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Abstract 

Objectives: Assess the extent to which measurement error in police recorded crime rates impact the 
estimates of regression models exploring the causes and consequences of crime.  

Methods: We focus on linear models where crime rates are included either as the response or as an 
explanatory variable, in their original scale or log-transformed. Two measurement error mechanisms are 
considered, systematic errors in the form of under-recorded crime, and random errors in the form of 
recording inconsistencies across areas. The extent to which such measurement error mechanisms impact 
model parameters is demonstrated algebraically using formal notation, and graphically using simulations.  

Results: The impact of measurement error is highly variable across different settings. Depending on the 
crime type, the spatial resolution, but also where and how police recorded crime rates are introduced in the 
model, the measurement error induced biases could range from negligible to severe, affecting even estimates 
from explanatory variables free of measurement error. We also demonstrate how in models where crime 
rates are introduced as the response variable, the impact of measurement error could be eliminated using 
log-transformations.  

Conclusions: The validity of a large share of the evidence base exploring the effects and consequences of 
crime is put into question. In interpreting findings from the literature relying on regression models and 
police recorded crime rates, we urge researchers to consider the biasing effects shown here. Future studies 
should also anticipate the impact in their findings and employ sensitivity analysis if the expected 
measurement error induced bias is non-negligible.  
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1. INTRODUCTION 

It is widely acknowledged that police recorded crime data is deeply flawed, subject to different forms of 
measurement error. This data fails to reflect incidents that are not detected by the police, leading to 
systematic under-estimations of the true figure of crime (Biderman & Reiss, 1967; Coleman & Moynihan, 
1996; Skogan, 1977), while it is also affected by substantial recording inconsistencies between and within 
police forces (Boivin & Cordeau, 2011; Her Majesty Inspectorate of Constabulary, 2014).  

Despite its questionable measurement properties, police data is heavily relied upon by researchers as it holds 
important advantages over other sources of crime data in terms of accessibility and versatility – allowing 
for spatiotemporal resolutions unavailable to victimisation and offenders surveys. As such, police recorded 
crime rates are commonly used in the process of building and testing crime theory (see for example research 
on social disorganisation and collective efficacy, Duncan et al., 2003, Sampson et al., 1997; or rational choice 
and routine activity theories, Cohen & Felson, 1979, Matsueda et al., 2006). Police data is also central in 
studies that, from a more exploratory perspective, seek to identify predictors of crime (Bowers and Johnson, 
2005; Ellis et al., 2019). There is also a large group of studies that have relied on police recorded crime data 
as an explanatory variable, seeking to estimate the effect of crime on a wide range of phenomena such as 
fear of crime (Krahn & Kennedy, 1985; Zhao et al., 2015), or police use of force (McCarthy et al., 2019; 
Sobol et al., 2013). Beyond Criminology, studies making use of police data are also common in areas of 
Sociology (Lee & Ousey, 2005; Miethe et al., 1991), Social Policy (Machin & Meghir, 2004; Whitworth, 
2012), Epidemiology (Browning et al., 2012; Messer et al., 2006), Geography (Keels et al., 2005; Morenoff 
& Sampson, 1997), and Economics (Han et al., 2013; Philipson & Posner, 1996), where the relationship 
between crime and socio-economic inequality, deprivation, or ethnic heterogeneity have been of special 
interest. It is therefore no exaggeration to suggest that police statistics represent the most important data 
source in the study of the causes and consequences of crime.  

However, with some notable exceptions (see for example, Barnett, 1981; Brantingham, 2018; Fajnzylber et 
al., 2002; Farrell & Pease, 2003; Gibson & Kim, 2008; Levitt, 1998; Martin & Legault; 2005; Neumayer, 
2005; Pepper et al., 2010; Pudney et al., 2000; Vollaard & Hamed, 2012), researchers have generally failed 
to sufficiently recognise the implications of using police data prone to measurement error on the validity 
of their results. If variables affected by measurement error are introduced in multivariate models, they will 
often lead to biased estimates (Fuller, 2009; Gustafson, 2003). Given the large prevalence of measurement 
error in police statistics, bias in regression models relying on this data may be substantial. Furthermore, the 
magnitude and direction of those biases can be difficult to anticipate, as the measurement error impact will 
likely propagate through the model, affecting the accuracy of not just crime estimates, but all model 
estimates and their respective measures of uncertainty (Nugent et al., 2000).  

To date, we do not have a general understanding of the impact that common forms of measurement error 
present in police recorded crime have across typical models used in the literature. The small group of studies 
that have previously explored this problem have mostly focused on specific applications. That is, they have 
explored the impact that measurement error could exert when police data is used to investigate specific 
research questions. See for example discussions on how measurement error could be biasing estimates of 
the effect of economic inequality (Fajnzylber et al., 2002; Gibson & Kim, 2008; Neumayer, 2005), police 
arrests/presence (Levitt, 1998; Vollaard, 2012), or gun ownership (Maltz & Targonski, 2002; Martin & 
Legault, 2005) on crime. Even the most comprehensive studies in the literature, where new estimators to 
adjust for the impact of measurement error have been developed – either invoking a set of assumptions 
about the measurement error term, or auxiliary data from victimisation surveys – are limited in scope to a 
specific outcome model with crime data introduced in a specific form, always as the outcome variable5.  

Such focus on specific applications has only been able to provide a narrow view of what is a much larger 
problem. This is because the presence of measurement error varies heavily across crime types, mainly as a 
result of differential reporting rates (Hart & Rennison, 2003; Tarling & Morris, 2010), but also across the 
chosen spatial area of analysis, with crime rates measured at lower spatial units being less reliable (Buil-Gil 
et al., 2021a). While the impact associated to the same measurement error could vary even more intensely 
depending on modelling decisions such as: the type of outcome model to be specified, where in the model 

 
5 See for example Brantingham (2018), or Pepper et al. (2010), where modelling strategies to adjust for measurement 
error in police data are used for binary outcome models used in hotspot policing, or time-series analysis assessing 
changes in crime rates across time.  
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the variable affected by measurement error is introduced (i.e. as an outcome or explanatory variable), or 
whether the affected variable is subject to some form of transformation before or as part of the estimation 
process. Hence, outside the few research questions where the effect of measurement error has been actively 
studied, there is an overall lack of understanding about the extent to which estimates from models relying 
on police data are biased. This, in our view, is nothing short of the largest methodological challenge affecting 
the empirical literature exploring the causes and consequences of crime. 

Here, we provide a more encompassing overview of the biasing effect that measurement error present in 
police recorded crime data exerts across standard regression models commonly used in the literature. In 
doing so, our aim is to raise awareness about the problem, but also to facilitate interpretations of the validity 
of previous studies relying on police recorded crime, and ultimately minimise its impact in future studies. 
For simplicity, we focus on the most widely used form of police data: crime rates recorded across 
geographical areas at a given point in time. We therefore set aside other uses of police data which are also 
prone to measurement error, albeit taking a different form, such as problems of misclassification that affect 
police data when measured as a binary outcome (Brantingham, 2018; Caplan et al., 2011; Vandeviver et al., 
2015), or the effect of measurement error in dynamic models including autoregressive terms (Pudney et al., 
2000; Cantor & Land, 1985; Greenberg, 2001).  

The broader perspective sought in this study is achieved by exploring the impact associated to: i) a wider 
combination of the types of errors that could be expected across different crime types and spatial areas; ii) 
models where crime rates are introduced as the outcome variable, but also, as an explanatory variable; and 
iii) models where crime rates are introduced in their original form, or after they have been log-transformed. 
This allows us to move beyond specific applications and shed new light on the impact of measurement 
error in areas that have not yet been explored. For example, the consideration of interacting measurement 
mechanisms is key to understand what their expected impact will be since, depending on the setting, 
measurement error mechanisms can operate in different directions, potentially cancelling themselves out 
entirely, while in other instances they can operate in the same direction, reinforcing each other’s biasing 
effects. Similarly, and as far as we are aware, no other study has assessed the impact that could be expected 
when police recorded crime rates are introduced as an explanatory variable. This represents a substantial 
gap in the literature, affecting not only previous studies exploring the consequences of crime relying on 
police data, but also potentially, any other study on any other subject, where police recorded crime rates are 
used as a control variable. Lastly, by contemplating the impact of crime rates both in their original form 
and log-transformed, we cover the two main forms used to introduce crime rates in regression models in 
the literature, while we also demonstrate how either log-transforming crime rates, or specifying them using 
generalised linear models with logs as the link function (Osgood, 2000), could in many cases represent a 
simple yet highly effective approach to minimise the impact of measurement error. 

