
This is a repository copy of Goal-Conditioned Action Space Reduction for Deformable
Object Manipulation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/197058/

Version: Accepted Version

Proceedings Paper:
Wang, S, Papallas, R, Leonetti, M et al. (1 more author) (2023) Goal-Conditioned Action
Space Reduction for Deformable Object Manipulation. In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). 2023 IEEE International Conference on
Robotics and Automation (ICRA), 29 May - 02 Jun 2023, London, UK. IEEE , pp. 3823-
3830. ISBN 979-8-3503-2366-5

https://doi.org/10.1109/ICRA48891.2023.10161541

This is an author produced version of a conference paper published in 2023 IEEE
International Conference on Robotics and Automation (ICRA), made available under the
terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted
use, distribution and reproduction in any medium, provided the original work is properly
cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Goal-Conditioned Action Space Reduction

for Deformable Object Manipulation

Shengyin Wang1 Rafael Papallas1 Matteo Leonetti2 Mehmet Dogar1

Abstract— Planning for deformable object manipulation has
been a challenge for a long time in robotics due to its high
computational cost. In this work, we propose to reduce this
cost by reducing the number of pick points on a deformable
object in the action space. We do this by identifying a small
number of key particles that are sufficient as pick points to
reach a given goal state. We find these key particles through a
geometric model simplification process, which finds the minimal
geometric model that still enables a good approximation of the
original model at the goal state. We present an implementation
of this general approach for 1-D linear deformable objects (e.g.,
ropes) that uses a piece-wise line fitted model, and for 2-D
flat deformable objects (e.g., cloth) that uses a mesh simplified
model. We conducted simulation experiments on ropes and
cloths, which demonstrate the effectiveness of the proposed
method. Finally, the planned paths are executed in a real-world
setting for two cloth folding tasks.

I. INTRODUCTION

Consider a scenario where a robot is required to ma-

nipulate a piece of cloth into a specific goal configuration,

like the object folded diagonally in Fig. 1. A general way

to achieve this goal is building a model of the object in

simulation, and optimizing a trajectory within a planning

framework. Deformable objects are usually modeled as mass-

spring systems, with each mass point (which we refer to as a

particle in this work) also representing a possible pick point

for the robot. High-fidelity models of deformable objects

often contain thousands of such particles, making planning

extremely computationally expensive.

In this work, we propose to reduce this computational cost

by reducing the number of pick points on the object. We do

this by identifying a small number of key particles that are

sufficient as pick points to reach the goal state. For example,

for the object in Fig. 1, we identify four key particles as

sufficient. We find these key particles through a geometric

model simplification process, which finds the minimal geo-

metric model that still enables a good approximation of the

original model at the goal state. For example, in Fig. 1, the

simplified mesh model shown in the third frame provides a

good approximation of the original geometric model at the

goal state, shown in the second frame. Planning using the

resulting small set of key particles in the action space is

This research has received funding from the UK Engineering and Physical
Sciences Research Council under the grant EP/V052659/1.

For the purpose of open access, the author(s) has applied a Creative Com-
mons Attribution (CC BY) license to any Accepted Manuscript version aris-
ing. Code & data available at https://github.com/shengyin-git/ac_softagent.

1S. Wang, R. Papallas and M. Dogar are with the School of
Computing, University of Leeds, UK. {scswan, r.papallas,
m.r.dogar}@leeds.ac.uk

2M. Leonetti is with the Dept. of Informatics, King’s College London,
UK. matteo.leonetti@kcl.ac.uk

then significantly faster, as opposed to planning using the

original model with several thousands of particles.

Deformable object manipulation has received significant

interest from robotic researchers in recent years because of

the ubiquitous existence of deformable objects in our daily

life and their extensive applications in both domestic [1], [2]

and industrial scenarios [3]. While impressive progress has

been achieved for rigid object manipulation, the development

of deformable object manipulation methods lags behind

particularly due to two main challenges: high-dimensional

state representation and complex dynamics. These challenges

make both perception and planning complex problems, es-

pecially for traditional search or optimization based methods

[4]–[6]. Detailed surveys of deformable modeling, planning,

control, and learning can be found in Zhu et al. [7], Yin et

al. [8], Bhagat et al. [9], and Arriola-Rios et al. [10].

