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A B S T R A C T

We propose an endoscopic image mosaicking algorithm that is robust to light conditioning changes, specular
reflections, and feature-less scenes. These conditions are especially common in minimally invasive surgery
where the light source moves with the camera to dynamically illuminate close range scenes. This makes
it difficult for a single image registration method to robustly track camera motion and then generate
consistent mosaics of the expanded surgical scene across different and heterogeneous environments. Instead
of relying on one specialised feature extractor or image registration method, we propose to fuse different
image registration algorithms according to their uncertainties, formulating the problem as affine pose graph
optimisation. This allows to combine landmarks, dense intensity registration, and learning-based approaches
in a single framework. To demonstrate our application we consider deep learning-based optical flow, hand-
crafted features, and intensity-based registration, however, the framework is general and could take as input
other sources of motion estimation, including other sensor modalities. We validate the performance of our
approach on three datasets with very different characteristics to highlighting its generalisability, demonstrating
the advantages of our proposed fusion framework. While each individual registration algorithm eventually fails
drastically on certain surgical scenes, the fusion approach flexibly determines which algorithms to use and in
which proportion to more robustly obtain consistent mosaics.
1. Introduction

Image mosaicking, or image stitching, is an established technique in
computer vision that is now widely utilised in robotics and consumer
products such as cell phones. In minimally invasive surgeries guided by
a camera scope with a narrow field of view, mosaicking can generate an
expanded view of operative site that can aid the surgeon in navigating
instruments and planning the surgery (Kutarnia and Pedersen, 2015).
Unlike very well established mosaicking applications involving indoor
or outdoors scenes (Oliveira et al., 2015; Xu et al., 2020; Chon et al.,
2007), mosaicking of endoscopic images has significantly increased
challenges (Loewke et al., 2020; Richa et al., 2014; Loewke et al., 2010)
that can take multiple forms that we now detail. The scene illumination
is severely non-homogeneous as the only light source comes from the
endoscopic camera itself and moves within the environment. Tissue and
organs are very prone to saturated specular reflections that dynamically
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change with the camera motion (Wu and Su, 2017). Tissue can be dy-
namically occluded by blood or other artefacts (e.g. floating particles in
fetoscopy) that have motion patterns inconsistent with the camera mo-
tion (Reeff et al., 2006). There are non-rigid tissue deformations caused
by breathing, blood flow, or surgical instrument manipulation (Zhou
and Jayender, 2021). The entire visualisation of the operative site
can take a significant amount of time within the surgical workflow,
and long-term mosaic consistency cannot be ignored (Li et al., 2021).
Finally, the visual appearance of different environments/organs vary
significantly, making feature extraction difficult to generalise. An algo-
rithm that may work robustly in a narrowly defined environment will
eventually degrade or fail when there are substantial changes in scene
appearance (Bano et al., 2020). Addressing these challenges in a robust
way is fundamental since an image mosaic can be rendered unusable
with just a short number of poorly estimated image registrations.
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Generally, image mosaicking consists of different sub-problems. The
first one is the data association between common parts of the scene
under different views (Huang and Netravali, 2002). The second is
the estimation of a geometric transformation that is consistent with
the data association and maps different views into a single mosaic
image (Chum and Matas, 2012). These two sub-problems also be tack-
led simultaneously (e.g., direct registration (Bartoli, 2008)). Finally,
he image intensities of individual images need to be blended in a
onsistent and smooth mosaic (Tian and Shi, 2014). One can also
onsider the global optimisation of long-term mosaics as a separate
ub-problem (Zhou and Jayender, 2021; Li et al., 2021). The first sub-
roblem of data association is the most challenging in surgical scenes
nd draws a significant amount of research attention. The most classic
pproach is to detect and extract image point features corresponding
o unique landmarks in the scene and then match them across different
iews. This feature-based mosaicking approach (Milgram, 1975) has
een investigated extensively in recent decades, using different well-
nown hand-crafted feature approaches such as Harris (Okumura et al.,
013), SIFT (Li et al., 2008), SURF (Rong et al., 2009), ORB (Chaudhari
t al., 2017), and FAST (Wang et al., 2012). More recently, data-
riven features that are learned by deep neural networks have been
tilised for image mosaicking (Bano et al., 2020; Zhang et al., 2019).
here are also mosaicking approaches that do not rely on feature
xtraction. Direct and dense pixel-based registration methods can be
ormulated as an iterative optimisation problem by maximising the
imilarity computed with mutual information (Miranda-Luna et al.,
008) or other photometric similarity/difference metrics (Levin et al.,
004; Konen et al., 2007). With the popularisation of deep learning in
ifferent problems, some end-to-end mosaicking algorithms based on
eep learning regression of registration parameters (Bano et al., 2019;
guyen et al., 2018) have been proposed.

There is also research focused on developing image mosaicking
ethods that are dedicated to deal with surgical scenes and its associ-

ted challenges. In Zhou and Jayender (2021), non-rigid Simultaneous
ocalization And Mapping (SLAM) is adopted to account for tissue
eformation. Similarly in Loewke et al. (2010), deformation and cu-
ulative errors are addressed with local and global alignment. In Soper

t al. (2012), structure-from-motion with bundle adjustment is utilised
o reduce cumulative errors when generating the mosaic. In Gong et al.
2021), the non-rigid deformation is estimated with a parametric free
orm deformation model. By reviewing the literature, it is clear that
ost of the existing mosaicking algorithms in this domain focus on

stimating the deformation or reducing cumulative errors. However,
he problems of inconsistent light conditions and environment changes
ave not been analysed in detail. These can happen frequently when
eneralising a method to work robustly on different cases, where the
amera scope and light source may have settings, or a different patient
ay have anatomy structures with different appearance. With these

hallenges in mind, this paper aims to solve the problem of robustness
n image data association for mosaicking of surgical scenes. Instead
f choosing between point feature extraction, optimisation of photo-
etric alignment, or a deep learning approach, we propose to fuse
ulti-modal estimation to bring the best of each method. Our fusion

ramework is agnostic to the data source and can be easily generalised
o other contexts. In this paper we consider as an exemplary case
he fusion of three sources: optical flow, hand-crafted (scale-invariant
eature transform) SIFT features, and direct photometric registration.
he considered optical flow method is the end-to-end deep neural
etwork FlowNet2.0 (Ilg et al., 2017). After data association between
ifferent frames, the geometric alignment between different views is
odelled as a homography linear mapping, and approximated as an

ffine transformation. For both hand-crafted features and optical flow,
random sample consensus) RANSAC is used to filter out outliers prior
o registration estimation. The core of our proposed method is to take
ll the available and competing motion estimation approaches as inputs
2

o a pose graph optimisation framework. Considering different camera
views as graph nodes, up to three edges representing different motion
estimations will link them. The optimal graph state is computed using
the Levenberg–Marquardt (L–M) algorithm on the affine Lie group.
The experimental results show that the proposed fusion-based image
mosaicking algorithm outperforms keypoint feature-based, dense regis-
tration, and end-to-end algorithms in terms of robustness, consistency
and generalisation to different datasets. Therefore, the contributions of
this paper are threefold:

1. We propose a framework to fuse different image data association
algorithms based on their uncertainties for endoscopic mosaick-
ing. The proposed method improves robustness and adaptability
across various types of surgical scenes.

