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Local polynomial estimation of nonparametric general

estimating equations

Francesco Bravo∗

University of York

January 2023

Abstract

This paper investigates estimation of nonparametric general estimating equations. The

paper considers estimators based on local polynomial versions of the generalized method of

moments and the generalized empirical likelihood approaches, and derives their asymptotic

distribution under weak dependency of the observations.

Keywords: α-mixing, Estimating equations, Local polynomial estimation,

1 Introduction

General estimating equations models1 are very useful generalizations of the standard estimating

equations models widely used in statistics, see for example the quasi likelihood approach to

generalized linear models of McCullagh and Nelder (1989) and ?, as they allow for the dimension

of the estimating equations to be bigger than the dimension of the unknown parameters, and

include, for example, the quadratic inference functions developed by ?. When the unknown

parameters are finite dimensional, their estimation is typically carried out using Hansen’s (1982)

(see also ?) generalized method of moments (GMM) approach, or, more recently, Newey and

Smith’s (2004) generalized empirical likelihood (GEL) approach. Both methods have their own

merits: GMM is often easier to compute (especially for linear models), but requires a two-step

∗I am grateful to an Associate Editor for useful comments. The usual disclaimer applies.

Address correspondence to: Department of Economics, University of York, York YO10 5DD, UK. E-mail:

francesco.bravo@york.ac.uk. Web Page: https://sites.google.com/a/york.ac.uk/francescobravo/
1We use the term general rather than generalized to avoid any confusion with the generalized estimating

equations (GEE) terminology that has become predominant in the quasi likelihood estimation with longitudinal

data literature (see for example ?).
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estimation procedure to achieve the minimum (asymptotic) variance bound, whereas GEL can

be computationally more demanding, but it achieves the variance bound automatically (the

so-called internal studentization property).

The main contribution of this paper is to extend these two general approaches to nonpara-

metric general estimating equations models, that is general estimating equations models with

unknown infinite dimensional parameters. This extension is theoretically interesting but, more

importantly, empirically relevant as it is now widely acknowledged that many general estimating

equations models are misspecified, with the cause of misspecification often attributed to para-

metric constraints implied by an underlying theoretical model. For example, in the so-called

C-CAPM (consumer based capital assets pricing model), see for example ?, the general estimat-

ing equations are based on a parametric specification of the utility function. More generally, any

parametric specification of the so-called pricing kernel in the popular stochastic discount factor

model used in the asset pricing literature (see Cochrane (2001) for a review, and Example 2 in

Section 2 below) can lead to misspecified general estimating equations. In another important

example, the parametric restrictions implied by the rational expectations assumption, see for

example ?, can also lead to misspecified estimating equations. The nonparametric general esti-

mating equations model considered in this paper is an important generalization of a number of

papers, including the nonparametric quasi-likelihood model of Severini and Staniswalis (1994),

the nonparametric estimating equations model of Cai (2003), the nonparametric moment con-

ditions model of Lewbel (2007), the nonparametric dynamic panel data model of Cai and Li

(2008) and the nonparametric stochastic discount factor model of Fang, Ren and Yuan (2011)

and of Cai, Ren and Sun (2015), among many others, because it allows for the dimension of the

estimating equations to be bigger than that of the unknown infinite dimensional parameters. In

particular, instrumental variable estimation, which is widely used in econometrics and statistics,

see for example ?, ? and Example 1 in Section 2 below, is allowed.

This paper contributes to the literature on estimating equations by proposing new local poly-

nomial versions of the GMM (LPGMM henceforth) and GEL (LPGEL henceforth) estimators.

These two new estimators are important extensions of the local polynomial estimator introduced

by Fan and Gijbels (1996) (see also ?). The paper establishes the asymptotic normality of both

the LPGMM and LPGEL estimators under an α-mixing assumption on the dependence of the

observations (see Doukhan (1994) for examples and properties of α mixing processes). This

result is important (and useful) for three reasons: first, it allows weakly dependent observations,

which is particularly useful in macroeconomics and finance, since macroeconomic and financial

data typically exhibit some form of serial dependence. Second, it allows to estimate derivatives,

which are often of interest; for example, in finance, the first and second derivatives of the ex-

pected value of an option price with respect to the underlying asset price or its volatility are

useful indicators of financial risk. Third, the minimum square error (MSE) optimal bandwidth
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for estimating the unknown infinite dimensional parameters depends, among other things, on

an asymptotic bias term involving higher order derivatives (see the theorems in Section 3 for

an expression of this bias), which have to be estimated and the local polynomial estimators

proposed in this paper automatically give the estimates of such derivatives.