The idea of identifying important points/features on de-

formable objects has been studied before. One way of

approaching this problem is to determine particular features

for a specific task. For example, Sun et al. [11] detect and

eliminate wrinkles, where the task is to flatten a deformable

object. Other approaches use manually input key points

[12], or contours [13]. Recently, learning-based methods for

deformable object manipulation have been developed [14]–

[21]. Some learning approaches aim to simplify deformable

object representations and identify key features on them. For

example, Yan et al. [15] propose to extract a compact repre-

sentation of the deformable object directly from raw sensor

inputs for dynamics learning and achieve faster planning.

Other works are dedicated to learning deformable dynamics

using graph neural networks [18] based on extracted key

points or the underlying mesh representations [20]. Power et

al. [22] use simple models as a cheaper data collection way

to improve learning efficiency.

In this work, we also exploit the idea of simplifying

deformable object models and identifying important features

on them to reduce the action space. However, our approach

differs from the above in that our method (i) can adapt to

different tasks (as opposed to identifying features for one

specific task); (ii) identifies the key particles autonomously;

and (iii) takes a model-based (as opposed to learning-based)

and goal-conditioned approach. These enable our method

to accept arbitrary goal configurations of the object and

to quickly perform simplification of the object model and

reduction of the action space conditioned on this goal,

without requiring goal-specific training.

In particular, we contribute:

• A general action space reduction scheme integrated

Initial stateInitial state

Model Simplification

& Action Space Reduction
Motion Planning

Key particles Final stateGoal

SoftGym

&

CEM

Fig. 1. Overview of the proposed approach. Given the task of folding a piece of cloth diagonally, our approach simplifies the geometric model at the goal
configuration to extract the key particles as denoted by blue triangles, which represent the graspable points in the reduced action space. After that, Cross
Entropy Method (CEM) is implemented to search a folding plan in the SoftGym simulator. A Franka Panda robot executes the plan in the real world and
achieves a goal state.

into a manipulation planning pipeline based on goal-

conditioned geometric model simplification for de-

formable objects (Sec. III-A);

• An implementation of this general approach for 1-

D linear deformable objects (e.g., ropes) that uses a

piece-wise line fitted model (Sec. III-B), and for 2-D

flat deformable objects (e.g., cloth) that uses a mesh

simplified model (Sec. III-C);

• An extension of this approach to multi-step planning

with intermediate goal configurations, where geometric

model simplification and action space reduction are

performed on successive intermediate goals (Sec. III-

D).

We perform a set of simulated experiments with rope

and cloth objects, where we investigate if a planner using

the reduced action space with autonomously extracted key

particles can reach the goal state more efficiently and more

successfully than a planner using the original action space

(Sec. IV-C). We also present example demonstrations of key

particle based manipulation plans on a real robot system

(Sec. IV-D).

II. PROBLEM FORMULATION

We consider the planning problem of manipulating a

deformable object into a given goal configuration. While

manipulation happens in 3-D space, we focus on objects

that can be represented by 1-D lines (like ropes) or 2-D

surfaces (like cloths). For example, straightening a crumpled

rope (Fig. 7-(a)) or folding a piece of cloth diagonally into

half (Fig. 1). In this section, we define the state space, action

space, and objective function of the manipulation problem.

For both 1-D linear and 2-D flat deformable objects

modeled by mass-spring systems, the geometric model can

be represented as a connected undirected graph M = (V,E),
where V = {1, 2, ..., N} denotes a set of particles indexed

from 1 to N = |V |, and E ⊆ {⟨i, j⟩ | i, j ∈ V and i ̸= j}
denotes the edges. During manipulation, the configuration

varies while the geometric model remains unchanged.

To describe the configuration of the deformable model at

each time step t during manipulation, we use the positions

of all the particles as the current state of the object, which

is denoted by ξt := {pi | ∀i ∈ V } where pi = [xi, yi, zi]
represents the position of the ith particle.

As for action space A, we assume the robot is equipped

with one picker, which can pick any given particle in the

object, that is, {∀i ∈ V }, and move it by a certain distance

along a direction in 3D space. We also add a None action,

corresponding to not holding any picking point. The action

at time t can be represented as:

at =

{

⟨i, δxt, δyt, δzt⟩

None
(1)

Furthermore, we constrain the movement of the picker at

each step to avoid moving the deformable object drastically:

∥δxt∥ ≤ ∆x, ∥δyt∥ ≤ ∆y, ∥δzt∥ ≤ ∆z; ∆x, ∆y and ∆z

are motion limits along each axis in Cartesian space.

