling

adds no extra parameters to the models.

D. Attention Chain

When the proposed RNL block can learn the long-range de-

pendencies for each position in the spatio-temporal dimension,

the squeeze-excitation (SE) block [30] can learn the long-range

dependencies in the channel dimension. In order to capture

both spatio-temporal attention and channel-wise attention in

a single module, we embed the SE block [30] together with

the RNL block to form an attention chain module (SE+RNL).

Firstly, we modify the SE block [30], where the squeeze

operation Fsq is expressed as:

s′ = Fsq(x) =
1

THW

THW∑

i=1

xi, (10)

and the excitation operation Fex is expressed as:

s = Fex(s
′) = W2ReLU(BN(W1s

′)), (11)

where W1 ∈ R
C
2
×C and W2 ∈ R

C×C
2 are learnable weights,

which can be implemented with fully-connected (FC) layers.



In the excitation operation Fex, we add a batch normalization

(BN) layer [36] right after the FC layer W1 to reduce the

internal covariate shift. Subsequently, we reshape s ∈ R
C into

R
1×C . The output of the SE block is given by :

v = x⊕ s, (12)

where ⊕ refers to the element-wise addition broadcasting in

unmatched dimensions (replicate x to match the dimension of

s). After that, we place the RNL block after the SE block to

form an attention chain.

E. The Network Architecture

The RNL block is designed to be compatible with most

existing CNNs. It can be plugged into a CNN at any processing

stage, resulting in an RNL network. For the implementation,

we use ResNet-50 [5] with the temporal shift modules (TSM)

[25] as the backbone network to build our model (RNL TSM),

and its structures is provided in Table I. The TSM is a

lightweight module enabling 2D CNNs to achieve temporal

modeling by shifting part of the channels along the temporal

dimension, which facilitates the information exchange among

neighboring frames. In this architecture, we keep the temporal

size constant, which means all the layers in the network only

reduce the spatial size of the input features. The backbone

network is also the baseline for our experiments.

IV. EXPERIMENTS

We perform video classification experiments on two stan-

dard video benchmarks, Kinetics-400 [2] and Something-

Something V1 [10]. Kinetics-400 is a large-scale video classi-

fication benchmark that consists of ∼300K video clips, classi-

fied into 400 categories. Something-Something V1 consists

of ∼108K videos from 174 categories. We report Top-1,

Top-5 accuracy on the validation sets and the computational

cost (in GFLOPs) of a single, spatially center-cropped clip

to comprehensively evaluate the effectiveness and efficiency.

Figure 1 and Figure 5 visualize some examples of the attention

maps of RNL operation, which shows RNL operation can

correctly learn the relations between positions.

Training and Inference. Our models are pretrained on Im-

ageNet [37]. For the training, we follow the setting from

[7] and use a spatial size of 224 × 224, which is randomly

cropped from a resized video frame. The temporal size is set

as 8 frames unless otherwise specified. In order to prevent

overfitting, we add a dropout layer after the global pooling

layer. We optimize our models using the Stochastic Gra-

dient Descent, and train the models for 50 epochs with a

cosine decay learning rate schedule. The batch size is set at

64 across multiple GPUs. For Kinetics, the initial learning

rate, weight decay and dropout rate are set to 0.01, 1e-4

and 0.5 respectively; for Something-Something, these hyper-

parameters are set to 0.02, 8e-4, and 0.8 respectively. In

the inference, we follow the common setting in [7], [25].

Unless stated otherwise, we uniformly sample 10/2 clips for

Kinetics-400/Something-Something V1, and perform spatially

fully convolutional inference (three crops of size 256 × 256

to cover the spatial dimensions) for all clips, and the video-

level prediction is obtained by averaging all the clip prediction

scores of a video.

A. Ablation Studies

We explore the most efficient and effective form of RNL

operation on Kinetics-400. By default, the function f(·, ·) of

RNL operation is implemented by using the equation (5), and

Fθ is implemented by a channel-wise separable convolution

with a kernel size of 3 × 7 × 7, unless otherwise specified.