2. The proposed fusion scheme is formulated in general form and is
not constrained to any specific estimation sources, nor to the type
of surgery. It can easily be extended to other problems involving
multi-modal estimation and/or data sources.

3. Extensive experiments in significantly different surgeries are car-
ried out to validate the generalisability of the proposed method.
We test more than ten sequences of ex-vivo laparoscopic video
from the publicly available SCARED dataset (Allan et al., 2021),
a publicly available fetoscopic surgery dataset (Bano et al., 2019),
and also cadaver sequences captured with the Bellowscope
robotic gastric endoscopy platform (Chandler et al., 2020; Garbin
et al., 2018, 2019). The fusion approach is compared against the
individual estimation approaches, i.e., SIFT-based, direct registr-
ation-based, end-to-end deep learning-based mosaicking.

The remainder of this paper is organised as follows. Section 2 gives
a review of the related work. Section 3 introduces the formulations in
correspondence matching and homography estimation, and details our
proposed fusion-based mosaicking framework. Section 4 presents and
discusses the experimental results. We finally conclude the paper and
provide some remarks on future work in Section 5.

2. Related work

While image mosaicking is a problem with a wide variety of well
established application domains, medical imaging has its own dedi-
cated challenges. Therefore, in this section we concentrate on methods
directly applied to surgical data. The algorithms can be classified into
three categories: feature-based, direct, and deep learning-based.

Feature-based mosaicking has been studied for decades in the
context of medical imaging. Early work can be found in Can et al.
(2002b,a), where the edges of vascular centrelines in human retina are
used as features. To speed up the mosaicking, a hierarchical registration
algorithm was adopted. In Lee and Bajcsy (2005), the centroids of
vascular regions were selected as features for image registration and
mosaicking, and a normalised correlation-based registration algorithm
is used to estimate affine transformations. In Bergen et al. (2009), the
authors used corner-like features and Kanade–Lucas–Tomasi tracker
(KLT) to track features in subsequent frames rather than using fea-
ture matching. With the development of abstract feature extraction
in the community of computer vision, some state-of-the-art feature
descriptors were also utilised for mosaicking of medical images. Despite
its relatively old age, SIFT (Lowe, 1999) is one of the most widely
utilised feature descriptors (Daga et al., 2016; Richa et al., 2014;
Jalili et al., 2020). Other popular handcrafted approaches include
improved modifications of SIFT (Yu et al., 2015; Li et al., 2017;
Gupta et al., 2016) and (speeded up robust features) SURF (Bay et al.,
2006; Reeff et al., 2006). (oriented FAST and rotated BRIEF) ORB
features have also been utilised for mosaicking in the context of robotic
endomicroscopy (Rosa et al., 2018). Notably, here the authors fuse
robot movement information with image registration to produce more
robust estimation. Independently of utilising different image feature
descriptors, we also note that different feature matching algorithms can

also be considered (Viergever et al., 2016; Sotiras et al., 2013).
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Fig. 1. The diagram of the proposed method. There are three component homography estimation algorithms, i.e., SIFT-based, direct registration-based, and the optical flow-based.
The pose graph is constructed based on the three estimation sources with their own uncertainties respectively. The optimal state is obtained by optimising the cost function in the
affine Lie group. Finally, the panorama can be generated with the optimal homography matrices.
Unlike feature-based methods, direct registration aims at using the
information of all image pixels (Baum et al., 2021). In Ogien et al.
(2020), normalised cross-correlation (NCC) was used to maximise sim-
ilarity between registered images. Furthermore, in Capek and Krekule
(1999), three similarity-based methods were studied, the sum of ab-
solute valued differences (SAVD), NCC, and the mutual information
function (MIF). It was reported that SAVD performs best in terms of
computational efficiency, NCC is more robust to uncorrelated stochas-
tic noise, and MIF outperforms the other two in terms of nonlinear
corruption of the intensity scales of the image. In Seshamani et al.
(2009), the sum of squared differences (SSD) was used to measure
difference of the two images in terms of their intensities. The first-
order Taylor linearisation was utilised to minimise the SSD. Moreover,
bundle adjustment that minimises the total point re-projection error
was adopted for global optimisation. In Seshamani et al. (2006), the
authors adopted a two-step optimisation algorithm. In the first stage,
an initial estimate of 2D translation is computed by performing a
brute-force search to maximise normalised cross-correlation between
images; In the second stage, a local continuous finetune is applied by
minimising intensity difference of the two images. In Peter et al. (2018),
a pixel-wise image gradient alignment was adopted to highlight vessel-
like structures. In Richa et al. (2014), an SSD-like function was used
to minimise the intensity dissimilarities between two images. And a
non-rigid illumination compensation fine-tuning was adopted to model
local variations. Some studies try to combine feature-based and direct
methods to take advantage of both (Richa et al., 2012).

Deep learning based methods have drawn more attention in recent
years. Some researchers made efforts to utilise deep learning either
in feature extraction or end-to-end transformation regression. In Bano
et al. (2020), U-Net (Ronneberger et al., 2015) was used to segment
vessels in fetoscopic images. Then, a direct image registration based
on the output probability map of the neural network was proposed to
estimate the homography matrix. In Bano et al. (2020), a deep image
homography with controlled data augmentation was proposed to esti-
mate homography between the two input images directly. To the best of
the authors’ knowledge, there is no study addressing the robustness and
generalisation challenges across different environments in the context
of surgical video mosaicking. This is an important problem that can
arise in different domains, including GI endoscopy, fetoscopic surgery,
and laparoscopy. This paper proposes to solve robustness challenges
and generalisability by fusing multimodal estimation within an affine
pose graph framework.
3

3. Approach

This section presents the proposed algorithm for surgical video
mosaicking. The diagram of the proposed algorithm is presented in
Fig. 1, displaying its several different components. It contains the three
baseline data association methods (optical flow, handcrafted features,
direct registration). Additionally, a loop closure detection source is
included based on storing handcrafted features in keyframes. The fu-
sion of multimodal results is achieved with pose graph optimisation,
and finally image stitching and blending is performed based on the
optimised graph. While direct registration performs data association
and registration simultaneously, both handcrafted features and optical
flow only perform the data association. Thus they require a second step
to estimate homography transformations via 4-point linear estimation
within a RANSAC robust estimator. We fuse all three methods together
with pose graph optimisation to make the estimation more robust.
Finally, all the images can be stitched together with respect to the
middle frame within the sequence.

