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A B S T R A C T

Competitive video game playing, an activity called esports, is increasingly popular to the point that there
are now many professional competitions held for a variety of games. These competitions are broadcast in a
professional manner similar to traditional sports broadcasting. Esports games are generally fast paced, and due
to the virtual nature of these games, camera positioning can be limited. Therefore, knowing ahead of time
where to position cameras, and what to focus a broadcast and associated commentary on, is a key challenge in
esports reporting. This gives rise to moment-to-moment prediction within esports matches which can empower
broadcasters to better observe and process esports matches. In this work we focus on this moment-to-moment
prediction and in particular present techniques for predicting if a player will die within a set number of
seconds for the esports title Dota 2. A player death is one of the most consequential events in Dota 2. We
train our model on ‘telemetry’ data gathered directly from the game itself, and position this work as a novel
extension of our previous work on the challenge. We use an enhanced dataset covering 9,822 Dota 2 matches.
Since the publication of our previous work, new dataset parsing techniques developed by the WEAVR project
enable the model to track more features, namely player status effects, and more importantly, to operate in real
time. Additionally, we explore two new enhancements to the original model: one data-based extension and
one architectural. Firstly we employ learnt embeddings for categorical features, e.g. which in game character
a player has selected, and secondly we explicitly model the temporal element of our telemetry data using
recurrent neural networks. We find that these extensions and additional features all aid the predictive power
of the model achieving an F1 score of 0.54 compared to 0.17 for our previous model (on the new data). We
improve this further by experimenting with the length of the time-series in the input data and find using
15 time steps further improves the F1 score to 0.62. This compares to F1 of 0.1 for a standard RNN on the
same task. Additionally a deeper analysis of the Time to Die model is carried out to assess its suitability as a
broadcast aid.

1. Introduction

Esports are an increasingly popular spectacle. Thus they are an
increasingly important part of the video game ecosystem, and by ex-
tension video games research (Schubert, Drachen, & Mahlmann, 2016).
Dota 2 is one of the largest esports titles1 and sees two teams of five
players attempt to battle across a map to reach the opposing teams
‘ancient’ and destroy it, in a genre knows as ‘multi-player online battle
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area’ (MOBA) games. Dota 2 is a highly complex game. For example,

each player selects a unique hero, from a pool of about 120, at the start

of the match resulting in about 1.16𝑒14 possible starting hero combi-

nations. Furthermore, during gameplay players have many options for

strategy, e.g. they can choose from over 200 items to purchase each

with a unique effect. Additionally, timing when to focus on attacking

or defending in-game objectives is very important. Each player on a

team has a different role to play, similar to positions in traditional
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team sports, and teams must coordinate these different roles in order
to perform effectively. Gameplay is further complicated by the ‘fog of
war’, a mechanic which means that the players in Dota 2 have a limited
view of the battle field. Team must expend resources ensuring that they
maximise the amount of the map that is visible to them and choosing
exactly how to execute this is important to strategy. Players can also
potentially use this ‘fog of war’ to escape potentially risky situations by
moving to a part of the map where the opposing team cannot see them.

During a Dota 2 game, the players must closely monitor their
hero’s status, in particular, the likelihood of dying. Thus, a method of
predicting the likelihood that a player is going to die within a game of
Dota 2 is likely to be useful for a number of applications, e.g. as an aid
for broadcasters or as a coaching aid for players. However, in current
esports analytics, often research focuses on using performance metrics,
i.e. input features, to model likelihood of team success rather than
necessarily a player’s likelihood to die (Katona et al., 2019). This death
prediction task is difficult and complex. For example, some heroes
have abilities which allow them to heal themselves or their team-mates
while heroes can purchase items in-game that allow them to heal or
teleport away from danger. Hence, it is likely that we cannot simply
use a few metrics, e.g. player health, to predict deaths. Likewise, for
the performance of players and heroes to be accurately analysed, the
historical data needs to be carefully considered and tailored to the
specific task. Applying performance metrics without careful selection
introduces noise and leads to biased or skewed analyses.

It is possible to curate large datasets of highly granular, high-
dimensional, high-volume data from virtually every match for Dota
2 due to the open nature of the replay system, a tool which allows
players to download ‘replays’ of past matches and play them inside
the game client. There exists, therefore, an attractive opportunity to
develop telemetry based systems which are capable of predicting in-
game moments, for example, when a player is likely to die. Such
systems can then be operationalised by esports broadcasts to enrich
content delivery, e.g. by informing commentators that a certain player
is likely to die soon. This becomes more attractive when you consider
how difficult commentating on Dota 2 is. As we discuss above, the
game is highly complex. As such it can be hard for commentators
to assimilate the high volume of information present in the game in
real time. Aids for the commentators, then, are like to be beneficial in
improving the experience of watching Dota 2 broadcasts. Furthermore,
such a system is able to detect dangerous moments in a game before
it develops. Analysing the output of the model to identify when a
dangerous situation may be developing would allow coaches to train
players to avoid situations where the danger would not have previously
been observed.

This research is a follow up to our previous work on this topic, Ka-
tona et al. (2019), and provides an exploration into various methods for
improving the predictive performance of the ‘Time to Die’ architecture.
In this work, we find that utilising learnt embeddings for categorical
data improves predictive power. In the original Time 2 Die paper hero
IDs are 1-hot encoded. However, 1-hot encoding is computationally
expensive as weights for all encoding inputs need to be updated for
each training sample, unlike a learnt embedding. In particular we
add embeddings for two types of features, hero IDs and items IDs.
Embeddings have the advantage that they can be extended should
new heroes/items be released and so models can be updated during
deployment, fine-tuning only the embeddings which have been added
due to the new content. Additionally, recent developments into replay
parsing tools by the WEAVR project have make it possible to gather
information not possible in the original paper, e.g. ‘status effects’.
These status effects have the potential to aid predictive power because
they describe player state in a way previously not modelled, e.g. if
the player is ‘stunned’ i.e. they cannot move or take actions, or is
‘smoked’, i.e. concealed under the effects of the item Smoke of Deceit.
Finally, we experiment with using a recurrent architecture to model
the temporal aspect of a game. Dota 2 is a dynamic game and thus

modelling the changing game state in the seconds running up to a given
observation point may lead to advances in the predictive performance
of the model. However, the original model used a single ‘snapshot’ of
the game, represented as a single data vector, as input to the model.
Historic change in the gamestate was modelling through as set of delta
values calculated from one snapshot to the previous, e.g. how much
the distance between two players has changed. In this work, we instead
explore modelling this historic state change explicitly. We do this with
two approaches, firstly replacing a portion of the original Time 2 Die
architecture with recurrent layers and secondly replacing the shared-
joint architecture of the original Time 2 Die architecture with a single
set of recurrent layers.

The key contributions of this paper are as follows:

• A replication of the original Time to Die paper.
• A greater understanding of the role that hyper-parameters have
on the performance of the Time to Die model.
• An improved model with a new data configuration and new
architecture which utilises embedding layers for certain cate-
gorical data features as well as status effect data features. We
further revise the model architecture to include recurrent layers
to capture temporal data effects. Many papers in the literature
on esports prediction rely on data snapshots and do not capture
temporal patterns which our analyses show to be important for
accurate prediction.
• Experimentation with temporal models, and an exploration of
the assumption that a single game time step holds the Markov
property (Katona et al., 2019)
• An exploration of the impact that embeddings have on the mod-
els, and what is learnt by them.
• An investigation of whether the new model is fast enough to be
used in esports broadcasts.

The rest of the paper is laid out in the following manner. Section 2
discusses past literature which has informed this work. Section 3 dis-
cusses the dataset gathered for this work, including how it differs from
the dataset used in the original Time to Die work. Section 4 details the
neural network architectures used. Section 5 discusses the experiments
carried out and their outcomes. Section 6 details the implications
of these results as well as providing additional analysis. Section 7
concludes our findings. Finally, Section 8 proposes directions for future
work.

2. Related work

Despite the rising popularity of esports establishing the state-of-the-
art is challenging due to commercial confidentiality resulting in many
systems and findings being unavailable to the public. That said, there
are emerging trends in academic esports research across a broad range
of topics and disciplines including; AI, analytics, psychology, education,
visualisation (Block et al., 2018), ethnography, marketing, management
and business, e.g. Hamari and Sjöblom (2017), Schubert et al. (2016),
Seo (2013), Xue, Pu, Hawzen, and Newman (2016), Yang, Harrison,
and Roberts (2014) and Yannakakis (2012). In particular, research
into in-game event, role, behaviour and win prediction are the most
pertinent and as such will be discussed below.