Our analytical strategy is twofold, based first on a formal approximation using algebra, further enhanced 
through simulations at a second stage. The former defines the specific impact that could be attributed to 
different measurement error mechanisms present in police recorded crime rates, while the latter facilitates 
visualising their combined impact across a wide range of scenarios. But first we proceed to illustrate the 
form and prevalence of measurement error that could be expected in police recorded crime rates. We do 
so both theoretically and empirically through comparisons with crime estimates derived from victimisation 
surveys and a register of vital statistics.  

 

2. PREVALENCE AND NATURE OF MEASUREMENT ERROR IN POLICE 
RECORDED CRIME RATES 

To assess the measurement properties of police recorded crime rates, we first need to define the concept 
that researchers are trying to capture when using such data. Generalising, researchers use police crime rates 
to reflect the underlying extent of crime. However, what constitutes ‘crime’ is not always clear-cut. Broadly 
speaking, we can consider four conceptualisations of crime, which can be ordered as a sequence of subsets 
of ‘all crimes’ according to their breadth, as shown in Figure 1.  

A growing body of research is interested in exploring the precursors and management strategies of police 
demand (Ashby, 2020; Laufs et al., 2020). In such cases, the specific phenomenon that researchers seek to 
capture is crimes that are reported (or known) to the police, represented by the second level from the 
bottom in Figure 1. In some other instances researchers seek to capture the broadest conceptualisation of 



3 

 

crime, represented by the top level, including so-called ‘victimless’ crimes, or those where the victim is not 
aware of its condition, as it is often the case in fraud or cybercrime (Van de Weijer et al., 2019). However 
– even though this is rarely stated explicitly - most studies relying on police recorded crime rates use them 
as a proxy for the extent of crime that is considered as such by the victim, represented by the second level 
from the top in Figure 1. Hence, in this study we take the number of crimes of which victims are aware 
(expressed in rates) as the true value of crime that most researchers aim to capture, and consequently define 
measurement error as the discrepancy between that and the crime rates recorded by the police.  

Fig. 1. Different conceptualisation of crime 

 

As illustrated schematically in Figure 1, police recorded crime rates under-estimate the true extent of crime, 
as they are affected by victims’ willingness to report an incident to the police; an effect which varies by 
demographic groups and crime types (Hart & Rennison, 2003; Tarling & Morris, 2010). Crime reporting 
rates differ systematically according to the victims’ sex (females report more often than males), their 
relationship to the offender (reporting rates are smaller when the offender is a stranger), but also based on 
victims’ age, ethnicity and income (Baumer, 2002; Hart & Rennison, 2003). There are also stark differences 
in reporting rates by crime types, with theft of motor vehicle and burglary typically being those with the 
highest reporting rates, and petty crimes such as theft and shoplifting being less likely to be reported to the 
police (Hart & Rennison, 2003; Tarling & Morris, 2010).  

Table 1 presents the estimated reporting rates for crime types commonly considered in the literature. These 
reporting rates are derived from the Crime Survey for England and Wales (CSEW) and the National Crime 
Victimization Survey (NCVS), which include questions on whether crimes came to be known to the police. 
The two surveys are not perfectly comparable because of differences in the specific offence types included 
(see Appendix), however they show some important similarities. Both show how reporting rates vary 
markedly across crime types, with motor vehicle theft reaching close to perfect reporting rates, while fewer 
than half of property crimes are reported to the police.  

Table I. Reporting rates for different crime types 

 CSEW 2018 to 2019 NCVS 2017 to 2020 
 Cases reported 

in the survey 
% known 
to police 

(weighted) 

Cases reported 
in the survey 

% known 
to police 

(weighted) 
Violent crime 1979 38.8% 516 46.6% 
Property crime 2035 36.7% 995 41.8% 
Burglary 719 59.5% 248 45.4% 
Motor vehicle theft 130 89.7% 33 73.5% 
All crimes 7,840 37.3% 3,209 42.04% 

 

Reporting rates may also differ across geographic areas (Buil-Gil et al., 2021b; Xie & Baumer, 2019), 
reflecting variations in citizens’ perceptions of the police and their willingness to cooperate with police 
services (Jackson et al., 2016; McCandless et al., 2016). However, the extent and variability with which 
crimes are reported is not the only problem affecting police statistics.  

Once brought to the attention of the police, the decision to record an incident as a crime is the result of a 
complex interaction of various counting rules and protocols, not always standardised across police forces, 
where personal discretion plays a large role (Burrows et al., 2000). An officer must first determine whether 
an incident meets the legal threshold to be considered a crime, before making an individual judgement on 
whether to proceed with the registration process (Klinger & Bridges, 1997). Having decided to do so, the 
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crime is then classified according to pre-defined criteria. Here again there is evidence of considerable 
variability across police forces (Burrows et al., 2000; Her Majesty Inspectorate of Constabulary, 2014; von 
Hofer, 2000), with researchers also pointing to systematic under-counting in certain types of areas, including 
high-rise housing areas (Bottoms et al., 1987) and rural areas (Berg & Lauritsen, 2016), and even more 
flagrant data manipulation practices as a result of managerial and political pressures (Eterno et al., 2014). 

These different forms of measurement error affecting police recorded crime rates can be grouped in two 
main categories: systematic and random errors. Problems of under-reporting and under-counting represent 
systematic errors, since they lead to a downward bias in the proportion of crimes recorded across all areas. 
By contrast, inconsistencies in crime reporting and recording processes across victims, areas and police 
forces could be considered random errors, as they introduce undue variability (i.e. noise) in police crime 
rates. That is, the former group of errors impact the validity of police crime rates, while the latter affects 
their reliability (Lohr, 2019).  

How these types of errors relate to the unobserved true crime rates is less clear. Only a subset of the small 
group of studies exploring the presence of measurement error in police data have sought to define this 
question formally, and amongst those few not all follow the same approach. Broadly speaking we can 
distinguish two main groups, based on whether the measurement error is thought to be additive or 
multiplicative. The additive model represents the standard functional form used to conceptualise 
measurement error problems (Novick, 1966; Stefanski & Carroll, 1995), which has been adopted for the 
exploration of measurement error in crime rates in important studies such as Fajnzylber et al. (2002) and 

Pepper et al. (2010). Under such models, the measurement error (𝑈) present in the observed and imperfectly 

measured crime rate variable (𝑋∗) is thought to be related to the true but unobserved variable (𝑋) additively: 𝑋∗ = 𝑋 + 𝑈, with 𝐸(𝑈) ≠ 0 if the errors are systematic as opposed to entirely random. Alternatively, 
Gibson and Kim (2008) and Pudney et al. (2000) have viewed the relationship between the errors and the 

true crime rate as multiplicative: 𝑋∗ = 𝑋𝑈, with 𝐸(𝑈) ≠ 1 if the errors are systematic. Such multiplicative 
representation implies that the magnitude of the error term is proportional to the true prevalence of crime, 
which has been commonly employed in applications exploring the presence of measurement error in count 
and duration data (Glewwe, 2007; Pickles et al., 1996; Skinner & Humphreys, 1999), which just like crime 
rates are left-censored and typically right-skewed.  

If, as shown in Figure 1, we consider police recorded crime as a subset of the true extent of crime, the 
proportional relationship between true crime rates and errors posited by the multiplicative model (i.e. higher 
crime areas will lead to larger errors) seems appropriate. However, it is important not to dismiss the additive 
model entirely. Often, researchers introduce crime rates in their models after they have been log-
transformed. This is done either to interpret effects in relative terms (Goulas & Zervoyianni, 2013; Witt & 
Witte, 2000), or to normalise right-skewed crime rates (Sutherland et al., 2013; Whitworth, 2012). The latter 
is also achieved through generalised linear models where logs are used as the link function such as Poisson 
or negative binomial models (Osborn & Tseloni, 1998; Sampson et al., 1997). The use of such log-based 
generalised linear models was advocated by Osgood (2000) as a strategy to improve the specification of 
crime rates. Incidentally, when such models are employed, besides potentially enhancing the specification 
of crime rates any multiplicative errors affecting crime rates will be transformed into additive errors, since: log(𝑋∗) = log(𝑋𝑈) = log(𝑋) + log⁡(𝑈). Hence, even if the measurement error present in police 
recorded crime rates is assumed to be multiplicative, when considering the potential impact that such errors 
could have, we should refer to the additive model. This apparently minor detail has been so far overlooked 
by crime researchers, however, as we will see, differentiating between an additive and a multiplicative 
measurement error could lead to vastly different measurement error induced bias in regression models.  

