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Abstract

The median-preserving spread (MPS) ordering for ordinal variables (Allison and Foster,

2004) has become ubiquitous in the inequality literature. We devise statistical tests of the hy-

pothesis that a distribution G is not an MPS of a distribution F . Rejecting this hypothesis

enables the conclusion that G is more unequal than F according to the MPS criterion. Monte

Carlo simulations and novel graphical techniques show that a simple, asymptotic Z test is suffi-

cient for most applications. We illustrate our tests with two applications: happiness inequality

in the US and self-assessed health in Europe.
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1 Introduction

Health and wellbeing, educational qualifications, standards of sanitation, credit ratings, and per-

ceived corruption are all examples of ordinal variables studied by social scientists. These variables

take values which can be ordered, but not quantified. For example, the EUROSTAT Survey on

Incomes and Living Conditions asks respondents to rate their happiness on a five-point scale from

(1) very bad, to (5) very good. Movements up the scale correspond to improvement in happiness,

but the size of the improvement in moving from, say, ‘very bad’ to ‘bad’ may not be the same

as that in moving from ‘good’ to ‘very good’. We know that some standard summary statistics,

such as the mean and variance, cannot be meaningfully applied to such variables (Stevens, 1946).

For instance, Allison and Foster (2004) show that the choice of scale can determine which of two

ordered multinomial distributions has the higher variance.

A number of authors have responded to this problem by developing purpose-made inequal-

ity indices for ordinal variables which are not sensitive to arbitrary scale choices (see Silber and

Yalonetzky, 2021, for a review). Many of these indices (Apouey, 2007; Abul Naga and Yalcin,

2008; Kobus and Milos, 2012; Chakravarty and Maharaj, 2015; Lazar and Silber, 2013; Reardon,

2009) respect the “median-preserving spread” partial ordering of Allison and Foster (2004).1 A

distribution G is a median-preserving spread (MPS) of a distribution F (‘F and G are ordered’)

if F and G share a common median and if the probability mass of G lies further away from the

median category than F’s (i.e. G has ‘thicker tails’ than F). Therefore, if (and only if) G is an MPS

of F , then G is deemed more unequal than F , according to all of these inequality indices (Kobus,

2015), in much the same way that two cardinal distributions being ordered by mean-preserving

spread implies that one is in every sense riskier than the other (Rothschild and Stiglitz, 1970).

Accordingly, the MPS ordering has become popular in its own right for inequality compar-

isons in the empirical literature (e.g. Dutta and Foster (2013), Balestra and Ruiz (2015), Madden

(2010)). However, these studies draw their conclusions by observing MPS-ordered samples of or-

dinal variables, without carrying out formal statistical inference. Thus, it is unclear whether the

populations underlying these samples are really ordered, or the observed orderings are merely a

1The MPS partial ordering is itself a special case of Mendelson (1987)’s “quantile-preserving spread”; see section 6.
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result of random sampling.

We help to improve on this uncertainty by devising a family of four statistical tests of the null

hypothesis that G is not an MPS of F . We phrase the null hypothesis in this way because researchers

are usually interested in the finding that one distribution is more unequal than another. By rejecting

the hypothesis that G is not an MPS of F , the researcher is able to conclude that G is an MPS of

F , and therefore that G is more unequal than F in a very robust sense.2 Each of our four tests

is characterised by a test statistic (Likelihood Ratio (LR) or Standardised (Z)), and a method of

approximating the distribution of the test statistic under the null (asymptotic or bootstrap). Thus,

our family includes both an easy-to-implement test (the asymptotic Z test), and a theoretically-

most-attractive test (the bootstrap LR test, see e.g. Davidson and Duclos (2013)), as well as the two

intermediate tests.

A natural question arises as to whether and when to prefer the theoretically-most-attractive test

over the easy-to-implement test. We answer this by conducting a series of Monte Carlo experiments

to compare our tests’ performance. We find that all the tests are correctly sized in most cases,

although, asymptotic inference can be somewhat oversized when sample sizes are very small or

unbalanced. In most other cases, we find little practical difference between the tests in terms of

size or power. This finding justifies using the easy-to-implement test in most applications.

Thirdly, we develop new graphical tools for illustrating the null hypothesis of no-ordering, and

for comparing the size and power properties of our tests. The set of null distributions is at first hard

to visualise because it is defined by the negation of a partial ordering of two ordered multinomial

variables. But we show that it can be easily portrayed in the unit square. Moreover, the boundary of

our null hypothesis is the union of two sets: one where the so-called median condition of the MPS

fails, and one where the MPS’ so-called dominance conditions fail. But by focusing on binomial

distributions, we are able to give a representative graphical depiction of the size and power of our

tests in and around the boundary.

The closest prior research to ours is Gunawan et al. (2018). They conduct Bayesian inference by

assuming a uniform prior over all possible distributions and using the observed sample to calculate

2See Davidson and Duclos (2013) for a similar framing of the null and alternative hypotheses.
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the respective posterior probabilities that a pair of distributions is or is not ordered. We, on the

other hand, conduct frequentist inference which relies exclusively on the data to assess whether

there is evidence that the distributions are ordered. Yalonetzky (2013) devises an asymptotic test

for first-order stochastic dominance with ordinal variables, which we extend by both testing for

equality of the medians, and by reversing the order of the dominance relation above and below the

common median. Our work is also related to Abul Naga and Stapenhurst (2015) and Abul Naga

et al. (2020): while they perform inference on a random variable derived from a particular class of

indices consistent with the MPS ordering, we perform inference on the binary outcome given by

the partial ordering itself.

The rest of the paper proceeds as follows. Section 2 formally defines the MPS partial ordering,

motivates our null hypothesis, and introduces a novel graphical representation of the parameter

space. Section 3 develops our proposed statistical tests. Section 4 compares the size and power

properties of the four tests with a series of Monte Carlo experiments. Section 5 demonstrates the

broad usefulness of our tests in two applications covering happiness in the United States and self-

assessed health in Europe. Finally section 6 offers some concluding remarks.

2 The Null Hypothesis

After presenting the notation, this section defines Allison and Foster (2004)’s MPS partial ordering

and describes our null and alternative hypotheses. Then we introduce a novel graphical technique

for locating pairs of distributions relative to the null and alternative hypotheses.