The rest of the paper is structured as follows: next section introduces the model, whereas

Section 3 presents the main results. An Appendix contains all the proofs.

The following notation is used throughout the paper: “τ” indicates transpose, ”′”,”′′”, ””′...j”

denote, respectively, first, second and the j−th derivative of a function with respect to its unique

argument, ”⊗” is the Kronecker product, ”diag (·)” is a diagonal matrix, 0 and O denote,

respectively, a vector and a matrix of zeros, and for any vector v, v⊗2 = vvτ .

2 The model and the estimators

Let {Zτ
t , Ut}

τ
t∈Z denote a strictly stationary sequence of random vectors taking values in Z ⊂R

dZ

and U ⊂R, and let h ∈ H = H1 × H2 × ... × Hk denote a k dimensional vector of unknown

functions, where H is a pseudo-metric space of functions. The model considered is

E [m (Zt, h (Ut)) |Ut] = 0 a.s. for a unique h = h0, (1)

where m : Z × H → R
l is a vector of known functions with l ≥ k. The specification of (1) is

fairly general and can accommodate many models used in empirical research as the following

two example illustrate.

Example 1 (Instrumental variables smooth coefficients model) Let

Yt = Xτ
t h0 (Ut) + εt,

where E (εt|Xt, Ut) ̸= 0, and assume that there exists a vector of instruments Wt ∈ R
l (l ≥ k)

such that E (εt|Wt, Ut) = 0. The law of iterated expectations implies that

E [Wt (Yt −Xτ
t h (Ut)) |Ut] = 0 a.s. for a unique h = h0,

which is of the same form as that of (1) with Zt = [Yt, X
τ
t ,W

τ
t ]

τ and

m (Zt, h (Ut)) = Wt (Yt −Xτ
t h (Ut)) .

Example 2 (Nonparametric stochastic discount factor model) Let Rj,t (j = 1, ..., J) denote the

(excess) returns of J risky assets and RM,t denote the (excess) market return. Following Wang

(2003) and Wang (2009), let ht+1 = 1−h0 (Ut)RM,t+1 denote the so-called nonparametric pricing

kernel that satisfies E [ht+1 ⊗Rt+1|Xt, Ut] = 0 a.s., where Rt = [R1,t, ..., RJ,t]
τ and Xt denote a
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set of additional conditioning variables. The law of iterated expectations implies that, for any

vector of functions q : X →R
l

E [q (Xt) (ht+1 ⊗Rt+1) |Ut] = 0 a.s. for a unique h = h0,

which is of the same form as that of (1) with Zt = [Rτ
t , X

τ
t ]

τ and

m (Zt, h (Ut)) = q (Xt)ht+1 ⊗Rt+1.

Throughout the rest of the paper, it is assumed that, at a given point Ut = u0, h0 can be

polynomially approximated by

h0 (Ut) =

p∑

j=0

1

j!
h′...j
0 (u0) (Ut − u0)

j :=

p+1∑

j=1

1

(j − 1)!
h′...j
j (Ut − u0)

j−1 . (2)

Thus, for Ut ≈ u0, (2) implies that (1) must also be approximately zero, that is

E

[
m

(
Zt, h

τBp+1

[
1, ...,

(
Ut − u0

b

)p]τ)
|Ut = u0

]
≈ 0, (3)

where h =
[
hτ
1, ..., h

τ
p+1

]τ
and Bp+1 = diag [1/0!, ..., bp/p!], which forms the basis for the local

polynomial estimation proposed in this paper, and represents a generalization of the localized

moment restriction used by ? for the smooth coefficients model they considered.

It is important to note that unless the dimension dim (m) = l of the estimating equations m

is such that l ≥
∑p+1

j=1 dim (hj), the unknown parameters h′...p
0 (u0) cannot be consistently esti-

mated, a well-known fact in both the econometric and statistical estimation theory. Therefore,

to achieve consistency, the following augmented general estimating equation is considered

gt (h) =
[
1 Ut−u0

b
...

(
Ut−u0

b

)p ]τ
⊗m

(
Zt, h

τBp+1

[
1, ...,

(
Ut − u0

b

)p]τ)
.

