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Abstract

Deciphering the mechanism, kinetics and en-
ergetics of biological electron-transfer reac-
tions requires a robust, rapid and reproducible
protein-film voltammetry information recovery
process. Here we describe a semi-automated
computational approach for inferring the chem-
ical reaction parameters for a simple protein
system, a bacterial cytochrome domain from
Cellvibrio japonicus that displays reversible
one-electron Fe2+/3+ redox chemistry. De-
spite the relative simplicity of the experimen-
tal system, developing a robust data analy-
sis approach to find the global optimum in
13-dimensional parameter space is a challeng-
ing task because the Faradaic-to-background
current ratio in such experiments is often
low. We describe how a multiple-technique ap-
proach, whereby data from three voltammetry
techniques (direct-current, pure sinusoidal and
Fourier transform alternating current voltam-
metry) is combined, ultimately enables the
automatic extraction of both (i) quantitative

“best-fit” redox reaction parameter point val-
ues that are robust across multiple experiments
performed on different protein-electrode films,
and (ii) a statistical description of parame-
ter correlation relationships, along with un-
certainty in the individual parameter values,
obtained using Bayesian inference. It is the
latter achievement which is particularly im-
portant as it represents a method for visu-
alising the possible limitations in the math-
ematical model of the experimental system.
Our multi-voltammetry analysis approach en-
ables such powerful insight because of the com-
plementarity between the information content,
simulation-speed and parameter sensitivity of
the current-time data generated by the differ-
ent techniques, illustrating the value of adding
purely sinusoidal voltammetry to the bioelec-
trochemistry measurement toolkit.

Introduction

Electron-transfer reactions underpin many of
the fundamental chemical processes that are
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required for the existence of life, such as the
splitting of water, the fixation of nitrogen, and
carbon capture. Such catalytic redox processes
are of significant biotechnological interest be-
cause they are achieved at ambient tempera-
tures and pressures using commonly available
metals at the catalytic active sites.1,2 To under-
stand these processes, protein-film voltamme-
try can be used,3,4 where redox active proteins
or enzymes are immobilised on the surface of an
electrode to overcome problems caused by slow
rates of macromolecular diffusion.1 In voltam-
metry, a time-varying potential is used to drive
electron-transfer reactions, so that the recorded
experimental current-time data directly reports
on the reactions that take place. In this paper,
we seek to define a voltammetric modelling
framework that incorporates a complementary
set of experimental measurement techniques
and computational analysis tools, with the aim
of extracting as much accurate information as
possible about biological electron-transfer re-
actions. We demonstrate how the inclusion of
purely sinusoidal voltammetry into the suite
of protein film electrochemistry techniques en-
ables Bayesian statistical analysis to be used as
a quantitative means of visualising uncertainty
in the voltammetric modelling.

In voltammetric modelling, the aim is to re-
construct the underpinning reaction process
that generated the experimentally measured
data.5 For protein film voltammetry, the re-
sulting mathematical model takes the form of a
system of non-linear ordinary differential equa-
tions. Embedded within this system are the
key parameters of interest that govern the bi-
ological redox reaction — that is, the electron
transfer mechanism, reaction rates, and electro-
chemical potentials that directly report on the
thermodynamics of the reaction.6,7 For the one-
electron reaction studied here, these parameters
are detailed below, with their mathematical re-
lationships detailed in the SI. Using a single
set of input parameter values, it is possible to
simulate (typically computationally) a current-
time-potential output — this is known as the
forwards problem. Of much greater interest
is the use of the underpinning mathematical

model to recover estimates of these key param-
eters from experimental data — known as the
inverse or parameter inference problem.5,8 This
involves finding an optimal set of parameters
that minimises a distance (or “objective”) func-
tion between the experimental and simulated
data.

In protein film voltammetry, solving the inverse
problem is challenging since the experimentally-
measured current-potential-time data result
not only from the Faradaic signal of interest,
but also a typically very large “background”
current, arising from charging at the electrode-
solution interface, compounded by the effects
of uncompensated resistance.9–13 To fully com-
pensate for such non-Faradaic processes, terms
modelling capacitance and resistance are in-
corporated into the mathematical model, and
these parameters must also be estimated as part
of the inverse/inference process. This typically
results in a very high-dimensional problem (in
this study the inference problem is in 13 dimen-
sions). The Faradaic signal is further obscured
within the measured current by experimen-
tal measurement error, arising from processes
such as shot noise, or thermal electron fluctu-
ations,14 and can be additionally complicated
by spurious Faradaic processes, such as from
quinones.15 In the field of biological electro-
chemistry there is also a great deal of litera-
ture, including detailed review papers,3,4 ex-
ploring the difficulty in establishing the correct
mathematical voltammetric model; there are
challenges in (a) incorporating kinetic and/or
thermodynamic parameter dispersion,16–18 (b)
distinguishing between different catalytic mech-
anisms and inactivation reactions for redox en-
zymes,19–21 and (c) substrate transport.22,23 As
has been demonstrated previously,17,18 several
of the parameters in a mathematical model of
protein/enzyme film electrochemistry have sim-
ilar effects over the potential window of interest
and finding an optimal solution to the inverse
problem is therefore made very challenging by
the presence of multiple local minima values
for the objective function, located in disparate
parts of the overall parameter space. This
study describes a new approach to overcome
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these problems; by analysing a complementary
set of voltammetric measurements we aim to
overcome low Faradaic current-to-background
limitations, rapidly extract a set of “best-fit”
redox-reaction parameters, and also use statis-
tical tools to probe model uncertainty.