2.1 Notation

Let k ∈ N denote the number of ordered categories and {1, . . . ,k} denote the set of categories. We

focus on a pair of samples (x,y) of respective sizes nx and ny. Each sample is a vector of frequencies

which add up to the sample size, for example x = (x1, . . . ,xk) ∈ N
k
0 and ∑

k
i=1 xi = nx.3 Since the

states are ordered we can define the cumulative sums X = (∑1
i=1 xi, . . . ,∑

k
i=1 xi = nx) of x; with Y

3
N0 = {0,1,2, ...}.
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defined analogously for y. We use X[i] := (X1, . . . ,Xi) to denote the first i cumulative sums of X .

The sample space is then X (k,nx,ny) = {(x,y) ∈ N
k
0 ×N

k
0 | Xk = nx and Yk = ny}. The combined

sample is denoted by W = X +Y with combined sample size nx +ny.

Our ultimate goal is to perform inference on the pair of distributions ( f ,g) underlying the

pair (x,y). Specifically, x ∼ f and y ∼ g where fi (respectively gi) denotes the probability that

any particular observation from population f (respectively g) falls into category i. We denote

their cumulative distribution functions (henceforth CDF) by F = (∑1
i=1 fi, . . . ,∑

k
i=1 fi = 1) and G =

(∑1
i=1 gi, . . . ,∑

k
i=1 gi = 1) respectively. Let L = (L1, . . . ,Lk) :=W/(nx+ny) be the sample-weighted

average empirical distribution function (EDF).

The parameter space involving all possible pairs of distributions with a given natural number of

categories, k > 1, is defined by:

Θ := {( f ,g) ∈ [0,1]k × [0,1]k | Fk = Gk = 1}.4

A generic parameter vector is denoted by θ = ( f ,g) ∈ Θ. Samples x and y are drawn from inde-

pendent ordered multinomial distributions, so the likelihood of (x,y) given θ is:

Pθ [x,y] :=
nx!

∏
k
i=1 xi!

k

∏
i=1

f
xi

i

ny!

∏
k
i=1 yi!

k

∏
i=1

g
yi

i .

Also note that ( x
nx
, y

ny
) ∈ Θ.

2.2 Median Preserving Spreads

We define the median of F to be a category m ∈ {1, . . . ,k} such that Fm−1 < 0.5 and Fm ≥ 0.5.

We assume a unique median category for the purposes of exposition, but all the results generalise

to cases with multiple median categories.5 Allison and Foster (2004) discuss the difficulties of

defining suitable measures of dispersion for ordinal variables. They propose the partial ordering

over the sample space X which ranks distributions according to their spread. Here we define the

analogous partial ordering for a pair of distributions:

4Even though the sample size (nx,ny) is normally considered a parameter of the multinomial distribution, we do

not consider it as such because in our applications it is fixed (e.g. by survey design).
5For the case of median-preserving spreads with multiple median categories see Kobus (2015).
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Definition 1 (Median Preserving Spread). Let ( f ,g) ∈ Θ. We say that g is a strict median preserv-

ing spread (MPS) of f , or that f and g are ordered, and write g ≻ f , if and only if there exists a

category m such that all the following conditions hold:

[M1] Gm−1 <
1
2

[M2] 1
2
< Gm

[D1] Gi > Fi for all i ∈ {1, . . . ,m−1}

[D2] Gi < Fi for all i ∈ {1, . . . ,k−1}\{1, . . . ,m−1} .

We call f the concentrated distribution and g the spread distribution. If g is not an MPS of f then

f and g are unordered, and g ̸≻ f . If one or more of the inequalities holds with equality then we

say that g is a weak MPS of f and write g ⪰ f . A pair of samples (x,y) ∈ X is ordered if and only

if the distributions x
nx

and
y
ny

are ordered.

Note that these four conditions together imply that F has has the same median, m, as G.

2.3 The ‘No Ordering’ Hypothesis

We propose tests of the null hypothesis that g is not a strict MPS of f because we are mainly

interested in situations where x and y are ordered and want to confirm whether this is indicative

of an ordering in the underlying populations. Following Davidson and Duclos (2013), if we reject

the null hypothesis that the populations are not ordered, then we logically conclude that they are

ordered.

The set of null distributions is the subset of all parameter values such that g is not a strict MPS

of f :

Θ0 = {( f ,g) ∈ Θ | g ̸≻ f}. 6

A generic null distribution is denoted by θ0 ∈ Θ0.

6The set Θ0 is rotationally symmetric, meaning that reversing the ordering of the categories does not alter the MPS

partial ordering of the original distributions. Therefore, all the tests we propose are invariant to reverse ordering of the

categories.

6



The set of alternative distributions is the complement of the set of null distributions, which is

equivalent to the set of all ordered pairs:

Θ1 := Θc
0 = {( f ,g) ∈ Θ | g ≻ f}

A generic element of Θ1 is denoted by θ 1. When the context is clear, we sometimes refer to Θ0 as

the ‘null hypothesis’, and to Θ1 as the ‘alternative hypothesis’.

We can graphically depict a two dimensional projection of the null and alternative hypotheses

relative to the whole parameter space. Specifically, a pair of distributions ( f ,g) ∈ Θ can be written

as a set of k pairs of cumulative frequencies (Fi,Gi). Figure 1 plots the pairs of coordinates of

distributions F = (3/24,9/24,17/24,21/24,1) and G = (7/24,11/24,15/24,17/24,1) in the unit

square. The median category of F (respectively G) is given by the state corresponding to the first

coordinate to the right of the vertical (respectively horizontal) line at 1
2
. We know the two distri-

butions share the same median category (m = 3) because all the coordinates lie in the south-west

and north-east quadrants. Any pair of distributions with a coordinate in either the north-west or

south-east quadrants do not share the same median and therefore cannot be ordered. Similarly,

we can see that f first-order dominates g below the median and g first-order dominates f at and

above the median because all the coordinates lie in the interiors of the two triangles with vertices

(0,0),(1
2
, 1

2
),(0, 1

2
) and (1,1),(1

2
, 1

2
),(1, 1

2
), labelled Θ1 in figure 1. It follows from definition 1 that

g is an MPS of f . In general, ( f ,g)∈Θ1 if and only if their coordinates are all contained in the trian-

gles labelled Θ1. Conversely ( f ,g) ∈ Θ0 if and only if at least one of their coordinates is contained

outside of these triangles, in either of the parallelograms with vertices (0, 1
2
),(0,1),(1,1),(1

2
, 1

2
)

and (0,0),(1,0),(1, 1
2
),(1

2
, 1

2
), labelled Θ0 in figure 1.

