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ABSTRACT

Despite there being clear evidence for attentional effects in biolog-

ical spatial hearing, relatively few machine hearing systems exploit

attention in binaural sound localisation. This paper addresses this

issue by proposing a novel binaural machine hearing system with

temporal attention for robust localisation of sound sources in noisy

and reverberant conditions. A convolutional neural network is em-

ployed to extract noise-robust localisation features, which are similar

to interaural phase difference, directly from phase spectra of the left

and right ears for each frame. A temporal attention layer operates on

top of these frame-level features by incorporating outputs of a tem-

poral mask estimation module that indicate target dominance within

each frame. The combined features are then exploited by fully con-

nected layers, which map them to the corresponding source azimuth.

Both the temporal mask estimation module and the sound localisa-

tion module are trained jointly in a multi-task learning manner. Our

evaluation shows that the proposed system is able to accurately esti-

mate the azimuth of a sound source in various reverberant and noisy

conditions.

Index Terms— temporal attention, sound source localisation,

temporal mask estimation, multi-task learning, phase spectrum

1. INTRODUCTION

Sound source localisation is a fundamental issue in signal process-

ing and forms an integral part of numerous acoustic signal process-

ing tasks, including sound event detection [1], noise reduction [2],

and sound source separation [3, 4]. A variety of approaches have

previously been proposed to address this problem, including gen-

eralised cross-correlation with phase transform (GCC-PHAT) [5],

the steered-response-power (SRP) [6–8], subspace methods [9], and

deep-learning based methods [10–21]. Many of these methods,

such as GCC-PHAT, SRP and the subspace-based methods, origi-

nate from narrow-band antenna signal processing. They are agnostic

with respect to array geometry and directional properties, and can

handle multiple simultaneously active narrow-band sources. How-

ever, their localisation performance declines in the presence of re-

verberation and noise, because the summation of GCC coefficients

in GCC-PHAT or SRP exhibits spurious or broadened peaks, and the

constructed noise space as in MUSIC [9] may not correspond to the

true one (e.g., it may not be orthogonal to the signal subspace).

Deep neural networks (DNNs) have also been widely used in

sound source localisation [10–21]. There are broadly three differ-
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ent types of approaches. 1) DNNs are employed to enhance spa-

tial features, e.g, direct-path relative transfer function [19], interau-

ral phase difference (IPDs) [13], sound intensity vectors (IVs) [17],

and steering-response-power [22], which are then fed into an in-

dependent back-end localisation system. 2) Time-frequency (T-

F) masks related to a target source are estimated by a DNN and

used to weight noisy spatial features for the subsequent localisa-

tion task [11, 12, 14, 20]. 3) Noisy features are directly fed into a

DNN localisation model that incorporates some robust strategies,

such as head movements [10] or multicondition training for back-

end DNNs [10, 23]. Generally, the front- and back-end processes

in the above DNN-based approaches are decoupled, which may not

provide the best localisation performance. It has been demonstrated

that a joint end-to-end optimisation of the front- and back-end pro-

cesses can boost the performance of a downstream task [24].

This paper proposes a temporal attention-based binaural sound

source localisation system which robustly estimates the azimuth of a

speech source by jointly training a temporal attention mask estima-

tor and a sound localisation module in a multi-task learning fashion.

Instead of explicitly extracting binaural cues, the system uses a con-

volutional neural network (CNN) framework with 2-dimensional (2-

D) kernels that operate directly on the phase spectrum of the left and

right ear signals. Features derived from the magnitude spectrum are

fed into a temporal mask estimator (TME) to estimate masks which

are then used by an attention layer to combine the CNN-derived deep

localisation features across the time domain. These two modules are

jointly trained using multi-task learning to alleviate the mismatch

problem. Our evaluation shows that the proposed system is able to

accurately estimate the azimuth of a speech source in challenging

noisy and reverberant conditions.