For the dynamics model, we use the one provided by

SoftGym [23], which is built on top of PyFlex [24]. Within

the simulator, ropes and cloths are modeled with a sequence

of particles or a grid of particles respectively. Neighboring

particles are connected by stretching constrained springs

while one-step-away particles are constrained by bending

springs. Meanwhile, self-collision of all particles is also

considered, details of which can be found in [24].

We formulate the manipulation problem as a finite-horizon

planning problem, whose solution is a sequence of T actions,

τ = ⟨a1, a2, ..., aT ⟩, that minimizes the distance between the

final configuration of the particles and their goal configura-

tion ξG:

min
τ

∥ξG − ξT (τ)∥

s.t. C(at) < 0, ∀t ∈ {1, ..., T},
(2)

where C(at) is used to eliminate actions that violate model

and environmental constraints, such as stretching and bend-

ing limits, or working space restrictions at step t, which are

defined in the SoftGym simulator.

In this planning framework, the size of the action space is

|A| = (N×R3+1). The number of graspable particles affects

linearly the size of the action space, which has, in turn, an

exponential effect on the search space through the branching

factor. Therefore, the number of particles considered for

planning has a significant impact on planning efficiency. In

the next section we present a methodology to minimize it.

III. METHODOLOGY

We propose to reduce the action space by simplifying the

original geometric model MO to MS = (VS , ES), with a

smaller number of particles NS = |VS |. The particles are

computed from the goal configuration as described in this

section. The method we use to simplify the geometric model

differs for objects that can be approximated with 1-D models

and objects that can be approximated with 2-D models. In

Sec. III-A, we summarize the overall approach, in Sec. III-B

we focus on 1-D models and in section Sec. III-C on 2-D

models. Lastly, we describe how our planner can be applied

to tasks for which the goal configuration is not enough to

obtain all the necessary key particles for planning to it from

the initial configuration. Such cases can be tackled with

multi-step planning to intermediate goal configurations, as

described in Sec. III-D.

A. Action Space Reduction

The overall algorithm for action space reduction is illus-

trated in Alg. 1. The inputs of the method are the original

geometric model MO and goal configuration of the original

model ξOG , while the outputs are the simplified geometric

model MS and the extracted key particle set V̂O ⊆ VO in

the action space, which is related yet different from the set

of particles VS of the simplified model.

The algorithm starts by reducing the original geometric

model to the simplest form, in which the number of target

simplification elements is 2 (line 1). Given the original

geometric model, the goal configuration of the model, and

the target number of the model elements, the simplification

function is invoked to reduce the original geometric model

MO to MS , with corresponding simplified goal configuration

ξSG (line 3).

Then, the distance between the goal configurations of

the original geometric model and the simplified model is

calculated as the error, indicating how good a fit the

simplified geometric model is to the original model, at the

goal (line 4). If the error is below a threshold (a parameter set

by the user), the simplification process is terminated (line 6);

if not, the simplification process repeats with a more complex

simplified geometric model (line 5). Finally, we extract V̂O,

which includes the key particles in the original geometric

model that correspond to the particles of the simplified

geometric model VS (line 7). V̂O is the output and is used

to construct the reduced action space for the original object.

Algorithm 1: Action Space Reduction Process

Input: MO, ξG
Output: MS , V̂O

1 NS = 2;

2 do

3 MS , ξSG ← Simplify(MO, ξOG , NS);

4 error ← Error(ξSG, ξOG);

5 NS ← NS + 1;

6 while error > threshold;

7 V̂O ← Extract(MS , ξSG, MO, ξOG)

B. Piece-wise Line Fitting for 1-D Linear Models

For 1-D linear models, we adopt piece-wise line fitting

method to implement the Simplify function (Alg. 1, line

3). Given the number of key particles NS of the target simpli-

fication, a Quadratic Programming (QP) problem is defined

and solved to find the optimal position of the NS particles.

The cost function of the QP problem to be minimized is the

“distance” between the fitted piece-wise lines and the original

shape of the object. To find such a distance value, we evenly

sample the same number of points NE on the two models.

For example, in Fig. 2, NE = NO points, represented by

NS = 2 NS = 4 NS = 8 NS = 10

Fig. 2. Linear fitting of the simple model (blue) for a random goal
configuration of the original model (yellow), for different NS values. Grey
dots represent sampled points in the simplified model, and grey dashed lines
connect the corresponding points of both models.