2.1. In-game event prediction

Prior work into predictive models that are designed to uncover
information about events during the game is the research most closely
related to this article. Naturally the most important prior work is the
original Time to Die paper (Katona et al., 2019) because this work is
a direct follow up to that. That work, much like this, used a neural
network to predict which players are going to die within 5 seconds
during Dota 2 games. Other closely related work includes Marshall,
Mavromoustakos-Blom, and Spronck (2022) who use telemetry data
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from Counter-Strike: Global offensive (CS:GO) trained into a long short-
term memory (LSTM) recurrent neural model to predict in-game deaths
within a three-second window with F1-score of 0.38. They identified a
number of important data features for accurate prediction including a
player’s death count, health, enemies in range and equipment value as
important.

Closely related, Cleghern, Lahiri, Özaltin, and Roberts (2017) pre-
dicted hero health in Dota 2 using a combination of techniques: an auto-
regressive moving average model (ARMA) to predict small changes
in health with a peak accuracy of 77.2% and a statistical (logistic
and linear regression) estimation model (see Cleghern et al., 2017)
which predicts large changes in health 10 seconds ahead. However,
this latter model has poor prediction accuracy, although when it does
correctly predict a health change, the accuracy is around 80% for
the direction and magnitude of the health change. Cleghern et al.
(2017) only use health data, unlike the present work which uses a
large number of features. Furthermore, their dataset comprises just 542
matches, with no ability differentiation so it is not clear if the results
would work for professional and/or amateur matches. Lopez-Gordo,
Kohlmorgen, Morillas, and Pelayo (2020) predicts player performance
at the single-event level, namely shot accuracy (hit or miss) in a first-
person shooter (FPS) video game achieving 74% prediction accuracy
using a two-layer feed-forward ANN. At the team level, Schubert et al.
(2016) described a graph-based method for detecting spatio-temporally
bounded team encounters (team fights) in Dota 2, and, early on in
esports research, noted the potential for predictive analytics in esports.
Ke et al. (2022) developed a framework for defining and extracting
teamfight definitions in Dota 2. They evaluated whether team fights
(key but relatively rare events) held a signal useful for match outcome
prediction. Testing different RNNs, they reached over 50% accuracy
using a bidirectional LSTM, and just 5 minutes of match data. Accuracy
increased with further data input illustrating the importance of having
rich training data.

As an assistive tool for esports commentators, authors have de-
veloped tools to predict in-game video highlights (showing events of
interest). Many incorporate recurrent architecture layers to capture
temporal patterns. Zhang, Liu, Wang, and Sun (2020) use deep neural
networks to analyse the correlations between the esports game’s spatio-
temporal features and the highlights in the corresponding gamecast.
Similarly, Ringer, Walker, and Nicolaou (2019) used spatio-temporal
features to predict in-game events as well the streamer’s emotional state
in livestreams of the MOBA game League of Legends. Kang and Lee
(2020) couple a multi-layer perceptron win–loss classifier with a deep
learning network to analyse the video highlights and identify points
when the rate of change of the win–loss prediction is highest. Luo, Guz-
dial, and Riedl (2019) use Convolutional Neural Networks to predict
in-game events from Dota 2 gameplay video frames. They predict events
including item usage, fights, game end with 95% accuracy though this
would still cause three mistakes per second when parsing livestream
data at 60 FPS. Wang et al. (2020) use a time-enabled transformer
recurrent neural network to analyse behaviour sequences in the lead-up
to important in-game events as described in the game log.

2.2. Role and behaviour prediction

Analysing and predicting player roles and player behaviour allows
players and spectators to understand games more. Eggert, Herrlich,
Smeddinck, and Malaka (2015) used supervised logistic regression to
classify players into pre-determined roles using performance metrics.
The authors crowd-sourced their labelled data through asking users
to label player roles in game replays. They found that player perfor-
mance can affect the quality of logistic regression classification — if
players perform poorly at a role then classification is less accurate.
In contrast, Demediuk, York, Drachen, Walker, and Block (2019) use
non-performance metrics which are less reliant on player quality. They
use unsupervised ensemble clustering to group players into roles using

data on player movement, resource and ability prioritisation. Drachen
et al. (2014) study team behaviour, and analyse how spatio-temporal
behaviour of teams in Dota 2 varies across different skill tiers (player
abilities) using statistical (ANOVA) analyses and clustering of time-
series data. They found the spread of teams and the positions of players
varies with skill level. The results of Drachen et al. (2014) and Eggert
et al. (2015) indicate that the players’ skill levels affect players’ roles
and behaviour and algorithms’ abilities to classify them which has
implications for death prediction.

2.3. Win prediction

The majority of academic work applying predictive models to es-
ports has focused on predicting the outcome of esports matches and a
number of algorithms have been explored. The interested reader may
see Hodge et al. (2019) for an overview of Dota 2 win prediction. Many
authors use logistic regression: Agarwala and Pearce (2014), Kinkade,
Jolla, and Lim (2015), Makarov, Savostyanov, Litvyakov, and Igna-
tov (2018), Maymin (2021), Pobiedina, Neidhardt, Calatrava Moreno,
and Werthner (2013), Schubert et al. (2016), Song, Zhang, and Ma
(2015), Wang (2016) and Yang, Qin, and Lei (2017), other statisti-
cal techniques include Gaussian processes (Bailey, 2020) and naïve
Bayes algorithm (Wang & Shang, 2017). Machine learning algorithms
include decision trees (Rioult, Métivier, Helleu, Scelles, & Durand,
2014; Yang et al., 2014), random forests (Ani, Harikumar, Devan,
& Deepa, 2019; Hodge et al., 2019, 2017; Johansson & Wikström,
2015), support vector machines (Anshori, Mar’i, Alauddin, & Abdur-
rahman Bachtiar, 2018), and k-nearest neighbour (Conley & Perry,
2013). These approaches use data snapshots capturing only one, or
occasionally, multiple time slices. More recent work aims to capture
temporal patterns using neural network algorithms such as recurrent
neural networks (RNNs) (Silva, Pappa, & Chaimowicz, 2018; Wang
et al., 2020; White & Romano, 2020; Yu, Zhang, Chen, & Xie, 2018),
long short-term memory NNs (Akhmedov & Phan, 2021) (including bi-
directional LSTMs Kim & Lee, 2020) and two-stage spatial temporal
networks (Yang et al., 2022). Wang et al. (2020) use a time-enabled
transformer recurrent neural network to encode behaviour sequences,
capture important events and predict the winner. It can also be used
for highlight detection as discussed in Section 2.1.

Akhmedov and Phan (2021) and Hodge et al. (2019) have inte-
grated their win predictors with a live game data feed to provide near
real-time win prediction.

2.4. Overview

Authors identify the importance of using a rich set of data features
for prediction. We expand our range of features in this paper compared
to the previous Time to Die paper (Katona et al., 2019) to capture more
knowledge. Our new approach adds recurrent deep learning to capture
temporal relationships in the data and its features, feature embeddings
to efficiently capture more features and more feature values coupled
with a rich set of in-game data features to predict player deaths.
Similarly to Hodge et al. (2019), we note that other papers in the
literature often use small training data sets and do not use professional
game-play data even though authors have found that players’ abilities
effect prediction accuracy. We use a large data set of 9822 professional
Dota 2 matches. Additionally, authors posit that data which does not
rely on an individual player’s performance is important for prediction.
We do not use performance-related data. The two most closely related
papers Katona et al. (2019) and Marshall et al. (2022) achieve a preci-
sion of 0.38 and F1 score of 0.38 respectively. Through our new data
configuration, model architecture enhancements and optimised time-
series length, we achieve an F1 score of 0.62 and precision of 0.52.
We show in Section 5.3.1 that this new model is able to inference fast
enough to be used in esports broadcasts.
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Fig. 1. Data flow through the program for both the offline training of the model and the live single timestep data used for real-time live prediction.

3. Data

Data were gathered from a set of 9822 matches from ‘replay’ files
retrieved through the OpenDota platform via its API support.2 All
matches were collected from patch 7.27 3 from all Dota 2 regions and
played in a period between June and December 2020. We split the data
as 65% for training the models, 5% for sweeping the hyper-parameters
to identify the best settings for each model (this process is described in
Section 4.4), 10% for validating each model and 20% was kept back as
an unseen test set for our evaluations in Section 5.

This study used professional and premium matches only, as the
model and methodology described in this paper is more directly appli-
cable to the esports domain, thus to professional and premium matches
that attract broadcast interest. As observed in the literature (Chitayat
et al., 2020; Semenov, Romov, Korolev, Yashkov, & Neklyudov, 2016),
characteristics of play style and decision making can change drastically
depending on player skill level. For this reason a complete dataset of
high skilled tournament matches would more directly represent the
target performance for the model.