The rest of this paper is organised as follows. Section 2 de-

scribes the proposed DNN-based binaural localisation system. The

experimental settings and the evaluation framework are introduced

in Section 3. Section 4 presents and discusses the experimental re-

sults and conclusions are given in Section 5.

2. SYSTEM DESCRIPTION

2.1. Binaural sound source localisation

The baseline system for binaural sound source localisation, illus-

trated in Fig. 1 (without the temporal attention (TAttn) layer), con-

sists of two stages. The first stage extracts localisation features from

phase spectra with four convolutional layers. The extracted features

are then passed to the second stage which uses three fully connected

layers to perform azimuth estimation as a classification task.

The input feature is the phase component from the short-term

Fourier transform (STFT) coefficients of both ear signals. The left-

and right-ear signals, indicated by ‘L’ and ‘R’ in Fig. 1, are directly
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Fig. 1. The architecture of CNN using phase spectrum for binaural sound azimuth estimation. ‘L’ and ‘R’ denote the left and right channels

respectively. The temporal attention layer may or may not be included in the network depending on different localisation systems.

used as inputs to the CNNs. The signals are sampled at 16 kHz and

framed with 20 ms window size and 10 ms overlap. In each frame,

the left and right channels are stacked together to form an input ma-

trix of size 2× 257 (512-point STFT). All phase values are wrapped

to [−π, π] and then normalised to [−1, 1] as inputs to the CNN. A

convolutional layer with 16 2-D kernels of size 2 × 9 is firstly em-

ployed to extract IPD-like features from input features, where 2 cor-

responds to the binaural channels and 9 corresponds to 9 frequency

bins. Next, the outputs from the first convolution layer are down-

sampled by a 1× 2 max pooling layer to reduce over-fitting and also

the computational cost. The down-sampled features are further pro-

cessed by the following three convolutional layers with kernel sizes

of 1×3, 1×3, 1×3 and channels of 16, 32, 32 respectively. The out-

puts of each layer is followed by 1× 2 max pooling and the rectified

linear unit (ReLU) activation. After the convolutional layers, each

frame-level features are flattened to one vector which is then either

combined with other feature vectors along time using a TAttn layer

or fed directly into three fully connected layers to perform azimuth

estimation. Each of the three dense layers consists of 512 hidden

units with ReLU activation and a dropout rate of 0.5.

2.2. Sound localisation with temporal attention

We propose to utilise temporal attention to integrate context infor-

mation embedded in temporal masks to improve the performance

of the baseline system. One intuitive idea is to weight the esti-

mated azimuth probabilities of each frame according to temporal

masks which represent the frame-level dominance of the target sig-

nal across time. The final probability vector is the average of these

weighed probabilities. This method is referred to as shallow inte-

gration, since it only uses temporal information to combine outputs

of the localisation system [25]. We propose a novel method for in-

tegrating the temporal information, referred to as deep integration

(Fig. 1), by inserting an intermediate layer into the CNN localisation

system that weights the deep features from the CNN.

A weighted average pooling layer is employed as a temporal

attention layer to combine frame-based deep features extracted by

the CNN feature extraction stage. This attention layer first uses the

softmax function to normalise temporal masks over all frames as

follows:

αt =
exp(et)∑

T

τ=1
exp(eτ )

, (1)

where et is the temporal mask value at frame t, and T is the to-

tal number of frames. The normalised attention score αt represents

the importance of each frame and is used to calculate the weighted

statistics of deep features. For each utterance, the weighted mean

vector is estimated as:

µ̃ =

T∑

t

αt · ht, (2)

where ht is the output features from the feature extraction CNN at

frame t. The final output of the pooling layer is given by the vectors

of the weighted mean µ̃.
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Fig. 2. The TME network topology. The dotted line box on the right

is the architecture of ‘CNN-Block’ used in the TME. T represents

the number of frames.

The TME network (Fig. 2) is adapted from a Voice Activity De-

tector (VAD) with the architecture proposed in SpeechBrain [26].

We discard the sigmoid output layer in the original VAD model so

that the TME works as a regression model that maps noisy acoustic

features to the corresponding oracle soft masks.