3.1. Optical flow-based correspondence

While both direct pixel-based registration and feature-based regis-
tration are classic approaches that have been extensively described in
the previous works, image registration based on general optical flow is
less common, especially with more recent deep learning methods, and
therefore we provide here a more detailed account.

Optical flow measures displacement of pixels in two images. It is
computed based on the assumption that intensity of the same object is
constant in the consecutive frames, i.e.:

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) (1)

where 𝐼(𝑥, 𝑦, 𝑡) denotes the intensity of pixel (𝑥, 𝑦) at time 𝑡. Currently,
there are several ways to compute the optical flow. The first type
is the gradient-based method that includes Lucas-Kanade and Horn–
Schunck. It assumes that the optical flow is smooth on the entire image.
While in our case, specularities may degenerate the computation. The
second type is the matching-based method that starts from sparse
feature correspondences and interpolates a flow field for every pixel.
This is not suitable in our case as it would be redundant with feature-
based registration and fail in the same cases. The third type is the
energy minimisation approach that uses the dense information of the
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whole image. Again, this approach may be affected by inconsistent
specular reflections. More recently, the energy minimisation methods
can be optimised on training data with a deep neural network. In
this paper, we use the deep learning-based method FlowNet2.0 due
to its state-of-the-art performance. It has three types of components:
FlowNetSimple (FlowNetS), FlowNetCorrelation (FlowNetC) which are
proposed in FlowNet (Dosovitskiy et al., 2015), and FlowNet-Small-
Displacement (FlowNet-SD) which is finetuned on a stack of FlowNetS
and FlowNetC. Input of FlowNetS is a stack of two images, and the
network architecture follows an encoder–decoder framework. It has six
convolutional layers, four deconvolutional layers and finally a bilinear
upsampling to lift the prediction map to full image resolution.

In order to make the network more efficient at catching salient fea-
tures, FlowNetC first adopts two independent, yet identical processing
streams for the two images separately. The two embeddings are then
combined with a correlation layer that aids the following network to
find correspondence. Given two patches centred at 𝐱1 in the first feature
map 𝐟1 and 𝐱2 in the second feature map 𝐟2, the correlation layer is:

𝑐(𝐱1, 𝑥2) =
∑

𝐨∈[−𝑘,𝑘]×[−𝑘,𝑘]
⟨𝐟1(𝐱1 + 𝐨), 𝐟2(𝐱2, 𝐨)⟩ (2)

Note that it is identical to one-step convolution with the kernel as
data from another feature map rather than the filter. It limits the
maximal displacement 𝑘 to within only the local neighbourhood to
reduce the computation. After the correlation layer, FlowNetC adopts
the FlowNetS to predict the optical flow. It was reported in Ilg et al.
(2017) that FlowNetC outperforms FlowNetS if training under the
same condition. FlowNet-SD is based on a stack of one FlowNetC and
two FlowNetS (FlowNet-CSS). FlowNet-SD deepens the network with
multiple layers with 3 × 3 kernels at the beginning of the network
and is trained on dataset with small displacement. Finally, FlowNet2.0
fuses FlowNet-CSS and FlowNet-SD to give the predicted flow field
to full resolution as the input image. One benefit of FlowNet2.0 is
its generalisation, i.e., we do not need to re-train it on surgical data
for our mosaicking task. The network is trained from simple to more
realistic datasets, i.e., from the FlyingChairs synthetic dataset, to the
FlyingThings3D synthetic dataset (Mayer et al., 2016), and finally on
the KITTI real video dataset (Geiger et al., 2012). Examples of the
predicted flow field on the endoscopic data are shown in Fig. 2(e).

The correspondence between the two images can be obtained by the
flow field:
[

𝑢
𝑣

]

=
[

𝑢′

𝑣′

]

+
[

𝑜𝑥
𝑜𝑦

]

(3)

where
[

𝑢 𝑣
]⊤ is the position of the keypoint in the target image, and

[

𝑢′ 𝑣′
]⊤ is the corresponding keypoint in the source image,

[

𝑜𝑥 𝑜𝑦
]⊤

is the value of optical flow. An example of the correspondence es-
timation based on the optical flow is shown in Fig. 2(e). From this
point onwards, pairwise point correspondences between two frames
are established and the remaining registration pipeline is identical to
estimation with sparse feature correspondences, i.e., SIFT in this paper.

3.2. Homography estimation

Both optical flow and SIFT provide pairwise point correspondences,
dense and sparse respectively, and estimating a homography regis-
tration can be made identical for both methods. On the other hand,
the computation of homographies based on direct pixel-based image
registration is jointly done with data association. In this subsection, we
first derive the correspondence-based homography estimation, then the
direct registration-based homography estimation. The transformation
between correspondence pairs can be modelled as:

⎡

⎢

⎢

𝑢
𝑣
⎤

⎥

⎥

= 𝑠 ⋅𝐇 ⋅
⎡

⎢

⎢

𝑢′

𝑣′
⎤

⎥

⎥

= 𝑠
⎡

⎢

⎢

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23

⎤

⎥

⎥

⎡

⎢

⎢

𝑢′

𝑣′
⎤

⎥

⎥

(4)
4

⎣1⎦ ⎣ 1 ⎦ ⎣ℎ31 ℎ32 ℎ33⎦ ⎣ 1 ⎦ i
Table 1
Number of frames of the sequences for experiment.

Dataset Sequence umber Number of frames

SCARED

Seq. 1 196
Seq. 2 279
Seq. 3 87
Seq. 4 447
Seq. 5 347

Fetoscopy

Seq. 1 400
Seq. 2 300
Seq. 3 150
Seq. 5 200
Seq. 6 200

Human cadaver

Seq. 1 30
Seq. 2 51
Seq. 3 20
Seq. 4 20
Seq. 5 100

where 𝐇 is a 3×3 homography matrix, i.e., ℎ33 = 1, and 𝑠 is the scaling
actor. In theory, the transformation is projective with a scaling factor.

hile as indicated in Bano et al. (2020), Peter et al. (2018), Li et al.
2021), approximating it with affine transformation gives more stable
esults for the endoscopic mosaicking. Thus, we follow this conclusion

nd assume 𝑠 ⋅ 𝐇 to be affine, i.e., 𝑠 = 1, ℎ31 = ℎ32 = 0,
[

ℎ11 ℎ12
ℎ21 ℎ22

]

s an arbitary non-singular matrix, and
[

ℎ13
ℎ23

]

is the translation vector.

he correspondence pair can be either from optical flow or SIFT. Every
orrespondence pair gives two constraints:

𝑢 =
ℎ11𝑢′ + ℎ12𝑣′ + ℎ13
ℎ31𝑢′ + ℎ32𝑣′ + 1

𝑣 =
ℎ21𝑢′ + ℎ22𝑣′ + ℎ23
ℎ31𝑢′ + ℎ32𝑣′ + 1

(5)

