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Abstract – We study a quantum Hot Big Bang in the connection representation, with a matter
constant of motion m whose conjugate defines time. Superpositions in m induce a unitary inner
product. The wave function reveals a resolution of the singularity problem without new physics or
supplementary boundary conditions. Backtracking in time, the probability peak eventually halts
at a maximum curvature, its height dropping thereafter while a symmetric contracting peak rises.
The Big Bang is replaced by a superposition of contracting and expanding regular Universes. We
contrast these findings with the situation in the metric representation, where boundary conditions
at the singularity are needed for unitary evolution.
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Introduction. – Spacetime singularities are among
the most troubling features of classical General Relativ-
ity (GR). In particular, the standard Big Bang model of
cosmology implies that our Universe began at a singu-
larity, a rather unsatisfactory situation. In this letter, we
consider the simplest approximation to the early Universe:
dominated by radiation and homogeneous, isotropic and
spatially flat. In such a model any observer would have
encountered a singularity at a finite time in the past [1].
A possible alternative to the singularity is a quantum

“bounce” from a contracting into our current expanding
phase. Most bounce models rely on physics beyond GR,
such as string theory or loop quantum gravity [2] (see
also [3] for a recent proposal). Here we will instead revisit
an older question: are the principles of quantum mechan-
ics and GR sufficient to resolve the Big Bang singularity?
This is a long-standing question in quantum cosmology
going back over 50 years [4]. There is no consensus on its
answer, with ambiguities both in the definition of quan-
tum cosmology models and in the criteria for singularity
resolution [5].
The classical history of the Universe has only had a fi-

nite time in the past, but standard unitarity demands that

(a)E-mail: s.c.gielen@sheffield.ac.uk (corresponding author)
(b)E-mail: j.magueijo@imperial.ac.uk

a quantum state can be translated arbitrarily far into the
past by a time-evolution operator. This already seems
to imply that the quantum evolution must deviate from
the classical Big Bang, making it non-singular. There are,
however, many subtleties. Foremost, the “timelessness” of
the Wheeler-DeWitt equation forces us to define “quan-
tum time” in a relational sense from the dynamical degrees
of freedom [6]. The relational time distance to the Big
Bang may or may not be finite. If it is, one would expect
singularity resolution, whereas if it is not, the quantum
theory could still be singular [7]. But unitarity itself may
require postulating boundary conditions (e.g., [8]): one
could argue that this simply reverse-engineers a solution.

In this letter we add a significant twist: we examine the
problem in the connection representation. The Big Bang
singularity occurs at zero scale factor a (metric), and at
infinite extrinsic curvature (connection). The difference
might seem innocuous, but the quantum theories and their
solutions are radically different. In the metric representa-
tion we must add reflecting boundary conditions at a = 0
to enforce unitarity for a ≥ 0, and create a bounce. In con-
trast, the simplest unitary theory in the connection repre-
sentation displays a probability peak that, backtracking in
time, eventually halts at a maximum curvature, its height
dropping thereafter while a symmetric contracting peak
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rises, and eventually connects to a semiclassical contract-
ing Universe. The Big Bang itself is replaced by a super-
position of contracting and expanding regular Universes,
without the need for any boundary condition.

Theoretical tools. – Cosmological models contain a
number of dynamically conserved quantities αi: for in-
stance, for a perfect fluid such a quantity arises from the
continuity equation. Such quantities also appear in ap-
proaches that elevate fundamental parameters of Nature
to dynamical quantities subject to a conservation law.
This is how the cosmological constant Λ becomes an in-
tegration constant in unimodular gravity [9,10], but one
can apply similar ideas to Newton’s constant, spatial cur-
vature, or the Planck mass [11–15]. Importantly, each
conserved quantity can play the role of “energy”, and its
conjugate variable that of time.
Concretely, if qA are other degrees of freedom of geome-

try and matter, the Hamiltonian constraint can be written
either in terms of αi (resulting in the standard Wheeler-
DeWitt equation for timeless ψs(qA, αi)) or in terms of
their conjugate “times” Ti (leading to a Schrödinger-like
equation for ψ(qA, Ti)) [8,13,15]. The simplest case is that
of a single α and single q, such that in a preferred operator
ordering the general solution is