 

2.1. Empirical Assessment of the Extent and Nature of Measurement Error in Police Recorded Crime 
Rates  

To test our conceptualisation of measurement error affecting police data we undertake two comparisons. 
First, we compare the rate of property crimes recorded by the different police forces in England and Wales 
for the year ending March 2012 against estimates from the CSEW (2011/12).6 Specifically, we compare the 

 
6 The CSEW sampling approach is designed to enable the calculation of reliable victimisation estimates at the PFA 

level, with an average sample of 1,096 respondents in each area (min = 917,max = 4,023). PFA is an UK spatial 
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average number of property crimes recorded per household in each police force area (PFA) in England and 
Wales in 2011/12, against matching types of crimes estimated from the CSEW in that same period and 
areas. To obtain comparable groups, we aggregate the following offence categories recorded by the police 
and the CSEW: vehicle theft, bicycle theft, and residential burglary. Crime rates are estimated from the 
CSEW for a comparable subset of measured offences using the crime mappings outlined in the Office for 
National Statistics crime statistics user guide (see ONS, 2015: 36), including all incidents irrespective of 
whether or not victims reported them to the police. Police recorded crime data is accessed from the Home 
Office open data tables.7 Comparing these two estimates allows us to understand the full extent of the 
discrepancies between incidents experienced by crime victims and those recorded by the police. Our sample 
consists of 42 police forces operating in England and Wales after excluding the City of London, which in 
2011 recorded a property crime rate 7.9 times larger than the average police force.8  

In comparing police recorded crime rates with similar estimates derived from the CSEW it is important to 
keep in mind that the latter is not a ‘gold standard’, i.e. free of measurement error. Whilst this is a convenient 
assumption commonly employed in the literature (Gibson and Kim, 2008; Vollaard, 2012), victimisation 
surveys are themselves subject to multiple limitations, e.g. sampling error, recall errors, interviewer effects, 
and more (Lohr, 2019; Schneider, 1981). As such, discrepancies between the two crime rates should not be 
interpreted as perfect evidence of measurement error affecting police records. Still, since it is widely 
accepted that the CSEW provides a more accurate reflection of the underlying true extent of crime (ONS, 
2022), we will use this as the benchmark measure against which police records are compared. 
Acknowledging both the superior measurement properties of the CSEW, without characterising it as a gold 
standard involves taking discrepancies between CSEW and police recorded crime rates as predominantly - 
but not entirely - evidence of measurement error in the latter. Put differently, we should take discrepancies 
between CSEW and police recorded crime rates as the upper bound estimate of the extent of the 
measurement error present in the latter.  

To enhance the external validity of our findings, we undertake a second comparison, where we focus on 
American homicide rates (per 100,000 people) across states in 2019. Police recorded homicides are taken 
from the Uniform Crime Reporting (UCR) and compared to data from the National Center for Health 
Statistics (NCHS).9 The two measures are largely in agreement since Coroners and medical examiners will 
normally collaborate with law enforcement in homicide cases (Regoeczi et al., 2014). However, as before, 
NCHS data should not be taken as a gold standard. Discrepancies can arise for multiple reasons, such as 
differences in the definitions of homicides subcategories, problems of misclassification potentially affecting 
both measures, or as a result of the NCHS recording the homicide in the county of residence of the victim 
rather than the location where the incident took place. Still, if not a gold standard, NCHS data is often 
considered a more accurate measure of homicide rates when used to reflect aggregate rates at higher spatial 
levels (Cantor & Cohen, 1980; Regoeczi et al., 2014). This is so mainly as a result of the different reporting 
practices underlying the two measures; whereas reports from the NCHS are compulsory those from the 
UCR only follow voluntary practices, which are associated with inconsistencies, delays, and an overall lower 
case prevalence at the National level (Regoeczi et al., 2014). To limit some of the effects associated with 
the voluntary nature of UCR, Florida and Alabama, the two states that in 2019 did not meet the UCR 
guidelines, were excluded from our analysis. This restricted our sample to 48 states.   

Figure 2 presents scatterplots depicting the relationship between police recorded crime rates and those 
derived from our two benchmarks (the CSEW and the NCHS), for property crime and homicide rates. 
These are complemented with histograms showing the distribution of the discrepancies between those data 
sources when the errors are taken to be multiplicative. Inspecting these graphs, we can identify three key 

 

unit commonly used in the literature (Abramovaite et al., 2019; Han et al., 2013; Machin & Meghir, 2004), 
encompassing 1.3 million people on average, which makes them similar to states and large counties in the US (Barnett, 
1981; Philipson & Posner, 1996).  
7 Home Office data is available here: https://www.gov.uk/government/statistics/police-recorded-crime-open-data-
tables. 
8 The City of London is primarily a business and financial centre with a small resident population of approximately 

10,000 but a large day‐time population leading to artificially high crime rates. 
9 UCR data is available here: https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/topic-
pages/tables/table-20 
NCHS data is available here: https://wonder.cdc.gov/controller/saved/D76/D99F056 

https://www.gov.uk/government/statistics/police-recorded-crime-open-data-tables
https://www.gov.uk/government/statistics/police-recorded-crime-open-data-tables
https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/topic-pages/tables/table-20
https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/topic-pages/tables/table-20
https://wonder.cdc.gov/controller/saved/D76/D99F056
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properties defining the type of measurement error that could be expected to be present in police recorded 
crime rates. 

Fig. 2. Comparison of property crime and homicide rates using data from the police, a victimisation 
survey (CSEW) and vital statistics (NCHS) 

 

Systematic negative. The average crime rates recorded by the police is lower than those derived from the 
CSEW and the NCHS. Specifically, the estimated average recording rate is 34.7% for property crime, and 
89.3% for homicides (as shown by the dashed vertical lines in the histograms). 

Multiplicative. The size of the errors is proportional to the crime rates from the benchmark measures. This 
is shown in the scatterplots by the increasing divergence along the x-axis between the red dashed line of 

best fit summarising the relationship between 𝑋∗and 𝑋 under a multiplicative model, and the continuous 

black line where 𝑋∗ is assumed to be a perfect measure of 𝑋. Furthermore, to test whether the multiplicative 
model provides a better fit than the more commonly employed additive model, we have also included a 
visual representation of the latter, shown by the red dotted lines, and estimated the Akaike Information 
Criteria (AIC) for the two competing functional forms. We find that for both property crime and homicide 
the multiplicative models show a better fit (multiplicative AIC is -294.4 for property crimes, compared to -
206.4 for the additive model, and 166.0 and 175.5 respectively for homicide). 

Unreliable. As shown in the two histograms, discrepancies are not uniform but normally distributed. The 
standard deviation of the errors in property crime is 0.074, pointing at unequal reporting rates and/or 
recording practices across PFAs. The standard deviation of the errors in homicide rates is 0.17, which 
suggests even more substantial inconsistencies in recording practices across states in the US. However, as 
previously noted, those two standard deviations should be interpreted as the upper bound of the estimated 
variability attributed to measurement error in police data. Since neither the CSEW nor the NCHS represent 
gold standards, a significant share of that variability is likely stemming from measurement error affecting 
our benchmark measures, not police data.  

 

  

3. ILLUSTRATING THE IMPACT OF MEASUREMENT ERROR IN POLICE 
RECORDED CRIME RATES FORMALLY 

Various factors determine the extent of the impact on estimates from a regression model where one of the 
variables included is affected by measurement error: the specific form of the measurement error, its 
prevalence, the type of regression model employed, where and how the affected variable is introduced in 
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that model, and the association between other variables included in the model with both the true value of 
the affected variable and its measurement error term. For clarity, and to constrain the number of scenarios 
to be considered, here we will invoke a few simplifying assumptions, and focus on the most common uses 
of police recorded crime rates.  