IRM(t) =
S2(t)

S2(t) +N2(t)
(3)

where S(t) and N(t) denote the magnitude spectrum of target and

interfering signals at the t-th time frame. IRM(t) is the oracle soft

mask of the t-th frame, which indicates the dominance of the target

signal in the frame. The mean squared error (MSE) loss function

Lmse is used for training the TME.
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Fig. 3. The framework of the proposed phase-based system using

temporal attention for binaural sound localisation. ‘L’ and ‘R’ rep-

resent speech spectrum of left and right ears respectively. ‘Mean’ is

the average operator across two-ear signals.

2.3. Multi-task learning for azimuth estimation

The estimated mask from the TME module is designed for source

separation, which is not necessarily the optimal mask for source lo-

calisation. To alleviate the potential mismatch between estimated

masks and the source localisation module, we propose a multi-task

learning strategy to jointly train the two modules, which encourages

the TME to output an optimal mask for the source localisation task.

The complete system is illustrated in Fig. 3. The TME and az-

imuth estimation network are first pre-trained separately. The train-

ing loss function for the joint-training system is a combination of

Lmse and Lce, corresponding to the TME and the azimuth estima-

tion network respectively. The final loss function is as follows:

Lmulti = β · Lmse + Lce (4)

where β is set to 0.005 heuristically through experiments on the val-

idation set.

3. EVALUATION

3.1. Datasets

The target speech signals were selected from the TIMIT Corpus [27].

All binaural signals were created using head-related impulse re-

sponses (HRIRs) or binaural room impulse responses (BRIRs). The

speech signals were spatialised across the full 180◦ azimuth range

in steps of 5◦. 30 sentences were randomly selected for each of the

37 azimuth locations from the TIMIT train and test subsets for creat-

ing the training and test sets, respectively. For training, the KEMAR

anechoic HRIRs [28] were used to simulate the free field condition.

Azimuths only in the front horizontal plane were considered. For

evaluation the Surrey BRIRs [29] were used to simulate different re-

verberant room conditions. The Surrey database was recorded using

a Cortex head and torso simulator (HATS) and includes four room

conditions with various amounts of reverberation. Table 1 lists the

reverberation time (T60), the direct-to-reverberant ratio (DRR) and

initial time delay gap (ITDG) of each room.

Since the training and testing set were created using the im-

pulse responses recorded from different dummy heads, multicondi-

tion training (MCT) was applied in the training phase to increase the

robustness of the localisation systems. Previous studies [10, 23, 30]

Table 1. Room properties of the Surrey BRIRs Dataset [29]

Room A Room B Room C Room D

T60(s) 0.32 0.47 0.68 0.89

DRR (dB) 6.09 5.31 8.82 6.12

ITDG (ms) 8.72 9.66 11.9 21.6

have shown that MCT improves robustness by introducing uncer-

tainty into the statistical models of binaural cues. Noise was also

added to the test data to evaluate the systems in different noisy con-

ditions. Noisy binaural signals were created by mixing a target sig-

nal at a specified azimuth with diffuse noise at randomly selected

signal-to-noise ratios (SNRs) within [0, 20] dB for training and at

fixed SNRs (0, 5, 10, and 20 dB) for testing.

3.2. Localisation systems

The baseline system was a state-of-the-art DNN-based localisation

system using GCC-PHAT features [15]. GCC-PHAT features were

computed as the inverse transform of the frequency domain cross-

correlation of two audio signals captured by a microphone pair.

MCT was also employed to the GCC-PHAT system to improve the

robustness to noise and reverberation.

Four different models were evaluated using the proposed frame-

work. The baseline model is shallow integration (Section 2.1) where

the frame-level output probabilities of the localisation system are in-

tegrated without the attention layer. The other three models were

deep integration systems which employed the temporal attention

layer. TAttn–E made use of temporal masks estimated by an inde-

pendently trained TME. TAttn–J was the joint optimisation network

where the TME and the azimuth estimation network were jointly

trained using the multi-task learning loss function (Eq. 4). Finally,

TAttn–O used normalised oracle temporal masks in the attention

layer to combine deep features. This system demonstrated the ceil-

ing performance of all the attention systems.