ψ(q, T ) =

∫

dα√
2πh

A(α) exp

[

i

h
α(X(q)− T )

]

, (1)

with suitably chosen function X(q) and the “effective
Planck constant” h, to be defined shortly. In these cases
the minisuperspace behaves like a dispersive medium [15],
with packets changing their shape (in q) as they propa-
gate. α, X and T are the medium’s linearizing variables:
they remove dispersion when waves are written in terms
of them [15,16].
A key strength of this approach which we will exploit

here is that the unitarity of the quantum theory is guar-
anteed: one can define an inner product in terms of the
amplitudes [15,17],

〈ψ1|ψ2〉 =
∫

dα A⋆
1(α)A2(α), (2)

which is automatically conserved. For eq. (1), after chang-
ing variables from q to X, eq. (2) can be written as

〈ψ1|ψ2〉 =
∫

dXψ⋆
1(X,T )ψ2(X,T ), (3)

if α,X vary over all of R, which is a condition for
the unitarity of (3). Note that whereas replacing the
conserved α by a nontrivial function β = β(α) leads
to classically equivalent theories (with new conjugate
Tβ = Tα/β

′(α)), the corresponding quantum theories are
not equivalent. Their inner products are different, since
A(α)dα = A(β)dβ implies

∫

dα A⋆
1(α)A2(α) =

∫

dβ A⋆
1(β)A2(β)β

′(α). (4)

Their time evolution is also different, since generally
α · Tα �= β · Tβ ; cf. eq. (1). Finally, states coherent in α
(with Gaussian A(α)) are generally not coherent in β.

We now specify a particular cosmological model. At
high energies, matter has equation of state w = 1/3. Our
action for GR with matter is

S =
3Vc

8πG

∫

dt
(

ḃa2 + ṁT −Na
(

−(b2 + k) +
m

a2

))

,

(5)
where b represents the connection (on-shell the inverse
Hubble length, b = ȧ/N), k is spatial curvature, and m
is a quantity associated to matter whose conservation is
enforced by the second term. Vc is the coordinate volume
of space. Variation with respect to the lapse N enforces
the standard Hamiltonian constraint

− (b2 + k)a2 +m = 0. (6)

Below we comment on how the m terms in eq. (5) can
be derived from different starting points, but what follows
does not depend on these discussions.

Singularity resolution in the connection repre-

sentation. – Action (5) suggests canonical pairs

{b, a2} = {m,T} =
8πG

3Vc
, (7)

so that upon quantization
[

b, a2
]

= [m,T ] = ih := 8πiG�

3Vc
.

In the ordering required in the general formalism intro-
duced above, eq. (6) becomes

ih
∂

∂T
ψ(b, T ) = −ih(b2 + k)

∂

∂b
ψ(b, T ), (8)

i.e., the promised Schrödinger equation. As an aside, we
stress that while b and a2 are analogous to the connec-
tion variable c and densitised triad p appearing in loop
quantum cosmology [18], we apply a standard (Wheeler-
DeWitt) canonical quantization without including any pu-
tative quantum geometry effects. Our notion of unitarity
based on a matter clock also differs from what is done in
loop quantum cosmology.
This ordering implies that the solutions are indeed of

the form (1), with

αb = m, Xb =

∫ b db̃

(b̃2 + k)
, (9)

or Xb = −1/b for k = 0, which we now assume. These
solutions are an adaptation for radiation of a generalized
Chern-Simons state for Λ [15]. The inner product (3),
which takes the explicit form