Following the results from [7], we add RNL blocks to the

res3 and res4 stages in the architecture shown in Table I. Our

exploration is organized in three parts. First, we search for the

effective kernel size of Fθ in RNL blocks. Next, we evaluate

the performance of various instantiations of RNL and find out

the efficient and effective one. Finally, we combine the selected

version of RNL with an SE block to form an attention chain

module.

Kernel Size. The kernel size of Fθ (determining the size of

region Ni) in the RNL block has a significant impact on

the performance as it affects what the RNL operation would

learn. Large kernels are supposed to be robust to noise, while

small kernels would consider the details and fine structures

from video sequences. By considering that the features learned

by the kernel from the temporal and spatial dimensions are

different, we separately explore the temporal and spatial sizes

of the kernel by fixing one while varying the other. The results

are shown in Table II (a). We observe that in the temporal

dimension, the size of 3 surpasses other options regardless of

the spatial size of the kernel, while in the spatial dimension,

the size of 7 is the best option. Therefore, we expect the kernel

of 3×7×7 is the best option in space and time, and it has been

verified through our grid search. Concurrently, we evaluate the

influence of the kernel size of Fθ to the model performance by

visualizing the attention maps of the RNL operation, shown in

Figure 4, where the RNL operation considers the highlighted

areas to have strong relations with the reference position,

indicated by a red point. Figure 4 shows that a kernel of a small

size spatially, such as 1× 1, tends to incorrectly interpret the

relations between some background areas and the foreground

areas. In contrast, a kernel with larger spatial size can learn

more precise relations between such positions. For example,

the kernel of size 7×7 precisely highlights the moving object

in in Figure 4 when the reference position is located at the

moving object. However, too large kernels could also lead

to performance degradation. For example, the kernel of size

3×9×9 has a lower accuracy than the kernel of size 3×7×7
(73.51% vs. 73.66%), and the kernel of 7 × 7 × 7 shows a

lower performance than the kernel of size 3× 7× 7 (73.11%

vs. 73.66%). The kernel of size 1×1×1 has a lower accuracy

than the others except for 7×1×1 and 7×7×7, which verifies

our assumption that the relation between two positions should

not rely on just their own features but also on features from

their neighborhoods.

Instantiations. There are various solutions for f(·, ·) from

equation (4) and for Fθ from equation (9), as discussed in



1× 1 3× 3 5× 5 7× 7 9× 9

Fig. 4. Visualization the attention maps of the RNL block when considering different kernel sizes in the res3 stage by giving the reference position (red
point). When the reference point is located at the moving object, the RNL operation with proper kernel size should just highlight the related moving regions.

TABLE II
EXPLORATION OF THE EFFECTIVENESS AND EFFICIENCY OF VARIOUS RNL MODULES ON KINETICS-400. FOR THE MODELS IN (A) AND (C), WE INSERT

ONE GAUSSIAN RNL BLOCK INTO THE RES3 STAGE OF RESNET-50.

Kernel size Top-1 (%) Kernel size Top-1 (%)

1× 1× 1 73.28 3× 3× 3 73.53
3× 1× 1 73.41 3× 5× 5 73.27
7× 1× 1 73.12 3× 7× 7 73.66

1× 3× 3 73.32 3× 9× 9 73.51
1× 7× 7 73.43 7× 7× 7 73.11
1× 9× 9 73.32 7× 9× 9 73.30

(a) RNL blocks with different kernel sizes of
Fθ .

# RNL Method(f(·, ·)) Top-1 (%)

Dot-product 73.22
1 Gaussian 73.66

Cosine 73.46

dot-product 74.16
5 Gaussian 74.68

Cosine 74.40
(b) Instantiations of the RNL with
different form of f(·, ·).

Method (Fθ) Top-1 (%) GFLOPs Params

channel-wise conv 73.66 1.65 2.67M
average pooling 73.22 1.65 0.26M
max pooling 73.47 1.65 0.26M

(c) Instantiations of RNL with different
implementations of Fθ .