[Figure 1 near here]

The boundary of the null hypothesis plays an important role in the proposed tests. Firstly, the

Constrained Maximum Likelihood Estimator (CMLE) lies in the boundary of the null hypothesis.

We will use the CMLE both to calculate the likelihood ratio statistic, and to draw bootstrap samples

when carrying out bootstrap inference. Secondly, when we study the empirical size of the tests, we

will choose data-generating processes in the boundary of the null hypothesis in order to provide an

upper bound on the size of the tests of distributions in the interior of the null hypothesis. Thirdly,
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when we study the power of the tests, we will compare the rejection rates of distributions in the

alternative hypothesis with rejection rates of the corresponding ‘closest null’ distributions, which

lie in the boundary of Θ0.

We characterise the boundary of the null hypothesis as the union of two sets.

Definition 2. The median subset of the boundary of Θ0 (henceforth ‘median boundary’) is the set

of all weakly ordered distributions for which at least one of the median constraints in definition 1

hold with equality:

M̄ = {(F ,G) ∈ Θ | F ⪰ G and Gi =
1

2
for some i ∈ {1, . . . ,k}}.

The dominance subset of the boundary of Θ0 (henceforth ‘dominance boundary’) is the set of all

weakly ordered distributions for which at least one of the dominance constraints in definition 1 hold

with equality:

D̄ = {(F ,G) ∈ Θ | F ⪰ G and Fi = Gi for some i ∈ {1, . . . ,k}}.

The boundary can now be characterised:

Lemma 1. The boundary of the null hypothesis is equal to the union of the median and dominance

boundaries:

∂Θ0 = M̄∪ D̄.

Proof. See appendix A.

A pair of distributions lies on the median boundary if and only if it has one or more coordinates

lying on the horizontal dashed line intersecting the vertical axis at (0,0.5) in figure 1, and all other

coordinates lying in the interior of Θ0 triangles. Similarly, a pair of distributions lies on the domi-

nance boundary if and only if it has one or more coordinates lying on the 45◦ dashed line in figure

1, and all other coordinates lying in the interior of Θ0 triangles. Examples of distributions on the

median and dominance boundaries appear in figure 1.
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3 Statistical Tests

A statistical test can be regarded as a function p : X → [0,1] returning a p-value for every sample

in the sample space X . The p-value describes the probability of observing a sample ‘as extreme’

as (x,y) when the null hypothesis is true, so a low p-value can be taken as evidence that the null

hypothesis is false. If the p-value is less than α ∈ (0,1) then we ‘reject the null hypothesis at the

100α% level.’

A test statistic is a function S : X →R which formalises what it means for one sample to be ‘as

extreme’ as another by associating each sample with a real number: sample (x′,y′) is more extreme

than (x,y) if S (x′,y′)≥S (x,y). Thus we consider four tests of the form T (x,y) =PΘ0
[S (x′,y′)≥

S (x,y)]. The remainder of this section discusses our choices of test statistic (LR or Z) and the

method of inference (asymptotic or bootstrap).

3.1 Test Statistics

The LR Statistic The log likelihood ratio (LR) statistic is a natural choice due to its intuitive

construction and well-known optimality in terms of uniform power (see section 4.2). The LR

statistic of a sample (x,y) is the ratio of its unconstrained maximum likelihood function to the

CMLE, its constrained counterpart under the null.

Definition 3. The log likelihood ratio (LR) statistic of a sample (x,y) is given by:

LR(x,y) := 2[ln(Pθ∗ [x,y])− ln(Pθ̃ [x,y])] (1)

where θ ∗ ∈ argmaxθ∈ΘPθ [x,y] is the maximum likelihood estimator (MLE), and θ̃ ∈ argmaxθ∈Θ0
Pθ [x,y]

is the CMLE.

We necessarily have LR(x,y)≥ 0. Lemma 2 derives closed form expressions for the MLE and

CMLE.

Lemma 2.

1. The MLE of a sample (x,y) is given by

θ ∗ = (x/nx,y/ny).
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2. If x is not a strict MPS of y, then the CMLE is given by

θ̃ = (x/nx,y/ny)

and LR(x,y) = 0.

3. Otherwise, if x is a strict MPS of y, then the CMLE is given by either one of the following

k−1 dominance-constrained distributions {θ̃
D j} j∈{1,...,k−1} ∈ D̄ defined by:

θ̃
D j

i = ( f̃
D j

i , g̃
D j

i ) =















(

xi

X j
L j,

yi

Y j
L j

)

if i ≤ j

(

xi

nx−X j
(1−L j),

yi

ny−Y j
(1−L j)

)

otherwise;

or else it is one of the following two median-constrained distributions, {θ̃
M j} j=m−1,m ∈ M̄

defined by:

θ̃
M j

i = ( f̃
M j

i , g̃
M j

i ) =















(

xi

nx
, yi

2Y j

)

if i ≤ j

(

xi

nx
, yi

2(ny−Y j)

)

otherwise.

The likelihood ratio statistic is then given by

LR(x,y) = 2ln

{

Pθ∗ [x,y]

max{Pθ̃ D1 [x,y], ...,Pθ̃ Dk−1 [x,y],Pθ̃ Mm−1 [x,y],Pθ̃ Mm [x,y]}

}

.

Proof. See appendix A

In lemma 2, the multiple cases arise from a Karush-Kuhn-Tucker optimization problem where,

depending on the regime of binding constraints, we obtain the various solutions above. A large like-

lihood ratio is evidence that the constraint is hard to satisfy therefore rendering the null hypothesis

unlikely to be true.