3.1. Processing and normalisation

The data processing pipeline used in this study for both the offline
training and real-time live prediction is illustrated in Fig. 1.

The replay files allow audiences and players to re-watch their
matches. The game data are stored as a time-series of game snapshots
in the file, each snapshot is timestamped and represents 0.033 seconds
in game time. We refer to one snapshot as one time step. Replay files
vary in size between 50–150 Mb. For this reason, replay files contain
extremely high-fidelity information, however it is compressed in such
way that utilising these files in their raw would not be feasible. Thus,
we used the Clarity Parser library4 to extract the data used in this
study (refer to Section 4). The Clarity Parser is a open source Java
library specifically designed to read and extract data from Dota 2 and
Counter-Strike: Global Offensive replay files.

The replay files were then processed by the WEAVR infrastructure
which enhances the variety and amount of relevant data that can be
retrieved. Additional features such as the standardisation of Combat
Log Events and game state data allow for a more complete overview
and representation of the game in its entirety. Furthermore, the WEAVR
framework is designed to work in a live setting, and thus the techniques
discussed in this work move from being theoretically useful to poten-
tially deployable. The data were in the form of CSV files which are
easily accessible and contain the information necessary. Additionally,
each row represents a different time step and the rows are ordered
temporally, thus making prediction on time series data straightforward.

Once the replay files have been parsed into CSV files two more
processing steps are carried out. Firstly, the files are processed to add
extra features which are calculable from the dataset but not explicitly

2 https://docs.opendota.com/
3 A patch is an update to the game. It is released to fix bugs and add new

features. When analysing data, it is imperative to collect data from a single
release (patch) to ensure consistency and compatibility of data.

4 https://github.com/skadistats/clarity

contained in it. Distance and movement features are added in the form
of distance to other heroes and structures such as towers as well as delta
features describing how these values have changed from timestamp to
timestamp. We also convert the representation of certain categorical
features, necessary to implement the original Time to Die model. In
this case, the hero ID is converted to a one-hot encoding and the
items that a certain hero has are converted to a set of binary features
which describe if the hero has a certain item, from a small subset of
items. The embedding model proposed in this work does not require
either processing step so is faster. Next a set of binary historic visibility
features is added. These describe if a hero has been visible to the
opposing team in the last 10 seconds, with one feature used for each
second. This is required because heroes often go in and out of the
enemies field of vision and a hero may go out of vision but their
location known and thus they are still in danger. Finally we calculate
the training labels for the model as similar if a hero dies in the next
five seconds or not.

The final data processing step before training was to normalise
the dataset. To achieve this the minimum and maximum value for all
features that required normalisation, i.e. scalar values with a maximum
values > 1 or minimum value < 0, was calculated. No features had
ranges below 1. The features were re-scaled using the MinMaxEncoder
in Eq. (1) where 𝑥 is the feature to be normalised, and min𝑖𝑛 and max𝑖𝑛
are the smallest and largest observed value for that feature. Note, min𝑖𝑛
and max𝑖𝑛 are only calculated on the training dataset to avoid the
possibility of leaking feature size information from the test set to the
training set. This step is very important as the size of features has a
direct impact on the importance in training the network, especially at
the start of the training process. Without normalisation features which
naturally have very large values, e.g. the amount of gold that a hero
has, may overshadow features with a smaller range such as features
with a binary range.

𝑥′ =
𝑥 − min𝑖𝑛

(max𝑖𝑛 −min𝑖𝑛)
(1)

Once processed and normalised each game file is stored as a Hier-
archical Data Format (HDF) file, which is used directly for training.

4. Methods

4.1. The time to die model

This work builds upon Katona et al. (2019) and as such we begin
with the architecture proposed in that work. The ‘Time to Die’ (TtD)
model is a deep neural network which is structured as a two-stage
system. The first portion of the network acts as a feature extractor
for each hero (illustrated as green and orange blocks in Fig. 2). A set
of fully connected layers are used for each of the ten heroes, which
are each represented as a vector of features, and the resultant latent
vectors are then concatenated to form the input for the second half of
the network. The layers in this first part share weights between heroes,
allowing the model to learn these weights more quickly, without po-
sitional bias, and in a manner which allows all heroes to be encoded
in the same way. The second half of the network (illustrated as red
blocks in Fig. 2) takes this latent feature vector and passes it through
several fully connected layers before outputting 10 values between
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Fig. 2. Architectures for each model presented in the paper. First, the standard Time to Die model used in 𝑇 𝑡𝐷𝐴 and 𝑇 𝑡𝐷𝐵 . Second, incorporating embeddings into the model
used in 𝑇 𝑡𝐷+ and 𝑇 𝑡𝐷2 (for an explanation of the embedding block see Fig. 3). Third, the Temporal Time to Die model 𝑇 𝑡𝐷𝑡𝑒𝑚𝑝. Fourth, a temporal model which just uses RNN
layers called 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑅𝑁𝑁 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

[0.0, 1.0]which represent the ‘probability’ that each hero dies in the next
five seconds. Conceptually, the first portion of the network is tasked
with understanding the state of a hero agnostic of the other players,
and the second part of the network utilises these representations to
model the way in which players may interact with each other. Fig. 2
contains a visual representation of this model, and we refer the reader
to the original paper for more details. While the basis of the models
presented in this paper are based on the Time to Die architecture
several modifications and engineering techniques, discussed in detail
below, are employed to improve performance.

4.2. Hero and item embeddings

In Katona et al. (2019) hero IDs, a unique ID assigned to each
playable character in the game, were encoded using a one-hot vector.
In general one-hot encoding suffers performance issues because they
are weight and inference inefficient. The weight matrix for a fully
connected one hot encoding has size 𝑜 ∗ 𝑛 + 𝑏 where 𝑜, is the size of
the encoding, 𝑛 is the number of weights in the next layer, and 𝑏 is the
number of bias units used, traditionally 𝑏 = 𝑛. Additionally all of these
weight must be calculated for each pass through the layers, both during
training and inference.

The original paper also used only a subset of 17 items, rather than
modelling all possible items in the game. These items were hand-
selected under the assumption they are the most likely to impact the
survival chances of a player. However, at the time of writing, there are
over 200 items in Dota 2 and thus the original feature set used less than
10% of possible items. Therefore, it is very likely that modelling all of
the items in the game will aid performance. However, modelling all of
the items that a player owns using one-hot encoding is likely to inflate
the number of weights needed to an unmanageable number, especially
when considering that each hero can hold up to 18 items at the same
time.

Handling of both item IDs and hero IDs can be improved by us-
ing embeddings, a technique developed initially for natural language
processing applications but now utilised often for categorical features.
Embeddings replace the one-hot encoding with a weight matrix of size
𝑐 ∗ 𝑒 where 𝑐 is the number of categories, determined by the dataset,
and 𝑒 is the size of the embedding, a tunable hyper-parameter. This
weight matrix functions as a lookup table. Rather than encoding a
categorical variable like hero ID with a one-hot encoding instead the

raw categorical value, in this case represented as an integer, is used
as an input and then used to index into the weight matrix and select
the row of length 𝑒 which corresponds to that categorical value. The
weight matrix between the embedding and the next layer is calculated
as 𝑒 ∗ 𝑛, rather than the 𝑜 ∗ 𝑛 matrix necessary for one-hot encoding.
Additionally, only the embedding relating to the input category is used
during the forward pass. This has the effect of, in general, reducing
the number of parameters. For example, consider hero IDs, a one-hot
encoding of 𝑜 = 150 and a first layer of 𝑛 = 1024, each with a bias unit,
results in a weight matrix between these layers of 154,624 weights.
However, replacing the one hot encoding with an embeddings of 𝑐 =

150 and 𝑒 = 24, a value which performed well during hyper-parameter
search, results in an embedding with 3600 weights and a weight matrix
to the first layer of 25,600 weights, for 29,200 total weights, although
not all are used at each forward pass. This dramatically reduces both
the total number of parameters as well as the number of calculations
required for each forward pass. Note that there are some hero ID values
and many item ID values which are not in use, for example, the highest
item ID values is approaching 1500 but there are only 200 items. This
is due to heroes and items within the game changing as the game
evolved and old IDs no longer being used. Because embeddings only use
the selected weights during each pass there is no performance penalty
to using oversized embeddings matrices where some elements are not
used.