If there are 𝑛 pairs of correspondence, a linear matrix equation can be
obtained:

⎡

⎢

⎢

⎢

⎢

⎣

𝑢′1 𝑣′1 1 0 0 0 −𝑢1𝑢′1 −𝑢1𝑣′1 −𝑢1
0 0 0 𝑢′1 𝑣′1 1 −𝑣1𝑢′1 −𝑣1𝑣′1 −𝑣1

⋮ ⋮
𝑢′𝑛 𝑣′𝑛 1 0 0 0 −𝑢𝑛𝑢′𝑛 −𝑢𝑛𝑣′𝑛 −𝑢𝑛
0 0 0 𝑢′𝑛 𝑣′𝑛 1 −𝑣𝑛𝑢′𝑛 −𝑣𝑛𝑣′𝑛 −𝑣𝑛

⎤

⎥

⎥

⎥

⎥

⎦

𝐀
2𝑛×9

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐡
9

=

⎡

⎢

⎢

⎢

⎢

⎣

0
0
⋮
0
0

⎤

⎥

⎥

⎥

⎥

⎦

𝟎
2𝑛

(6)

o, if we have four pairs of correspondence, Eq. (6) can be solved. If
here are more than four pairs of correspondence, the optimal solution
an be obtained by minimising

argmin
𝐡

‖𝐀𝐡 − 𝟎‖ = argmin
𝐡

‖𝐀𝐡‖ (7)

s we have the result of optical flow for every pixel, we can have
× ℎ pairs of correspondence in theory, where 𝑤, and ℎ are the width

nd height of the image respectively. Even for the SIFT, there may
e hundreds of thousands pairs of corresponding points. Solving the
roblem by minimising Eq. (7) has two problems: First, computation
f the optimisation problem will be very high; Second, the outliers and
oise of the correspondence estimation may deteriorate the estimated
omography matrix. So in this paper, we use RANSAC with the 4-
oint method to identify inliers and outliers. Here, the recognition of
nliers and outliers is based on the distance in pixels between a point
n one image and its re-projected correspondence from the other image
hrough the transformation �̂�. And 𝜀 is the threshold set by the user to
dentify outliers in the flow field.
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Fig. 2. An example of the results of optical flow prediction and correspondence
establishment. (a) and (b) show the two input images, and (c) is the predicted flow field
by the Flownet2.0, where the colour coding scheme is shown in (d). The correspondence
can be established using Eq. (3). In theory, the correspondence is very dense as
correspondence for most pixels can be computed except ones close to the image border.
Only a small portion of the correspondence is presented in (e) for a better visualisation.

Fig. 3. An illustration of the pose graph that is constructed using the optical flow,
SIFT, direct registration, and loop closure detection. The nodes are denoted in blue
triangles. And the different types of edges are denoted in lines with different colours.

The homography matrix can be also estimated using direct image
registration with the photometric loss:

𝐋(𝐇𝑖,𝑖+1) = ‖𝐼𝑖 − 𝐓(𝐼𝑖+1,𝐇𝑖,𝑖+1)‖ (8)

where the function 𝐓(𝐼𝑖+1,𝐇𝑖,𝑖+1) warps the image 𝐼𝑖+1 with transforma-
tion. By transforming the image 𝐼 into a new position using 𝐇 , we
5

𝑖+1 𝑖,𝑖+1
Fig. 4. Examples of mosaicking directly obtained from using the robot kinematics,
extracted from seq. 1 (a) and seq. 5 (b) of the SCARED dataset. The kinematics are
not accurate enough to generate mosaics.

can obtain 𝐼𝑖+1 in its new position and view as 𝐼𝑖+1 = 𝐓(𝐼𝑖+1,𝐇𝑖,𝑖+1). The
difference of Image 𝐼𝑖 and 𝐼𝑖+1 can be computed with their L2 norm.
The optimal transformation matrix can be obtained by minimising the
loss:

𝐇𝑟𝑒𝑔
𝑖,𝑖+1 = arg min

𝐇𝑖,𝑖+1
𝐋(𝐇𝑖,𝑖+1) (9)

The optimisation of Eq. (9) is based on a standard pyramidal Lucas–
Kanade registration framework that minimises the least-square differ-
ence (photometric loss) between a fixed frame 𝐼𝑖 and a warped moving
image 𝐼𝑖+1. This optimisation problem in Eq. (9) can be solved with the
L–M iterative algorithm in an iterative way.

3.3. Fusion of multimodal estimations

For every pair of consecutive images, there are three possible esti-
mated transformation matrices, i.e., 𝐇𝑓𝑙𝑜𝑤

𝑖,𝑖+1 , 𝐇𝑆𝐼𝐹𝑇
𝑖,𝑖+1 , and 𝐇𝑟𝑒𝑔

𝑖,𝑖+1. A more
robust estimation result can be obtained by fusing the three estimation
sources. Inspired by the SLAM literature in mobile robotics, we perform
the fusion via pose graph optimisation. The graph to be optimised can
be constructed as  = {𝐕,𝐄}, where 𝐕 = {𝐱1, 𝐱2,… , 𝐱𝑛} is the set of
vertices and 𝐄 = {𝐳1,2, 𝐳2,3,… , 𝐳𝑙𝑐} is the set of edges. Both 𝐱 and 𝐳 are
affine matrices, and 𝐳 are the estimated transformation matrices 𝐇𝑓𝑙𝑜𝑤,
etc. An illustration of the pose graph is shown in Fig. 3. Any vertex 𝐱𝑖 in
the graph represents the transformation of the 𝑖th image with respect to
the anchor (first) image, and they constitute the state to be estimated
(optimised). The edges define constraints between pairs of vertices,
which can be provided by the affine homography estimations obtained
from optical flow, SIFT-correspondences, and direct registration.