We start by considering the impact of measurement error on a simple linear regression model, where the 

affected variable, 𝑋∗, is introduced as the only explanatory variable. We then move to consider the case of 

a multiple linear regression where a second explanatory variable is included,⁡𝑍, which we take to be perfectly 

measured. We assume that the measurement error term is: homoscedastic, 𝑣𝑎𝑟(𝑈) = 𝑣𝑎𝑟(𝑢𝑖), where 𝑢𝑖 
represents any particular value of 𝑈; independently distributed, 𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 0; and non-differential, by 

which we mean unrelated to the response variable, 𝐸(𝑌|𝑋, 𝑋∗) = 𝐸(𝑌|𝑋), and to any other variables 

included in the model, which in our case it is just 𝑍, so 𝑐𝑜𝑣(𝑈, 𝑍) = 0.  

To ensure that the scenarios explored encompass most types of studies where police recorded crime rates 
are used in regression models, we also consider the impact of measurement error when crime rates are 

introduced as the response variable, 𝑌∗. Scenarios presenting the systematic and random mechanisms 
identified in Section 2 are shown separately to distinguish their specific impact. We also consider additive 
and multiplicative errors separately to reflect the fact that recorded crime rates are not always introduced 
in their original scale but may first be log-transformed. Recall that under a multiplicative measurement error 

model: log(𝑋∗) = log(𝑋𝑈) = log(𝑋) + log⁡(𝑈).  
 

3.1. Crime Rate as an Explanatory Variable 

Let us start with the case of a simple linear model where both response and explanatory variables are 

continuous, and the latter is affected by measurement error: 𝑌 = 𝛼 + 𝛽𝑋∗ + 𝜀. Using ordinary least squares 
(OLS), the constant and slope of this model can be estimated by solving the following system of equations: 

{𝛼̂∗ = 𝑌̅ − 𝛽̂𝑋̅∗⁡⁡⁡⁡𝛽̂∗ = 𝑆𝑋∗,𝑌𝑆𝑋∗2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 
where 𝑋̅∗ = 𝐸(𝑋∗), 𝑆𝑋∗2 = 𝑣𝑎𝑟(𝑋∗), and 𝑆𝑋∗,𝑌 = 𝑐𝑜𝑣(𝑋∗, 𝑌).  
Consider first the impact of a purely systematic measurement error. Under the common assumption of 

additive measurement error, 𝑋∗ = 𝑋 + 𝑢, where under-recording takes the form of a scalar 𝑢 < 0, then 

substituting 𝑋∗ into the first line of Eq. (1) yields 𝛼̂∗ = 𝑌̅ − (𝛽̂𝑋̅ + 𝛽̂𝑢) = 𝛼̂ + 𝛽̂𝑢. The model’s intercept 
will be biased downwards by 𝛽̂𝑢. The slope, however, will remain unbiased, as neither covariance nor 
variance are affected by a change of origin.10 Since the substantive interest of regression models normally 
stems from the association between explanatory and response variables, we might conclude that the 
consequences of this type of systematic error are minimal.  

However, in the presence of multiplicative systematic error, 𝑋∗ = 𝑋𝑢, the picture is more problematic. In 

this case, the constant will continue to be biased by 𝛽̂𝑢 (although this time it will be an upward bias since 0 < 𝑢 < 1). More importantly, the slope will now be biased because both the variance and covariance are 
affected by a change of scale.11 Substituting from the second line of Eq. (1) we have:  

 
10 Proof of the variance being unaffected by a change of origin:  𝑆𝑋∗2 = ∑(𝑋∗−𝑋̅∗)2𝑛−1 = ∑(𝑋+𝑢−(𝑋̅+𝑢))2𝑛−1 = ∑(𝑋−𝑋̅)2𝑛−1 = 𝑆𝑋2  

Proof of the covariance being unaffected by a change of origin: 𝑆𝑋∗,𝑌 = Σ(𝑋∗−𝑋̅∗)⁡(𝑌∗−𝑌̅∗)𝑛−1 = Σ(𝑋+𝑢−(𝑋̅+𝑢))⁡(𝑌∗−𝑌̅∗)𝑛−1 = Σ(𝑋−𝑋̅)⁡(𝑌∗−𝑌̅∗)𝑛−1 = 𝑆𝑋,𝑌  
11 Proof of the variance being affected by a change in scale:                                                                                  𝑆𝑋∗2 = ∑(𝑋∗−𝑋̅∗)2𝑛−1 = ∑(𝑋𝑢−𝑋̅𝑢)2𝑛−1 = 𝑢2∑(𝑋−𝑋̅)2𝑛−1 = 𝑢2𝑆𝑋2 

Proof of the covariance being affected by a change in scale:                                                                                   𝑆𝑋∗,𝑌 = Σ(𝑋∗−𝑋̅∗)⁡(𝑌∗−𝑌̅∗)𝑛−1 = Σ(𝑋𝑢−(𝑋̅𝑢))⁡(𝑌∗−𝑌̅∗)𝑛−1 = uΣ(𝑋−𝑋̅)⁡(𝑌∗−𝑌̅∗)𝑛−1 = 𝑢𝑆𝑋,𝑌⁡⁡  



8 

 

𝛽̂∗ = 𝑆𝑋∗,𝑌𝑆𝑋∗2 = 𝑆𝑋𝑢,𝑌𝑆𝑋𝑢2 = 𝑆𝑋,𝑌𝑢𝑆𝑋2𝑢2 = 𝛽̂𝑢 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 
Thus, the slope is augmented by a factor proportional to the rate of under-recording.   

Anticipating the specific impact on the slope becomes more complicated if we also consider that the 
observed measurement error affecting police recorded crime rates is not uniform but can vary randomly 

across areas. In that setting, 𝑈 is a normally distributed variable, 𝑈~𝑁(𝑈̅, 𝑆𝑈2). In the presence of additive 

errors, we will now observe an attenuation bias in the slope as a result of the random noise present in 𝑋∗. 
Specifically, under the assumption that 𝑈 is non-differential (i.e. unrelated to 𝑋 or 𝑌), the covariance 𝑆𝑋∗,𝑌 

will be equal to 𝑆𝑋,𝑌 , but the variance 𝑆𝑋∗2  will be the sum of the variance of 𝑋 and the variance of 𝑈, 𝑆𝑋2 +𝑆𝑈2. Substituting the estimator of the slope in Eq. (1) we now have: 𝛽̂∗ = 𝑆𝑋∗,𝑌𝑆𝑋∗2 = 𝑆𝑋,𝑌𝑆𝑋2 + 𝑆𝑈2 = 𝑆𝑋,𝑌𝑆𝑋2 𝑆𝑋2𝑆𝑋∗2 = 𝛽̂ ( 𝑆𝑋2𝑆𝑋2 + 𝑆𝑈2)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 
The slope is attenuated by a factor equal to the proportion of signal to noise in 𝑋∗ (i.e. its reliability ratio). 
The specific effect of the bias becomes harder to anticipate if the errors are multiplicative. In this case, 

under the assumption that 𝑋 and 𝑌 are independent, the denominator of the bias term shown in Eq. (3) is 

now defined as 𝑆𝑋∗2 = 𝑆𝑋2𝑆𝑈2 + 𝑆𝑋2𝑈̅2 + 𝑆𝑈2𝑋̅2. 

In fact, it is not just the slope of the variable prone to measurement error that will be affected, the bias will 
spread through the model impacting all the regression coefficients of any additional explanatory variables 
introduced in the model, even if these additional variables are measured perfectly. Carroll et al. (2006) show 

how for the simplest case of a multiple linear regression model, 𝑌 = 𝛼 + 𝛽1𝑋∗ + 𝛽2𝑍 + 𝜀, where 𝑋∗ is 
subject to random additive errors, but 𝑍 is perfectly measured, regression coefficients for both variables are 

biased. OLS will not estimate 𝛽̂1⁡but rather,  𝛽̂1∗ = 𝛽̂1 𝑆𝑋|𝑍2𝑆𝑋|𝑍2 + 𝑆𝑈2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 
which differs from the bias observed in the slope of the simple linear model, Eq. (3), since 𝑆𝑋|𝑍2  represents 

the residual variance of the regression of 𝑋 on 𝑍. Hence, the attenuation bias is now stronger than the case 
of simple linear regression, and the higher the correlation between the explanatory variables the stronger 

the bias. Importantly, we will also find that instead of 𝛽̂2 we obtain,  𝛽̂2∗ = 𝛽̂2 + 𝛽̂1 (1 − 𝑆𝑋|𝑍2𝑆𝑋|𝑍2 +𝑆𝑈2) 𝛾⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)  
where 𝛾 is the coefficient of 𝑍 in the regression of 𝑋 on 𝑍. 