In previous work on surface-immobilised fer-
rocene, we demonstrated the advantages of
combining Purely Sinusoidal Voltammetry
(PSV) and ramped Fourier Transform Alternat-
ing Current Voltammetry (r-FTACV) when us-
ing voltammetric modelling to solve the inverse
problem for film voltammetry data, demon-
strating the substantial increase in speed of
analysis that is possible when assessing PSV
data relative to r-FTACV.18 This decrease
in simulation time is driven by the re-
duced number of sinusoids required for
a complete experiment — 30 for PSV,
vs. 412 for r-FTACV in the experiments
analysed in this paper. The time re-
duction is important because the slow rate
of r-FTACV analysis had previously made it
practically unfeasible to model high frequency
experiments that enable quantitative deter-
mination of rapid rates of electron transfer.24

PSV and r-FTACV are particularly useful when
analysing protein film voltammetry data as
they show high sensitivity to Faradaic param-
eters of interest. The sensitivity of PSV and
r-FTACV predominantly arises from the non-
linearity of the current response to a sinusoidal
potential with large amplitude — when the
current is Fourier transformed, harmonics are
observed at multiples of the frequency of the in-
put potential.1,18,25 As the background current
is less highly non-linear, appropriate harmonic
selection can yield a signal that reports ex-
clusively on the Faradaic process of interest.
The extension of our work to a protein system
additionally required the incorporation of di-
rect current voltammetry (DCV) measurements
into our experiment-analysis protocol. We use
DCV to estimate electron transfer rates and
protein-electrode coverage values in a manner
analogous to the work pioneered by Armstrong
and co-workers,11,12 and building on historic
voltammetric theory by Laviron.26

There are alternative electrochemical measure-
ment methods upon which we could have based
our technique development for the rapid in-
ference of ”best-fit” model parameter point
values: square wave voltammetry (SWV) also
amplifies the Faradaic-to-background current
sensitivity of a voltammetric measurement al-
beit via a different mechanism to PSV and
r-FTACV,27 while electrochemical impedance
spectroscopy (EIS) is widely used to probe
the capacitance-resistance model of an elec-
trochemical system.28 Indeed, there are nu-
merous bioelectrochemistry studies which have
made powerful use of DCV,4,9,10 SWV29,30 and
EIS.31,32 We and others have previously shown
how r-FTACV alone can be applied to analyse
protein electron transfer.1,24,33 In this study,
the reason we use PSV is because extending the
PSV fitting procedure to include Bayesian anal-
ysis is relatively simple, meaning that we can
generate inferred 1D parameter histograms to
obtain confidence limits for parameter values,
and also 2D histograms to show parameter cor-
relation relationships (this is explored in more
detail in the SI in figures S1 and S2). This is
the first time such an exploration of parameter
space has been achieved in a bioelectrochemical
context, although such statistical analysis has
been applied in EIS,34 small-molecule voltam-
metry35 and other domains of chemistry.36

The experimental system characterised in this
study is a simple protein from Cellvibrio japon-

icus, referred to as CjX183.37 This is a type-c
cytochrome domain of Cbp2D, a probable acti-
vating partner for a cellulose degrading enzyme
known as a lytic polysaccharide monooxygenase
(LPMO).37 LPMOs facilitate industrial biofuel
production from biomass.38 It has recently been
shown that CjX183 can transfer electrons to
LPMOs via the reversible one-electron redox
reactivity of the heme centre.37 DCV measure-
ments of the CjX183 Fe3+/2+ redox chemistry
were obtained previously via adsorption of the
protein onto a pyrolytic graphite edge elec-
trode,37 and here we use the same immobil-
isation approach to probe this redox process
using more complex potential inputs, to enable
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a correspondingly more powerful interrogation
of the Fe-centered redox chemistry.

Experimental methods

The CjX183 protein was purified as per the
established protocol in work by Hemsworth37

except with buffer A as pH 8.0, 20 mM Tris, 200
mM NaCl, and 30 mM imidazole, and buffer B
which is the same except with 300 mM imida-
zole. Additional details can be found in the SI.

A custom-built electrochemical cell was set-up
exactly as previously described for studies of
wild type CjX183,37 inside an anaerobic cham-
ber (< 40 ppm oxygen). A 10 µL aliquot of
protein was pipetted onto the working pyrolytic
graphite electrode tip and left to adsorb until
a film has formed. The cell was maintained at
5 °C and all measurements were performed in
pH 7, 50 mM sodium phosphate, 150 mM NaCl
buffer.

Three different voltammetric methods were
carried out, DCV, r-FTACV and PSV. The
reference electrode (Ref) was a saturated
calomel electrode filled with aqeous 3M
KCl solution. Calibration experiments
with ferricyanide gave a value of E(Ref+
= E(SHE) + 0.239 V. Within this paper,
all potentials are reported in V versus
Ref. The DCV experiments were carried out
initially after protein absorption and then af-
ter r-FTACV and PSV experiments. These
experiments were conducted using an Ivium
potentiostat and IviumSoft control software.
The potential was cycled between -0.39 V to
0.30 V (vs the reference electrode, which is
+0.239 V vs. SHE) for 4 scans with a 5 sec-
ond equilibration at the start potential, using a
scan rate of 30 mV s−1 and a potential step of 5
mV. The same method was carried out for the
trumpet plot analysis with a scan rate varying
from 10 to 30000 mV s−1.