To incorporate the localized nature of restriction (3), let b =: b (T ) denote the size of the local

neighborhood where the polynomial approximation (2) is valid - the bandwidth - and let the

kernel function K : U →R denote a symmetric probability density function. Then the localized

sample analog of (3) is given by

1

Tb

T∑

t=1

gt (h)K

(
Ut − u0

b

)
:= ĝK (h, u0) , (4)

where gK (h, u0) = gt (h)K ((Ut − u0) /b) and for a generic function ft, f̂t :=
∑T

t=1 ft/Tb; the

LPGMM estimator then is defined as

ĥ = argmin
h∈HC

ĝK (h, u0)
τ Ŵp+1 (u0) ĝ

K (h, u0) , (5)
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where the parameter space HC is specified in the next section, and Ŵp+1 (u0) is a, possibly

random, R(p+1)l×(p+1)l valued positive semi definite matrix- see the discussion after Theorem (2)

for an example. The LPGEL estimator is defined as the solution to the saddlepoint problem

ĥρ = arg min
h∈HC

sup
λ∈ΛT (h)

ρ̂
(
vK (λ, h, u0)

)
, (6)

where ρ̂
(
vK (λ, h, u0)

)
=:
∑T

t=1 ρ
(
vKt (λ, h, u0)

)
/Tb, vKt (λ, h, u0) = λτgKt (h, u0) , λ =: λ (u0), ρ

is a a concave function on its domain, an open set Λ0 containing 0, ΛT (h) =
{
λ : vKt (λ, h, u0) ∈ Λ0

}

for t = 1, ..., T , and h are fixed values of h. For example, the local polynomial version of the

empirical likelihood (LPEL) estimator is

ĥel = arg min
h∈HC

sup
λ∈ΛT (h)

1

Tb

T∑

t=1

log
(
1− vKt (λ, h, u0)

)
. (7)

Remark 1 In practice the LPGEL estimator can be computed iteratively as follows:

Step 1. For an arbitrary fixed h, compute λ̂(1) = argmaxλ∈ΛT (h) ρ̂
(
vK
(
λ, h, u0

))
.

Step 2. Compute ĥρ(1) = argminh∈HC
ρ̂
(
vK
(
λ̂(1), h, u0

))
.

Step 3. Iterate Steps 1 and 2 until a specified degree of convergence is achieved for both λ̂ and

ĥρ. The convergence of both estimators is guaranteed by the concavity of ρ in λ and Assumption

A2 below on the parameter space HC.

3 Asymptotic results

To simplify the notation, let m (Zt, ·) := mt (·),

Ωp+1 (u0) =

∫
vi+jK2 (v) dv ⊗ E

(
mt (h0 (Ut))

⊗2 |Ut = u0

)
f (u0) ,

Gp+1 (u0) =

∫
vjK (v) dv ⊗ E (∂mt (h0 (Ut)) /∂h

τ |Ut = u0) f (u0)

for (0 ≤ i, j ≤ p), where f is the marginal density of Ut at u0, and assume that:

A1 The process {Zτ
t , Ut}

τ
t∈Z is strictly stationary α mixing, with mixing coefficient α (t) =

O (t−a) with a = (2 + δ) (1 + δ) /δ for some δ > 0,

A2 (i) There exists a unique h0 such that E [mt (h0 (Ut)) |Ut = u0] = 0, (ii)
[
hτ
0, ...,

(
h′...p
0

)τ]τ
∈

int (HC), where HC is a compact subset of R(p+1)k, (iii) h0 is (p+ 1) continuously differ-

entiable at u0,

A3 (i) ∂mt (h) /∂h
τ exists and is continuous at u0 for each h ∈ HC a.s., (ii) the functions

E [mt (h0) |Ut = u0], E
[
mt (h0)

⊗2 |Ut = u0

]
and E [∂mt (h0) /∂h

τ |Ut = u0] are continuous,
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(iii) E
(
∥gt (h)∥

2(1+δ) Ut = u
)
, E

(∥∥gt (h)⊗2
∥∥Ut = u

)
and E (∥∂gt (h) /∂h

τ∥Ut = u) < ∞

uniformly in h ∈ HC and for all u in a neighborhood of u0, (iv) for t ≥ 2

E

[
sup
h∈HC

(
∥m1 (h)∥

2 + ∥mt (h)∥
2) |U1 = u, Ut = v

]
< ∞,

for all u and v in a neighborhood of u0, (v) Gp+1 (u0) has rank (p+ 1) k, Ωp+1 (u0)

is positive definite and the matrices Σ(p+1)W (u0) = Gp+1 (u0)
τ Wp+1 (u0)Gp+1 (u0) and

Σ(p+1)Ω−1 (u0) = Gp+1 (u0)
τ Ωp+1 (u0)

−1 Gp+1 (u0) are nonsingular,

A4 (i) the kernel function K : U → R has a compact support, say [−1, 1], (ii) the marginal

density f of Ut is twice continuously differentiable at Ut = u0 and strictly positive at