NS = 2 NS = 3 NS = 4 NS = 6

Fig. 3. Reduced mesh of the simple model (blue) for a side folded
configuration of the original model (yellow), for different NS values. The
vertical dimension in these figures is scaled up for visualization purposes,
to make the two halves of the folded cloth visually separate.

yellow dots and grey dots, are sampled respectively. We find

the mean distance between corresponding particles (grey dot-

dash line in Fig. 2):

distance(ξSG, ξ
O
G) =

∑NE

i=1

∥qOi − qSi ∥

NE

(3)

where qOi represents the position of the ith sampled point

on the original model, and qSi represents the position of the

ith point sampled on the simplified model.

After QP minimization is complete, we use the same

distance formulation above (Eq. 3) to implement the Error

function in Alg. 1 (line 4) to compute the final distance

between the two models.

An example piece-wise line fitting process for a random

configuration of a rope is shown in Fig. 2. The first picture

shows a simplified model with two particles and one line

segment; the fit to the original model is quite poor. As the

number of particles in the simplified model, NS , is increased,

we get better fits. Depending on the threshold set (Alg. 1,

line 6), the simplification process can terminate, for example,

at the eight-particle model or the ten-particle model.

If terminated, corresponding particles on the original

model are extracted as graspable points, V̂O, and used to

reduce the action space.

C. Mesh Simplification for 2-D Flat Models

For objects that can be approximated by surfaces, we

use the Quadric Edge Collapse Decimation (QECD) method

as the model simplification function of Alg. 1, which can

simplify the model towards a given number of elements NS .

The basic element for mesh simplification is a triangle, which

is composed of particles that can be shared between different

triangles. QECD is a surface simplification algorithm based

on the quadric error metrics proposed by Garland and Heck-

bert [25]. During simplification, pairs of vertices (particles)

are contracted to one iteratively, until the target number of

triangles, NS , is achieved. We use the QECD implementation

in the mesh processing library Meshlab [26].

We start from simplifying the original mesh to a model

with NS = 2 triangles (four particles, two of which are

shared), and gradually increase the number of triangles until

the error is below the threshold, as in Alg. 1.

To implement the Error function and find the distance

between the simplified mesh and the original one (Alg. 1,

line 4), we use the Hausdorff distance [27], which is a widely

used similarity metric for mesh and image comparison. The

Hausdorff distance is defined as the maximum distance of a

set to the nearest point in the other set, and in our case, is

found by:

h(ξSG, ξ
O
G) = max

qS∈ξS
G

{ min
qO∈ξO

G

∥

∥qS − qO
∥

∥} (4)

As shown in Fig. 3, a piece of side-folded cloth is initially

approximated by a simple mesh with two triangles, which

only covers half of each face. This is improved by adding

more triangles to the simplified model. In the last picture, a

simplified model with six triangles overlaps with the original

model, giving us a satisfying approximation.

Finally, to find V̂O, the particles on the original model

that is nearest to the particles on the simplified model are

extracted as the preliminary particle set. Since creases on

cloth (e.g. Fig. 5) can create many particles located extremely

close to each other, we apply further filtering on this set based

on geodesic distance, which reduces the redundancy in the

set of extracted key particles.

D. Planning with Multiple Intermediate Goals

Some complex manipulation tasks may require picking up

the object at points that cannot be identified from the final

configuration only. For example, consider the task of tying a

knot, where the rope should be straightened from a crumpled

state before crossing the rope over itself (similar to the rope-

folding goal shown in Fig. 4-(b)), and then getting one end

of the rope through the resulting loop, and so on. Such

plans, with intermediate goals, are often illustrated in knot

or origami books. In our model-simplification-based action

space reduction and motion planning framework, a sequence

of goals can be processed and achieved one by one, which

only requires repeating the process of extracting key particles

and motion planning for each subgoal sequentially. However,

in this paper, we do not consider the problem of computing

the higher-level plan and producing the intermediate goals.

IV. EXPERIMENTS

We present three experiments on six different tasks. The

first experiment aims to show that the geometric model

simplification methods converge to a reasonable approxima-

tion of the original model at the goal configuration, which

consequently gives a reduced set of graspable points. In

the second experiment we quantify the improvement of the

reduced action space on planning, in terms of planning

iterations and quality of the computed solution (best value

of the objective function per iteration). The third experiment

validates the method on a real robot.