The r-FTACV experiments were conducted us-

ing a custom potentiostat and the instrument
was controlled using custom software.25 Each
r-FTACV experiment commenced with a 5 sec-
ond pre-treatment at -345 mV (vs the reference
electrode) and an r-FTACV potential input be-
tween -345 mV and 255 mV was applied with
a scan rate of 22.35 mV s−1, as well as a sinu-
soidal oscillation with a known frequency close
to 9 Hz and amplitude of 150 mV.25

The PSV experiments were conducted using
the same potentiostat and software as for r-
FTACV, using a 5 second pre-treatment at -45
mV (vs the reference electrode). The voltage
was cycled between -344 mV to 254 mV with a
frequency of approximately 9 Hz and a phase
of 4.71 rads for 26.8 seconds (equivalent to 268
oscillations). As in previous work, the PSV
current was truncated to the first 30 oscilla-
tions, to reduce simulation times.18

Forwards problem simulation code for the
model derived in the SI was written using
a combination of C++ and Python, and all
inference was performed using the PINTS
repository.39Code for reproduction of re-
sults from the paper, along with exper-
imental data, can be found on Github
[https://github.com/HOLL95/Cytochrome paper

Results and Discussion

Approach for parameter recovery

Sequential application of DCV, r-FTACV
and PSV to an electrode functionalised with
CjX183 was repeated for three different func-
tionalised electrodes, generating three exper-
imental datasets, referred to hereafter as ex-
periments 1-3. For each experimental run,
the electrode was also subjected to the three
voltammetry techniques prior to functionalisa-
tion with CjX183 (i.e. a “blank” electrode).
The potential inputs that define the three tech-
niques are shown in figures 1 A-C respectively.
The resulting total current obtained during
experiment 3, in the presence and absence of
CjX183 (in blue and red respectively) is shown
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Figure 1: r-FTACV (top), PSV (centre) and DCV (bottom) experimental data. A-C: Potential
inputs for the three experiments. D-F: Total current response of CjX183 (blue) and a bare glassy-
carbon electrode (red) to the three experimental inputs. G-H: magnitude of the Fourier spectrum
corresponding to harmonics 1-7 for CjX183 (blue) and a bare electrode (red) for r-FTACV and
PSV. I: Trumpet plot of DCV peak position data from CjX183 experiments conducted at different
scan rates. J-K: r-FTACV and PSV harmonics 1-6 from CjX183 (blue) and a bare electrode (red)

for the three techniques in figure 1D-F. The
harmonics of the r-FTACV and PSV current
responses can be observed in the Fourier do-
main in figures 1G and H, and figures 1J and
K show those same harmonics in the time do-
main. As reported previously,40 in ex-
periments without protein there is still
a non-linear component to the current,
resulting in significant background cur-
rent contributions to harmonics 1-3. In
the mathematical model, we incorporate
the non-linear pseudo-capacitive contri-
butions as a third-order polynomial. In
experiment 3, multiple DCV experiments were
conducted at different scan rates, and the ox-
idative/reductive peak position was extracted.
These are presented in figure 1I, in the form of
a trumpet plot.

The starting point for the data analysis was
the derivation of the forwards problem simula-
tion model of the single-electron Fe2+/3+ redox
process undertaken by CjX183, and this is
described in the SI. The model assumes Butler-
Volmer kinetics and incorporates thermody-
namic dispersion, assuming a normal distribu-
tion of E0 values, defined by a mean µ and a
standard deviation σ.17,41 In previous work, it
was determined that explicit modelling of ther-
modynamic dispersion had to be included when
fitting film r-FTACV voltammetry data.17,18,41

This has been attributed to the range of pro-
tein orientations that can be achieved on the
rough graphite electrode surface.17,18,41 Other
relevant Faradaic parameters include k0, the
rate at which the redox reaction occurs at E0,
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α the symmetry factor, which is a measure of
the relative ease with which the transition state
is formed and Γ, the surface coverage of elec-
troactive species on the electrode. Background
current parameters include Cdl, the magnitude
of the background current arising from linear
double-layer capacitance effects, and CdlEX ,
which model non-linear capacitance effects (X
is the order number, as discussed in the SI). Ru

corresponds to the uncompensated resistance,
ω the frequency of the input sinusoid (for PSV
and r-FTACV), η the phase of the Faradaic
current and correspondingly Cdlη the phase of
the capacitive current.

Accurate parameters inferred from a voltam-
metry dataset should correctly predict the cur-
rent response of the interrogated film to any
potential input. This was demonstrated in
previous work on surface-confined ferrocene,
when fitting PSV total current a single best-fit
parameter vector could be obtained that also
predicted r-FTACV harmonic data collected
for the same electrode film. As detailed in the
SI and figure S3, obtaining a similarly good
fit for total PSV current of CjX183 was not
possible, this is ascribed to the much lower
Faradaic-to-background current ratios arising
from voltammetry of a biological, rather than
a small molecule, system. This decrease in
Faradaic current arises due to the much larger
molecular footprint of a protein compared to
a small molecule, resulting in a smaller elec-
trode film coverage density, and more dominant
background currents. Subsequent attempts to
solve the inverse problem for CjX183 initially
involved unconstrained fitting of a filtered por-
tion of the PSV total current, obtained by
selecting harmonics 4 to 10 in the Fourier spec-
trum. This did not yield parameters that could
also predict an r-FTACV experiment, details of
which can again be found in the SI and figure
S4. In response to these challenges, an iterative
fitting procedure was developed.