3.3. Experimental setup

The oracle masks for both training and testing were computed ac-

cording to Eq. 3. For training, the anechoic clean signals were used

as the ‘target’ signal, and the diffuse noise was considered as the

‘interferer’. For testing, since all four rooms contained reverbera-

tions, the pseudo-anechoic clean signals were used as the ‘target’,

created by truncating the original BRIRs before the first reflection

according to ITDGs (see Table 1). The ‘interferer’ was defined as

the remaining reflections and diffuse noise.

The CRNN-based TME network was pre-trained on the Libri-

Party dataset [26] (a synthetic cocktail-party scenario dataset derived

from LibriSpeech [31]) and heavily relied on data augmentation to

improve its robustness. The pre-trained model was then fine-tuned

on the training set according to oracle masks computed from ane-

choic and clean signals.

The Adam optimiser with a learning rate of 0.001 and a batch

size of 32 was employed. Training with a decreasing learning rate

was stopped after 50 epochs and early stopping was applied if no

improvement was observed on the validation set for 7 epochs.

The predictions made for each frame in a 1-sec chunk were av-

eraged to report a single azimuth for each chunk. Chunk-based eval-

uation was adopted in order to avoid the issue that a speech signal

typically includes short pauses where there is no directional sound

source. The azimuth corresponding to the largest posterior proba-

bility was selected as the estimated azimuth. The performance of



Table 2. Localisation RMSE in degrees for different systems in various conditions. Average is computed across rooms and SNRs.

Room A Room B Room C Room D
Avg.

SNR (dB) 20 10 5 0 20 10 5 0 20 10 5 0 20 10 5 0

GCC-PHAT 4.9 36.1 56.3 60.1 15.4 45.7 55.7 57.7 10.8 40.5 55.4 60.4 15.8 45.0 57.9 64.3 42.6

+ MCT 2.0 5.9 7.0 9.2 1.6 5.4 8.7 13.3 3.2 5.9 7.1 20.3 2.6 5.1 6.3 13.3 7.3

Shallow 3.3 6.1 8.2 13.6 2.7 4.6 7.4 16.1 2.9 4.9 7.2 19.9 3.3 5.4 8.0 19.6 8.3

TAttn–E 1.6 1.8 5.5 15.3 1.0 5.2 4.8 15.2 2.2 2.2 3.2 9.0 1.8 2.1 5.1 19.0 5.9

TAttn–J 1.6 1.8 2.9 7.9 1.1 1.6 5.1 12.7 2.1 2.1 2.9 11.8 1.9 2.1 3.8 9.0 4.4

TAttn–O 1.6 1.8 2.5 13.0 1.0 1.4 3.2 10.9 2.2 2.2 2.7 6.0 1.8 2.0 2.8 13.3 4.3

Table 3. Localisation accuracy (%) for different systems in various conditions. Average is computed across rooms and SNRs.

Room A Room B Room C Room D
Avg.

SNR (dB) 20 10 5 0 20 10 5 0 20 10 5 0 20 10 5 0

GCC-PHAT 99.4 74.3 41.1 20.6 96.3 59.4 32.7 19.0 97.2 62.9 34.2 17.9 96.0 64.5 35.6 19.9 54.4

+ MCT 99.8 97.8 93.6 85.3 99.5 95.7 92.8 83.3 99.8 97.8 92.2 80.9 99.6 94.9 91.5 81.6 92.9

Shallow 99.7 96.9 90.8 80.4 99.8 96.0 90.3 78.6 99.9 98.3 94.2 75.3 99.8 97.6 90.7 72.1 91.3

TAttn–E 100 99.8 97.9 86.4 100 99.8 96.5 82.4 100 99.5 97.8 83.2 100 99.5 97.7 78.0 94.9