A. Planning algorithm

The planning problem defined in Eq. 2, can be solved

by various off-the-shelf trajectory optimization or motion

planning methods, such as CEM [28] or Rapidly-exploring

Random Trees (RRT) [29]. For our experiments, we use

CEM as an exemplary method for planning. CEM is a

well-established, population-based, optimization algorithm,

which has been applied to address plenty of manipulation

problems including deformable objects. To find a solution,

CEM repeatedly samples a set of trajectories from a multi-

variate Gaussian distribution, calculates the cost of each

trajectory, identifies the elite individuals whose cost is below

a given threshold, and uses these elite individuals to refit the

Gaussian distribution for the next iteration.

B. Tasks

Our method is evaluated in six tasks, two for ropes and

four for cloths. Among these tasks, Rope Straightening and

Cloth Side Folding are borrowed directly from SoftGym [23],

while remaining tasks are modified based on SoftGym.

1) Rope Straightening: Manipulating a rope from a ran-

domized initial configuration to a straightened goal config-

uration (Fig. 4-(a)). Performance is measured by the error

between the distance of the two endpoints and the original

length of the rope.

2) Rope Folding: Manipulating a rope into a crossed

triangle (Fig. 4-(b)), from an initially straightened state.

Performance is measured on the bipartite matching distance

between the final and goal positions of all particles.

3) Cloth Diagonal Folding: Folding a flattened cloth into

half diagonally (Fid. 4-(c)). Performance is measured on the

distance between the final and goal positions of all particles.

4) Cloth Side Folding: Folding the cloth into half side-

ways (Fig. 4-(d)).

5) Cloth Reflective Folding: Reflective folding is bor-

rowed from origami folding where two consecutive folds

are in opposite directions [30]. This task follows the goal

configuration of the previous task (i.e. the side folding goal)

as an intermediate goal. Then the final goal is to fold a

quarter of the cloth back after (Fig. 4-(e)).

6) Cloth Underneath Folding: Underneath folding (e.g.

Fig. 4-(f) and Fig. 5) refers to folding a quarter of the cloth

under the rest of it, contrary to placing it on the top. This

task follows on the goal configuration of the previous task

(i.e. the cloth reflective folding goal) as an intermediate goal.

C. Simulation Experiment Results

Simulation experiments including geometric model simpli-

fication for action space reduction and CEM-based planning

are conducted for the tasks defined above. All simulation

tests are performed in SoftGym [23] on a workstation with

Intel Xeon(R) CPU E5-2650 @2.60GHz, 32 GB of RAM,

and Nvidia GeForce GTX 1070 GPU.

1) Model Simplification for Action Space Reduction: A

summary of the model simplification for action space reduc-

tion results is shown in Fig. 4, including the approximation

error curve, the simplified geometric model, and the reduced

number of key particles extracted from the original geometric

model at the goal configuration.

(a) Rope straightening

Goal

(b) Rope folding

Goal

(c) Cloth diagonal folding

Goal

(d) Cloth side folding

Goal

(e) Cloth reflect folding

Goal

(f) Cloth underneath folding

Goal
Key

particles

Key particles
Key particlesKey particles

Key particlesKey particles

Fig. 4. Results of model simplification including approximation error history, image of the goal, and the simplified model with extracted key particles.
The vertical dimension in the ‘Key particles’ figures are scaled up for visualization purposes, to make the folded cloth visually separate.

For the Rope Straightening task, as expected, only the

two ends is enough to represent the goal state and reach the

goal, as shown in Fig. 4-(a). For the Rope Folding task, as

shown in Fig. 4-(b) a simplified model of four particles and

three line segments are acquired, giving four corners on the

original model as key particles.

As for cloth manipulation, our method finds much simpler

geometric models than the original model for each task,

which is illustrated in Fig. 4-(c-f). In Fig. 4-(c), the Hausdorff

distance curve flattens at four triangles, which gives us a fine

approximation to the original mesh with a much simplified

model of four triangles for the diagonal folding task. Corre-

sponding key particles are extracted and marked with blue

triangles in the figure, which constitute the graspable points

in the reduced action space. Similarly, for the rest of cloth

folding tasks, a set of simplified geometric models with six,

twelve, and sixteen triangles are acquired to approximate the

original models and reduce the action space respectively.