The iterative parameter inference loop

The core loop of this iterative parame-
ter recovery process was to fit to PSV

harmonic data in the frequency domain
(as opposed to time-domain data), use
the best-fit parameters to simulate an r-
FTACV current, and assess the resulting
fit to the r-FTACV harmonics. If the
result of this process is a single best-fit
parameter vector that predicts both sets
of data, (i.e. a “good fit to both” in fig-
ure 2), then these are judged to be the
parameters that represent the underly-
ing chemical reality. In other cases (such
as a good fit to one form of data but
not the other, or when there are mul-
tiple competing “best-fit” vectors), the
obtained best-fit vector represents a lo-
cal optimum, and the parameter search
needs to be constrained to exclude that
region of parameter space. The analy-
sis choices that led to the final best fit,
presented below in the section “Result-
ing parameter inference”, have been for-
malised into the “recipe” in the next sec-
tion, for use by the interested experimen-
talist.

A recipe for parameter inference

The following process is summarised in
figure 2.

1. Collect experimental data. For each
electrode functionalised with pro-
tein, it is recommended to collect
PSV, r-FTACV and DCV data (the
latter at different scan rates), in that
order. This is because there will
naturally be some film-loss as a re-
sult of consecutive experiments, and
consequently the experiments have
been ranked in order of how impor-
tant having good signals is for the
purposes of analysis.

2. Define boundaries for fitting PSV
data. Initial boundaries should en-
compass a reasonably large area of
parameter space, but as a rule of
thumb should not cover more than
two orders of magnitude (and if
this scale of coverage is necessary,
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consider log-transformations). For
many parameters, it is possible to
obtain an order-of-magnitude esti-
mate from analysing particular cur-
rent features that are sensitive to
the parameter in question. As sum-
marised in figure 2, in this paper
we obtained order-of-magnitude es-
timates for E0µ , (figure S5), k0 (fig-
ure S10), Cdl, (figure S7) Γ (figure
S9) and the phase parameters (fig-
ure S13). As the exact values of the
parameters reported are dependent
on the choice of the boundary, this is
an extremely important part of the
inference process. We describe the
reasoning for each bound in the SI.

3. Determine if it is feasible to fit PSV
data in the time domain, without us-
ing dispersion. If inferred Faradaic
parameters are highly divergent be-
tween different time-domain fitting
runs (as exemplified in figure S3),
then it is recommended to fit in the
Fourier domain. If this is the case,
inspect the harmonics of the blank
PSV data (shown in figure 1) to see
what portions of the Fourier domain
needs to be zeroed-out.

4. Fit the form of the PSV data cho-
sen above, using a simulation with-
out dispersion. Using the param-
eters resulting from this inference
process, generate a ramped simula-
tion and compare to the r-FTACV
data harmonics to assess the trans-
latablity of the parameters. It
should be reasonably clear if you
are neglecting thermodynamic dis-
persion, as the simulated harmonics
will be narrower, and will not de-
crease in magnitude with harmonic
number to the extent observed in
the experimental data — this effect
is demonstrated in detail in previ-
ous work.17 If thermodynamic dis-
persion is present, you should go
back to fitting the PSV data accord-

ingly. If the kinetics of the sys-
tem are irreversible/quasi-reversible
then it may be worth considering ki-
netic dispersion as well,17 but this
scenario has not been encountered
to date.

5. Keep on comparing your PSV fits to
the r-FTACV harmonics.

• If filtering of the data is tak-
ing place (e.g. excluding the
lower harmonics of a PSV ex-
periment), assess how well the
predicted current fit the total
current — an example of the
pitfalls of this approach can be
found in figure S7.

• If a parameter is consistently
hitting a defined boundary,
then consider raising or low-
ering this bound as appropri-
ate, unless this is outside of the
realms of chemical plausibility.
Beware of parameter compen-
sation effects.

• A good rule of thumb is that
you will see a set of “good-fit
parameters” multiple times in
ten runs with random initiali-
sations. Using the boundaries
in table 1, the values reported
were observed 2-4 times out of
ten.

6. Choosing which parameter values to
report is something of a personal
choice — the rationale was that the
inferred parameters for the three ex-
periments should be in the same
regime while providing a good fit to
each.

As can be gleaned from this recipe and
figure 2, the process of bounding param-
eter space required many fitting runs to
gain a deeper understanding of the in-
ference problem. This is a situation in
which the speed advantage of PSV be-
comes relevant. A single fitting run to
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return a best-fit parameter set for PSV
took approximately 45 minutes, while the
same attempt with r-FTACV took sev-
eral hours. As the fitting process is re-
peated ten times to ensure a high search
coverage of parameter space, r-FTACV
fitting timescales quickly become unten-
able. It should be noted that this process
is as-described for obtaining point esti-
mates of the parameters, and does not
recover parameter distributions. How-
ever, once the parameter space is appro-
priately constrained, these same bound-
aries can be used to define the prior dis-
tribution for Bayesian inference, as dis-
cussed below in the Bayesian inference
section. This process is fraught with dan-
ger, and must be performed as conscien-
tiously as possible.