Section III-B and Section III-C, respectively. In the following,

we conduct ablation studies on the instantiations by fixing a

specific choice for either f(·, ·) or Fθ while changing the other.

The operation Fθ can be implemented as a channel-wise sepa-

rable convolution or as the average/max pooling, the stride of

which is set as 1, and the padding of which is half of the kernel

size. From the results shown in Table II (c), we can see that the

channel-wise separable convolution implementation achieves

a higher accuracy with +0.44% and +0.19% than the average

and max pooling, respectively. However, the implementation

of average/max pooling is more efficient and adds fewer

parameters (-2.4M) to the model compared to the channel-

wise separable convolution. We instantiate three versions of

the RNL operation, such as Gaussian, Dot-product and Cosine,

provided in equations (5), (6) and (7) respectively. The results

are shown in Table II (b). By adding a single RNL block

into the backbone network, the result of the Gaussian RNL

outperforms the Dot-product and Cosine versions. Moreover,

the performance of all installations of the RNL operation can

be further improved by stacking more RNL blocks. The model

with 5 Gaussian RNL blocks (3 in the res4 stage and 2 in the

res3 stage) gains an additional 1.02% accuracy increase in

comparison with adding a single RNL block.

B. Evaluation

In order to evaluate the efficiency and effectiveness of our

method in comparison with other attention mechanisms, we

reimplement the original NL network [7], GCNet [33] (a

simplified NL network), SE network [30] and CBAM network

[32]. Table III presents the results on Kinetics and Something-

Something. We can see that the proposed RNL block achieves

higher performance than other attention mechanisms. Notably,

the network with 5 RNL blocks outperforms the network

TABLE III
COMPARISONS BETWEEN VARIOUS VISUAL ATTENTION MECHANISMS ON

KINETICS-400 AND SOMETHING-SOMETHING V1.

Dataset Model Top-1 (%) FLOPs (G) # Param (M)

baseline 72.80 32.89 24.33
+ 5 SE 73.70 32.89 24.79

Kinetics- + 5 CBAM 73.99 32.90 24.80
400 + 5 GC 73.76 32.90 24.79

+ 5 NL 74.41 49.38 31.69
+ 5 RNL 74.68 41.15 35.48

+ 5 [SE+RNL] 74.97 41.16 35.95

Something- baseline 46.63 32.89 24.33
Something + 5 NL 48.25 49.38 31.69
V1 + 5 RNL 49.24 41.15 35.48

+ 5 [SE+RNL] 49.47 41.16 35.95

with 5 NL blocks with +0.27% on Kinetics and +1% on

Something-Something, while the computational complexity

required in FLOPs of the RNL network is 8.23G less than

that of the NL network. Furthermore, by adding 5 blocks of

the attention chain (SE + RNL), as described in Section III-D,

to the backbone network, the performance is further improved

(74.97% on Kinetics and 49.47% on Something-Something).

In the visualization examples of the RNL and NL blocks,

shown in Figure 1, we observe that the attention maps of

the RNL block would only highlight those regions related

to the reference positions. However, the attention maps of

the original NL block always highlight the same regions for

different reference positions. The observation demonstrates

that the RNL block can capture the spatio-temporal attention

while the NL block only captures the channel attention.

C. Comparisons with the State-of-the-Art

We compare the proposed method with the state-of-the-art

methods on Kinetics-400 and Something-Something V1. In
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Fig. 5. Visualization of attention maps of the RNL in the res3 stage, with different reference positions on frames from Kinetics (1st row) and Something-
Something (2nd row). Given a video clip, the RNL operation only highlights those regions related to the reference position.

TABLE IV
RESULTS ON KINETICS-400.