Additionally, edges can also be loop closure constraints, i.e. registra-
tion of non-consecutive frames when a scene is revisited. Loop closure
detection is based on SIFT keypoint features extracted from a set of
key frames. The first frame in the sequence is always a key frame. If
the current movement with respect to the latest key frame is larger
than either a distance or a time threshold, the current frame is defined
as a new key frame. SIFT features of the key frames are stored using
bag-of-words. The similarity between a new frame and every other key
frame will be computed to check if the camera revisits previous scenes.
Every estimated transformation matrix is associated with a covariance
matrix 𝜮𝑖,𝑖+1 representing how certain the estimation is. The covariance
of the flow-based transformation 𝜮𝑓𝑙𝑜𝑤

𝑖,𝑖+1 is computed based on the ratio
of inliers. The covariance of the SIFT-based transformation 𝜮𝑆𝐼𝐹𝑇

𝑖,𝑖+1 is
jointly based on ratio of inliers and number of features. The covariance
of the direct registration-based transformation 𝜮𝑟𝑒𝑔

𝑖,𝑖+1 is based on the
finally minimal photometric loss. Then we can define the cost function
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Fig. 5. Results on the SCARED dataset. Mosaicking results for five sequences are presented from the first to the last row. The SIFT, direct registration, optical flow, and fusion-based
mosaicking are presented from the first to the fourth column. The problematic parts of the panorama are denoted in blue, orange, and green rectangles from the first to the third
column. The fusion-based mosaicking can correct them and combine advantages of the component methods to give high-quality panoramas.
of the pose graph as:

𝐟 =
∑

𝑖,𝑗∈
𝐞𝑖𝑗 (𝐱𝑖, 𝐱𝑗 , 𝐳𝑖,𝑗 )⊤𝜴𝑖𝑗𝐞(𝐱𝑖, 𝐱𝑗 , 𝐳𝑖,𝑗 )

=
∑

𝑖,𝑗∈𝑓𝑙𝑜𝑤
𝐞𝑖𝑗 (𝐱𝑖, 𝐱𝑗 , 𝐳

𝑓𝑙𝑜𝑤
𝑖,𝑗 )⊤𝜴𝑓𝑙𝑜𝑤

𝑖𝑗 𝐞(𝐱𝑖, 𝐱𝑗 , 𝐳
𝑓𝑙𝑜𝑤
𝑖,𝑗 )

+
∑

𝑖,𝑗∈𝑆𝐼𝐹𝑇

𝐞𝑖𝑗 (𝐱𝑖, 𝐱𝑗 , 𝐳𝑆𝐼𝐹𝑇
𝑖,𝑗 )⊤𝜴𝑆𝐼𝐹𝑇

𝑖𝑗 𝐞(𝐱𝑖, 𝐱𝑗 , 𝐳𝑆𝐼𝐹𝑇
𝑖,𝑗 )

+
∑

𝑖,𝑗∈𝑟𝑒𝑔
𝐞𝑖𝑗 (𝐱𝑖, 𝐱𝑗 , 𝐳

𝑟𝑒𝑔
𝑖,𝑗 )

⊤𝜴𝑟𝑒𝑔
𝑖𝑗 𝐞(𝐱𝑖, 𝐱𝑗 , 𝐳

𝑟𝑒𝑔
𝑖,𝑗 )

(10)

where  is set of all the edges including odometry edges (𝑗 = 𝑖 + 1)
and loop closure edges (𝑗 ≠ 𝑖 + 1), and the function 𝐞 measures
errors between the vertices and constraints by the edges. 𝜴 is the
information matrix, i.e., the inverse of the covariance matrix 𝜴 = 𝜮−1.
The covariance of an edge is decided based on the residual or number of
6

correspondences of the two images. For the SIFT-based method, its co-
variance 𝜮𝑆𝐼𝐹𝑇 is inversely proportional to the number of established
pairwise point correspondences. For the optical flow-based method, the
covariance 𝜮𝑓𝑙𝑜𝑤 is inversely proportional to the number of RANSAC
inliers as described in Section 3.2. For the registration-based method,
the covariance 𝜮𝑟𝑒𝑔 is directly proportional to the photometric residual
after optimisation. In this paper, we set the information matrix as
follows: if the number of inliers or correspondences is 𝑁𝑖𝑛𝑙 for the
SIFT-based or optical flow-based method, then the first four diagonal el-
ements of the information matrix is set as 𝜴(1,1) = 𝜴(1,1) = ⋯ = 𝜴(4,4) =
100 ×𝑁𝑖𝑛𝑙, the last two diagonal elements are set as 𝜴5,5 = 𝜴6,6 = 𝑁𝑖𝑛𝑙.
If the residual for the direct registration-based method is 𝑒𝑟𝑒𝑠, then the
first four diagonal elements are set as 100

𝑒𝑟𝑒𝑠
, and the last two diagonal

elements are 1
𝑒𝑟𝑒𝑠

. If there is not enough inliers/correspondences, the
residual is too large, or the output of the RANSAC algorithm is an
identity matrix, then we set all elements of information matrix as zero
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Fig. 6. Results on the fetoscopy dataset. Mosaicking results for six sequences are presented from the first to the last row. The SIFT, direct registration, optical flow, and fusion-based
mosaicking are presented from the first to the fourth column. SIFT-based method fails to work on this dataset due to the texture-less background and difficulty to extract enough
features. The fusion-based method fuses results of the direct registration-based and optical flow-based homography estimation, and can combine the advantages of both methods
to generate better panoramas.
𝜴 = 𝟎, which means we treat the estimation as a failure and do not
consider the constraint provided by this edge. SIFT may also have loop
closures to measure errors between non-consecutive vertices. Note that
there may exist better information matrix configuration strategies, we
left it to be explored in our future work. The error function 𝐞 needs to
be converted from the 3 × 3 affine matrix to a vector to compute and
minimise the loss. Following our previous work (Li et al., 2021), the
vectorisation is based on the Lie group theory, i.e., from element on
affine Lie group to its corresponding Lie algebra and then the vector
space. And update of the state is wrapping from the vector space to
Lie group. For a detailed elaboration please refer to Li et al. (2021),
while in this paper, the key procedures are introduced briefly. We
have 𝐞(𝐱𝑖, 𝐱𝑗 , 𝐳𝑖,𝑗 ) = log(𝐳−1𝑖,𝑗 𝐱

−1
𝑖 𝐱𝑗 )∨ using the logarithm map. Updating

it with a small perturbation 𝝃 in Lie algebra leads to 𝐞(𝐱 exp(𝝃)) ≃
𝐞(𝐱) + 𝐉𝝃, where we take the first-order Taylor approximation and 𝐉
is the Jacobian matrix from affine Lie group to vector space which can
be computed by numerical method. The cost function on the updated
7

state is
𝐟 (𝐱 exp(𝝃)) ≃ 𝐟 (𝐱) + 2

∑

𝑖,𝑗∈
𝐞(𝐱𝑖, 𝐱𝑗 , 𝐳𝑖𝑗 )⊤𝜴𝑖𝑗𝐉𝑖𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐛⊤

𝝃

+ 𝝃⊤
∑

𝑖,𝑗∈
𝐉⊤𝑖𝑗𝜴𝑖𝑗𝐉𝑖𝑗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐊

𝝃 = 𝐟 (𝐱) + 2𝐛⊤𝝃 + 𝝃⊤𝐊𝝃
(11)

To make the update driven to the optimal value, we need to make the
differential of the cost function equal to zero, i.e., 𝐟 (𝐱 exp(𝝃)) − 𝐟 (𝐱) = 0.
The differential of equation (11) with respect to 𝝃 is 𝐊𝝃 + 𝐛 = 𝟎, which
is linear. To improve the convergence, we adopt L–M algorithm here
by incorporating a damping factor 𝜆 as (𝐊 + 𝜆𝐈)𝝃∗ + 𝐛 = 𝟎. Then the
state can be updated in this step as:

𝐱∗ = 𝐱 exp(𝝃∗∧) (12)

The procedures from Eq. (11) to Eq. (12) iterate to update the state
until convergence.
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Fig. 7. Results on the human cadaver dataset. Mosaicking results for five sequences are presented from the first to the last row. The SIFT, direct registration, optical flow,
and fusion-based mosaicking are presented from the first to the fourth column. From the first to the fourth sequence, only the optical flow works among the three component
methods. And the result of fusion is same as that of optical-flow mosaicking. For the fifth sequence, the fusion-based method fuses the results of SIFT-based and optical flow-based
homography estimation using the affine pose graph, to yield a more consistent panorama.
3.4. Panorama blending

Each image is attached with its own homography matrix with
respect to its former image denoted as {𝐼𝑖,𝐇𝑖−1,𝑖}, 𝑖 = 1, 2,… , 𝑛, where
𝑛 is the number of images and 𝐇0,1 = 𝐈 is the identity. To make a better
visualisation, we set the transformation of the middle image ( 𝑛2 if 𝑛
is an even number, 𝑛+1

2 otherwise) as the identity. Then every image
can obtain its new transformation with respect to the middle image
by matrix multiplication and inverse. For convenience, we use 𝐇𝑖 to
denote transformation of 𝑖-th image. First, we need to compute the
resolution of the panorama. Every image is warped to its position using
the affiliated homography matrix 𝐇𝑖. The coordinates of four corners
of the panorama can be obtained with minimal and maximal corners in
two directions of all the wrapped images. In this way, we can create a
blank mask that has the same size of the panorama. Then, for the first
warped image, it can be fit into the mask directly. From the second
image, only the mask’s pixels that are still blank will be substituted with
the pixels of the wrapped image. The proposed algorithm is summarised
in Algorithm 1.
8

4. Experiments

In this section, experiments on various endoscopic datasets and
comparison with state-of-the-art baselines will be presented. We test
on three datasets: The first one is the Stereo Correspondence and
Reconstruction of Endoscopic Data (SCARED) dataset (Allan et al.,
2021). The utilised sequences are from its training data: Seq. 1 ←
dataset1/keyframe1, Seq. 2 ← dataset1/keyframe2, Seq. 3 ←
dataset2/keyframe1, Seq. 4 ← dataset3/keyframe3, Seq. 5 ←
dataset4/keyframe4.

It was captured using stereo endoscopic cameras mounted on a da
Vinci Xi surgical robot. This is a high quality, high resolution dataset
with smooth camera motions. Nonetheless, illumination of different
sequences on this dataset varies considerably. We use images from the
left camera rather than the stereo in this paper. As we either need
to treat the stereo pairs as sequences or blend the pairs first, which
may cause new uncertainties. We note this dataset includes camera
motion measurements provided by robot kinematics, however, these
are not accurate enough for moosaicking (see results in Fig. 4) and
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Fig. 8. Mosaics generated by simple mean fusion of the SIFT-based, direct registration-based, and the optical flow-based estimation.
therefore we do not use this motion as a reference or groundtruth in this
paper. The second is a fetoscopy placenta dataset (Bano et al., 2020)
which has six sequences from different surgeries. Since this procedure
is immersed in fluid, it does not contain specular reflections, but the
scenes have very few discriminative textures and contain inconsistent
motions due to floating particles crossing the field of view. By testing
on this dataset, we want to verify generalisation of the proposed
method in a significantly different environment and camera setting.
The third dataset is a gastric endoscopy on a human cadaver using
the Bellowscope gastroscope platform (Chandler et al., 2020). The en-
vironment is texture-less and with poor colour content, it has specular
reflections, and has highly non-homogeneous illumination. Producing
mosaics with this data represents the most extreme challenges for all
studied algorithms. The numbers of frames of all the sequences of the
three datasets are presented in Table 1. In this dataset, only small
video sequences are tested. Due to the tubular shape of the anatomy,
9

it does not make sense to build a single mosaic as the camera does
a long trajectory through the digestive track, since it cannot be fully
projected into a single plane without huge, non-intuitive distortions. No
single algorithm works well in this setting. Instead, we do field of view
expansion on localised portions of the anatomy where the endoscope is
panning the scene.

We select three algorithms from the literature as comparison base-
lines, which correspond to mosaics as generated by the individual
image registration approaches: feature-based (SIFT), direct pixel-based
registration, and optical flow (FlowNet2.0). Each of them is a represen-
tative method in its own category (see Section 2). To further validate
our approach, we also test our method when the covariance-weighted
fusion is replaced with a naive simple average, and when loop closure
is removed. In terms of quantitative analysis, we use the mosaicking
metric described in Bano et al. (2019). This measures the structural
similarity SSIM (Wang et al., 2004) between different overlapping
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Fig. 9. SSIM between overlapping registered frames with distance between 1 (consecutive) and 5. Each boxplot shows SSIM results of all frame pairs in a video with specified
distance. Lower values denote poorer methods.
Fig. 10. A comparison of mosaicking generated by fusion with and without loop closure on sequence 2 of the fetoscopy dataset.
mosaicking frames across the entire sequences. We compare frames
with increasing temporal distance from 1 (i.e. all consecutive frames)
up to 5 frames apart.

4.1. Results

The qualitative mosaicking comparison against the baselines on the
SCARED, fetoscopy, and human cadaver datasets are presented, respec-
tively, in Figs. 5, 6, and 7. We present the results using the naive fusion
scheme (simple average) separately in Fig. 8 for all datasets. In terms
of quantitative results, we display the boxplots of SSIM distributions in
Fig. 9 for frame distances between 1 and 5. We highlight that, while our
proposed method establishes effective (long) loop closure constraints,
these only occur in 3 out of the 6 fetoscopy datasets, and in none of
10
the SCARED and human cadaver sequences due to the simple nature of
the camera motions in these cases. A comparison of our method with
and without loop closures for a sequence of the fetoscopy dataset is
displayed in Fig. 10. Finally, the average SSIM results for all reported
methods, across all datasets is summarised in Table 2.