Constraining parameter space

Constraining parameter space is a pro-
cess that must be undertaken with great
caution; it carries the obvious danger of
excluding the region of parameter space
in which the “true” parameter values re-
side, and obtaining false values. The fit-
ting algorithms used in this work require
upper and lower bounds as part of their
initialisation, and so attempting to pick
“reasonable” bounds is the starting point
of any fitting process, and these were ini-
tially set to prevent only physically im-
plausible values. Because this part of the
process can have strong effect on the re-
ported results, the mechanism by which
the boundary values are chosen must be
informed by the data as much as possi-
ble. For several parameters (E0µ, E0σ,
Γ, Cdl, k0 and η/Cdlη) there exist particu-
lar features of the experimental current
response that can be used to estimate
the values of these parameters, which can
in turn be used to define boundaries, as
shown in figure 2. Additionally for any
parameter, as shown in figure 2, if the
inverse problem solver consistently re-
turns the value of a parameter boundary,

this implies that the boundary should
be raised or lowered as appropriate, as
long as this does not clash with existing
chemical knowledge. This process is it-
erated until a good fit to both PSV and
r-FTACV harmonics has been achieved.
The final bounds used for each parameter
when fitting experiments 1-3 are shown
in table 1. For brevity the reasoning for
each parameter bound has been placed
in the SI, but the authors recommend
that those wishing to use these methods
should read these justifications with care
before beginning an inference attempt.

Resulting parameter estimates

Using the bounds shown in table 1, it was possi-
ble to infer parameters from three experiments
interrogating different experimental datasets
for CjX183, where for each preparation both
PSV and r-FTACV measurements were ob-
tained. The resulting best fits are shown in
figure 3, with the inferred best-fit parameters
shown in table 1, where each column shows
data from a different electrode film. In figures
3A-C, PSV harmonics 4-10 for both the ex-
perimental and simulated currents are shown,
with the simulations using the parameters in
table 1. In figures 3D-F r-FTACV simulations
also use the input simulation parameters writ-
ten in table 1, except for the input frequency
and phase. The sinusoidal frequency ω was fit-
ted, because this is different for r-FTACV and
PSV experiments, and the phase was set to the
experimentally defined value of 0. For figures
3G-I, limited optimisation was performed on
parameters thought likely to change as a result
of so-called desorbtion/inactivation “film-loss”
effects, i.e. the Γ parameter, which reflects the
number of adsorbed protein molecules, was
allowed to vary and so were the so-called “dis-
persion” E0

µ and E0
σ parameters which were op-

timised based on the assumption that CjX183
molecules adsorbed in certain orientations will
be lost from the electrode at a more rapid rate
than molecules bound via different surface in-
teractions. The altered values are written in
brackets in table 1. This was done to show
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Figure 2: Flowchart representation of the fitting methodology proposed in this paper. For certain
parameters the mechanism by which boundary values can be obtained has been presented graphi-
cally; these figures are written in brackets as appropriate.

that only four of the model input parameters
need to be re-optimised in order to go from an
excellent fit to the PSV harmonics to an excel-
lent fit to the r-FTACV harmonics. Because
the r-FTACV inference approach only requires
searching in four-dimensional parameter space
(with all other parameters held constant at the
values reported in table 1), the time for a single
fitting run is shorter than it would be for the
full 13-dimensions searched in the PSV case.
In practice, this limited optimisation fitting to
r-FTACV harmonic data, took 2-3 hours. It
is predicted that fitting r-FTACV data would
take 10+ hours when fitting in all dimensions.

The multiple comparison approach for validat-
ing the “best-fit” reaction model parameters us-
ing both inter-technique and inter-experiment
comparisons, such as the type performed in fig-
ure 3, enables removal of spurious parameter
combinations, or the identification of parame-
ter values that only provide a good fit to one
subset of the data. Consequently the best-fit