Ut = u0, (iii) the joint density f1,t of U1 and Ut for t ≥ 2 is continuous at u0, (v) for δ

given in A1, the bandwidth b satisfies b → 0 and Tb1+2/(1+δ) → ∞ as T → ∞,

A5 ρ
(
vKt (λ, h, u0)

)
is twice continuously differentiable in vt (·) in a neighborhood of 0, with

ρj = −1 (j = 1, 2) and ρj = ∂jγ (vt) /∂v
j
t |vt=0,

A6 for all u in a neighborhood of u0, (i) Ŵp+1 (u)
p
→ Wp+1 (u), where Wp+1 (u) is a positive

definite matrix, (ii)

(a)
∥∥∥
(
ĥ1 − h0

)τ
, ...,

(
ĥp+1 − h′...p

0

)τ∥∥∥ p
→ 0,

(b)
∥∥∥λ̂
∥∥∥ p
→ 0,

∥∥∥
(
ĥρ
1 − h0

)τ
, ....,

(
ĥρ
p+1 − h′...p

0

)τ∥∥∥ p
→ 0,

(iii) maxt≤T

∣∣∣λ̂τgKt

(
ĥρ, u0

)∣∣∣ = op (1) .

Assumption A1 specifies the dependence structure of the process {Zτ
t , Ut}

τ
t∈Z as α mixing

with a rate of decay on the mixing coefficient α (t) that is standard in the literature on non-

parametric models for time series, see for example Cai, Fan and Yao (2000). Assumption A2(i)

is a standard identification assumption that can be often verified by imposing more primitive

conditions on m and/or some of the components of the random vector Zt. For example, for

the instrumental variables smooth coefficients model (1), A2(i) is implied by the condition

rank (E (WtX
τ
t |Ut = u0)) = k. The compactness assumption A2(ii) is as in Lewbel (2007), but

can be replaced by other assumptions to control for the complexity of the pseudo metric space H

- typically expressed in terms of covering or bracketing numbers (see Van der Vaart and Wellner

(1996) for a definition), such as when H is a Holder or a Sobolev space. Assumptions A3-A5

are standard, respectively, in nonparametric estimation and GEL estimation, see, for example,

Masry (1996) and Newey and Smith (2004), respectively. Assumption A6(ii)(a) is a high level

assumption, which can be shown using the uniform law of large numbers combined with the
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slightly stronger (than A2(i)) identification condition that for any ξ > 0, there exists a c (ξ) > 0,

such that for all u in a neighborhood of u0

inf
h∈HC

∥(h1−h0)
τ ,...,(hp+1−h′...p

0 )
τ
∥≥ξ

E
[∥∥ĝK (h, u)

∥∥] > c (ξ) . (8)

Assumption A6(ii)(b) is also a high level one, and can be verified using the same arguments

used by Newey and Smith (2004), which consist of first assuming the existence of a consis-

tent LPGEL estimator for h, say h̃ρ, such that
∥∥∥ĝK

(
h̃ρ, u

)∥∥∥ = Op

(
Bp+1/ (Tb)

1/2 + bp+j
)

(j = 1 for j odd, or j = 2 for j even), from which the consistency of the corresponding estima-

tor λ̃ := argmaxλ∈ΛT (h) ρ̂
(
vK
(
λ, h̃ρ, u

))
follows by a Taylor expansion combined with the

uniform law of large numbers; next, the consistency of ĥρ can by shown again by the uniform

law of large numbers combined with (8). Finally, a saddlepoint argument can be used to show

that
∥∥∥ĝK

(
ĥρ, u

)∥∥∥ = Op

(
Bp+1/ (Tb)

1/2 + bp+j
)
, which in turn implies the consistency of λ̂.

The following theorems establish the asymptotic distributions of the LPGMM and LLGEL

estimators.

Theorem 1 Under A1-A4 and A6(ii)(a), as (Tb)1/2 → ∞,

(Tb)1/2 Bp+1




ĥ1 − h0

...

ĥp+1 − h′...p
0

− b (u0)


 d
→

N
(
0,Σ−1

p+1W (u0)Gp+1 (u0)
τ Wp+1 (u0) Ωp+1 (u0)Wp+1 (u0)Gp+1 (u0) Σ

−1
p+1W (u0)

)
,

where

b (u0) = −
[ ∫

vp+1K (v) dv · · ·
∫
v2p+1K (v) dv

]τ
⊗

f (u0)E

[
∂mt (h0 (Ut))

∂hτ
|Ut = u0

]
bp+1h′...p+1

0

(p+ 1)!

for p odd and

b (u0) = −
[ ∫

vp+2K (v) dv · · ·
∫
v2p+2K (v) dv

]
⊗

f (u0)E

(
∂mt (h0 (Ut))

∂hτ
|Ut = u0

)
bp+2

(
h′...p+1
0 f ′ (u0)

(p+ 1)!f (u0)
+

h′...p+2
0

(p+ 2)!