〈ψ1|ψ2〉 =
∫

db

b2
ψ⋆
1(b, T )ψ2(b, T ), (10)

is conserved in T , and the gravitational part −ih b2 ∂
∂b of

the Hamiltonian constraint is self-adjoint. Notice that this
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quantization leads to operators representing the classical
quantities m and a2 with positive and negative eigenval-
ues. This is as it must be, given that the quantity α always
has to vary over the real line for the theory to be unitary.
This feature implies an extension of the phase space of the
classical theory (where one assumes a2 ≥ 0) in the corre-
sponding quantum theory, which is crucial for preserving
unitarity: states of negative a2 must in general be allowed
to contribute. Indeed, both here and in the different the-
ory studied below, restricting the dynamical variables to
enforce a closer correspondence to the classical starting
point makes unitarity more difficult to achieve.
One can interpret states with negative a2 in terms of

Euclidean geometries, given the signature change in the
corresponding spacetime metric. This interpretation is
consistent with the fact that in the Euclidean signature
the constraint (6) (with k = 0) becomes

b2Ea
2
E +m = 0, (11)

for a Euclidean connection bE and scale factor aE such
that bE is canonically conjugate to a2E . We will only be
interested in states sharply peaked around some m0 >
0, so that these negative eigenvalues do not contribute
and their physical interpretation is not important for what
follows.
More concretely, different choices of states are possi-

ble, with some disabusing the constant m of its name,
but our Universe happens to have reasonably sharp “con-
stants”; this is related to the existence of a semiclassical
limit at late times. We choose A(m) =

√

N(m0, σm),
where N(m0, σm) is a (normalized) normal distribution
with mean m0 and standard deviation σm. Integrating (1)
we obtain a squeezed-coherent state in Xb (not in b, we
stress),

ψ(b, T ) = e
i

h
m0(Xb−T )

exp
[

− (Xb−T )2

4σ2

T

]

(2πσ2
T )

1/4
, (12)

with σT = h/2σm saturating the Heisenberg relation. Us-
ing eq. (10) we find the probability for a given b at time
T :

P(b, T ) =
1

b2

exp

[

− ( 1

b
+T)

2

2σ2

T

]

√

2πσ2
T

. (13)

Unitarity is manifest as the statement
∫

db P(b, T ) = 1 for
all T . While σT is a free parameter (which one may think
of as the analogue of the Planck time, giving a fundamen-
tal uncertainty to the concept of time), most importantly
it is constant in T . Classically Ṫ = −N

a so, within the
conditions of Ehrenfest’s theorem, 〈T 〉 is minus conformal
time η.
Equation (13) illustrates the dispersive nature of the

medium, essential for our solution of the singularity prob-
lem. Wave packets sharpen up for increasing |T | ≫ σT ,
but lose their WKB shape and become fully quantum as

Fig. 1: As |T | ≫ σT the distribution P(b) quickly becomes
near-Gaussian in b, with σ(b)/b ≪ 1. We can identify T = −η
since σ(T )/|T | ≪ 1, so that in the expanding branch (T < 0,
η > 0) the ever-sharper peak follows the classical trajectory
b = 1/η.

|T | � σT . We display the first (semiclassical) behavior in
fig. 1 for an expanding Universe (T < 0, η > 0). We can
use the relation T = −η because σ(T )/|T | = σT /|T | ≪ 1.
The peak moves along the classical trajectory b = 1/η with
ever-tinier fractional standard deviation σ(b)/|b| (since
σT = σ(Xb) implies σb ≈ σ(Xb)/|X ′

b| = b2σT ). The state
therefore is near-coherent (indeed delta-like) in b:

P(b, η) ≈
exp

[

− (b− 1

η )
2

2σ2

b

]

√

2πσ2
b

, σb ≈ σT /η
2. (14)

In contrast, for |T | � σT the dispersive nature of the
medium is all-important, as shown in fig. 2. The packet
widens and becomes grossly distorted, disallowing a WKB
approximation. In addition the probability peak gets
stuck at b ≈ bP = 1/(