It is therefore clear that the impact of using variables affected by measurement error in multivariate models 
is not negligible, and in most cases it is hard to anticipate, becoming harder in line with the complexity of 
the measurement error mechanisms and the outcome model considered.   

 

3.2. Crime Rate as a Response Variable 

We proceed to consider the case where the variable prone to measurement error is the response variable, 𝑌∗. As before, we assume that the measurement error term, 𝑈, is homoscedastic, independently distributed, 

and independent from the true value, 𝑌, and any other variables included in the model. Let us consider a 
linear model with two perfectly measured explanatory variables, which takes the following form, 𝑌∗ = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 
In this case, if the measurement error is additive, 𝑌∗ = 𝑌 + 𝑈, then substituting in Eq. (6) we have, 𝑌 +𝑈 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀, which can be further rearranged as,  𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + (𝜀 − 𝑈)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 
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Hence, random additive measurement errors affecting the response variable will be absorbed by the model’s 
residuals, only affecting the precision of the model’s estimates. If the errors are systematic then the intercept 
will be biased, but all other regression coefficients will remain unbiased. This changes when the errors are 

multiplicative, 𝑌∗ = 𝑌𝑈. Substituting in Eq. (6) we have, 𝑌𝑈 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀, which can be 
rearranged as,  𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀𝑈 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 
In this case, if the errors are completely random only the precision of the regression coefficients will be 
affected. However, in the presence of systematic errors all model estimates will also be biased. The extent 

of the bias will be proportional to 𝑈̅, which for the case of under-recorded crime rates will represent a form 
of attenuation bias.  

In sum, even when simple scenarios are considered, we see how the type of measurement errors observed 
in police recorded crime rates can impact the validity of estimates from regression models. Depending on 
the form and prevalence of the measurement error, the type of outcome model, where in the model the 
error-prone variable is introduced, and the ways in which the variables included in the model are correlated, 
we can see radically different effects. These effects range from relatively negligible (e.g. purely systematic 
measurement error additively associated to an explanatory variable will only bias models’ intercepts) to 
potentially substantial (e.g. as shown in Eq. 8, systematic multiplicative measurement error affecting the 
response variable will bias all regression coefficients).  

 

4. ILLUSTRATING THE IMPACT OF MEASUREMENT ERROR IN POLICE 
RECORDED CRIME RATES THROUGH SIMULATIONS 

Importantly, it is not just the magnitude of the impact of measurement error that matters, but the extent to 
which that impact can be predicted. If the biasing effect of measurement error can be anticipated simply 
enough – as is the case, for example, in the scenario shown in Eq. (8), where all we need is an estimate of 
the under-recording rate in police data – then, findings based on police data can be adjusted. However, we 
have seen how the specific impact of measurement error is often hard to predict, with systematic and 
random errors leading to different types of biases, which can operate in different directions. The 
combination of these types of errors in varying degrees of intensity, as seen across the different crime types 
or area levels considered in the literature, makes it particularly difficult to anticipate their joint effect. To 
better understand the impact of the types of measurement error seen in police data across a wide range of 
settings we use computer simulations.  

We simulate the varying forms of measurement error that could be expected to affect police recorded crime 
rates for different crime types across different area levels. However, to frame our analysis on real data, the 
impact of those errors is assessed on different models investigating the relationship between property crime 
rates and worry about crime, with perceptions of disorder included as control, and all the variables measured 
at the PFA level. Worry about crime and perceptions of disorder are area-level direct estimates (i.e., 
weighted means) of Confirmatory Factor Analysis (CFA) factor scores derived from the CSEW. The worry 
about crime measure combines items tapping into worry about burglary, robbery, rape, assault and receiving 
insults in public places (CFI = 0.97, TLI = 0.95, SRMR = 0.03). Perceived disorder covers perceptions of 
noisy neighbours and loud parties, teenagers hanging around on the streets, rubbish and litter lying around, 
vandalism and graffiti, people using or dealing drugs, people being drunk or rowdy in public places, and 
people being harassed or intimidated (CFI = 0.97, TLI = 0.96, SRMR = 0.03). In both cases, factor scores 

were linearly transformed to [0,1] range to enable an easier interpretation of results: 
𝐹𝑖−min⁡(𝐹)max(𝐹)−min⁡(𝐹), where 𝐹𝑖 is the factor score in respondent 𝑖. For property crime we take the CSEW estimates reported in Section 

2.1. Table 2 shows descriptive statistics of the three variables. Their pairwise Pearson’s correlation 

coefficients are as follows: 𝜌𝐶𝑟𝑖𝑚𝑒,𝑊𝑜𝑟𝑟𝑦 = 0.69;⁡⁡𝜌𝐶𝑟𝑖𝑚𝑒,𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟 = 0.62, 𝜌𝑊𝑜𝑟𝑟𝑦,𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟 = 0.68). 

 

 

 



10 

 

Table II. Descriptive statistics of data from the CSEW used in our empirical illustration  

 Mean Median Min. Max. 
Property crime rate 0.08 0.08 0.03 0.14 
Worry about crime 0.51 0.41 0.41 0.61 
Perceptions of disorder 0.27 0.27 0.20 0.37 

 

We consider four linear models where we cross the position of the crime rates (response vs. explanatory 
variable) and their distribution (original scale vs. log-transformed). Table 3 presents the estimates for these 
models, which we refer to as the ‘benchmark’ models. As could be expected from their pairwise correlations, 
both worry about crime and perceptions of disorder are positively associated with property crime, and for 
the most part these associations are statistically significant. 

Table III. Regression coefficients from the ‘benchmark’ models (based on CSEW estimated property 
crime rates at the PFA level) 

 Coef. SE p-value 
Response variable:  
Worry about crime 

   

Intercept 0.36 0.03 <0.001 
Property crime 0.67 0.20 0.002 
Perception of disorder 0.36 0.12 0.004 
Response variable:  
Worry about crime 

   

Intercept 0.54 0.07 <0.001 
Log-property crime 0.05 0.02 0.002 
Perception of disorder 0.35 0.12 0.006 
Response variable: 
Property crime 

   

Intercept -0.13 0.04 0.001 
Worry about crime 0.34 0.10 0.002 
Perception of disorder 0.16 0.09 0.079 
Response variable:  
Log-property crime 

   

Intercept -5.44 0.52 <0.001 
Worry about crime 4.35 1.33 0.002 
Perception of disorder 2.46 1.19 0.045 

 

To assess the impact of measurement error we compare estimates from the benchmark models presented 
in Table 3 against those obtained for the same models after property crime rates derived from the CSEW 
are subjected to different forms of simulated errors reflecting the types of errors affecting police recorded 
crime rates. For the models where crime is log-transformed the simulated errors are introduced in the crime 
rates before they are log-transformed. We focus on the impact on the regression coefficients of the two 
explanatory variables included in each model, and on their standard errors. This impact is quantified using 
the relative bias; the proportional difference between the observed estimate using crime rates where 
simulated error has been introduced, and the benchmark estimate, which for the case of regression 

coefficients can be expressed formally as, 𝑅𝐵𝐼𝐴𝑆𝛽̂ =⁡ (𝛽̂∗ − 𝛽̂)/𝛽̂, or as, 𝑅𝐵𝐼𝐴𝑆𝑆𝐸̂𝛽̂ = (𝑆𝐸̂𝛽̂∗ −𝑆𝐸̂𝛽̂)/𝑆𝐸̂𝛽̂, for their standard errors.  

We simulate a range of different multiplicative measurement error scenarios.12 To reflect the varying levels 
of under-recording seen across different crime types (as shown in Table 1 and Figure 2), we consider the 
impact of under-recording rates ranging from no systematic errors in recording rates to up to 80% of crimes 
being missed. There are some specific crime types for which rates of under-recording may be expected to 
be even higher than 80%, such as anti-social behaviour or attempted theft (Appendix). However, the range 
considered here is likely to reflect most settings explored in the literature, including studies that focus on 
all recorded crimes (Cho & Park, 2017; Matsueda et al., 2006), broad categories of property or violent crime 

 
12 The R code used can be found here, https://osf.io/kv3sc/ 
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(Abramovaite et al., 2019; McCarthy et al., 2019), or more specific crime types such as homicide, burglary, 
or motor vehicle theft (Philipson & Posner, 1996; Reisig & Parks, 2000). 