The Z Statistic Z statistics have been used in tests of stochastic dominance for multivariate dis-

tributions of ordinal variables (e.g. Yalonetzky, 2013). Let σ̂Y
i =

√

[(Yi/ny)(1−Yi/ny)]/ny be the

standard error of the sample cumulative frequency Yi/ny (with an analogous definition for the stan-

dard error of Xi/nx) and σ̂L
i =

√

Xi(1−Xi/nx)+Yi(1−Yi/ny)

(nx+ny)2 be the standard error of the pooled sample’s

cumulative frequency Li. Then consider the Z statistic in definition 4:
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Definition 4. The Z statistic for a multinomial sample (x,y) is given by:

Z(x,y) = min
{

Z<
D ,Z≥

D ,ZM

}

,

where:7

Z<
D := min

{

Yi

ny
− Xi

nx

σ̂L
i (

nx+ny√
nxny

)
: i < my

}

,

Z≥
D := min

{

Xi

nx
− Yi

ny

σ̂L
i (

nx+ny√
nxny

)
: my ≤ i < k

}

and

ZM := min
{0.5− Ymx−1

ny

σ̂Y
mx−1

,

Ymx

ny
−0.5

σ̂Y
mx

}

.

The term ZM is positive if and only if mx = my (corresponding to conditions [M1] and [M2]

in definition 1 for the population counterparts). Hence ZM is helpful to test the equality of the

population medians, which is necessary (but insufficient) to establish an MPS ordering.

The term Z<
D is the minimum among all the standardised distances of sample cumulative fre-

quencies Y -X below my; whereas Z≥
D is the minimum among all the standardised distances of sam-

ple cumulative frequencies X-Y at and above my. Note the similarities with their (unstandardised)

population counterparts in conditions [D1] and [D2], respectively. The three statistics are jointly

positive, and hence Z is positive, if and only if the sample counterparts of conditions [D1], [D2],

[M1] and [M2] hold together. That is, Z is positive if and only if Y ≻ X .

By way of numerical illustration, consider the following ordered samples of happiness distribu-

tions in the US: x = (154,765,450) for 2002 and y = (218,789,599) for 1972 (Dutta and Foster,

2013, table 1).8 In order to compute the statistics in definition 4, we calculate X = (154,919,1369)

(with nx = 1369), Y = (218,1007,1606) (with ny = 1606), L = (0.125,0.6474,1). From these

statistics we can compute X/nx = (0.113,0.671,1), Y/ny = (0.136,0.627,1), σ̂L
1 = 0.0061, σ̂L

2 =

0.0088, σ̂Y
1 = 0.0085, σ̂Y

2 = 0.0121.

7σ̂L
i

(

nx+ny√
nxny

)

is the pooled-sample formula for the standard errors of Yi/ny −Xi/nx and Xi/nx −Yi/ny under the null

hypothesis that (Yi/ny = Xi/nx).
8For more details on this application see section 5.
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Then, because my =mx = 2, we must compute the following Z-statistics: Z<
D = 0.136−0.113

0.0061( 1369+1606√
1369∗1606

)
=

1.9121; Z≥
D = 0.671−0.627

0.0088( 1369+1606√
1369∗1606

)
= 2.5216; ZM = min

{

0.5−0.136
0.0085

, 0.627−0.5
0.0121

}

= 10.5263. Finally, we

get: Z(x,y) = min
{

Z<
D ,Z≥

D ,ZM

}

= 1.9121.

3.2 Inference

The ideal choice of null distribution (Lehmann and Romano, 2005) is that which maximises the

probability of the upper contour set {x′,y′ | |S (x′,y′)| ≥ |S (x,y)|}, namely

θ0 ∈ argmax
θ∈Θ0

Pθ [|S (x′,y′)| ≥ |S (x,y)|],

because this choice ensures that the test always has the correct size (see section 4.1). To the best of

our knowledge, there is no analytical expression for it in the context of tests involving our specific

null hypothesis, and numerical solutions are computationally intensive. Instead, we follow the

standard approach (e.g. Davidson and Duclos (2013)) of using the CMLE of the observed sample

θ0 = θ̃ , characterised in lemma 2.

We approximate the probability Pθ0
[|S (x′,y′)| ≥ |S (x,y)|] by using either the asymptotic or

the bootstrapped distribution of the test statistics. The following theorem will be important for the

purpose of asymptotic inference.

Theorem 1 (Asymptotic distributions of test statistics under the null). Suppose the true distribution

pair lies in the boundary characterised in lemma 1, so that (x,y)∼ θ0 ∈ ∂Θ0, then:

1. LR(x,y)
d−→ χ2(1), and

2. Z(x,y)
d−→ N (0,1).

Hence if θ0 lies in the boundary of the null hypothesis, point 1 of the theorem states that the

LR statistic converges to a chi-squared variable with one degree of freedom. The one degree of

freedom in the chi-squared distribution stems from the difference between the dimensions of the

constrained and unconstrained maximum likelihood solutions (Mood et al., 1974, p. 440).9 In the

9See lemma 2 in appendix A.
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case where θ0 lies in the interior of the null hypothesis, then the LR statistic will generally be lower

than for distributions in the boundary, therefore the distribution of the statistic will be first-order

stochastically dominated by the χ2(1) distribution. We refer the reader to Davidson and Duclos

(2013, p. 105). Likewise, the Z statistic is asymptotically standard normal when θ0 lies in ∂Θ0,

but otherwise is bounded by N (0,1). We suggest in practice to approximate the p-value of a

sample (x,y) by 1−Φ[S (x,y)], where Φ denotes the CDF of N (0,1) and χ2(1) distributions,

respectively. Thus, as we document in our Monte Carlo investigations, the size of the test can be

expected to be smaller than the associated nominal value.

Instead of calculating the test statistic of all the samples in the sample space, bootstrap tests

approximate the distribution of the test statistic by its empirical distribution in a set of B samples

{(xi,yi)}i∈{1,...,B}, each independently drawn from (x,y). The p-value of a sample (x,y) is then

approximated by #{(xi,yi) | S (xi,yi)≥ S (x,y), i ∈ {1, . . . ,B}}/B.

Proposition 1 (Bootstrap p-values under the null; Davison and Hinkley (1997)). Suppose the true

distribution pair lies in the set of null distributions, so that (x,y)∼ θ0 ∈Θ0 as well as (xi,yi)∼ θ0 ∈

Θ0 for all i ∈ {1, . . . ,B} where B ∈ N0, then the bootstrap p-values for a given statistic S (x,y)

are:

TBS (x,y) = #{(xi,yi) | |S (xi,yi)| ≥ |S (x,y)|, i ∈ {1, . . . ,B}}/B.