√
2σT ) =

√
2σm/h, instead of going

to infinity, as expected from the singular classical trajec-
tory1. The distribution is very skewed, with a tail that is
more prominent for smaller |T |, whilst the height of the
peak decreases. Meanwhile, a contracting peak emerges
at b ≈ −bP < 0, its height rising in tandem with the first
peak’s dropping. The wave function is always regular, and
indeed at T = 0 it is symmetric with

P(b, T = 0) =
1

b2

exp

[

− ( 1

b )
2

2σ2

T

]

√

2πσ2
T

. (15)

The “Big Bang” is therefore replaced by a perfectly
balanced quantum superposition of a contracting and ex-
panding Universe. For T > 0 the peak at b = −bP su-
persedes that at b = bP and continues growing until for
T ∼ σT it starts to move towards smaller |b|, linking up
with a semiclassical contracting Universe when T ≫ σT .
These results can be derived directly from eq. (13) and

1Notice that this effective curvature limit bP depends on the cho-
sen state, rather than being a fundamental parameter in the theory.
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Fig. 2: For |T | � σT the distribution P(b) is very distorted,
and its peak does not go to infinity but saturates at b = bP .
As T → 0− this peak lowers, and a secondary peak in the
contracting zone becomes more prominent. At T = 0 the two
peaks have the same height, but nothing is singular. For T > 0
a symmetric film is played, eventually linking up to a semiclas-
sical contracting phase (see animation in the Supplementary
Movie connectionbounce.avi (SM)). We thus have a quan-
tum bounce.

they are due to the form of ψ (and X(b)) and the measure
dµ(b).

We therefore have a quantum model for a non-singular
bouncing Universe. It avoids the singularity because time
around the classical singularity is smeared by quantum
uncertainty. It results directly from the fact that unitar-
ity requires X(b) not to be constrained (it must cover the
whole real line, so that (3) is conserved): b should not be
constrained to an expanding Universe. Unitarity forces a
bounce directly, precisely by ruling out any constraints on
b and the need for any associated boundary conditions.
This is the radical implication of our letter, to be con-
trasted with the picture to emerge from the more familiar
metric formulation, as we now show.

Singularity resolution in metric variables. – The
metric representation is based on the canonical pair
{a, pa} = 8πG

3Vc
with pa := −2ba. The constraint (6) be-

comes m = 1
4p

2
a leading to the Schrödinger equation

ih
∂

∂T
ψ(a, T ) = −1

4
h2

∂2

∂a2
ψ(a, T ). (16)

This fits into the formalism based on eq. (1), with lineariz-
ing variables Xa = a, αa satisfying α2

a = 4m (wherem ≥ 0
but αa is unrestricted) and Ta = T/α′

a(m). Equation (3)
is then simply

〈ψ1|ψ2〉 =
∫

da ψ⋆
1(a, T )ψ2(a, T ). (17)

This inner product differs from the one in the connection
representation since αa = ±2

√
m and αb = m are differ-

ent: these are two different quantum theories. Another

difference between the theories is that m is now restricted
to be positive, even though the new α can still take any
real value (again, as it must).
A priori the scale factor a could take any real value,

but if we restrict a ≥ 0, unitarity is no longer guaran-
teed; the operator on the right-hand side of (16) is no

longer self-adjoint [19]. Instead, demanding 〈ψ1| ∂2

∂a2ψ2〉 =
〈 ∂2

∂a2ψ1|ψ2〉 on [0,∞) requires a Robin boundary condition

∂ψ

∂a
(0, T ) = γψ(0, T ), (18)

where γ is a free parameter (which can be ∞). The op-
erator ∂2/∂a2 has a one-parameter family of self-adjoint
extensions.
Unitarity then leads to a reflecting boundary condition:

rather than “disappearing” through a = 0 the quantum
state is reflected back to positive a. Inserting (1) into (18)
leads to