Furthermore, the average model simplification and action

space reduction time costs for the two rope manipulation

tasks and four cloth manipulation tasks are 0.125 s and 0.730

s respectively, which are negligible compared to the time

costs of motion planning.

2) Motion Planning: We compare CEM-based mo-

tion planning in the reduced action space (denoted as

CEM(Simple)) with three baselines: CEM in the original

action space (CEM(Original)), CEM in the randomly re-

duced action space (CEM(Random)), and a manually scripted

policy, in which the picker grasps each key particle, moves

above its target position and releases it. We run each CEM

planner for 30 iterations. Each iteration of CEM takes 10.8

s for the rope, and 171.3 s for the cloth. The length of the

action sequence T is 20 for rope tasks, and 15 for cloth tasks.

Since CEM is a stochastic method, we run CEM(Simple),

Key particlesGoal

Sketch of the goal

Fig. 5. Side view of the goal configuration of the underneath folding task
and the simplified model (the height is scaled for visualization purposes)
with extracted key particles (marked by blue triangles)

CEM(Original) and CEM(Random) methods ten times on

each task. The planning cost per iteration and snapshots of

the computed plans are shown in Fig. 7 (a-f). In the plots,

the lines show the mean cost, while the line shadows show

the 95% confidence interval over the ten runs.

For rope straightening, CEM(Simple) finds a better plan

than CEM(Original) using much fewer iterations, which is

shown in Fig. 7-(a). The scripted policy finds a slightly worse

solution because it keeps disrupting previously achieved

states. For rope folding, CEM(Simple) still achieves a smaller

cost. However, CEM(Original) also finds feasible plans with

similar costs in about the same iterations. CEM(Random)

finds the worst solution for both rope manipulation tasks,

which reflects the significance of placing the key particles

properly.

For the rope object, the size difference between the origi-

nal action space, (NO = 40), and the simplified action space

(N̂O = 2 for the straightening task, and N̂O = 4 for the

folding task), is not significant. Therefore we see modest

or no gain between the two methods. For the cloth object

however, the original model has NO = 10000 particles,

which is much larger than the number of extracted key

particles N̂O, as shown in Sec. IV-C.1.

Therefore, from Fig. 7-(c-f), we can see that CEM(Simple)

achieves better solution than CEM(Original) consistently in

all four tasks of cloth manipulation. For instance, as shown

in the planning cost curve for diagonal folding in Fig. 7-

(c), CEM(Simple) converges to an optimal plan in only

fifteen iterations, which successfully folds the cloth similar

to the goal given in Fig. 4-(c). In contrast, CEM(Original)

converges to a plan with a much higher cost which re-

sults in an incorrect final state. As the difficulty increases

from side folding, reflective folding, to underneath folding

tasks, the gap between the cost curve of CEM(Simple) and

CEM(Original) also increases. As shown in Fig. 7(d-f),

CEM(Simple) can find feasible plans to bring the cloth into

the desired shape successfully, whereas CEM(Original) finds

worse and worse results. The images of the manipulation

process visualize the intermediate and final states. It can be

seen that CEM(Original) does not achieve any cloth folding

task using the maximum number of CEM iterations pro-

vided, while CEM(Simple) is able to converge to a solution.

Besides, in all cloth folding tasks, CEM(Random) achieves

slightly better results than CEM(Original), which further

demonstrates that not every particle on the original model

Fig. 6. Real robot demonstration of the cloth side folding task

is equally relevant to achieve the goal. Furthermore, in these

more complex folding tasks, the advantage of the planner

over the simple scripted behavior is increasingly evident.

D. Real Robot Experiment Results

To validate the effectiveness of the planned path in the

real world, we used a Franka Panda robot to carry out the

cloth diagonal folding and side folding tasks. The robot is

mounted on a stationary table and a square cloth (30 cm ×
30 cm) is placed in front of it at a pre-determined initial

pose. For these demonstrations we did not use perception,

and the robot executed the computed plan in open loop.

Firstly, the planned path is converted to several pick and

place motions according to the defined action space. For

picking a particular point on the cloth, Moveit [31] is used

to plan a valid path to a certain height above the target using

a position controller. After that an impedance controller is

switched on to gradually lower the gripper until it contacts

the cloth. The reason for using impedance control is to apply

a certain amount of pressure before closing the gripper on

the cloth.