To understand the contribution of the different baseline algorithms
to our fusion we also provide their indicative weights for each dataset.
On the SCARED dataset, the traces of the information matrix have
orders of magnitude 105, 104, and 104 for the SIFT, direct registration,
and optical flow respectively across the majority of image pairs. For the
fetoscopy dataset, these values are 102, 105, and 106 respectively. For
the human cadaver dataset 102, 102, and 104 for the first four sequences,
and 104, 103, 104 for the fifth sequence. In this context, higher relative
values mean that our fusion scheme is giving more importance to the
respective method.
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Algorithm 1: Specularity-aware Optical Flow-based Image Mosaicking
Input: Image sequence  = {𝐼1, 𝐼2,… , 𝐼𝑛}
utput: Panorama 
or 𝑖 = 1, 𝑖 < 𝑛 do

𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐹 𝑙𝑜𝑤𝑖 = 𝐹 𝑙𝑜𝑤𝑁𝑒𝑡2(𝐼𝑖, 𝐼𝑖+1) ⊳ Optical flow prediction using the two images
while not reaching maximal RANSAC step do

𝐩′𝑗 = 𝑅𝑎𝑛𝑑𝑜𝑚(𝐼𝑖, 𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐹 𝑙𝑜𝑤𝑖), 𝑗 = 1,… , 4 ⊳ Randomly select four points
𝐩𝑗 = 𝐩′𝑗 + 𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐹 𝑙𝑜𝑤𝑗

𝑖 ⊳ Compute the corresponding points using equation (3)
�̂�𝑖,𝑖+1 = 𝐿𝑆(𝐩1,𝐩′1,… ,𝐩4,𝐩′4) ⊳ Compute the homography matrix by solving equation (6)
𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = 0 ⊳ The initial number of inliers
while 𝑘 = 5, 𝑘 ≤ 𝑁𝑝𝑎𝑖𝑟𝑠 do

𝐝𝑘 = ‖𝐩𝑘 − �̂�𝑖,𝑖+1𝐩′𝑘‖ ⊳ Compute the residual error
if 𝐝𝑘 < 𝜺 then

𝑖𝑛𝑙𝑖𝑒𝑟𝑠 + + ⊳ Identity the remaining point is an inlier or outlier
end

end
if 𝑖𝑛𝑙𝑖𝑒𝑟𝑠 > 𝜸 then

𝐇𝑓𝑙𝑜𝑤
𝑖,𝑖+1 = �̂�𝑖,𝑖+1; break ⊳ Stop iteration if number of inliers is large

end
if reaching the last iteration then

𝐇𝑓𝑙𝑜𝑤
𝑖,𝑖+1 = 𝐼𝑛𝑙𝑖𝑒𝑟𝑠𝑚𝑎𝑥({�̂�𝑖,𝑖+1}) ⊳ Select the matrix that has most inliers as solution

end
end
𝑓𝑆𝐼𝐹𝑇
𝑖 = 𝑆𝐼𝐹𝑇 (𝐼𝑖), 𝑓𝑆𝐼𝐹𝑇

𝑖+1 = 𝑆𝐼𝐹𝑇 (𝐼𝑖+1) ⊳ Extract SIFT features from the images
𝐇𝑆𝐼𝐹𝑇

𝑖,𝑖+1 = 𝐴𝑓𝑓𝑟𝑎𝑛𝑠𝑎𝑐 (𝑓𝑆𝐼𝐹𝑇
𝑖 , 𝑓𝑆𝐼𝐹𝑇

𝑖+1 ) ⊳ Homography estimation using SIFT as line 3 - 20
𝐇𝑟𝑒𝑔

𝑖,𝑖+1 = 𝑅𝑒𝑔(𝐼𝑖, 𝐼𝑖+1) ⊳ Homography est. with direct registration as equation (9)
𝐿𝑖𝑏𝑘𝑒𝑦 = 𝐵𝑜𝐺(𝑓𝑆𝐼𝐹𝑇

𝑘𝑒𝑦 )
end

⊳ Construct the library of keyframe features using bag of words
𝑓 ∗
𝑘𝑒𝑦, 𝑠𝑐𝑜𝑟𝑒 = 𝐼𝑚𝑔𝑅𝑒𝑡𝑟(𝑓𝑖, 𝐿𝑖𝑏𝑘𝑒𝑦) ⊳ Compute the score the most likely frame by image retrieval
if score is larger than the threshold then

𝐇𝐿𝐶
𝑖,𝑘𝑒𝑦 = 𝐴𝑓𝑓𝑟𝑎𝑛𝑠𝑎𝑐 (𝑓𝑆𝐼𝐹𝑇

𝑖 , 𝑓𝑆𝐼𝐹𝑇
𝑘𝑒𝑦 )

end
⊳ Homography estimation of the loop closure  = 𝑃𝑜𝑠𝑒𝐺𝑟𝑎𝑝ℎ({𝐇𝑓𝑙𝑜𝑤,𝜴𝑓𝑙𝑜𝑤}, {𝐇𝑆𝐼𝐹𝑇 ,𝜴𝑆𝐼𝐹𝑇 }, {𝐇𝑟𝑒𝑔 ,𝜴𝑟𝑒𝑔}) ⊳ Pose graph

construction
𝐱𝑖 =

∏𝑖
𝑘=1 𝐇

𝑣
𝑘−1,𝑘, 𝑣 = argmin

𝑚={𝑓𝑙𝑜𝑤,𝑆𝐼𝐹𝑇 ,𝑟𝑒𝑔}
𝜮𝑚

𝑘 ⊳ Vertex is constructed by estimation with minimal covariance

𝐳𝑣𝑖,𝑗 = 𝐇𝑣
𝑖,𝑗 , 𝑣 = {𝑓𝑙𝑜𝑤, 𝑆𝐼𝐹𝑇 , 𝑟𝑒𝑔} ⊳ Edges are constructed using the transformation estimation

𝐟 =
∑

𝑖,𝑗∈ 𝐞𝑖𝑗 (𝐱𝑖, 𝐱𝑗 , 𝐳𝑖,𝑗 )⊤𝜴𝑖𝑗𝐞(𝐱𝑖, 𝐱𝑗 , 𝐳𝑖,𝑗 ) ⊳ Cost function by vertices and edges as equation (10)
{𝐇𝑖,𝑖+1} = 𝑂𝑝𝑡() ⊳ Affine pose graph optimisation
while not converge do

𝐉𝑖𝑗 =
𝜕�̃�𝑖𝑗 (𝐱 exp(𝜹𝝃∧))

𝜕𝜹𝝃

|

|

|

|𝜹𝝃=𝟎
≃ �̃�𝑖𝑗 (𝐱 exp(𝜹𝝃∧))−�̃�(𝐱)

𝜹𝝃

|

|

|

|𝜹𝝃→𝟎
nd

⊳ Compute the Jacobian using the numerical method
𝐟𝑖𝑗

(

𝐱 exp(𝜹𝝃∧)
)

≃ (�̃�𝑖𝑗 (𝐱) + 𝐉𝑖𝑗𝜹𝝃)⊤𝜴𝑖𝑗 (�̃�𝑖𝑗 (𝐱) + 𝐉𝑖𝑗𝜹𝝃) ⊳ Add a small perturbation of 𝑓𝑖𝑗
(𝐱 exp(𝝃)) =