We also explore the impact associated with varying levels of random errors. This helps us assess the extent 
to which the two measurement error mechanisms interact, while expanding the scope of our analysis. 
Random errors might be a result of variations in recording practices across police forces, as well as potential 
differences in average reporting propensities between areas. The magnitude of this random error could be 
expected to be proportional to the heterogeneity of the areas under consideration, which, as shown by Buil 
Gil et al. (2021a), is proportionally related to the spatial resolution considered (i.e. higher heterogeneity 
across smaller area units, such as output areas in the UK or census blocks in the US). To capture this 
potential heterogeneity we explore three scenarios: one where recording rates are assumed to be uniform; 
a second where we simulate half of the variability in the multiplicative errors detected in Section 2.1 for the 

case of property crime across PFAs in England and Wales (𝑠𝑑 = 0.037); and a third scenario with half of 

the variability seen in homicides across states in the United States (𝑠𝑑 = 0.083). We halve the estimated 
standard deviation to reflect the fact that we could not rely on a gold standard to accurately estimate the 
extent of measurement error in police records. Instead, we have opted to treat them as lower bound 
estimates derived from assuming both police records and our two benchmark measures (the CSEW and 
NCHS) are equally prone to random errors. Furthermore, these estimates are derived from comparisons of 
crime rates measured at the PFA and state levels, which represent some of the largest spatial units used in 
the literature. As such, when interpreting these scenarios, it is important to note that they are based on 
conservative estimates.  

To ensure that no negative errors were simulated in the second and third scenario, the following additional 

constraint was imposed: 𝑈 > 0.001. Moreover, to minimise the presence of simulation errors, the relative 
bias was estimated and averaged over 10,000 iterations.   

 

4.1. Simulation-Derived Impact from Using Police Crime Rates as an Explanatory Variable 

Figure 3 shows the impact of the simulated measurement error mechanisms seen in police crime rates used 
as an explanatory variable. If crime rates are introduced in their original scale, we observe a clear 

augmentation bias in the crime coefficient, 𝛽1, that grows as the percentage of under-recorded cases 
increases. Yet the magnitude of this bias is substantially attenuated as random errors become more 
prevalent. This reflects the opposing effect that multiplicative systematic negative and random errors have 
when they are present in one of the explanatory variables (see Eq. 2 and 4). The impact on the standard 
errors generally mirrors that observed in the regression coefficients, although some discrepancies can be 
observed in instances of extreme under-recording and random error. Here, the bias in the standard error 
becomes larger than that of the regression coefficient.  

The coefficient for perceptions of disorder, 𝛽2, is also affected by measurement error in the recording of 

crime, although this impact is less severe. Furthermore, contrary to what we observed for 𝛽1, we can now 
see how the two measurement error mechanisms operate in the same direction, rendering those settings 
characterised by both substantial average under-recording and considerable random error most 
problematic. However, the standard error remains largely unaffected.  

We can also observe some important differences when crime rates are introduced after being log-
transformed and, thus, making the measurement error additive. The impact on the regression coefficient 
for crime and its standard error now takes the form of an attenuation bias, although it is somewhat less 
severe than was observed when crime rates were introduced on their original scale. This bias can be seen 
to result as a combination of the systematic and random mechanisms, operating in the same direction. By 
contrast, the impact on the regression coefficient for perceptions of disorder remains similar to the 
untransformed case, with its standard error also relatively unaffected. 

In sum, we can anticipate that estimates of the effect of crime from studies where crime rates are introduced 
as an explanatory variable on their original scale may be severely inflated. The extent of the bias is directly 
proportional to the level of under-recording, but inversely related to the magnitude of the random error, to 
the point that in scenarios of large random error the bias can be practically cancelled out. Effects for crime 
types commonly used in the literature, such as violent or property crime, with recording rates near 40% 
(Table 1), measured at a spatial unit such as PFAs, may be expected to be overestimated by as much as 
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100%. Perhaps reassuringly, despite the large impact detected in the effect size of crime, the bias observed 
in its standard error seems similar enough to rule out a widespread problem of false positives.  

When crime rates are log-transformed, both random and systematic errors operate in the same direction, 
leading to an attenuation bias in the effect of crime. In this case, the extent of the bias is less severe. 
Considering again crime types with recording rates around 40%, we can see the magnitude of the bias being 
relatively negligible (attenuating the true effect size by around 20%) unless recording variability across areas 
is as large as what could be attributed for the case of state homicide rates recorded by the UCR. The impact 
on the standard error follows a similar pattern, rendering the presence of false negatives relatively marginal.  

Fig. 3. Impact of different measurement error mechanisms affecting police recorded crime rates when 
used as an explanatory variable (note change of y scale across graphs) 

 

 

In addition, regardless of whether crime rates are log-transformed or not, we have observed that the bias 
does not just affect the regression coefficient for crime, but also spreads to the regression coefficients of 
other variables included in the model. We have only explored this effect for one variable, perceptions of 

disorder, which is positively correlated with property crime rates derived from the CSEW (𝜌 = 0.62). For 
the specific regression coefficient of perceptions of disorder, and considering again the type of 
measurement error seen in police recorded property crime (40% recording rate moderately varying across 
areas), we could expect an augmentation bias of at least 10%, regardless of whether crime is introduced in 
its original scale, or log-transformed. Importantly, in this case we could expect a similar impact even if we 
consider crime types such as homicides where average under-recording is negligible but highly variable 
across areas.  



13 

 

We have considered linear models with only two explanatory variables. However, similar effects should be 
expected on regression coefficients of any additional explanatory variables included in the outcome model: 
they will be biased as a result of the measurement error affecting police recorded crime rates, even if all of 
the additional variables are perfectly measured, and unrelated to the measurement error term. The specific 
impact on the regression coefficient of any other explanatory variable could be derived from Eq. (5). The 
magnitude of the bias will depend on the prevalence and variability of the under-recording, and on the 
associations between the true crime rate and the response variable and the explanatory variables considered, 
conditional on all other explanatory variables included in the model.   

 

4.2. Simulation-Derived Impact from Using Police Crime Rates as the Response Variable 

When considering models using crime rates as the response, we can observe a radically different impact 
depending on whether crime rates are log-transformed or not (Figure 4). If they are log-transformed, then, 
all regression coefficients remain unbiased, while their standard errors will only be affected by an 
augmentation bias when large systematic and random errors are present simultaneously. Such setting 
contrasts strikingly with the substantial attenuation biases observed across all regression coefficients and 
their standard errors when crime rates are specified in their original scale. As anticipated in Eq. (8), this type 
of bias is proportional to the rate of under-recording affecting the crime type considered. 

Fig. 4. Impact of different measurement error mechanisms affecting police recorded crime rates when 
used as the response variable (note change of y scale across graphs) 

 

The impact of measurement error is therefore much easier to anticipate when crime rates are used as the 
response variable. If log-transformed, the impact will be either null, or negligible in cases where the presence 
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of measurement error is extreme, i.e. crime rates simultaneously affected by a large under-recording rate 
(over 80%) that is highly variable across areas. In similar cases where the two forms of measurement error 
are large, we should however anticipate an important loss of statistical power leading to the widespread 
presence of false negatives, a problem affecting all regression coefficients included in the model.  

When crime rates are used as the response variable on their original scale the impact is substantial. All 
model’s estimates are attenuated by a factor proportional to the under-recording rate of the crime type 
being modelled. This means that even in the presence of the more accurately recorded crime types, such as 
homicide, with a recording rate of roughly 90%, we should expect estimates to be attenuated by 10%. When 
considering other crime types commonly used in the literature, such as property or violent crimes, 
characterised by recording rates close to 40%, an attenuation bias of around 60% the size of the true 
estimates should be expected. On the positive side, these impacts can be easily anticipated, offering 
researchers the opportunity to evaluate the true effect size of the model’s estimates by considering the 
potential under-recording rate affecting the crime type under analysis. Lastly, standard errors are affected 
by a similar form of attenuation bias, although in this case random errors push the bias in the opposite 
direction, which could lead to instances of false positives when the variability in recording or reporting 
practices across areas is high, as we saw was the case for homicides.  