parameter values inferred from PSV data that
with a small level of alteration provide a good
fit to r-FTACV harmonics obtained during the
same set of measurements are believed to rep-
resent the true underlying redox chemistry of
CjX183. This reinforced by the consistency of
the values obtained across different experiments
performed on different days. Furthermore, our
hypothesis that these are “true” protein re-
dox reaction parameters can also be evaluated
in light of values obtained by other analysis
methods. In this study, these methods are the
estimates of the kinetic parameter from surface
coverage estimates from analysis of a single
scan-rate DCV experiment. DCV analysis is
discussed in more detail in the SI and figure S8
including charge calculated from peak area and
trumpet plot data,9–12,26 shown in figures S9
and S10 respectively. In one sense, it is unsur-
prising that there is agreement between these
PSV and DCV values, as the latter were used
to derive the bounds for the former. However,
these boundaries were drawn quite broadly (for
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Figure 3: Best-fit simulations and data for harmonics 4-10 of PSV experiments 1-3 (figures A-C),
using simulation parameters reported in table 1. Figures D-F show r-FTACV harmonics 4-7, from
r-FTACV experiments 1-3 (performed using the same CjX183 modified electrode as the appropriate
PSV experiment), and simulations obtained using the same parameters as those used to generate the
top row, except for the values of the phases (both of which were set to 0) and the input frequency
(which was set to 8.96, 8.75 and 8.83 Hz respectively). Figures G-I show the same r-FTACV
harmonic data as figures D-F, along with best-fit simulations, obtained using the parameters in
brackets in table 1.
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example, the k0 boundaries were 50-500 s−1,
as informed by a DCV estimate of ∼172 s−1),
and consequently, there is utility in comparing
the PSV and DCV parameter estimates. With
regards to the trumpet plot, the value of the ki-
netic parameter inferred from the trumpet plot
was within 60 s−1 of the value inferred from the
PSV currents, and as shown in figure S10, simu-
lating trumpet plot data with the PSV-inferred
value of ∼172 s−1 does not significantly alter
the peak-position divergence point. This value
is fully consistent with the range of values de-
termined in previous electrochemical studies
of different cytochrome proteins. At the lower
end, the electron transfer rate constant for
cytochrome-c incorporated onto a calcium algi-
nate film on a glassy carbon electrode was found
to be 20.9 s−1.42 In the same regime as CjX183,
the electron transfer rate constant for human,
bovine and porcine cytochrome P450c17 on a
PGE electrode were determined to be 164, 157
and 153 s−1 respectively,43 and at the upper
end, while more varied due to changing chain
length, the electron transfer rate constant for
rat heart cytochrome-c adsorbed onto gold elec-
trodes modified with self-assembled monolayer
has been determined to fall around 700 s−1.44

With regards to the DCV-estimated surface
coverage, although the exact value inferred
from the peak-integration technique is depen-
dent on the subtraction approach (in the range
of 1.8-3.1e-11 mol cm−2), the values inferred
from PSV are in agreement with the range of
values inferred by this method. Based on the
geometric surface area of the working electrode
(0.03 cm2) and the width of the protein struc-
ture, by assuming spherical close-packing of
protein on the electrode, a theoretical maxi-
mum monolayer surface coverage of CjX183
on the electrode can be calculated as 4.4 pmol
cm−2. Although the extracted best fit surface
coverage parameter from the experimental data
is 17.3 pmol cm−2, this difference can be at-
tributed to a non-spherical protein with better
packing efficiency and a non-planar electrode
surface (i.e. area greatly exceeding 0.03 cm2

due to abrasive treatment of the graphite cre-
ating a rough surface). In general, protein film

voltammetry experiments report pmol cm−2

coverage values.4 The parsimonious experimen-
talist may conclude that DCV analysis alone
can yield similar insights, using both trumpet-
plot and single-scan rate analysis. However, it
should be noted that DCV-obtained estimates
are less reliable. In the case of the trumpet
plot, for example, the best-fit simulation did
not accurately capture the rate of redox peak
divergence with scan rate, and the constant
redox peak separation observed at very low
scan rates. Additionally, the Ru parameter has
to be fixed when fitting trumpet plot data,
otherwise the k0 parameter becomes uniden-
tifiable. The authors believe these issues are
primarily caused by challenges associated with
background subtraction of capacitance required
for DCV analysis, as detailed extensively in the
SI for the single scan-rate case. These issues
are at least partially resolved by comparison
to other techniques, hence the development of
a multi-experiment approach. The uncertainty
around modelling DCV means that its primary
role is to provide initial order-of-magnitude es-
timates that inform on how to bound parameter
space.

What it is essential to note, however, is that
the exact reported parameters are conditional
on the modelling choices made. In all cases
the reported α value is the value of the upper
bound, and the solver converged to the value of
the upper bound regardless of what this bound-
ary was set to. This is not unexpected — as
detailed in previous work, when the kinetic
regime is approaching reversibility (reaction is
approaching equilibrium on the timescale of
the experiment), the effect of the symmetry
factor is low. To explore this effect further,
in the SI, in table S6 and figure S14 show the
effect of holding the α parameter constant in
the range 0.5-0.6 while fitting the other param-
eters. When α was below the critical value of
0.55, the solver always returned a k0 value of
3000 s−1, which is incompatible with the value
obtained from the trumpet-plot analysis above.
On the basis of this analysis, the true value of α
is likely to reside in the region between 0.55-0.6;
the value of the symmetry factor for Fe2+/3+
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Table 1: Best fit parameters for harmonics 4 and above of PSV experiments 1, 2 and 3. The
resulting simulated PSV current is shown in figures 3A-C. The same values (except the frequency
and phase) were used to generate r-FTACV simulations shown in figures 3 D-F, and the values in
brackets were used to generate the r-FTACV simulations in figures 3G-I

Parameter Symbol Bounds Experiment
1

Experiment
2

Experiment
3

Midpoint poten-
tial mean

E0
µ (V) [-0.1, -0.04] -0.072

(-0.061)
-0.067
(-0.063)

-0.065
(-0.061)

Midpoint poten-
tial standard de-
viation

E0
σ (V) [1e-4, 0.06] 0.045

(0.033)
0.053
(0.036)

0.051
(0.035)

Rate constant k0(s
−1) [50, 500] 173.8 176.5 172.9

Surface coverage Γ (mol cm−2) [9e-12, 9e-11] 1.35e-11
(1.68e-11)