A(±|αa|) = B(|αa|)
(

1∓ i
γh

|αa|

)

, (19)

for some function B on the positive half-line. Equation (1)
becomes

ψ(a, T ) =

∫

∞

0

dm√
2πh

C(m) exp

(

− i

h
mT

)

×
(

cos

(

2
√
ma

h

)

+
γh

2
√
m

sin

(

2
√
ma

h

))

,

(20)

where C(m) = 2B(m)/
√
m, and eqs. (2), (3) now become

the time-independent equation

∫

∞

0

da |ψ|2 =

∫

∞

0

dm |C(m)|2
(√

m

4
+

γ2h2

16
√
m

)

. (21)

The theory is now unitary at the cost of introducing
boundary conditions dependent on the parameter γ.
Choosing again C(m) =

√

N(m0, σm), in fig. 3 we show
how the boundary condition leads to quantum departures
from the classical solution. At small |T | there is inter-
ference between a classical contracting and a classical ex-
panding solution, which leads to the presence of multiple
peaks at different finite values of a. The expectation value
〈a(T )〉 deviates from the classical solution in this region,
and is bounded away from zero indicating singularity reso-
lution. Fluctuations over the expectation value, however,
are large. Again this behavior follows from the quantum
nature of time for small |T |, together with unitary dynam-
ics. But by enforcing unitarity through boundary con-
ditions (explicitly eliminating a = 0) one has effectively
reverse-engineered this solution, in contrast with the more
immediate results in the connection representation.
With some analogy to what was done in the connection

representation, we might propose an extension of the clas-
sical phase space in the quantum theory, in which we let a
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Fig. 3: Probability distribution p(a, T ) = |ψ(a, T )|2 for differ-
ent values of T , for m0 = 10 and σm = 3. Dots show the
classical solution a(T ) =

√
m0T corresponding to these values

of T . Again, everything is symmetric under T → −T . At
small |T | expectation values depart from classical values due
to the non-classical peaks. As T moves away from the classical
singularity we converge to the classical solution.

take either positive or negative values. Since only a2 en-
ters the metric, there is no physical observable that could
detect the sign of a, so this would amount to gluing the
original phase space to its mirror image. In this case, no

boundary conditions would be needed as the operator ∂2

∂a2

is already self-adjoint. Our cosmological model would now
correspond to a quantum particle on the real line, which
happily passes through a = 0; there would be no notion of
singularity resolution in this theory, in contrast to what
we have observed in the connection representation.

Discussion. – Our results show that unitary time evo-
lution in quantum cosmology leads to a resolution of the
singularity, without the need for boundary conditions in
the connection representation. This happens in part be-
cause the time variable T is conjugate to a classical con-
stant of motion that is not infinitely sharp, but also not
entirely undefined. Hence, T has a fixed uncertainty σT .
As we plunge into the classical singularity at T = 0, even-
tually |T | ∼ σT so that quantum fluctuations become sig-
nificant, leading to deviations from the classical trajectory.
In the connection representation the spread in T is trans-
lated into a smearing of b from bP (where the probability
peak gets stuck) to infinity. The probability of infinite b is
always zero, even as T → 0. The wave function then devel-
ops non-negligible support at b < 0, so that |b| and its sign
are undefined: at the “Big Bang” the Universe is in a su-
perposition of contracting and expanding phases. Unlike
in the metric representation, there is no reflection or inter-
ference (“ringing”), simply a regular quantum transition
through the classical Big Bang, transferring the probabil-
ity peak from contraction to expansion at finite curvature
(see the SM for animation). There is no need to excise a
region and impose boundary conditions.