Combining the two test statistics with these two methods of approximation gives a family of

four tests and respective p-values:10

1. Asymptotic Z test: TAZ(x,y) = 1−Φ(Z(x,y)).

2. Asymptotic LR test: TALR(x,y) = 1−χ2(LR(x,y);1).

3. Bootstrap Z test: TBZ(x,y) = #{(xi,yi) | Z(xi,yi)≥ Z(x,y), i ∈ {1, . . . ,B}}/B.

4. Bootstrap LR test: TBLR(x,y) = #{(xi,yi) | LR(xi,yi)≥ LR(x,y), i ∈ {1, . . . ,B}}/B.

In the next section we use Monte Carlo simulations to investigate the size and power properties of

these four tests.

10Code implementing all four tests in R is available at https://cstapenhurst.academic.ws/projects/1551.
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4 Size and Power

In this section we introduce novel graphical tools, namely the size-boundary curve for the study of

test size, and the power-locus curve for the study of test power. We adopt the standard practice of

using Monte Carlo experiments to construct the empirical distribution of p-values produced by the

tests.11 Specifically, we draw M = 100,000 independent samples (xi,yi) from sets of judiciously

chosen data generating processes (DGPs) θ ∈ Θ, and calculate all the p-values, {T (xi,yi)}i∈{1,...,M}

for each test T . The rejection rate of a nominal size α test at θ is then estimated by #{(xi,yi) |

T (xi,yi)≤ α}/M.

We focus on DGPs with just two categories, i.e. k = 2. This class of DGPs is easy to visualise

because it is mathematically equivalent to the unit square, with f1 on one axis and g1 on the other.

The median boundary is equivalent to the horizontal line intersecting the vertical axis at (0,0.5)

and the dominance boundary is equivalent to the 45◦line. Because the boundary is unidimensional

it is easy to show how rejection rates vary along it. Similarly, we are able to identify a unidimen-

sional ‘interior locus’ which allows us to illustrate how power varies against different DGPs in the

alternative hypothesis. We argue in section 4.3 that the behaviour of the tests in the k = 2 case is

indicative of behaviour in higher dimensions.

4.1 Size

If a test T satisfies the inequality Pθ 0
[T (x,y) < α] ≤ α for all null distributions θ ∈ Θ0, then

we say that it is correctly sized at level α; otherwise it is oversized. A standard size curve plots

the actual (empirical) rejection rate of a test against its nominal size for a given null distribution.

However the intricacies of our null hypothesis are difficult to capture with a small selection of null

distributions. Instead, we build a comprehensive picture of behaviour in the boundary, by holding

the nominal size constant at the 5% level and plotting the empirical size of our tests against a grid

of different DGPs in the boundary of the k = 2 null hypothesis, for a range of sample sizes. Our

11Code replicating these experiments in R is available at https://cstapenhurst.academic.ws/projects/

1551.
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tests will have higher rejection rates on the boundary than anywhere else in the null hypothesis, so

this procedure gives an upper bound on the actual size of the tests. Figure 2 illustrates the DGP’s

used for the cases nx = ny = 10,100,1000. Our interest in small sample sizes, and more specifically

in small ratios of nx to ny is three fold: (a) to investigate the relative merits of the bootstrap versus

asymptotic inference in relation to size and power of Z and LR tests; (b) to explore lower bounds

on sample size in relation to the performance of the tests; and (c) to highlight the asymmetric role

of sample sizes of the spread distribution (ny) and the concentrated distribution (nx) in the statistical

performance of the four tests.

[Figure 2 near here]

Results Figure 3 shows the rejection rate of all four tests at the 5% nominal level, as a function

of the first coordinate of the boundary DGPs. In each panel, the first half of the horizontal axis,

from 0 to 0.5, corresponds to the median boundary (moving along the horizontal dotted line from

coordinate (0,0.5) to (0.5,0.5) in figure 2) ; and the second half of the horizontal axis, from 0.5 to

1, corresponds to the dominance boundary (moving along the diagonal dotted line from coordinate

(0.5,0.5) to the origin in figure 2). The intersection of the median and dominance boundaries,

coincides with the point 0.5 (the kink of the dotted line in the middle of figure 2). From top-left

downward and rightward, panels in row i show results for nx = 10i while panels in column i show

results for ny = 10i, where i = 1,2,3.

The tests are correctly sized in most cases. The main exceptions arise when sample sizes are

highly asymmetric (i.e. (nx,ny)=(10,1000) or (1000,10)) and when there are severe class imbalances

(i.e. at the endpoints of the boundary). In such instances, bootstrap tests can reject as much as 6.5%

of the time.

Other than this, the test results are rarely substantially different. The most pronounced differ-

ence occurs when nx is very small (around 10). In this case, the size of the asymptotic LR test can

be more than double its nominal size on the dominance boundary. Finally, we note that the asymp-

totic Z test can be slightly oversized when ny is smaller than nx and, in a few cases, the bootstrap

tests are less oversized than their asymptotic counterparts.
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The rejection rates of all tests drop to zero near the intersection of the median and dominance

boundaries, especially when the sample size of the less concentrated distribution is small. The

region of the boundary where the rejection rate drops to zero vanishes as the sample sizes increase.

The lower rejection rates vis-a-vis those in other points in the boundary are not surprising: for

points other than (0.5,0.5), the proportion of neighbouring distributions that belong to the null and

alternative hypotheses are of equal size, namely 1/2 and 1/2. However, at (0.5,0.5), the proportion

of neighbouring distributions that belong to the set of null distributions is now equal to 3/4, whereas

the proportion of neighbouring distributions that belong to the alternative hypothesis is now equal

to 1/4. For this reason, the probability of a sample with an empirical distribution in the set of null

distributions is more likely, leading to fewer rejections of the null hypothesis.

4.2 Power

Besides correct size, the other crucial property for statistical tests is the ability to distinguish be-

tween true and false hypotheses, known as the ‘power’ of the test. Davidson and MacKinnon

(1998) propose to assess power by plotting ‘size-adjusted’ size-power curves. These curves are

constructed by plotting the rejection rate for a distribution in the alternative hypothesis against the

rejection rate for the closest corresponding null distribution.

For a given alternative distribution θ = ( f ,g) ∈ Θ1 and sample size (nx,ny) specified for the

power assessment, we define the closest null distribution by

argmax
( f ′,g′)∈Θ0

k

∑
i=1

[nx fi log( f ′i )+nygi log(g′i)].