∑

𝑖,𝑗∈ 𝐟𝑖𝑗 ≃ 𝐟 (𝐱) + 2𝐛⊤𝝃 + 𝝃⊤𝐊𝝃 ⊳ Approximation of the cost function as equation (11)
(𝐊 + 𝜆𝐈)𝝃∗ + 𝐛 = 𝟎 ⊳ Obtain the optimal update 𝝃∗ using L-M algorithm
𝐱∗ = 𝐱 exp(𝝃∗∧) ⊳ Update the estimation using equation (12)
for 𝑖 = 1, 𝑖 ≤ 𝑛 do

𝐇𝑖 =

{

𝐇−1
𝑚,𝑚−1 ⋯𝐇−1

𝑖,𝑖+1 𝑖 < 𝑚

𝐇𝑚,𝑚+1 ⋯𝐇𝑖−1,𝑖 𝑖 > 𝑚
⊳ Compute the homography matrix w.r.t. the middle image

𝐼𝑤𝑖 = 𝑊 𝑟𝑎𝑝(𝐼𝑖,𝐇𝑖) ⊳ Warp the image using its homography matrix
nd
= 𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔(𝐼𝑤1 , 𝐼𝑤2 ,… , 𝐼𝑤𝑛 ) ⊳ Stitch the wrapped images to get the panorama
4.2. Discussion

In the SCARED dataset (Fig. 5), SIFT has generally better perfor-
mance than direct registration and optical flow, which can be explained
by the high resolution and rich textures that make it easy to extract
11
keypoint features. For sequences 3 to 5, direct registration fails entirely
to work and most images in the mosaic overlap completely (i.e. the
registration outputs a 3×3 identity matrix). However, SIFT fails to find
good features on sequences 4 and 5, resulting in bad quality results.
From the fourth column of Fig. 5, we can see that our fusion approach
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Table 2
A comparison of different methods and ablation study on the three datasets. Values in the table are average SSIM with frame distance from
1 to 5. Note that the ablation study of loop closure is tested using the first three sequences of the fetoscopy dataset as there are long loop
closures in these sequences.

Dataset Seq. SIFT Direct reg. Optical flow Average fusion Fusion w/o LC Fusion (proposed)

SCARED

1 0.822 0.607 0.741 0.631 N/A 0.841
2 0.804 0.526 0.674 0.540 N/A 0.807
3 0.709 0.597 0.620 0.633 N/A 0.718
4 0.677 0.549 0.628 0.527 N/A 0.680
5 0.770 0.712 0.756 0.690 N/A 0.780

Fetoscopy

1 0.697 0.746 0.834 0.691 0.856 0.857
2 0.850 0.820 0.852 0.845 0.862 0.873
3 0.872 0.888 0.896 0.891 0.894 0.901
4 0.907 0.905 0.924 0.914 N/A 0.924
5 0.915 0.915 0.960 0.912 N/A 0.960
6 0.917 0.912 0.917 0.917 N/A 0.926

Hum. cad.

1 0.641 0.659 0.662 0.645 N/A 0.730
2 0.537 0.594 0.656 0.521 N/A 0.681
3 0.501 0.501 0.638 0.534 N/A 0.641
4 0.407 0.416 0.520 0.453 N/A 0.520
5 0.596 0.577 0.641 0.638 N/A 0.645
can remove errors of individual methods, relying on the ones with
least covariance at any given point. In general, for this dataset, our
fusion weights SIFT by an order of magnitude above the other two
methods, which is consistent with the observed baseline performances.
The quantitative results (Fig. 9) are also consistent with these results,
showing our fusion having the best performance, closely followed by
SIFT.

In the fetoscopy dataset (Fig. 6), the image resolution is not as high
as that of the SCARED dataset. In addition, the environment is smooth
and texture-less, which makes it difficult to extract keypoint features.
Here, the SIFT-based mosaicking completely fails to work for all the six
sequences (see the first column, the algorithm outputs a 3 × 3 identity

atrix if there is not enough correspondences or inliers of the RANSAC
ethod). The direct registration has a significant amount of drift, and

he optical flow performs the best among the three baselines. From the
ast column of Fig. 6, we can see that the panorama generated by our
roposed fusion performs the best. In general, our method provides
owest weights for SIFT estimations, and the highest to optical flow.
he quantitative results in Fig. 9 also indicate that our fusion method
roduces in general higher SSIM scores, followed by optical flow.

In the human cadaver dataset (Fig. 7), the scene is mostly red and
exture-less, which makes it very difficult to find correspondence or
aximise similarity metrics. From sequence 1 to 4, both SIFT and direct

egistration fail to estimate the transformation between the images
nd cannot generate the panoramas. The optical flow-based mosaicking
gain performs the best out of the 3 baselines. In this dataset, our fusion
lso generally weights optical flow the highest. In fact, for the first
our sequences, the fusion-based mosaicking results rely exclusively on
he optical flow-based due to complete failure of other methods. For
equence 5, both SIFT and optical flow can generate a mosaic, but are
ot accurate in some regions (see the blue and green rectangles). The
usion-based method combines advantages of both the methods and
ives a better panorama. For this challenging human cadaver dataset,
he quality of the generated panorama is good with around 50 images
sing the proposed method.

The importance of weighting each method differently from frame-
o-frame in our fusion approach is further validated by the fact that a
imple average fusion works very poorly (see Fig. 8), which is further
onfirmed by the SSIM results in Fig. 9 and Table 2, where the average
usion is consistently close to the worst performers, since it is heavily
ontaminated by the worst of the three baselines at any given moment.

Finally, the effect of loop closure is the most significant on sequence
of the fetoscopy dataset (Fig. 10), where the camera performs a long

rajectory before returning to the pre-visited area of the anatomy. With-
12

ut loop closure, drift error is accumulated throughout the trajectory.
When such a motion is not present (i.e. most of the other sequences),
loop closure contributes little to the fusion performance.

All these experiments demonstrate the robustness of the proposed
method and its generalisation across different datasets. Advantages
of the proposed method over the state-of-the-art medical image mo-
saicking algorithms are validated through the comparison both with
qualitative and quantitative results.

5. Conclusion

This paper presents a robust endoscopic image mosaicking frame-
work based on fusion of multimodal estimation. One of the advantages
of the proposed method is that it can work in different environments
with no need to re-design the framework or finetune the parameters.
Comparison with state-of-the-art baselines including SIFT-based, direct,
end-to-end mosaicking shows that the proposed method is more robust
to specular reflections or in feature-less environment. Moreover, the
proposed framework is open to any other estimation method. It is rather
straightforward to fit the new mosaicking methods into the proposed
pose graph framework where only the evaluation of uncertainties of
that method is needed. The limitations of the current framework in-
clude: It does not take the deformation into consideration; And it does
not include the case that there may be outliers in the pose graph or
inaccurate estimation of the uncertainties of the edges. In future work,
we plan to solve these problems by developing an outlier-aware affine
pose graph optimisation algorithm with deformation estimation.
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