2.05e-11
(1.83e-11)

1.79e-11
(1.45e-11)

Linear double-
layer capaci-
tance

Cdl (F) [1e-7, 1e-5] 9.8-6 1.0e-5 1.0e-5

1st order Cdl CdlE1 [-0.1, 0.1] 0.014 0.079 0.095
2nd order Cdl CdlE2 [-0.05, 0.05] 0.04 0.021 0.045
3rd order Cdl CdlE3 [-0.05, 0.05] -5.6e-4 -4.4e-4 -3.8e-4
Uncompensated
resistance

Ru (Ω) [0, 900] 148.7 316.8 81.5

Potential fre-
quency

ω (Hz) [8.56, 9.46] 9.015
(8.96)

9.015
(8.75)

9.015
(8.83)

Cdl phase Cdl phase (rads) [3.77 , 5.65] 4.73 (0) 4.70 (0) 4.71 (0)
Phase Phase (rads) [3.77 , 5.65] 4.57 (0) 4.60 (0) 4.63 (0)
Symmetry factor α [0.4, 0.6] 0.6 0.6 0.6

12



reactions has consistently been reported to be
in the region of 0.4-0.6, and consequently values
above 0.6 were considered to be outside of the
region of chemical plausibility.45

In terms of the non-Faradaic parameters, look-
ing at the linear capacitance parameter values
in table 1, the values for all three experiments
is at or close to the upper bound of 1e-5F. This
may indicate that the capacitance values are
not physically realistic. As obtaining accurate
estimates of the Faradaic parameters is the
aim of this procedure, the primary concern is
that the unrealistic capacitance estimates are
not affecting the accuracy of the other inferred
parameters. For example, inaccurate estimates
of the background current could lead to inac-
curate estimates of the level of uncompensated
resistance through the Ohmic drop effect. The
uncompensated resistance is in turn known to
be correlated with changes in the kinetic pa-
rameter (which can also be demonstrated using
Bayesian inference analysis, vide infra), and
consequently poor estimates of the background
current could lead to poor estimates of the ki-
netic value. This is why a DCV trumpet plot
measurement is highly useful for setting the
bounds of k0. Indeed, the key strength of the
multi-experiment approach described here is to
be able to address such concerns about spu-
rious parameter combinations. A longer and
more detailed description of the capacitance
modelling choices can be found in the SI.

Bayesian inference

Given that an optimum in parameter space
has been found (after parameter space was
appropriately constrained), Bayesian inference
can be used to recover the probability that
a particular set of parameter values around
this optimum describe the observed data: the
posterior parameter distribution. These are ob-
tained using the adaptive Markov-Chain Monte
Carlo algorithm, with 30000 simulations of the
forward model generated in a little over an
hour. Specific implementation details can be

found in other work.46,47 Three independent
chains were run for 10,000 iterations, starting
from the best-fit values in table 1, and the re-
sulting samples used to generate histograms
(corresponding to the frequency with which the
binned parameter values have been observed)
that approximate the parameter posterior dis-
tribution for each parameter. Figure 4, presents
these histograms for key parameters obtained
from fitting PSV harmonics 4-10 from experi-
ments 1-3 as presented in figure 3, along with
appropriate parameters as inferred from the
trumpet plot (E0 from the trumpet plot has
been graphed alongside the E0

µ parameter ex-
tracted from PSV analysis as they both have
the same effect on the appearance of the total
current17). The parameters Cdl and α are ex-
cluded because the MCMC algorithm does not
converge if the chains get stuck at an upper or
lower bound, and these were instead fixed at
the appropriate value listed in table 1. It was
not practically feasible to undertake a Bayesian
inference analysis for r-FTACV, because of the
high computational cost of the multiple ∼10+
hour fitting runs required for a many-parameter
MCMC. Figure 4 demonstrates that despite the
above discussed issues of parameter correlation
and the possibility of spurious minima, the
parameter values inferred for the three sepa-
rate PSV experiments are very much in the
same regime, as are parameters inferred using
an entirely separate experimental technique.
It should be noted that there is a very good
agreement between the predicted “underlying”
distribution of dispersed E0 values, which is not
immediately apparent from inspection of figure
4. These underlying distributions are presented
in figure S15 in the SI.

In figure 5, the degree of correlation using
MCMC-inferred posterior distributions for PSV
experiment 1 can be assessed, with the results
for experiments 2 and 3 shown in figures S16
and S17. The histogram of samples for each
parameter is shown along the diagonal (with
the parameter indicated on the x-axis), and
a scatter plot for each pair-wise combination
of parameters are shown on the off-diagonals,
with the y− and x−axes indicating which pa-
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Figure 4: Inferred parameter histograms generated by pooling three independent MCMC chains,
discarding the first 6000 samples as burn-in, using harmonics 4 and above of the respective PSV
experiments in the likelihood function, and using the parameters in table 1 as the starting point.
Cdl and α were not included in this parameter inference approach for technical reasons mentioned
in the text. The DCV histograms were as inferred from running an MCMC process on the trumpet
data in figure S6, and as such only values for the parameters E0 and k0 were inferred.