This expression is derived from the formula for the CMLE of a sample12 (x,y) in definition 3, but

noting that the sample (x,y) is replaced by a ‘pseudo sample’ (nx f ,nyg). This pseudo sample has

empirical distribution equal to the alternative distribution of interest and the same sample sizes

specified for the power assessment. We add the ‘pseudo’ qualification because, unlike naturally

drawn samples, nx f and nyg may not necessarily have integer values. This is not problematic

because, even though the factorial terms required for calculating likelihoods ( nx!
∏i xi!

and
ny!

∏i yi!
) are

12We thank an anonymous referee for this suggestion.
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not defined for non-integers of x and y, we can factor them out of the formula as they do not

depend on f ′ or g′, in turn not affecting the value of the maximising arguments. Finally, we follow

standard procedure in the literature (Kass and Voss, 1997) and opt for the log-likelihood functional

form which renders the objective function conveniently concave and does not alter the value of the

maximising argument.

In the case k = 2, there are only two candidates for the closest null distribution: the closest

distribution in the median boundary, θ M :=( f ,(1
2
, 1

2
)); and the closest distribution in the dominance

boundary, θ D := (
nx f+nyg

nx+ny
,

nx f+nyg

nx+ny
). Figure 1 illustrates both the closest pair of distributions on the

median boundary, denoted by red circles, and the closest pair of distributions on the dominance

boundary, illustrated by blue circles, to the pair of distributions denoted by black circles, for k = 5.

As with size, we face a choice over which alternative distributions to study. Because the bound-

ary separating the null and alternative hypotheses of the tests introduced in this paper arises as the

union of the dominance and median boundaries, we focus on studying power against alternatives

that are equidistant from these median and dominance boundaries. We refer to these DGPs as the

‘interior locus’. Figure 4 shows the grid of DGPs on the interior locus, connected by a solid blue

line, that we use for our experiments with nx = ny. We also show, for each of these alternative

DGPs, the two closest null distributions — one on each boundary — connected to the interior lo-

cus by a red dashed line. This interior locus is worth studying because it partitions the alternative

hypothesis into a set of DGPs which are closest to the median boundary and a set of DGPs closest

to the dominance boundary, and every DGP in the alternative hypothesis can be uniquely identified

with a point on the interior locus which shares the same closest null distribution (be it on the me-

dian or the dominance boundary). Moreover, we expect all the tests to have lower power against an

arbitrary alternative DGP than against its counterpart in the interior locus. Thus, the interior locus

provides an upper bound on the test’s power.

[Figure 4 near here]

Results In figure 5 we introduce a novel power-locus curve used to investigate power properties

of the various tests. By definition, the alternative DGPs in the ‘interior locus’ have two closest

17



null distributions. Therefore there are two ways to evaluate power against these DGPs. Each

panel of figure 5 illustrates both methods for a different pair of sample sizes. The first half of

the horizontal axis, from f1 = 0 to f1 = 0.5, depicts the ‘median power curve’: the power against

each alternative DGP from left to right in terms of figure 4, calculated using the closest null on the

median boundary. The second half, from f1 = 0.5 to f1 = 1, depicts the reflected ‘dominance power

curve’: power against each alternative calculated using the closest null on the dominance boundary

and in the reverse order. Such display of results enables us to see how the power varies as the

DGP approaches the intersection of the two boundary lines from the ‘median direction’ and from

the ‘dominance’ direction, respectively. We expect that power against alternatives near the median

boundary will behave similarly to the median power curve, and that power against alternatives near

the dominance boundary will behave similarly to the dominance power curve.

[Figure 5 near here.]

All the tests are able to perfectly distinguish some alternatives distributions from the set of null

distributions whenever both sample sizes are above 100. By the time both sample sizes reach 1000,

the tests are able to perfectly distinguish a false hypothesis along distributions pertaining to three

quarters of the interior locus. However, power drops rapidly when sample size falls below 100:

power halves when nx falls from 100 to 10, and reduces by a factor of 4 when ny falls from 100

to 10. All the tests have more or less the same power when sample sizes are both in the order

100 or higher. Even with smaller sample sizes, the choice of test statistic appears to have minimal

impact on power. However, there is evidence of systematic disparities between asymptotic and

bootstrap inference for smaller sample sizes. When nx is both small relative to ny and very small in

absolute terms, the asymptotic tests are more powerful against some distributions nearer the median

boundary. However, when ny is very small, the power of asymptotic inference is both erratic and

consistently lower than the power of bootstrap inference.

4.3 Three or More Categories

A distribution ( f ,g) with k > 2 categories can be decomposed into k−1 two-category distributions

( f i,gi) defined by (F i,Gi) = ((Fi,1),(Gi,1)) for any i ∈ {1, . . . ,k−1}. The rejection rate of a test
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at ( f ,g) is therefore a function of the k − 1 rejection rates at each of the ( f i,gi). For example,

intersection-union tests (Berger, 1982) reject the null that ( f ,g) are not ordered if and only if they

reject all the k − 1 hypotheses that each of the ( f i,gi) are not ordered. Graphically, this means

that we infer that all the coordinates in figure 1 are contained within the two triangles representing

the alternative hypothesis, if and only if we infer that the coordinate closest to the edge of the

triangles is nonetheless inside. Additional Monte Carlo experiments with more than two categories

(not reported) show that the tests do indeed exhibit the same properties as in the two-category

case. Specifically, size and power are both low when there are few observations drawn from the

more spread out distribution, and when both distributions are evenly divided (i.e. there exists a

category i such that ( fi,gi) is close to (1/2,1/2)). The study of DGP’s arising from sample surveys

characterised by more than two categories is taken up in section 5.

5 Empirical Illustrations

We consider two real-world inequality assessments: happiness in the United States and self-reported

health in a set of European countries. In each of the two applications we undertake 499 bootstrap

replications. For self-reported health, we present p-value curves constructed from 100,000 Monte

Carlo simulations.

5.1 Happiness Inequality in the United States

We revisit the study of Dutta and Foster (2013) on happiness inequality in the United States. The

authors use data from the U.S. General Social Survey (GSS) between 1972 and 2010 (Dutta and

Foster, 2013, table 1, p. 402). The GSS asks the following ordered-response question on wellbeing:

“Taken all together, how would you say things are these days — would you say that you are ‘very

happy’, ‘pretty happy’ or ‘not too happy?’” Dutta and Foster (2013) did not test whether the

documented ordering of happiness distributions was statistically significant. The family of tests

developed in this paper provides the required statistical inference.