Images of the real robot folding the cloth diagonally and

sideways are shown in Fig. 1 and Fig. 6. Please refer to the

video1 to view the whole manipulation process. The Panda

robot successfully achieves both tasks. Within each task, the

gripper can re-grasp the cloth showing that our proposed

controlling scheme for executing the plan is effective and

the planned path in simulation can be executed successfully

to fold the cloth. Nonetheless, the implementation of the real-

world experiments is open-loop, and it suffers from the gap

between the real cloth physics and the simulation.

V. CONCLUSION

In this paper, we proposed to reduce the action space

for motion planning based on model simplification methods.

Two workflows of model simplification and key particle

extraction were developed for 1-D linear and 2-D flat objects

respectively. Simulation and real robot experiments were

conducted, which demonstrate that our proposed method can

improve the efficiency and performance of a motion planner.

The improvement of the reduced action space over the origi-

nal one, in our results, increased with the number of particles

in the original model, and the number of actions required

to solve the task, suggesting that such model simplification
1https://youtu.be/nAYp42WV2g4

Final stateOriginal action space

Simplified action space

(a) Rope Straightening

Final stateOriginal action space

Simplified action space

(b) Rope Folding

Final stateOriginal action space

Simplified action space

(c) Cloth Diagonal Folding

Final stateOriginal action space

Simplified action space

(d) Cloth Side Folding

Final stateOriginal action space

Simplified action space

(e) Cloth Reflective Folding

Final stateOriginal action space

Simplified action space

(f) Cloth Underneath Folding

Fig. 7. Motion planning cost curve and the snapshots of manipulation plan
found by CEM(Original) and CEM(Simple) for each task

and action space reduction may be critical for more complex

tasks. Moreover, our proposed method is independent of the

underlying dynamics model and the method used for motion

planning. The computational bottleneck still exists due to

time-consuming dynamics models and inefficient planning

methods, which also suggests new directions for our future

research. Besides, an exciting future line of investigation will

be to combine the method proposed here with a high-level

planner that generates intermediate goals for complex tasks.

REFERENCES

[1] D. Seita, N. Jamali, M. Laskey, et al., “Deep trans-

fer learning of pick points on fabric for robot bed-

making,” in The International Symposium of Robotics

Research, Springer, 2019, pp. 275–290.

[2] X. Li, X. Su, and Y.-H. Liu, “Vision-based robotic

manipulation of flexible pcbs,” IEEE/ASME Transac-

tions on Mechatronics, vol. 23, no. 6, pp. 2739–2749,

2018.

[3] E. Torgerson and F. W. Paul, “Vision-guided robotic

fabric manipulation for apparel manufacturing,” IEEE

Control Systems Magazine, vol. 8, no. 1, pp. 14–20,

1988.

[4] P. Jiménez, “Survey on model-based manipula-

tion planning of deformable objects,” Robotics and

computer-integrated manufacturing, vol. 28, no. 2,

pp. 154–163, 2012.

[5] A. Doumanoglou, A. Kargakos, T.-K. Kim, and S.

Malassiotis, “Autonomous active recognition and un-

folding of clothes using random decision forests and

probabilistic planning,” in 2014 IEEE international

conference on robotics and automation (ICRA), IEEE,

2014, pp. 987–993.

[6] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen,

“Folding deformable objects using predictive simula-

tion and trajectory optimization,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), IEEE, 2015, pp. 6000–6006.

[7] J. Zhu, A. Cherubini, C. Dune, et al., “Challenges

and outlook in robotic manipulation of deformable

objects,” arXiv preprint arXiv:2105.01767, 2021.

[8] H. Yin, A. Varava, and D. Kragic, “Modeling, learn-

ing, perception, and control methods for deformable

object manipulation,” Science Robotics, vol. 6, no. 54,

eabd8803, 2021.

[9] S. Bhagat, H. Banerjee, Z. T. Ho Tse, and H. Ren,

“Deep reinforcement learning for soft, flexible robots:

Brief review with impending challenges,” Robotics,

vol. 8, no. 1, p. 4, 2019.

[10] V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic,

B. Siciliano, and J. L. Wyatt, “Modeling of deformable

objects for robotic manipulation: A tutorial and re-

view,” Frontiers in Robotics and AI, vol. 7, p. 82,

2020.