An important point in our analysis concerns the exten-
sion of the classical gravitational phase space (described by

a real b and positive definite a2) in the quantum theory,
implying that in the connection representation the vari-
able a2 can take negative values. We interpreted these new
configurations as Euclidean. This extension is essential for
obtaining a theory that is both unitary and resolves the
singularity; understanding its interpretation beyond min-
isuperspace could give important insights into the nature
of quantum gravity. In metric variables, where we have
a real-valued scale factor a (perhaps extended to nega-
tive values), we do not have access to this extended phase
space. Hence there can be no unitary mapping between
the two theories we discussed, or from the connection rep-
resentation to another theory written in terms of a. At
best, the theory obtained starting from the b representa-
tion can be transposed to a representation diagonalizing
an unrestricted a2, using the Fourier transform which for
a pure Lambda relates the Chern-Simons-Kodama state
and the Hartle-Hawking wave function [20]. In that case,
the transformation is unitary if we transform the inner
product in the b representation appropriately to the a2

representation. The same transformation is more intricate
for pure radiation, where it is likely to lead to a non-local
inner product.
Given that we are dealing with the Planck epoch, one

may wonder how fundamental our theory is. Several theo-
ries lead to eq. (5), some blatantly “effective”, others with
“fundamental” pretensions, but all well defined beyond
minisuperspace. We may frame our model as a perfect
fluid, with action

Sfl =

∫

d4x

[

−√−g ρ

( |J |√−g

)

+ Jμ
(

∂μϕ+ βA∂μα
A
)

]

,

where Jμ is a vector density representing the densitized
particle number flux, |J | =

√

−gμνJμJν and ϕ, βA and
αA are suitable Lagrange multipliers [21]. Choosing the
appropriate function ρ for radiation, ρ(n) ∝ n4/3, and re-
ducing the action to minisuperspace would lead to eq. (5),
as in [22]. This is conservative, but conversely one may
question the validity of using a perfect fluid description in
the Planckian regime.
Alternatively, we may derive (5) from a theory of

constants of Nature [11–13,15] carbon-copied from the co-
variant formulation of unimodular gravity [10]. In such
theories, after choosing a constant α, one replaces the
standard action S0 by

S = S0 +

∫

d4x (∂μα)T
μ
α , (22)

where α is a scalar and Tμ
α again a vector density, so the

added term is diffeomorphism invariant. Then, α becomes
a constant-on-shell-only (∂μα = 0 is an equation of mo-
tion), with conjugate “time” T 0

α (for Λ, this time is pro-
portional to the spacetime volume to the observer’s past).
Applications of this approach may be found in [11] for the
Planck mass, and [12,14] for the gravitational coupling.
The latter would lead to eq. (5). All these approaches
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would lead to the results we have presented, which are
blind to their roots and so model independent.
Our model is simple, but captures the most relevant

degrees of freedom of the radiation era in the very early
Universe. One may ask what happens when we include
additional degrees of freedom, in particular anisotropies
that would be expected to classically dominate at the very
earliest times. This is a worry in all bounce scenarios [2]
subject to this classical instability, but we stress that this
is avoided in any quantum approach where the curvature
remains “stuck” at a finite maximum, as in our connection
quantization. In this case, all one would need to ensure
is that anisotropies do not yet dominate before the deep
quantum regime is reached, which is the case for a wide
range of initial conditions. In the metric representation,
ref. [8] included a massless scalar field and found singu-
larity resolution similar to our results. Since a massless
scalar field has energy density ∼ a−6, this result would
carry over to anisotropies. Our results indicate that it is
really unitarity with respect to a suitable matter clock,
and the uncertainty in the clock, that are responsible for
quantum singularity resolution, rather than any model-
specific assumptions. Studying an anisotropic model in
more detail could be useful to understand whether other
quantities, such as directional Hubble rates, also neces-
sarily remain bounded if the overall (mean) Hubble rate
does.
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Kuchař K. V., Phys. Rev. D, 43 (1991) 3332.

[10] Henneaux M. and Teitelboim C., Phys. Lett. B, 222
(1989) 195.

[11] Kaloper N., Padilla A., Stefanyszyn D. and Za-

hariade G., Phys. Rev. Lett., 116 (2016) 051302
(arXiv:1505.01492).
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