Another benefit of embeddings is that adding extra embeddings
after a model has been trained without retraining the entire network is
possible by adding extra rows to the embedding weight matrix, which
is not the case with a one hot encoding. This is extremely beneficial
for our model because Dota 2 is constantly evolving, including adding
new heroes. In theory, this allows us to add a new hero when one is
released, and update its embedding while retaining the performance of
the rest of the model, rather than needing to retrain the model. Finally
embeddings naturally find an embedding space. We speculate that
this embedding space can be queried via post-hoc analysis to uncover
insights into heroes and items, at least pertaining to survivability, that
are previously unknown.

In the models which use embeddings, we use one for hero IDs and
one for item IDs. The hero ID embedding takes a single hero idea
feature, whereas the item embeddings take 18 item IDs. Each hero can
possess up to 18 items so we need to allow for this in the embeddings.
Once the embedding has been calculated for both the hero ID and set
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Table 1
The different models use different feature sets. This table breaks the features into groups and Table 3 lists which groups of
features the different models use.

Original Time to Die features Embeddings Status effect

TeamFightParticipation, CreepsStacked heroID wardsDestroyed, isBroken, direBotTowersDestroyed
Ability Level, Ability Cast Range itemID isDisarmed, isHexed, direMidTowersDestroyed,
TowerKills, RoshanKills isMagicImmune, isMuted
Ability Mana Cost Ability Cooldown isSilenced, isSmoked, direBotRangeRaxDestroyed
Ability Activated, Ability ToggleState isStunned, ultimateRead, direTopMeleeRaxDestroyed
Item Cooldown, Stuns supportGoldSpent, heroDamage, direBotMeleeRaxDestroyed
TauntCooldown, BKBChargesUsed buybackCost, buybackCooldown, direTopRangeRaxDestroyed
AbilityPoints, PrimaryAttribute radiantTopTowersDestroyed, radiantMidTowersDestroyed

radiantBotTowersDestroyed, radiantTopRangeRaxDestroyed
radiantTopMeleeRaxDestroyed, radiantMidRangeRaxDestroyed
radiantMidMeleeRaxDestroyed, radiantBotRangeRaxDestroyed
radiantBotMeleeRaxDestroyed, direTopTowersDestroyed,
direMidRangeRaxDestroyed, direMidMeleeRaxDestroyed.

Fig. 3. Embedding block for Time to Die model.

of items IDs they are concatenated along side the other features for a
heroes to form the input vector for the shared portion of the network.
Fig. 3 demonstrates this process.

4.3. Feature set

We know from Katona et al. (2019) that models that are provided
with more features about the game are more likely to perform well. As
a result we initially take a maximalist approach to feature selection,
and provide the models with as many features as possible. We consider
our input data to be a set of 10 feature vectors, each of which relates to
a single hero. Each of these feature vectors is constructed from features
which describe the current state of the hero at a given time stamp.
Table 1 shows the features the model can be trained with, split into
categories of broadly similar features: features from the original Time
to Die model, embeddings features and status effect features.

While we pose this work as a continuation of Katona et al. (2019)
it should be noted that not all features from the original paper are
represented like for like in this paper. This is due to the nature of our
new parsing process. However, having consulted with an expert player
we believe that these features have minimal effect on the predictive
capability of the model, because they generally track historic stats,
e.g. how many wards have been placed, rather than the current state
of the hero. Our ‘full’ dataset is listed in Table 2 with the features
grouped by which part of the game they describe. Our ‘full’ dataset
contains a set of features not in the original paper. These largely pertain
to status effect, e.g. if the player is stunned, i.e. they are currently
unable to move or act. Intuitively, these status effects should be very
useful when determining if a player is likely to die or not because they
describe player state in a way not previously modelled. Our feature set,
alongside our embeddings, also allows us to model ownership of every

item in the game, rather than the small number of items modelled in
the original Time to Die model. The features in the original paper and
not present in ours, as well as the features not in the original paper are
detailed in Table 1.

This work initially experiments with three different feature sets,
firstly one which mirrors the original Time to Die model (Katona et al.,
2019) as closely as possible. This feature set is used for both the ‘𝑇 𝑡𝐷𝐴’
and ‘𝑇 𝑡𝐷𝐵 ’ models. Secondly, a feature set that uses broadly the same
features as the original paper but formats certain features so that they
can be used with an embedding layer, namely hero IDs and item IDs,
used for ‘𝑇 𝑡𝐷+’. This formatting for the embedding layer additionally
allows models trained with ‘𝑇 𝑡𝐷+’ to model all items rather than
the small selection in the original paper. Finally, a feature set which
combines the modifications utilised in ‘𝑇 𝑡𝐷+’ alongside extra features
such as status effect, used for our ‘𝑇 𝑡𝐷2’ model. Table 3 provides a
comparison of these four models. In Section 4.5 we introduce a fifth
model designated ‘𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝’ which revises the 𝑇 𝑡𝐷2 architecture by
replacing the final set of fully connected layers in 𝑇 𝑡𝐷2 with recurrent
layers. The input to ‘𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝’ is a stack of data with the 𝑇 𝑡𝐷2 feature
set but taken from the previous 𝑛 game time steps. Table 3 provides an
overview of the different models.

4.4. Hyper-parameter selection

Naturally deep learning models are extremely sensitive to hyper-
parameters. As a result, extensive hyper-parameters tuning was carried
out across all models. There are a number of approaches for hyper-
parameter optimisation, such as: random search (Bergstra & Bengio,
2012), Tree Parzen Estimator (TPE) (Bergstra, Yamins, & Cox, 2013)
and Adaptive TPE (ATPE) (Wen, Ye, & Gao, 2020). Following on
from Katona et al. (2019), we carried out a random search based hyper-
parameter fitting process (Bergstra & Bengio, 2012). Search was carried
out over several generations of randomly selected hyper parameters,
with the search space updated after each iteration to narrow upon a
high-quality set of parameters. This was carried out independently for
each model, the original Time to Die model, 𝑇 𝑡𝐷+, and 𝑇 𝑡𝐷2. However
we found that in reality, because most models are architecturally
similar, they converged to a similar set of hyper-parameters. The final
stage of the hyper-parameter selection process was to A–B test slight
modifications to the selected parameters where there were two models
which disagreed, e.g. two models had independently found slightly
different learning rates. In this case both models were tested with both
hyper-parameter options and the best one selected. Perhaps surprisingly
this resulted in a relatively uniform hyper-parameter set across all mod-
els. Because these hyper-parameters are very different from the original
hyper-parameter set we experiment with two base Time to Die models,
𝑇 𝑡𝐷𝐴 which used the original hyper-parameters, and 𝑇 𝑡𝐷𝐵 with our
new parameters. These hyper-parameters are detailed in Table 4.
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Table 2
Complete feature set extracted from the data for each hero on both teams that are presented as inputs to the models. The features are grouped into broad categories relating
to which parts of the game they describe. Features highlighted in italics are calculated during the processing stage and are not native to the Dota 2 telemetry data. Features
highlighted in bold are represented as embeddings for the models which feature embedding layers (i.e. ‘𝑇 𝑡𝐷+ ’ and ‘𝑇 𝑡𝐷2 ’) and as one hot encoded vectors otherwise.

Hero statistics Hero status effects Hero state Positional data Tower data Ability data Item data

Experience Is Broken Health Hero Position X Nearest Ally Tower Proximity Level 1–7 Item ID 1-18
Level Is Disarmed Max Health Hero Position X Delta Nearest Ally Tower Proximity Delta Cooldown 1–7 Item Cooldown 1–18
Number of Last Hits Is Hexed Health Regen Hero Position Y Nearest Ally Tower Health Mana Cost 1–7 Blink Dagger Owned
Deny Is Magic Immune Mana Hero Position Y Delta Nearest Enemy Tower Proximity Activated 1–7 Black King Bar Owned
Net Worth Is Muted Max Mana Ally Proximity 1–4 Nearest Enemy Tower Proximity Delta Magic Wand Owned
Gold Is Silenced Mana Regen Ally Proximity Delta 1–4 Nearest Enemy Tower Health Quelling Blade Owned
Kills Is Smoked Hero Damage Ally Proximity 1-5 Power Treads Owned
Deaths Is Stunned Damage Min Ally Proximity Delta 1-5 Hand of Midas Owned
Assists Damage Max Hurricane Pike Owned
Wards Placed Damage Bonus Force Staff Owned
Wards Destroyed Base Strength Abyssal Blade Owned
Runes Activated Base Agility Mask of Madness Owned
Camps Stacked Base Intelligence Nullifier Owned
Support Gold Spent Total Strength Travel Boots Owned
Ultimate Ready Total Agility Dagon 5 Owned
Is Radiant Total Intelligence Lotus Orb Owned
Life State Armour TP Scroll Owned
Hero ID Magic Resistance Smoke of Deceit Owned

Movement Speed Clarity Owned
Visible by Other
Team 1–10

Table 3
Comparison of functionality and features of each model. The hyper-parameters are
detailed in Table 4. The features groups are listed in Table 1. We introduce 𝑇 𝑡𝐷𝑡𝑒𝑚𝑝 in
Section 4.5.