[11] L. Sun, G. Aragon-Camarasa, P. Cockshott, S. Rogers,

and J. P. Siebert, “A heuristic-based approach for flat-

tening wrinkled clothes,” in Conference Towards Au-

tonomous Robotic Systems, Springer, 2013, pp. 148–

160.

[12] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei,

and P. Abbeel, “Cloth grasp point detection based

on multiple-view geometric cues with application to

robotic towel folding,” in 2010 IEEE International

Conference on Robotics and Automation, IEEE, 2010,

pp. 2308–2315.

[13] S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K.

Goldberg, and P. Abbeel, “A geometric approach to

robotic laundry folding,” The International Journal of

Robotics Research, vol. 31, no. 2, pp. 249–267, 2012.

[14] J. Matas, S. James, and A. J. Davison, “Sim-to-real

reinforcement learning for deformable object manip-

ulation,” in Conference on Robot Learning, PMLR,

2018, pp. 734–743.

[15] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto,

“Learning predictive representations for deformable

objects using contrastive estimation,” arXiv preprint

arXiv:2003.05436, 2020.

[16] S. Arnold, D. Tanaka, and K. Yamazaki, “Cloth ma-

nipulation planning on basis of mesh representations

with incomplete domain knowledge and voxel-to-

mesh estimation,” arXiv preprint arXiv:2103.08137,

2021.

[17] Z. Huang, X. Lin, and D. Held, “Mesh-based dynam-

ics with occlusion reasoning for cloth manipulation,”

arXiv preprint arXiv:2206.02881, 2022.

[18] X. Ma, D. Hsu, and W. S. Lee, “Learning latent graph

dynamics for deformable object manipulation,” arXiv

preprint arXiv:2104.12149, 2021.

[19] R. Hoque, D. Seita, A. Balakrishna, et al., “Visuospa-

tial foresight for multi-step, multi-task fabric manipu-

lation,” arXiv preprint arXiv:2003.09044, 2020.

[20] X. Lin, Y. Wang, Z. Huang, and D. Held, “Learning

visible connectivity dynamics for cloth smoothing,”

in Conference on Robot Learning, PMLR, 2022,

pp. 256–266.

[21] Z. Xu, C. Chi, B. Burchfiel, E. Cousineau, S. Feng,

and S. Song, “Dextairity: Deformable manipulation

can be a breeze,” arXiv preprint arXiv:2203.01197,

2022.

[22] T. Power and D. Berenson, “Keep it simple: Data-

efficient learning for controlling complex systems with

simple models,” IEEE Robotics and Automation Let-

ters, vol. 6, no. 2, pp. 1184–1191, 2021.

[23] X. Lin, Y. Wang, J. Olkin, and D. Held, “Soft-

gym: Benchmarking deep reinforcement learning

for deformable object manipulation,” arXiv preprint

arXiv:2011.07215, 2020.

[24] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Tor-

ralba, “Learning particle dynamics for manipulating

rigid bodies, deformable objects, and fluids,” arXiv

preprint arXiv:1810.01566, 2018.

[25] M. Garland and P. S. Heckbert, “Surface simplification

using quadric error metrics,” in Proceedings of the

24th annual conference on Computer graphics and

interactive techniques, 1997, pp. 209–216.

[26] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane,

F. Ganovelli, G. Ranzuglia, et al., “Meshlab: An open-

source mesh processing tool.,” in Eurographics Italian

chapter conference, Salerno, Italy, vol. 2008, 2008,

pp. 129–136.

[27] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh:

Measuring errors between surfaces using the hausdorff

distance,” in Proceedings. IEEE international confer-

ence on multimedia and expo, IEEE, vol. 1, 2002,

pp. 705–708.

[28] R. Rubinstein, “The cross-entropy method for com-

binatorial and continuous optimization,” Methodology

and computing in applied probability, vol. 1, no. 2,

pp. 127–190, 1999.

[29] I. Noreen, A. Khan, and Z. Habib, “Optimal path

planning using rrt* based approaches: A survey and

future directions,” International Journal of Advanced

Computer Science and Applications, vol. 7, no. 11,

2016.

[30] D. J. Balkcom and M. T. Mason, “Robotic origami

folding,” The International Journal of Robotics Re-

search, vol. 27, no. 5, pp. 613–627, 2008.

[31] S. Chitta, “Moveit!: An introduction,” in Robot Oper-

ating System (ROS), Springer, 2016, pp. 3–27.