 

5. DISCUSSION 

Crime analysis is becoming an increasingly sophisticated research subject. New data collection tools based 
on mobile apps are generating an ever wider range of crime related measures (Hughes et al., 2021; Solymosi 
et al., 2020), bottom-up approaches such as agent-based modelling techniques have provided new 
perspectives with which to test theories and explain outcomes arising from complex systems (Birks et al., 
2012; Groff et al., 2019), whereas the growing adoption of directed acyclic graphs is leading to more 
transparent disclosures of the causal assumptions involved in traditional studies based on observational 
data (Young, 2014). Yet, in the midst of these remarkable advances, a central methodological problem lying 
at the core of the discipline remains paradoxically unattended. Despite their known flawed measurement 
properties, police statistics continue to be the most used data source in the study of the causes or 
consequences of crime, with very little done to explore their biasing effect. 

Police statistics present important advantages in terms of versatility and accessibility, but relying on such 
data comes with important implications that are poorly understood. Presented with descriptive statistics or 
graphs comparing crime rates, researchers can speculate about the impact of common measurement error 
mechanisms affecting police data. For example, potential changes in reporting or detection rates are often 
invoked to explain questionable crime trends, while inconsistencies in recording practices can explain 
dubious spatial distributions. However, the specific impact that could be attributed to the type of 
measurement error seen in police data becomes much harder to trace when that data is used in regression 
models. This is a major problem. Countless studies are published each year introducing police recorded 
crime rates in regression models either as the response or as an explanatory variable. We suspect that 
estimates reported in those studies could be severely biased, but we do not know in which way, nor do we 
know how much so.  

Amongst the few studies that have shed light on this question, the largest part has focused on the 
identification of the effect of measurement error in specific applications. That is, considering the 
measurement error present in specific crime types, which are then introduced in specific outcome models, 
to explore specific associations concentrated on a few topics such as gun ownership, economic inequality, 
or police arrests. Rather than focusing on one or a few applications, we have aimed to provide a more 
comprehensive overview of the impact that could be expected in the types of regression models where 
police recorded crime rates are commonly used to explore the causes and consequences of crime. We have 
considered: i) combinations of the under-recording (systematic errors) and recording inconsistencies 
(random errors) observed across different crime types; ii) using crime rates as the model’s response variable, 
but also as an explanatory variable; and iii) the introduction of crime rates in their original scale and log-
transformed.  

Our findings demonstrate the pertinence of the more comprehensive overview of the impact of 
measurement error adopted here, as we show how the overall impact in model estimates is widely variable 
across different settings. Hence, results from previous explorations of the impact of measurement error 
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seen in police data may not be generalisable beyond the specific settings considered in those studies. The 
size and direction of the biasing effects attributable to using error-prone police data in regression models 
is strongly dependent on the outcome model, crime type and spatial unit considered. With some studies 
being potentially unaffected, whereas in many others the biases could be expected to be larger than the true 
causal effects of interest, operate in opposing directions to those effects, or lead to over and under-
estimated standard errors, each of those instances likely leading to wrong inferences. This new and more 
comprehensive overview of the impact of measurement error in models relying on police data does not just 
provide a wider understanding of the problem, it also offers a strategy to adjust for it. Once able to 
approximate the specific impact associated with the use of police data, researchers will be able to consider 
simple sensitivity analysis to communicate the expected impact in their estimates, which could be reported 
using uncertainty intervals. Similarly, being able to anticipate the impact associated to these errors means 
that researchers could assess the validity of findings from previous studies where no attempt was made to 
adjust for this problem.  

As first identified by Gibson and Kim (2008), we show how studies where crime rates are introduced as a 
response variable in their original scale are likely to be severely biased. We expand on this and demonstrate 
how the impact of measurement error can also be severe in models where crime rates are used as an 
explanatory variable; as it is the case across studies aiming to estimate the causal effect of crime on a wide 
range of outcomes such as perceptions of insecurity (Cho & Park, 2017), residential segregation (Keels et 
al., 2005), or population change (Morenoff & Sampson, 1997). Importantly, substantial biases can also be 
found in other explanatory variables included in the model, even if they are perfectly measured. This finding 
points at a potentially more widespread - and ultimately more pervasive - effect than initially anticipated. 
We have focused our analysis on the validity of studies exploring the causes and consequences of crime, 
however, police recorded crime rates are also commonly used as controls in studies where the substantive 
interest lies on ascertaining different causal relationships (see, for example, Harmon, 2013; or Xie & 
Lauritsen, 2012). Those other causal estimates are also likely biased because of the measurement error 
present in police recorded crime rates. 

Another important finding from our analysis challenges the view that crime types for which recording rates 
are high - such as homicides or vehicle theft - are ‘safe’ to use. When random variability in recording 
practices across areas is high, as it seems to be the case for state homicide rates derived from the UCR, 
model estimates relying on this data could also be biased, even if more mildly than for other crime types 
where recording rates are not as high. Once again, this finding underlines the relevance of adopting a broad 
perspective, considering the interacting effect of different measurement error mechanisms seen in police 
data.  

 

5.1. Turning Multiplicative into Additive Errors 

We have also shown that the potentially severe impact of the type of measurement error seen in police 
recorded crime rates can be considerably minimised - and in certain settings altogether eliminated – by 
applying a simple log-transformation. This is a transformation commonly undertaken in the analysis of 
crime rates for different reasons: i) to normalise their often right-skewed distributions; ii) as a result of the 
use of generalised linear models such as Poisson or negative-binomial; or iii) just to express the relationship 
between crime and other variables in relative terms. Here we showed how log-transformations have the 
added benefit of reducing the impact of measurement error by turning the more damaging multiplicative 
errors observed in police recorded crime rates into less harmful additive errors.  

The only exceptions appear to be those instances where crime types affected by strong variability in 
recording rates across areas are used as an explanatory variable, in which case the impact of an additive 
measurement error might be more severe than that seen for multiplicative errors. We could expect that to 
be the case in two main settings: i) low frequency crime types, such as homicide, where small measurement 
inconsistencies could lead to relatively high variability across areas, and ii) when any other, more frequent 
crime types are considered but the spatial resolution at which they are measured is high, e.g. when 
considering crime rates at the street, neighbourhood or small output area level, rather than cities, states, or 
police force areas.  

Leaving aside the case where crime rates are affected by strong variability across areas used as an explanatory 
variable, there are practically no disadvantages from adopting log-transformations. When crime rates are 
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used as the outcome variable, we could also encounter potential model misspecifications if these crime rates 
in their original scale are already normally distributed rather than right-skewed, which could result in the 
model’s residuals being not normally distributed. This is unlikely, but even in those instances the impact 
would be limited to the accuracy of the model’s measures of uncertainty, whereas keeping the measurement 
error in its systematic multiplicative form will bias all regression coefficients included in the model 
proportionally to the rate of under-recorded crime.  

Osgood (2000) urged researchers to abandon linear models and adopt Poisson-based models for the 
specification of crime rates. His advice is based on the more realistic parametric assumptions offered by 
Poisson or similar generalised models like negative binomial models. Here we echo Osgood’s advice, not 
just to improve the specification of the response variable, but as a way to adjust the impact of measurement 
error. Using log-transformed crime rates as the response variable would almost invariably eliminate the 
strong attenuation bias affecting all regression coefficients as a result of the under-recording seen in police 
statistics. Further, we extend Osgood’s advice to consider log-transforming crime rates that are used as 
explanatory variables, which, in those instances where recording inconsistencies across areas are not large, 
will contribute to mitigate the impact associated to multiplicative measurement errors. 

To assess the extent to which Osgood’s advice has been heeded, we undertook a rapid literature review of 
articles published in the Journal of Quantitative Criminology from 2001 to the 11th August 2021 containing 
the keyword ‘UCR’. Out of a sample of exactly 100 articles that met the inclusion criteria, 40 used police 
recorded crime rates as the response variable in a regression model, with nine of them (22.5%) introducing 
crime rates in its original scale without relying on Poisson-based models. If we consider instances where 
crime rates are used as explanatory variables in a regression model, we counted sixteen articles, with thirteen 
of them (about 81%) introducing crime rates in their original scale. This demonstrates that the use of log-
based generalised linear models or simple logarithmic transformations of crime rates before they are 
introduced in regression models is not uniformly adopted. There is therefore further scope for mitigating 
the impact of measurement error in crime analysis substantially by considering a simple data transformation.  