Model Hyper-parameters Original Embeddings Status effect Temporal

𝑇 𝑡𝐷𝐴 From Katona et al. (2019) Yes No No No
𝑇 𝑡𝐷𝐵 Fit in this work Yes No No No
𝑇 𝑡𝐷+ Fit in this work Yes Yes No No
𝑇 𝑡𝐷2 Fit in this work Yes Yes Yes No
𝑇 𝑡𝐷𝑡𝑒𝑚𝑝 Fit in this work Yes Yes Yes Yes

4.5. Recurrency

Finally, it is not clear if the Markov property, i.e. future states
depends only on the current state and not past states, holds for our data.
The previous Time to Die paper made this assumption (Katona et al.,
2019) and the previous models presented in this paper have operated
under the assumption. Certainly, there are a set of features, e.g. historic
visibility and distance deltas, which allow a single sample to detail the
short term history of the game, at least to some extent. However, this
may not be sufficient to satisfy this assumption.

There may be historic features or information, e.g. movement pat-
terns, which are not modelled in our single-frame data. Therefore we
implement a fifth model designated ‘𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝’ which is a new version of
the 𝑇 𝑡𝐷2 architecture. ‘𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝’ replaces the final set of fully connected
layers in 𝑇 𝑡𝐷2, after concatenation, with a set of layers containing
Gated Recurrent Unit (GRU) (Cho et al., 2014) neurons. GRU neurons,
rather than the more popular Long Short-Term Memory neurons, are
used because they are significantly simpler and have fewer weights,
thus will be able to perform inference faster which is vital in a live
broadcast setting. This new temporal model then receives as input a
stack of data taken from the previous 𝑛 game time steps. If the Markov
property is not sufficiently satisfied with our single frame models then
we would expect a temporal model to perform well in comparison.

At this stage it is also useful to compare our 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 architecture
with a model, designated ‘Standard RNN’, which only features the
recurrent layers and does not feature the core two stage approach of
the Time to Die models. To achieve this the raw input features are
concatenated with hero and item embeddings for the 10 players and
then this single feature vector is passed to several GRU layers. The
architectures of these two approaches are visually demonstrated in
Fig. 2 and the hyper-parameters are show in Table 5. Interestingly,

while there are fewer neurons in the ‘Standard RNN’ model it has many
more total weights. This is a result of the fact that the entirety of the
input is concatenated before the first layer and thus there are many
more connections, and therefore weights, between input and the first
layer of neurons.

5. Experiments

In total we present three experiments which show the impact that
embeddings, status effects and using a recurrent architecture have on
in-game death prediction.

5.1. Experiment 1 — Model comparisons

We train a set of models with different characteristics and then
compare their performance. To evaluate the models four metrics are
employed. Precision which is the fraction of deaths detected by the
model from all positive predictions made, and Recall which is the frac-
tion of deaths which were correctly detected. Additionally, as in Katona
et al. (2019) the Average Precision (𝐴𝑃 ) is reported. This is the area
under the Precision-Recall curve and represents the average precision
value across all possible recall values. 𝐴𝑃 is often used in imbalanced
detection tasks because it does not require a threshold decision bound-
ary to be set, although in practice often this choice need to be made
before a model can be deployed and thus 𝐴𝑃 can make models appear
more performant than they will be in a operational setting. Finally,
F1-Score (𝐹1), the harmonic average between Precision and Recall, is
reported. While precision is naturally important — the system would
fail in its purpose if it often predicted deaths that did not occur, recall
is also extremely important because one of the motivating reasons for
exploring this type of prediction is that broadcasters often miss events
due to the fast-paced and complex nature of the game. A model with
low recall would also miss important moments, negating the usefulness
of the model. In fact, while 𝐴𝑃 was the focus of our previous study
upon reflection 𝐹1 is likely be more useful as both precision and recall
are equally important, especially given the focus in this work on the
suitability of such a model to be operationalised. Note, accuracy is not
reported because our test sets are imbalanced, there are many more
negative samples than positive ones, and as such reporting accuracy
across both of these labels is likely to be misleading.
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Table 4
Hyper-parameters for original model (𝑇 𝑡𝐷𝐴), original model with new hyper-parameters (𝑇 𝑡𝐷𝐵), a model that uses embeddings
(𝑇 𝑡𝐷+), and the model which uses both embeddings and status effects (𝑇 𝑡𝐷2).

Hyperparameter 𝑇 𝑡𝐷𝐴 𝑇 𝑡𝐷𝐵 𝑇 𝑡𝐷+ 𝑇 𝑡𝐷2

Hero Embedding – – {150, 24} {150, 24}
Item Embedding – – {1500, 8} {1500, 8}
Shared Layers Dims {256, 128, 64} {512, 256, 128} {512, 256, 128} {512, 256, 128}
Joined Layers Dims {1024, 512, 256, 128, 64, 32} {512, 256, 128} {512, 256, 128} {512, 256, 128}
Numb. Parameters 1,458,474 1,115,658 1,156,346 1,162,490
Learning Rate 6.15e−5 2.89e−05 2.89e−05 2.89e−05
Batch Size 128 1024 1024 1024
Early Stopping Patience – 13 9 10

Table 5
Hyper-parameters for recurrent architectures.

Hyperparameter 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 Standard RNN

Hero Embedding {150, 24} {150, 24}
Item Embedding {1500, 16} {1500, 8}
Shared Layers Type MLP –
Shared Layers Dims {512, 256, 128} –
Joined Layers Dims {512, 256, 128} {256, 128, 64}
Numb. Parameters 3,837,562 6,369,018
Learning Rate 5.35e−05 2.89e−05
Batch Size 1024 1024
Early Stopping Patience 12 10

Table 6
Results for Experiment 1. Precision, Recall and F1 Score used a out
threshold of >= 0.5 to indicate positive class labels.

Model Precision Recall AP F1 Score

𝑇 𝑡𝐷𝐴 0.09 0.87 0.46 0.17
𝑇 𝑡𝐷𝐵 0.23 0.96 0.75 0.37
𝑇 𝑡𝐷+ 0.34 0.93 0.76 0.50
𝑇 𝑡𝐷2 0.38 0.90 0.71 0.54

5.1.1. Experimental results

Table 6 shows the Precision, Recall, Average Precision (AP), and
F1 Score for the four models experimented with. All models show
very high recall and much worse precision. This finding suggests that,
regardless of model, it is often very clear when a player is at risk
of dying, hence the high recall but there are many times where the
models predict that a player is going to die, but they are actually able to
escapes, hence the general lack of precision. It is also clear from looking
at the results that the original Time to Die model (𝑇 𝑡𝐷𝐴) performs
very poorly. In fact, a simple re-tuning of hyper-parameters (𝑇 𝑡𝐷𝐵),
which produced a network with a very different architecture, resulting
in a large improvement in both AP and F1 score. When discussing the
original model, it is important to note that we found an AP of 0.46
compared to 0.54 as reported in the original paper. We expect this
variation is due to using a new dataset which contains data from only
professional games, uses slightly different features, and was gathered
using a different patch. Different patches alter various features of the
game which may make prediction easier or harder, and past research
has shown that it is more difficult to build predictive models for high
level play because player skill begins to have a larger impact on the
outcome of an event (Semenov et al., 2016).

As well as the re-tuned parameters we see that the use of em-
beddings, present in ‘𝑇 𝑡𝐷+’ and ‘𝑇 𝑡𝐷2’ also has a huge impact on
performance, at least when considering F1 Score, with scores of 0.50 for
‘𝑇 𝑡𝐷+’ and 0.54 for ‘𝑇 𝑡𝐷2’, compared to 0.37 for ‘𝑇 𝑡𝐷𝐵 ’. There is also
a large impact to Precision, where embedding models scored 0.34 and
0.38 compared to 0.23 for the best performing non-embedding model.
It is likely that modelling hero IDs in a smart way, as well as modelling
all items in the game, allows the model to better understand when
normally risky situations are not actually risky, e.g. due to an ability or
item a player has. Finally, the additional features, such as status effect,
provide a small but noticeable improvement to Precision and F1 Score.