rameters are being plotted together. If two pa-
rameters are uncorrelated, then the histogram
will be a circle. An ellipse angled upwards in-
dicates positive correlation, i.e. an increase in
the value of the x-axis parameter is associated
with an increase in the y−axis parameter, and
vice versa for negative correlation. The nar-
rower the ellipse, the stronger the degree of
correlation. From the figure it is therefore clear
that many parameters are correlated with each
other. In particular, of the reaction model pa-
rameters there are correlations between k0, the
uncompensated resistance, phase, Cdl phase
and CdlE2. Thus, it is clear how challenging
it is to define the electron-transfer rate. The
positive correlation between E0

σ and Γ explains
that the discrepancy between the best-fit PSV
and r-FTACV values is driven by these param-

eter correlation effects. As the two-step fits
presented in figure S11 in the SI show, an in-
creased Cdl value is associated with lowered E0

σ

and Γ values — indicating that the choice of
Cdl bound (such that the returned value is rel-
atively small) has led to slightly over-inflated
predicted values for the positively correlated
E0

σ and Γ parameters. This again shows the
utility of the multiple-experiment approach.
As r-FTACV is more sensitive to the Faradaic
parameters, it allows for the detection of the
slight over-estimation of the E0

σ parameter, as
described above in figure 3.

What figure 5 shows is that the choice of how
to bound parameter space is not a neutral de-
cision; because of parameter correlation, these
choices affect every value returned. Conse-
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Figure 5: 2D histograms generated from the MCMC process for PSV experiment 1

quently, although the MCMC analysis reports
very high confidence in the inferred values, the
exact values are contingent on the modelling
choices that have been made. This is an in-
escapable problem with attempting to find a
global minimum in high-dimensional parame-
ter space that contains multiple local minima.
However, the multi-experiment verification ap-
proach allows for the mitigation of this issue.
It allows for verification of the inferred model
parameters, which do not exhibit the same de-
gree or kind of parameter correlation, which is
specific to the form of the data being analysed.
Comparisons of experiments of the same type
can be used to avoid the problem of fitting
to noise in a single fitting run, and compar-
isons of different types of experiments allow for
checking the out-of-sample predictive power of
the inferred parameters. This in turn allows
for a deep understanding of the relationships
between the various parameters, as with the
example of Cdl, E

0
σ and Γ in the previous para-

graph. The fact that it is possible to have this

highly granular discussion about the precise
values of the returned parameters is an indi-
cation of the power of this framework. The
use of PSV is essential to obtain this level of
understanding, as the 600,000 forward problem
simulations required for a single MCMC run
can be completed in just over an hour.

Conclusions

In this work, the inverse problem is solved for
PSV harmonics, and the results from the in-
ference process are checked against r-FTACV
harmonics, to take advantage of the former’s
improved simulation speed, and the latter’s
higher sensitivity to the parameters of interest.
The heuristic estimates provided by analysis of
DCV data although presenting significant an-
alytical challenges, ultimately prove essential
for appropriate order-of-magnitude bounding
of the parameter space searched when fitting
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Figure 6: The three experiments analysed in this paper, direct current voltammetry (DCV) as a
current vs. potential plot, purely sinusoidal voltammetry (PSV) current harmonics 4-7 vs. potential,
and ramped-Fourier Transform Alternating Current Voltammetry (r-FTACV) current harmonics
4-7 vs. time. The experiments are ranked according to how interpretable they are, and the amount
of Faradaic information they provide. Orange arrows indicate simulation of current using a vector
of chemical parameters θ, and black arrows indicate that the results of these simulations are used
to assess the goodness-of-fit.

PSV data. Furthermore, the relatively rapid
simulation time required for PSV ultimately
enables the application of Bayesian statistical
analysis to the analysis of protein film voltam-
metry data, allowing for unprecedented insight
into the fitting process. A summary of how the
techniques relate to one another is provided in
figure 6. Overall, in terms of the accu-
racy of the point estimates, parameter
sensitivity studies demonstrate that r-
FTACV is the most sensitive of the three
techniques,48 and consequently the pa-
rameter vector which provides a good fit
to the r-FTACV harmonics is judged to
be the best representation of the redox
chemistry of CjX183. There is a small
discrepancy between these parameters
and the best-fit PSV parameters; the
source of this discrepancy is parameter
compensation, as uncovered by MCMC,
and as such these values are judged to

be slightly less accurate. Finally, DCV
is primarily used for order-of-magnitude
estimates for key parameters, because of
the challenges of background subtraction.

The overall goal of this work is to obtain an un-
derstanding of protein bio-electrochemistry by
extracting inferred redox reaction parameters.
To achieve this, the parameter inference process
needs to be rapid, accurate and reproducible.
We have described how this can be facilitated
by complementing protein-film PSV analysis,
which makes it possible to obtain parameter
estimates on a short timescale, with parameter
validation based on DCV and r-FTACV anal-
ysis. Bayesian inference, also facilitated by the
rapid simulation speed of PSV, allows for an
understanding of how parameters compensate
for each other during the fitting process. It
is hoped that such approaches will become an
indispensable component of analysing protein
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film voltammetry data in the future, and we
have listed a detailed “recipe” for our method-
ology in the SI.

In future work, the authors intend to extend the
repertoire of techniques to include higher fre-
quency PSV experiments, square wave voltam-
metry and electrochemical impedance spec-
troscopy, and to move towards systems that
have more complex chemistry, including mul-
tiple electron-transfer reactions and catalytic
processes.
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