 

5.2. Caveats and Future Avenues of Research 

The precision with which we can interpret - and subsequently adjust - the impact of measurement error in 
police data hinges on how well we can estimate the prevalence and nature of those errors. We explored the 
presence of measurement error in police data by comparing police recorded crime rates with estimates from 
victimisation surveys. In addition, to consider other important crime types that are not captured by 
victimisation surveys, we have also compared state recorded homicide rates against rates derived from vital 
statistics.   

The accuracy of such an approach hinges on how well crime rates derived from victimisation surveys and 
vital statistics are measured. For reasons of convenience, when similar comparisons are undertaken in the 
literature, they are often based on the assumption that the benchmark measures against which police 
recorded crime rates are compared can be considered a ‘gold standard’, free of measurement error. 
However, we know that both victimisation surveys and vital statistics are affected by different limitations, 
such as sampling error or the fact that both measures reflect the location of the victim’s residence rather 
than where the incident took place (Cernat et al., 2021). As a result, we can deduce that the extent of 
measurement error attributed to police data in the literature has likely been exaggerated, but how much so 
is currently unclear. Here we opted to take a conservative estimate and only considered half of the variability 
in recording rates detected after comparing police crime rates with our two benchmarks as evidence of 
measurement error in the former, i.e. we have assumed that both police recorded crime rates and our two 
benchmark measures are equally affected by recording inconsistencies. This, together with our focus on 
crime rates measured at relatively high-level spatial units such as PFA and states, where a share of the 
inconsistencies prevalent at lower-level areas are cancelled out (Buil-Gil et al., 2021a), has probably led us 
to underestimate the impact that could be attributed to measurement error in regression models.   

It is therefore essential that future studies explore the extent to which the different limitations of 
victimisation surveys and vital statistics, but also other proxy measures of crime such as medical emergency 
services data (Hibdon et al., 2017; Sutherland et al., 2021), may affect our estimates of measurement error 
in police statistics. Measurement error estimation methods that do not rely on a gold standard, such as 
multitrait-multimethod latent variable models (Oberski et al., 2017; Yang et al., 2018) or hidden Markov 
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models (Pavlopuolos et al., 2020), offer a particularly promising avenue of research to do so. These can be 
used to estimate the validity and reliability of variables tapping on the same underlying concept. However, 
to the best of our knowledge, they have not yet been employed to study the problem of measurement error 
in crime data.  

It would also be important that future studies exploring the measurement error affecting police data 
consider the presence of additional error mechanisms. We have illustrated the impact of systematic under-
recording and random variability in recording rates across areas, since these are two general mechanisms 
that apply to all settings where police recorded crime rates are used. However, we have placed strong 
simplifying assumptions over those two measurement error mechanisms. One of those being that the errors 
are independent from the response variable and other explanatory variables included in the model. The 
extent to which this assumption holds across some of the most important variables that are used in the 
study of the causes and consequences of crime should be explored. Considering how other measurement 
error mechanisms interact with the more general processes seen here, should help enhance the precision 
with which the impact of measurement error can be estimated.  

Lastly, we have illustrated the impact of measurement error in relatively simple linear models. It would be 
useful if future studies were to expand this by considering the impact on more complex models, such as 
discrete data models (Machin & Meghir, 2004; Sobol et al., 2013), or when systems of equations are 
employed (Krahn & Kennedy, 1985; Yesberg et al., 2021). In those instances, the biasing effect of 
measurement error, and how it is propagated through the different parts of the model, will be harder to 
trace (Carroll et al., 2006). Hence, findings will likely be even less generalisable than we have seen here. In 
the absence of a general understanding of the potential impact exerted by measurement error, it would be 
key that researchers attempt to assess that impact empirically, as a form of sensitivity analysis. Regardless 
of the complexity of the outcome model, this could be done using simulations, just as we have done in this 
study (the R code employed has been included in the supplementary material). Other flexible methods that 
could be used as sensitivity analysis tools are simulation-extrapolation (Biewen et al., 2008; Pina-Sánchez, 
2016), multiple over-imputation (Blackwell et al., 2017), or Bayesian adjustments (Gustafson, 2003; Pina-
Sánchez et al., 2019).  

 

6. CONCLUSION 

We urge researchers introducing police recorded crime rates – or any other kind of police recorded crime 
data - in regression models, to consider how their estimates might be impacted by the presence of 
measurement error. We have shown how the impact can be large enough to lead to diametrically incorrect 
conclusions. Yet, we have also shown how, based on an understanding of the validity and reliability of 
police records, and on how and where they are introduced in the model, that impact can be approximated, 
and therefore - to some extent - adjusted. Here, we summarise the impact that should be expected across 
different settings in five simple general principles, which ought to be considered in revisiting findings from 
the literature under a more accurate and critical perspective, and to help minimise the problem of 
measurement error in police recorded crime rates in the future.  

i. Studies using linear models with police recorded crime rates as the response variable will be biased. 
All regression coefficients and their standard errors are attenuated in a proportion similar to the 
extent of the under-recording of the crime type explored.  

ii. That attenuation bias is often eliminated when crime rates are log-transformed, rendering such 
transformations essential in future studies, regardless of whether crime rates are normally 
distributed in their original scale or not. 

iii. Studies including police recorded crime rates in their original scale as an explanatory variable should 
expect the effect of crime to be biased. The direction of the bias will depend on the dominating 
measurement error mechanism, an augmentation bias will arise proportionally to the under-
recording affecting the crime type considered, but this will be opposed by an attenuation bias 
directly related to the variability in recording rates across areas.  

iv. If crime rates introduced as an explanatory variable are log-transformed, we will instead observe 
an attenuation bias in their coefficient and standard error. This bias is proportional to both the 
average under-recording and the recording variability across areas. The magnitude of this bias could 
be expected to be, in most cases, smaller than if crime rates were introduced in their original scale.  
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v. Regression coefficients for other explanatory variables included in the model alongside crime rates 
will also be biased, even if those explanatory variables are perfectly measured, and unrelated to the 
measurement error term. The direction of the bias will depend on the sign of the relationship 
between these explanatory variables and crime, and that of crime and the response variable, 
conditional on all other explanatory variables included in the model, which makes it hard to 
anticipate. This means that measurement error in police recorded crime rates does not only affect 
studies exploring the causes or consequences of crime, but studies where police recorded crime 
rates are used as controls are also affected.   
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APPENDIX. SPECIFIC OFFENCES USED TO DEFINE BROADER CRIME TYPES IN 
TABLE 1 

 

CSEW 2018 to 2019 NCVS 2017 to 2020* 
Crime type Cases 

reported in 
the interview 

% known 
to police 

(weighted) 

Crime type Cases 
reported in 

the interview 

% known 
to police 

(weighted) 
Violent crime 1979 38.8 % Violent crime 516 46.6 % 
Hit with fists or weapon 538 46.6 % Assault 200 49.5 % 
Threaten to use force or 
violence on you 

1319 36.4 % Attempted assault 299 44.7 % 

Sexually assaulted 95 28.2 % Rape 8 ** 

Violent from household 
member 

37 36.5 % 
Unwanted sexual 
contact from 
household member 

9 ** 

Property crime 2035 36.7 % Property crime 995 41.8 % 
Something stolen out of 
hands or pockets 

304 46.2 % Larceny 927 40.7 % 

Other theft 360 24.8 %    
Tried to steal 203 11.7 % Attempt larceny 52 53.5 % 
   Robbery 16 59.6 % 
Something stolen off car 796 40.0 %    
Bike theft 372 46.2 %    
Burglary 719 59.5 % Burglary 248 45.5 % 
Get in previous house 
to steal 

38 69.0 % Burglary 194 45.1 % 

Get in previous house 
and cause damage 

10 79.3 %     

Get in house since 
moved in to steal 

8 **     

Get in current house to 
steal 

250 75.7 %     

Get in current house 
and cause damage 

37 70.3 %     

Try to get in previous 
house to steal/damage 

21 15.4 % Attempted burglary   

Try to get in current 
house to steal/damage 

355 48.0 %  54 47.5 % 

Motor vehicle theft 130 89.7 % Motor vehicle theft 33 73.5 % 

*Estimates from the NCVS are derived from a wider timeframe to obtain a larger sample size.  

**Crime types with samples smaller than 10 are only used to calculate the overall proportion of cases known to the 
police, not to calculate their crime specific proportion.  