There is a clear improvement in terms of F1 score as the four models
add extra functionality. However, other than the original Time to Die
model (𝑇 𝑡𝐷𝐴), Average Precision (AP) scores are similar across models,
with our most complex model, 𝑇 𝑡𝐷2, performing slightly worse than the
other two models, 0.71 compared to 0.75 and 0.76. The 𝑇 𝑡𝐷2 model
also scarifies some Recall, scoring 0.9 compared to 𝑇 𝑡𝐷𝐵 ’s 0.96 and
𝑇 𝑡𝐷+’s 0.93. It is possible that these results signify a model which is
more cautious and less likely to predict a death, hence the drop in
Recall but improvements in Precision and F1 Score. As discussed before,
F1 Score is likely the best metric for evaluating models for our use case
and thus it seems that the 𝑇 𝑡𝐷2 model is most suitable for deployment.

Fig. 4 shows the death predictions for all four models on a ran-
domly selected game, ID 5510998077. For each player in the game a
prediction for each game time step is displayed, along side the time
steps where a kill occurred, marked with a K. From this plot we can
see that the two models which do not use embeddings (𝑇 𝑡𝐷𝐴 and
𝑇 𝑡𝐷𝐵) show significantly more ‘noise’, i.e. propensity to predict non-
zero values in seemingly safe conditions. In fact, looking at the average
prediction for all players 𝑇 𝑡𝐷𝐴 predicted an average chance of death
at 0.12 (i.e. 12%), compared to 0.06 for 𝑇 𝑡𝐷𝐵 , 0.04 for 𝑇 𝑡𝐷+ and
just 0.03 for 𝑇 𝑡𝐷2. Furthermore, there appears to be a lot of variance
between how likely a player is to die based only on their position in
the input data vector, for instance all players on the Radiant (red)
side are often predicted as being in a risky situation, whereas for
many players on the Dire (blue) side the model is much less likely to
erroneously predict risk. Furthermore, for Dire player 5 (the last row)
we see 4 situations where the 𝑇 𝑡𝐷𝐴 model completely missed their
death. This sort of predictive failure is catastrophic for our system,
as while risky situations which do not result in a death provide an
interesting discussion point for commentary, missing a death results in
no opportunity for the commentary to discuss the situation.

Finally, Fig. 5 shows the distribution of the average predicted
probability of death for the model based on how long until the player
dies, binned into 1 seconds time windows. As expected, the average
output as a player nears death tends towards 1 (i.e. certain death). The
most interest aspect of these plots is to observe how the distributions
changes over time. For example, the 𝑇 𝑡𝐷𝐴 model tends to be either
certain a player is going to die, or certain it they will survive. Machine
learning models are often trained with binary [0, 1] training labels but
are able to output scalar values which are interpreted as a probability
that the sample is of the positive class, i.e. has the label 1. However, the
distributions of outputs suggests that using 𝑇 𝑡𝐷𝐴 outputs as probabili-
ties are not likely to be interesting because it lacks graduation between
its extreme outputs i.e. 0 or 1. This is not the case for the other 3 models
where we see a much more gradated change in probabilities as we move
further from the death. Interestingly, our 𝑇 𝑡𝐷2 model, while trained to
predict death in less than 5 seconds has a median output of 0.5 (the
decision threshold) at four seconds, whereas 𝑇 𝑡𝐷𝐵 and 𝑇 𝑡𝐷+ both had
a medium output of 0.5 somewhere between 4 and 5 seconds. This
is further evidence that the 𝑇 𝑡𝐷2 model is slightly more cautious, it
appears at least for deaths this cautiousness occurs when deaths occur
further in time. These values are only gathered in the 20 seconds before
a player dies, and therefore the distributions of these values do not
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Fig. 4. Model outputs for each of the core models across the course of a randomly selected game. For each figure, the 10 time series plots represent the output probability for
each player. Time steps (ticks) labelled with a blue ‘k’ are when a player died. 𝑇 𝑡𝐷𝐴, i.e. the original model, is much more likely to output a high probably of dying across this
game, and seemingly does so especially often for player on the red ‘radiant’ team. By contrast our best performing 𝑇 𝑡𝐷2 model is much less likely to output high values unless
a death actually occurs within 5 seconds. While there are still regions of high probability which ultimately do not result in a death this are more likely to correspond to a time
where another player from the opposing team dies and correspond to battles between the players. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

describe the reasons for false positives predictions. As a result, while
𝑇 𝑡𝐷𝐵 may appear as if it performs the best, because it recognises danger
for these true positive cases sooner, this is because in general the model
is more likely to predict that a player is going to die, which, while not
represented in these plots, is the reason for worse precision for that
model. The key takeaway from these plots is that, excluding 𝑇 𝑡𝐷𝐴,
models are trained only on labels relating to death in five seconds or
less but we actually see that they tend to learn a gradual sloped output
and thus are capable of early warning of a death before five seconds.
This gradual slope is likely to be very useful to broadcaster as they are

able to use it detect developing situations and thus focus on where the
action is likely to happen.

5.2. Experiment 2 — Feature importance ablation

The models presented in Experiment 1 use large feature sets. How-
ever, there are likely certain features which have significantly more
impact on performance than others. Furthermore, a model with fewer
inputs has the advantage that it reduces the number of model pa-
rameters and thus is likely to speed up inference, which is important
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Fig. 5. Violin plots describing the distribution of the average predicted probability of death at different timesteps before a death occurs.

if a Time to Die model is to be deployed in a live system. Finally,
explainable artificial intelligence is becoming increasingly important,
especially for black-box models such as neural networks. Performing
a study on which features are most important to the model also
offers insights into why the model is making the decisions that it is.
To understand which features are the most important we perform a
random permutation feature importance test and then train several
models which use only the most important features. These models are
then compared to the 𝑇 𝑡𝐷2 from Experiment 1 to explore if a model
with fewer features has acceptable performance.

To perform the feature importance calculation the testing process is
carried out once for each feature, but that feature is randomly shuffled.
This provides test set samples which have the correct values for all
features bar one. Test sets in which the test error is very large suggest
that the feature which has been shuffled is very important to prediction,
and likewise low error indicated features that are unimportant to the
model. For this experiment the features which use embeddings, i.e. hero
ID and item ID, are not included. This is because it is no possible to
shuffle these features, because the hero ID which is constant throughout
the game and item IDs often do not change once an item has been
purchased.

A second feature ablation study is carried out to explore how
important the embeddings are to the models performance. To achieve
this two additional models are trained based off the 𝑇 𝑡𝐷2 model. Both
of these models are 𝑇 𝑡𝐷2 models but one omits the hero embedding
feature and the other omits the item embeddings. Therefore, the first
model is trained with no knowledge of which hero is being used and
the second is trained with no knowledge of which items are owned.

5.2.1. Experimental results
The first step for the Feature Importance Ablation study was to

perform the feature importance test detailed above, the results of which
are shown in Fig. 6. From this we can see that if the player is alive and
how much health they have are both very important to the likelihood
that a player is going to die. This is unsurprising given that if a player
is alive or not likely acts as a very simple filter to filter out situations
where the player is going to die soon — they cannot die if they are
already dead. Health is also a very clear indicator as running out of
health is the in-game mechanism which causes death. Surprisingly,
the number of deaths a player has is also fairly important, it may
because a high number of deaths indicates that a player is not doing
well in a game and so is more likely to perform poorly in the future,
especially considering that MOBA games often punish players who die
with a loss of gold and reward those who have killed other players with
experience.

The next most important features are visibility features and proxim-
ity to allied players. Visibility is very important because the game has a
‘fog-of-war’ feature where it is possible for players to avoid dangerous
situation by hiding in parts of the map where the other team cannot
see them. However, if the other team knows that the player is likely
to be in a part of the map because that player have been seen recently
the opportunity for hiding and escaping is reduced. Additionally, being
near allied players often provides a lot of protection because it makes
it more risky for the opposing team to engage in a fight.

The next step of the feature importance ablation experiment is to
train a set of models using just the most important features to test if it
is possible to build a model with fewer features that still performs well.
Three feature sets are used for this, one with a single feature, one with

10



C. Ringer, S. Missaoui, V.J. Hodge et al. Machine Learning with Applications 12 (2023) 100466

Fig. 6. Feature Importance Test results ordered by average error when the feature was shuffled. Larger error suggests the feature is more important to the model.

Table 7
Results for Experiment 2.