Model Backbone Training Top-1 Top-5
Frames

I3D RGB [2] Inception 64 72.1 90.3
S3D-G RGB [26] Inception 64 74.7 93.4
TSM [25] ResNet-50 8 74.1 91.2
TSM [25] ResNet-50 16 74.7 -
NL I3D [7] ResNet-50 32 74.9 91.6
Slow [38] ResNet-50 8 74.9 91.5
SlowFast [38] ResNet-50 4+32 75.6 92.1
RNL TSM (ours) ResNet-50 8 75.6 92.3

RNL TSM (ours) ResNet-50 16 77.2 93.1

RNL TSMEn (ours) ResNet-50 8+16 77.4 93.2

NL I3D [7] ResNet-50 128 76.5 92.6
NL I3D [7] ResNet-101 128 77.7 93.3
SlowFast [38] ResNet-101 16+64 78.9 93.5
LGD-3D RGB [39] ResNet-101 128 79.4 94.4

order to achieve the best performance on Kinetics-400, we

increase the number of training epochs from 50 to 100. The

performance comparisons are summarized in Tables IV and V,

where RNL TSM refers to the model with 5 attention chain

blocks. Note that using the same approach, the models with

deeper backbone networks or longer clips as training inputs

would consistently result in better performance in comparison

with shallower backbone networks. on Kinetics, we use a

shallower network, such as ResNet-50, as the backbone, and

the length of our input video clips is at least 8 times shorter

than other methods, yet our results are highly competitive with

those of the other approaches.

On Something-Something V1, when using ResNet-50 as

TABLE V
RESULTS ON SOMETHING-SOMETHING V1.

Model Backbone Frames×Crop×Clip Top-1 Top-5

I3D [40] ResNet-50 64=32×1×2 41.6 72.2
NL I3D [40] ResNet-50 64=32×1×2 44.4 76.0
NL I3D + gcn [40] ResNet-50 64=32×1×2 46.1 76.8
TSM [25] ResNet-50 8=8×1×1 45.6 74.2
TSM [25] ResNet-50 16=16×1×1 47.2 77.1
TSMEn [25] ResNet-50 24=(8+16)×1×1 49.7 78.5
RNL TSM (ours) ResNet-50 8=8×1×1 47.3 -

RNL TSM (ours) ResNet-50 16=16×1×1 49.4 -

RNL TSMEn (ours) ResNet-50 24=(8+16)×1×1 51.3 80.6

SmallBig [41] ResNet-50 48=8×2×3 48.3 78.1
SmallBig [41] ResNet-50 96=16×2×3 50.0 79.8
SmallBigEn [41] ResNet-50 144=(8+16)×2×3 51.4 80.7
RNL TSM (ours) ResNet-50 48=8×2×3 49.5 78.4

RNL TSM (ours) ResNet-50 96=16×2×3 51.0 80.3

RNL TSMEn (ours) ResNet-50 144=(8+16)×2×3 52.7 81.5

RNL TSM (ours) ResNet-101 48=8×2×3 50.8 79.8

RNL TSMEn (ours) R101 + R50 144=(8+16)×2×3 54.1 82.2

the backbone, the ensemble version of our model, the RNL

TSMEn, using {8, 16} frames as inputs, achieves a higher

accuracy than other approaches, w.r.t., single-clip & center-

crop (Top-1: 51.3%) and multi-clip & multi-crop (Top-1:

52.7%). When adopting ResNet-101 as the backbone, we gain

extra performance boost (Top-1: 50.8% vs. 49.5%). Moreover,

the ensemble of the deep model of 8 frame inputs and the

shallow model of 16 frame inputs achieves the best accuracy

(Top-1: 54.1%). All these results further demonstrate the

effectiveness and efficiency of the proposed method.



V. CONCLUSION

In this work, we presented the region-based non-local

operation (RNL), a novel self-attention mechanism that ef-

fectively captures long-range dependencies by exploiting pair-

wise region relationships. The RNL blocks can be easily

embedded into the off-the-shelf CNNs architectures for end-to-

end training. We have performed ablation studies to investigate

the effectiveness of the proposed RNL operation in various

settings. To verify the efficiency and effectiveness of the

proposed methodology, we conducted experiments on two

video benchmarks, Kinetics-400 and Something-Something

V1. The results of the proposed method are shown to outper-

form the baseline and other recently proposed attention meth-

ods. Furthermore, we achieve state-of-the-art performance

on Something-Something V1, which has demonstrated the

powerful representation learning ability of our models.
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