Table 1 reports p-values of the bootstrap LR test, where an entry in row i of column j is the
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p-value of the sample under the null hypothesis that year j distribution is not an MPS of year i

distribution. A blank cell indicates that column j sample is not an MPS of the row i sample. Our

results can be summarized as follows. Out of the 171 pairs of distributions that are ordered by the

median preserving spreads criterion, 16 out of the 177 comparisons are significant at the 1% (less

than one in ten), 40 comparisons are significant at the 5% level (less than one in four) and 57 are

significant at the 10% level (less than one in three). Like Dutta and Foster (2013), we conclude

with strong evidence that most years after 1980 were less unequal than the early 70s. Unlike them,

we find little evidence that the 90s were less unequal than the early 2000s. In the light of these

findings, we recommend that empirical investigators take the extra step of validating their findings

using statistical inference.

[Table 1 near here.]

5.2 Inequality in Self-assessed Health in Europe

Self-assessed health (SAH) measures are increasingly used in health surveys, as such subjec-

tive assessments of well-being have shown to be strong predictors of morbidity as well as mor-

tality (Latham and Peek, 2013). The Survey on Incomes and Living Conditions (SILC) con-

ducted by EUROSTAT collects data on five levels of self-assessed health in Europe. Respondents

choose from the following ordered subjective health categories: (1) very bad, (2) bad, (3) fair,

(4) good, and (5) very good. In 2017, the multinomial distributions of the Netherlands and Den-

mark were, respectively, x/nx = (0.01,0.04,0.19,0.54,0.22) with a sample size nx = 13328 and

y/ny = (0.03,0.06,0.21,0.45,0.25) with a sample size ny = 5906. The two samples are ordered:

sharing ‘good health’ as median category and with Denmark’s distribution being a MPS of the

Netherlands’. As is typical of distributions of self-assessed health, both distributions exhibit some

class imbalances, with near-zero probability mass associated with the bottom health categories, and

with over 40% mass attached to the median category.

We investigate a Z-test and a likelihood ratio test of the null hypothesis that the Danish distribu-

tion is not a MPS of the Dutch distribution. Figure 6 shows that the actual size of all the four tests

coincides with the nominal size for all relevant values (0 to 10%). Moreover, all the tests perfectly
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distinguish this false hypothesis from the closest (true) null hypothesis (the power curves are ver-

tical). In the context of this application, pertaining to large samples associated with distributions

of self-assessed health, it is not possible to infer whether the Z or LR test is preferable in terms of

size. Furthermore, this conclusion remains unchanged when we either consider the asymptotic or

bootstrap approximation of the related test statistics.

[Figure 6 near here.]

6 Conclusion

The purpose of this paper was to introduce a family of tests for the hypothesis that an ordered

multinomial distribution G is a MPS of F . Using Monte Carlo simulations, we found that the

choice between Z and LR test statistics does not have a large impact on the tests’ properties, but

the method used to approximate the sampling distribution of the statistics under the null does. In

a wide range of data generating processes, bootstrap inference generally exhibited better size and

power properties than asymptotic inference. We have further illustrated the proposed tests in two

areas of inequality applications: happiness in the United States and self-assessed health in Europe.

The paper can be extended in several directions. MPS is a special case of Mendelson (1987)’s

“quantile-preserving spread” partial ordering: a distribution G is a quantile-preserving spread

(QPS) of a distribution F (‘F and G are ordered’) if there exists a category q such that the mass of

G lies further away from the state q than does the mass of F (G has a thicker tail than F around q).

If this is true for q equal to the lowest (respectively highest) category then G first order dominates F

(respectively F first order dominates G), so QPS orders the distributions according to their relative

locations. In intermediate cases where q is equal to neither the highest nor the lowest category

then QPS is sensitive to both the location and variability of the distributions. Tests of quantile pre-

serving spreads can be formulated by replacing the median boundary with an appropriate quantile

boundary.

Likewise, one may derive tests of hypotheses constructed from linear transformations of the

vector of contrasts related to the median preserving spreads ordering; for instance, the bipolariza-
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tion partial order of Chakravarty and Maharaj (2012). Finally, we mention the need to develop

exact inference for tests of median-preserving spreads, yielding the p-values of every conceivable

sample, as a companion method to the bootstrap and asymptotic methods of inference introduced

in this paper.
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Appendices

A Mathematical Appendix

Proof of lemma 1. First we show that every distribution in either the median or the dominance

boundaries (or both) is in the boundary. Let θ ∈ M̄∪ D̄. Since θ = (F ,G) is weakly ordered, F and

G have at least one common median, m. Let Im denote the CDF of the degenerate distribution with

all its mass in the median state, i.e. Im
i :=















0 if i < m

1 o/w

. Define a sequence {θ 1 j} j∈N by F1 j
:=

1
j
Im +

(

1− 1
j

)

F and G1 j
:= 1

j

(

1
2
Im + 1

4

)

+
(

1− 1
j

)

G, for all j < k. This sequence converges

to θ and each θ 1 j
is strictly ordered. Hence every element of M̄ ∪ D̄ is the limit of a sequence

in the complement of the set of null distributions. Now define a sequence {θ 0 j} j∈N by F0 j
:=

1
j

1
2
+
(

1− 1
j

)

F and G0 j
:=

(

1− 1
j

)

G. This sequence also converges13 to θ and it is easy to see

graphically that each θ 1 j
is in the set of null distributions, so long as there exists either an i ≤ m

such that F0
i = G0

i or else an i ≥ m such that F0
i > 1

2
= G0

i . If neither or these conditions hold then,

in order for θ to be in M̄ ∪ D̄, there must exist either an i > m such that F0
i = G0

i or else an i ≤ m

such that F0
i > 1

2
= G0

i . In this case, the sequence defined by G0 j
:= 1

j
+
(

1− 1
j

)

G converges to θ

and is in the set of null distributions. Thus every element of M̄∪ D̄ is the limit of both a sequence

of null distributions and a sequence of non-null distributions, therefore it is in the boundary of the

null hypothesis.