Feature set Precision Recall AP F1 Score

One Feature 0.08 0.89 0.12 0.14
Three Features 0.20 0.91 0.72 0.32
18 Features 0.11 0.96 0.71 0.19
No Hero ID 0.25 0.95 0.74 0.40
No Item IDs 0.26 0.95 0.74 0.41
Full Feature Set 0.38 0.90 0.71 0.54

three features, and one with 18 features. For the single feature model
we select health rather than if the player is alive because if the player is
alive or not only has predictive power after the player has died, which
is not particularly useful as a broadcast aid. The three feature set uses
both the players health and alive state as well as the number of deaths
that player has. The 18 feature set adds allied proximity and enemy
visibility features. Models that omited hero IDs as well as item IDs are
also presented.

Table 7 shows the core findings for this experiments. Clearly, remov-
ing features has a significant negative impact of performance. This is
not entirely unexpected especially given that our original work came
to similar conclusions. Models with very few features often retain
high recall, but lack precision. This is likely because certain features,
e.g. health, are really strong indicators of if a player is unlikely to
die, i.e. they have high health as so are unlikely to die, but are
really poor indicators of when a player may escape a seemingly risky
situation. Imagine two situations, one where the player has used all of
their abilities and possesses no relevant items, and another where the
player has the ability to dash or teleport away from a situation and
additionally has an item which reduces the amount of damage they
take. Clearly the hero in the first situation is more likely to die even if
both heroes have the same amount of health. This anecdotal situation
is reflected in the poor performance of models with fewer features. The
main potential benefit of using fewer features is to reduce the amount
of computation needed and thus enable a model to be deployed more
easily. However, it seems that the performance of these small feature
sets is such that they would not be suitable even if they are more easily
deployed.

With regards to ablating features which utilise embeddings, i.e. hero
IDs and item IDs, we see that both are fairly important to predictive
power of the model, evidenced by the large drop in F1 score when
removing them. Interestingly we see slightly higher AP and Recall, at
the expense of Precision given a fixed decision boundary. This is likely
a reflection of models which learn to be more ‘pessimistic’ about the
chances a player is going to die, i.e. the model is more likely to predict
that a player is going to die than when including these features. It is
likely this is because both hero IDs and items often describe abilities
or features that increase the survival chances for a player i.e. by giving
them a shield or the ability to dash out of danger. We also see that
both hero IDs and item IDs have a similar impact on the performance
of the model, showing that item IDs are important, despite not being
fully represented in our original work.

Table 8
Results for Experiment 3.

Model Timesteps Precision Recall AP F1 Score

𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 3 0.19 0.87 0.60 0.32
𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 15 0.52 0.77 0.67 0.62
𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 30 0.30 0.87 0.66 0.45
Standard RNN 3 0.09 0.84 0.28 0.16
Standard RNN 15 0.06 0.42 0.10 0.10
Standard RNN 30 0.0 0.0 0.01 0.0

5.3. Experiment 3 — Recurrency

The final experiment is to compare our models using temporal data
and recurrent GRU layers with both the best performing single frame
model as well as the standard RNN model. It is not initially clear what
the correct number of time steps to use is. Therefore, three models are
experimented with for both recurrent models, one that looks at the
past three times steps, i.e. one second of game play, one that looks at
15 time steps, i.e. five seconds, and one that looks at 30 time steps,
i.e. 10 seconds.

5.3.1. Experimental results
The key results from the recurrency experiment are shown in Ta-

ble 8, once again detailing Precision, Recall, AP, and F1 Score for each
model. These results are very surprising. These results show how useful
the Time to Die architecture is compared to a standard RNN network,
given that these networks struggled to learn effectively, whereas each
of the Time to Die architectures performed better. Perhaps the most
interesting discovery from this experiment is that with the Time to Die
architectures there seems to be a ‘sweet-spot’ in terms of the number
of time steps compared to performance. A 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 model with 15 time
steps, equating to 5 seconds, performed extremely well compared to the
other two time step hyper-parameters. It may be that this sweet-spot
is the result of two effects. Firstly, a small number of time steps may
not aid predictive power too much, given that some features relating
to previous frames, e.g. movement deltas and visibility information,
are already contained within the feature set. However, by using GRU
neurons the model is significantly more complex, thus leading to a
model which is more difficult to train and without the benefit of a lot
of hindsight information. Secondly, it would be expected that at some
point extra information from past frames is going to be detrimental to
the models performance. This is because Dota 2 is a very fast paced
game and players can move into and out of danger multiple times
within 30 frames, i.e. 10 seconds, thus information from frames many
timesteps ago may provide noise and thus impair performance.

The non-recurrent 𝑇 𝑡𝐷2 model achieved an AP of 0.71 and a F1
Score of 0.54. Our best recurrent model, the 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 model with 15
times-steps, achieved an AP of 0.67 and a F1 Score of 0.62. This
suggests that the recurrent model is more likely to make false positive
predictions across all recall values, i.e. a lower AP score, but has a
better F1 Score at a threshold of 0.5, and is in fact less likely to make
a false positive prediction given a fixed threshold value, i.e. higher
precision. It does appear that because the model is more ‘pessimistic’
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Fig. 7. Model outputs across time for a randomly selected game for the 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 model with 15 time steps (ticks).

Fig. 8. Violin plot describing the distribution of the average predicted probability of
death at different time steps before a death occurs for 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 model with 15 time
steps.

with its positive predictions the model has a lower recall score than
the non-temporal 𝑇 𝑡𝐷2 model. All of this results in a model which
has a much better F1 score and is in general likely to be a more
useful model for broadcast analysis. Fig. 8 shows the violin plot for
the average predicted probability of death at different times to death
for the 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 model trained with 15 time steps, mirroring Fig. 5
for the non-temporal models. Similarly, Fig. 7 shows the output of
the model across a game, and is the equivalent of Fig. 4. These plots
demonstrate the improved performance of the model, e.g. there are
only limited situations where the model suggests someone is going to
die and they do not, and for this model mis-classifications more often
align with other players dying. This is unsurprising, when two heroes
are fighting the likelihood that both are going to die increases because
it is rarely clear exactly who will win a fight. That said, it does seem
from Fig. 8 that the temporal model is less able predict player death
many seconds in the future compared to non-temporal models, likely
due to the fact it is less likely to predict deaths in general. It is not
clear if, in practice, this would make the tool more difficult to use,
i.e. because the broadcasters need more time to build up play, or if
this look-ahead is sufficient.

While the 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 temporal model is better at prediction it has a
computational overhead, having greater than 3 times more parameters
than the 𝑇 𝑡𝐷2 model. This may make it impossible to deploy the
temporal model unless the broadcast team has access to significant
compute infrastructure. To test this we took a computer fitted with
consumer-grade hardware and experimented with the time it takes both
models to process a sample. The computer had a Ryzen 5 1600 CPU,
16 gb of RAM, and a Nvidia 2080ti GPU. The average time taken

Table 9
Inference time (in seconds) to process a single sample
for both the non-temporal 𝑇 𝑡𝐷2 model and the tem-
poral model 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 when processing the data using
a GPU or CPU.

Model GPU CPU

𝑇 𝑡𝐷2 9.39e−05 1.02e−03
𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 3.48e−03 1.35e−02

to process a single sample, averaged from 256 samples, is shown in
Table 9. From this we can see both that the non-temporal model is
much faster and also that performing inference on the GPU is much
faster than the CPU for both temporal and non-temporal models. Data
is sampled at a rate of three times per second and thus a model would
have to be able to perform inference at faster than 0.33 seconds per
sample in order to run in real time. From Table 9 we see that all
models would be able to operate in real time on either GPU or CPU
with computation time to spare for e.g. data processing, when using
consumer grade computing hardware. Therefore, it is highly likely that
either the standard 𝑇 𝑡𝐷2 model or the 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 temporal model would
be suitable for deployment in a broadcast setting with only minimal
infrastructure investment.

6. Discussion

Generally, the proposed modifications to the Time to Die archi-
tecture show improvements compared to the original work (Katona
et al., 2019). In particular utilising hero ID and item ID embeddings,
optimising the hyper-parameters as well as changing the architecture to
use recurrent layers had a large impact of predictive performance. We
achieved an F1 score of 0.54 for our new model 𝑇 𝑡𝐷2 with embeddings,
status effect features and optimised hyper-parameters compared to 0.17
for our previous model called 𝑇 𝑡𝐷𝐴 (when both models are trained
and predict using the new data). We were able to improve this further
by experimenting with the length of the time-series in the input data
and found that generating the input vector using 15 time steps further
improved the F1 score to 0.62 for the 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 model. This compares
to F1 of 0.1 for a standard RNN on the same task.