TAttn–J 100 100 98.6 89.3 100 99.9 97.7 88.7 100 99.7 97.9 90.7 100 99.6 98.4 90.4 96.9

TAttn–O 100 99.9 98.9 91.3 100 99.9 98.0 88.7 100 99.8 98.5 90.6 100 99.6 98.7 87.0 96.9

the models was reported using two metrics: root mean square error

(RMSE) in degrees and localisation accuracy (LocACC). The Lo-

cACC was measured by computing the absolute distance between

the ground-truth source azimuth and the estimated azimuth with a

threshold of 5◦.

4. RESULTS AND DISCUSSION

Tables 2 and 3 list the localisation RMSE and LocACC results across

different SNRs and reverberant conditions, respectively. In general,

the performances of all systems decreased as the SNR decreased.

Across different room conditions, the systems performed worse in

the more reverberand Room B (lowest DRR) and Room D (longest

reverberation time).

The GCC-PHAT baseline without MCT performed poorly in

conditions where the SNR was lower than 20 dB or the reverbera-

tion was strong (e.g. room B). When trained with MCT, the GCC-

PHAT system’s performance greatly improved and in most condi-

tions it achieved a similar accuracy to the Shallow system. This is

expected as both the GCC-PHAT and the Shallow systems employed

phase-based features. However, as the level of noise and reverbera-

tion increased, their performance started to decrease and the benefit

of the temporal attention became more apparent. All the deep inte-

gration systems achieved significantly higher localisation accuracy

than the shallow integration systems, especially in low SNR condi-

tions (≤10 dB).

The TAttn–E system, which employed estimated masks in the

attention layer, performed reasonably well at high SNRs when com-

pared to the TAttn–O system, which employed oracle masks. Both

systems performed well at SNRs above 10 dB, achieving close to

100% accuracy. At high SNRs, since the speech source dominated in

most frames the errors in estimation of temporal masks may not have

a significant impact on the localisation accuracy. However, in more

adverse conditions (SNR ≤ 10 dB, especially in the more reverber-

ant rooms B and D), the performance of TAttn–E became worse. In

these conditions, the mask estimation errors started to have a more

negative impact on the localisation performance and a better error-

tolerance strategy was needed.

By jointly training the mask estimation network and the sound

localisation network, the TAttn–J system was able to significantly

reduce the localisation errors over the TAttn–E system. The biggest

error reduction was again achieved at lower SNRs and in the more re-

verberant rooms B and D. On average, the TAttn–J system achieved

results very close to the TAtten–O system, which employed oracle

masks, both in RMSE (4.4◦ vs 4.3◦) and in LocACC (96.9% vs

96.9%). This is likely due to alleviation of the mismatching issue

between the TME mask and the sound localisation task during the

joint training, which could learn to produce more optimised masks

for the sound localisation task.

5. CONCLUSIONS

This paper has proposed a novel binaural machine hearing system

that employs temporal attention for robust sound localisation in

noisy and reverberant conditions. Instead of enhancing the signal

or weighting the output probabilities, the temporal attention layer

operates on frame-level deep features within the localisation DNN.

By jointly optimising the localisation process and the temporal mask

estimation process in a multi-task learning fashion, the proposed

TAtten–J system has the opportunities to reduce the mismatch in

the two processes and employs masks that are more suitable for the

sound localisation task.

Our evaluation in different SNRs and room conditions using

the Surrey database has shown that the jointly optimised attention-

based system is more accurate in localising sound sources than the

attention-based localisation system with separately estimated masks,

especially in more reverberation and noisy conditions. The perfor-

mance is also significantly better than the GCC-PHAT baseline and

the shallow-integration system.

Future work will focus on extending the system to employ

spectro-temporal attention, which would be useful particularly for

narrow-band intrusions where the localisation network may need to

disregard a band of frequencies. We will also explore a more inte-

grated approach to mask estimation and sound localisation by ex-

ploiting azimuth-based embedding in mask estimation.
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