13With respect to any Euclidean metric.
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Now we show that every distribution in the boundary is in either the median or the dominance

boundaries (or both). Equivalently, we prove the contrapositive, namely if θ = (F,G) ∈ (M̄ ∪ D̄)c

is in neither the median nor dominance boundaries, then it must either be strictly ordered, or else

unordered, i.e. θ ∈ (∂Θ0)
c. Let ε = min{|1

2
−Gi|, |Fi −Gi| | i < k}. If θ is strictly ordered then

it strictly satisfies all the inequalities in definition 1 by a margin of at least ε > 0. Therefore any

distribution θ ′ within a distance ε from θ must also strictly satisfy these inequalities. Thus there

cannot exist any sequence of unordered distributions that converges to θ , so θ cannot be in the

boundary. Similarly, if θ is unordered then it strictly violates at least one of the inequalities in

definition 1 by a margin of at least ε . Therefore any distribution θ ′ within a distance ε from θ must

also violate the same inequality. Thus there cannot exist any sequence of ordered distributions that

converges to θ .

Proof of lemma 2 point 3. The are two ways the null hypothesis can be true: either one of the k−1

dominance conditions in [D1] or [D2] of definition 1 can fail, or the distributions do not share the

same median and the conditions [M1] or [M2] in definition 1 fail. The easiest way for the former

constraint to be satisfied is if Fi = Gi for some i ∈ {1, . . . ,k − 1} (which justifies a definition of

strict MPS); the easiest way to satisfy the latter is if the median lies between two categories so that

Gm−1 =
1
2

or Gm = 1
2
. Thus we can restate the problem:

θ̃ =argmax
θ∈Θ0

Pθ [x,y]

s.t. Fi = Gi for some i ∈ {1, . . . ,k−1}

or Gm−1 =
1

2
or Gm =

1

2
.

We now break the problem into two steps. We first find the k+1 distributions which maximise

the likelihood, subject to each of these individual k+1 constraints, namely

θ̃i = argmax
θ∈Θ0

Pθ [x,y] s.t. Fi = Gi for some i < k (2)

θ̃k = argmax
θ∈Θ0

Pθ [x,y] s.t. Gm−1 =
1

2
(3)

θ̃k+1 = argmax
θ∈Θ0

Pθ [x,y] s.t. Gm =
1

2
(4)
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The solution to the original problem is then given by the distribution among these which maximises

the sample’s likelihood function: θ̃ = argmaxθ̃=θ̃i
Pθ̃i

[x,y].

The solution to the problems in (2) are given in Davidson and Duclos (2013, p. 92) for each i ∈

{1, . . . ,k−1}. The solution to (4) is found by noting that the independence of f and g implies that

the solution to argmaxθ∈Θ0
Pθ [x,y] s.t. Gm = 1

2
is given by the pair

(

argmax f P f [x],argmaxgPg[y] s.t. Gm =

1
2

)

. The first of these terms is simply x/nx. We solve for the second term by taking logarithms

of the likelihood function Pg[y] (under the i.i.d. assumption) and by setting up the Lagrangian

L (g,λ ,µ) = ∑i∈{1,...,k} yi loggi +λ (1−∑i∈{1,...,k} gi)+µ(1
2
−∑i∈{1,...,m} gi). The first order con-

dition requires that

∂L

∂gi
=















yi

g̃i
−λ −µ if i ≤ m

yi

g̃i
−λ if i > m

= 0

which implies

yi =















(λ +µ)g̃i if i ≤ m

λ g̃i if i > m.

This in turn implies that Ym = G̃m(λ + µ) = 1
2
(λ + µ) and Yk −Ym = (1− G̃m)λ = 1

2
λ . Together,

these give (λ +µ) = 2Ym and λ = 2(Yk −Ym), and thus

g̃i =















yi

2Ym
if i ≤ m

yi

2(ny−Ym)
if i > m.

The solution for equation (3) is found analogously.
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Figure 1: The parameter space, the set of null parameters and the set of alternative parameters

projected onto the unit square. The red and blue dots illustrate, respectively, the closest distributions

on the median and dominance boundaries to the distribution represented by black dots.
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Figure 2: Boundary DGPs used to generate size curves for cases k = 2 and nx = ny.
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Figure 3: Size-boundary curves (for nominal 5% tests). Key: Solid/light blue — bootstrap LR;

dashed/light red — bootstrap Z; dotdash/dark blue — asymptotic LR; dotted/dark red — asymptotic

Z.
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Figure 4: Alternative DGPs used to generate power curves for cases k = 2 and nx = ny.
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Figure 5: Power-locus curves (for nominal 5% tests). Key: Solid/light blue — bootstrap LR;

dashed/light red — bootstrap Z; dotdash/dark blue — asymptotic LR; dotted/dark red — asymptotic

Z.

33



0.000

0.025

0.050

0.075

0.100

0.000 0.025 0.050 0.075 0.100

Nominal size

A
c
tu

a
l 
s
iz

e

0.000

0.025

0.050

0.075

0.100

0.000 0.025 0.050 0.075 0.100

Actual size

P
o
w

e
r

Inequality in self−assessed health

Figure 6: Left: Size curves for the distribution

(F ,G) = ((0.02,0.06,0.24,0.78,1.00),(0.02,0.08,0.29,0.75,1.00)). Right: Power curves for the

distribution

(F ,G) = ((0.01,0.05,0.24,0.78,1.00),(0.03,0.09,0.30,0.75,1.00)).
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Figure 1: The parameter space, the set of null parameters and the set of alternative parameters

projected onto the unit square. The red and blue dots illustrate, respectively, the closest distributions

on the median and dominance boundaries to the distribution represented by black dots.

Figure 2: Boundary DGPs used to generate size curves for cases k = 2 and nx = ny.
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Figure 4: Alternative DGPs used to generate power curves for cases k = 2 and nx = ny.

Figure 5: Power-locus curves (for nominal 5% tests). Key: Solid/light blue — bootstrap LR;

dashed/light red — bootstrap Z; dotdash/dark blue — asymptotic LR; dotted/dark red — asymptotic

Z.

Figure 6: Left: Size curves for the distribution

(F ,G) = ((0.02,0.06,0.24,0.78,1.00),(0.02,0.08,0.29,0.75,1.00)). Right: Power curves for the
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distribution

(F ,G) = ((0.01,0.05,0.24,0.78,1.00),(0.03,0.09,0.30,0.75,1.00)).
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