That said, there are still examples where the model mis-classified
a sample, see Fig. 4. It may be that there are factors not currently
modelled by our data which explain the situations where the player
escapes a risky situation. For example, our model is currently player
agnostic, mainly due to the difficulty in gaining enough data about
individual players to sufficiently model this. Alternatively, it could be
that the model becomes more sure a player is going to die closer to their
time of death and thus is more likely to make mistake when there is a
larger amount of time between sample and death. This would not be
particularly surprising given the complex, chaotic nature of Dota 2, nor
is it necessarily unwanted given that the model outputs are intended to
be utilised as probabilities that a player dies in a certain situation. Thus
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Fig. 9. UMAP Decomposition of clustered embedding spaces using agglomerative clustering and associated dendrogram for both hero and item embedding spaces (𝑇 𝑡𝐷2 model).

probabilities greater than 0.5 which do not result in a death can still be
useful because they highlight to the broadcast team that a player may
have made a lucky or skilful escape. Further to this the model has the
ability to begin recognising dangerous situations developing ahead of
the five seconds training window, Fig. 5. This functionality may allow
the model to aid in post match analysis, e.g. by searching for infliction
points where the likelihood of a player dying suddenly increases, and
using these to discuss the developing situation.

Fully understanding and analysing the learnt embedding spaces for
hero IDs and item IDs is outside of the scope of this work. However, it
is possible to perform some high level analysis to begin understanding
these spaces and suggest future research questions. For example, both
clustering an embedding space as well as decomposing the space into
a visualisable number of dimensions, i.e. 2, may start to explain the
learnt space. Fig. 9 shows agglomerative clustering applied to both of
these embedding spaces as well as the corresponding dendrogram. This
dendrogram is used to determine an appropriate distance metric, and
thus the number of clusters. The embedding spaces have also been
decomposed using UMAP (McInnes, Healy, & Melville, 2018). While
UMAP cannot be used to make firm conclusions about high-dimensional
spaces, because distances between points are not always faithfully
preserved, it does aid in visualising the clusters. The dendrograms
suggest that Hero IDs are best partitioned into four clusters while item
IDs are best partitioned into five clusters. With regards to items there
seems to be one large cluster, cluster 0 in the UMAP plot. This is like
because there are many item IDs which are not used in the game in
a meaningful way, there are nearly 1500 item ID embeddings but only
about 200 usable items, and embeddings are initialised similarly. These
IDs have not been trained and therefore occupy a similar space. It is
highly likely that many of these embeddings are items IDs which are
either unused or not used often, however it is not current possible to
verify this given the available data on items.

There is some available information about heroes which detail
various character statistics, e.g. how much damage they do for basic
attacks, which may help describe the embedding spaces. In fact, if
our embeddings spaces correlate to these features this adds further
evidence that the embedding space is learning something meaningful.
To observe this we can plot Kernel Density Estimation (KDE) for these
features across the heroes in each cluster and observe the differences in
the distributions. Fig. 10 shows the distribution of a selection of these
statistics across the four hero clusters. Several things can be said about
these clusters. For example, Cluster 2 features heroes which tend to
be Intelligence focused with low base attack damage and low strength.
These heroes are possibly casters who focus on activated abilities rather
than basic attacks. Conversely, Cluster 3 has heroes who have higher
than average maximum base attack damage, higher base strength but
lower base intelligence. It may be that heroes in this cluster are base
attack focused damage dealers. This analysis is deliberately superficial
because there are limitations to these methods, e.g. UMAP plots are not
always representative of the underlying space. However it highlights
that these embedding spaces are learning to separate out heroes based
on their features. Further analysis is suggested in Section 8.

It seems that the Time to Die architecture is extremely sensitive to
hyper-parameters, for example, we see that there is an 0.2 improvement
in F1 Score between the 𝑇 𝑡𝐷𝐴 and 𝑇 𝑡𝐷𝐵 models, where the only change
is adjusting hyper-parameters. Furthermore, the number of time steps
used in the 𝑇 𝑡𝐷𝑇 𝑒𝑚𝑝 models has a huge impact of performance. This was
also observed during the hyper-parameter fitting process where small
changes in hyper-parameters lead to large changes in performance. It
is not immediately clear why this is, although it is likely impacted by
the huge number of inputs passed to the model. For each hero there are
138 standard features, one hero ID and 19 item IDs. However, as the
experimental results show, these features are all relatively important
to the predictive power of the model, and attempts at building smaller
feature sets resulted in much worse performance.
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Fig. 10. KDE Plots for distribution of selected hero statistics across the four clusters identified using agglomerative clusters.

7. Conclusion

Esports is a rapidly growing sector of the larger sports market.
Esports tournaments are characterised by a complex data space and
fast-paced action (Block et al., 2018; Demediuk et al., 2019), and corre-
spondingly complex tasks for commentators and broadcast creators. A
central challenge is being able to anticipate where to focus the attention
of a broadcast, in real-time. Towards meeting this challenge, moment-
to-moment predictions that can navigate the complex data space of
esports in real-time are required. Here, we present an extension to the
Time to Die architecture (Katona et al., 2019), which enables prediction
of player death events in the popular MOBA Dota 2, towards empow-
ering broadcasters to better observe and process esports matches. The
extensions include embeddings for categorical data features which re-
duces the size of the model input vector compared to one-hot encoding
used previously in Katona et al. (2019). This allows us to include the ID
of each player’s hero and the ID of in-game items owned by each player.
We also extended the framework to include new data features reflecting
each player’s hero’s status features such as if the hero is stunned which
we expected to correlate with each player’s likelihood of dying, as well
as new neural architecture using recurrent layers to capture temporal
data patterns which were not captured in the original model (Katona
et al., 2019). Finally, we investigate different time-series lengths to
optimise prediction accuracy.

We describe our data processing and model generation pipeline to
transform raw Dota 2 match data into a training dataset from which
we generate a recurrent neural model for conducting micro-predictions.
We evaluated a number of data and model configurations for predictive
accuracy.

In our evaluations, we found that a number of our enhancements are
important and improve performance, namely status effects, embeddings

for categorical features, a recurrent architecture and an optimised time-
series length. These extensions outperform the original work, and in
the case of embeddings and status effect do so without inference-time
penalty. Furthermore we show that using embeddings rather than one-
hot encoding allows for full modelling of item IDs, which are important
to the predictive power of the model. We improved the F1 score from
0.17 using the previous Time to Die model to 0.62 using our new data
and architectural enhancements. We also show that while recurrent
architectures do have a performance penalty they would be feasible
for deployment in a broadcast setting as they can run in real time on
consumer grade hardware. Thus the improved models presented in this
work are likely to be useful for Dota 2 broadcasters.

8. Future work

It would be very useful to further understand false predictions made
by the model, both false positives, i.e., the model predicted a death
that did not occur and false negative, i.e., the model predicted a player
would survive by they did not. For example, are these false predictions
explained by player skill or play style? It is currently infeasible to
profile individual players in the network due to the sheer size of the
player base and the relative small number of samples for each player.
However, if there are consistent features of false predictions, especially
false positive predictions then it may be possible to model these and
thus establish a set of key performance indicators which improve a
player’s chance of surviving. These can then be used either by the
broadcast team to analyse important plays within a game or used as
a training aid for esports teams.

Understanding how the embedding space is learned and if pre-
viously unknown information about Dota 2 can be uncovered by
analysing this is outside of the scope of this work, and likely constitutes
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a research contribution in its own right. Such work is likely to be very
valuable in understanding the complexities of Dota 2. Naturally, these
embeddings spaces are learnt within a model which is trained to predict
if a player is going to die and therefore the spaces are unlikely to
perfectly explain the landscapes of hero IDs and item IDs. However,
there is the possibility that valuable information can be uncovered,
e.g. perhaps offensive items and defensive items are grouped together
because they actually have similar impacts to the survivability of a
player. Furthermore, there maybe a relationship between the two learnt
spaces, e.g. certain items are more often used by a subset of heroes and
potentially these items and heroes would then be co-located in their
respective spaces.

Finally, this work is concerned with in-game prediction of player
death. However, there are many other key in-game events which are
useful to predict, e.g. if the teams are going to engage in a team fight
or target a certain objectives around the map. Predicting player death
within 5 seconds is a useful broadcast aid because team fights are
fast-paced (Tot et al., 2021). However, predicting if certain objectives
are going to be targeted within 5 seconds is – depending on the
specific context – less likely to be useful as it is easier for an expert
commentator to detect the lead-up to these types of events. Therefore
experimentation for longer form prediction (e.g. 10+ seconds) would
likely be necessary for predicting objective- or team fight-based labels.
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