)

for p even.

Theorem 2 Under A1-A5, A6(ii)b and (iii), as (Tb)1/2 → ∞,

(Tb)1/2 Bp+1




ĥρ
1 − h0

...

ĥρ
p+1 − h′...p

0

− b (u0)


 d
→ N

(
0,Σ−1

p+1Ω−1 (u0)
)
,

where b (u0) is as defined in Theorem 1.
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Theorems 1 and 2 show that both the LPGMM and LPGEL estimators are characterized

by the same asymptotic bias. On the other hand, it is easy to show that the asymptotic

covariance matrix of the LPGEL estimator is the smallest (in the matrix sense) for any LPGMM

estimators based on Ŵp+1 (u0) ̸= Ωp+1 (u0)
−1 + op (1). Thus Σ−1

p+1Ω−1 (u0) represents the lower

bound (minimum asymptotic covariance matrix) for the class of LPGMM estimators indexed by

Wp+1 (u0), which can be achieved if the classical two-step GMM estimation procedure is used,

where the first-step is used to obtain preliminary consistent estimators, say h̃1,..., h̃p+1 to be

used in the second-step estimation to compute Ŵp+1 (u0) = Ω̃p+1 (u0)
−1, to achieve the lower

bound Σ−1
p+1Ω−1 (u0).

Theorems 1 and 2 also show that the proposed estimators have a non negligible asymptotic

bias b (u0), as it is typical of any kernel based estimator. To make them operational for inferential

purposes, b (u0) can be either estimated, using the local polynomial approach of this paper,

or, alternatively, under the additional undersmoothing condition Tb5 → 0, can be eliminated

altogether.

References

Cai, Z.: 2003, Nonparametric estimating equations for time series data, Statistics and Probability

Letters 62, 379–390.

Cai, Z., Fan, J. and Yao, Q.: 2000, Functional-coefficient regression models for nonlinear time

series, Journal of the American Statistical Association 95, 941–956.

Cai, Z. and Li, Q.: 2008, Nonparametric estimation of varying coefficient dynamic panel data

models, Econometric Theory 24, 1321–1342.

Cai, Z., Ren, Y. and Sun, L.: 2015, Pricing kernel estimation: a local estimating equation

approach, Econometric Theory 31, 560–580.

Cochrane, J.: 2001, Asset Pricing, Princeton University Press, Princeton.

Doukhan, P.: 1994, Mixing: Properties and Examples, Lecture Notes in Statistics, Vol. 85, New

York: Springer & Verlag.

Fan, J. and Gijbels, I.: 1996, Local Polynomial Modeling and its Applications, Chapman and

Hall.

Fang, Y., Ren, Y. and Yuan, Y.: 2011, Nonparametric estimation and testing of stochastic

discount factor, Finance Research Letters 8, 196–205.

8



Hall, P. and Heyde, C.: 1980, Martingale limit theory and its application, Academic Press, New

York.

Hansen, L.: 1982, Large sample properties of generalized method of moments estimators, Econo-

metrica 50, 1029–1054.

Lewbel, A.: 2007, A local generalized method of moments estimator, Economics Letter 94, 124–

128.

Masry, E.: 1996, Multivariate local polynomial regression for time series: Uniform strong con-

sistency and rates, Journal of Time Series Analysis 17, 571–599.

McCullagh, P. and Nelder, J.: 1989, Generalized Linear Models, Chapman and Hall, London.

Newey, W. and Smith, R.: 2004, Higher order properties of GMM and generalized empirical

likelihood estimators, Econometrica 72, 219–256.

Severini, T. and Staniswalis, J.: 1994, Quasi-likelihood estimation in semiparametric models,

Journal of The American Statistical Association 89, 501–511.

Van der Vaart, A. and Wellner, J.: 1996, Weak Convergence and Empirical Processes, Springer,

New York.

Wang, K.: 2003, Asset pricing with conditioning information: A new test, Journal of Finance

58, 161–196.

Wang, K.: 2009, Nonparametric tests of conditional mean-variance efficiency of a benchmark

portfolio, Journal of Empirical Finance 9, 133–169.

4 Appendix

Throughout this Appendix let h0 =
[
hτ
0, ..., h

′...pτ
0

]τ
, ∂p+1 (·) = ∂ (·) /h, and “CMT”, “CLT”,

”LLN” and ”w.p. → 1” denote Continuous Mapping Theorem, Central Limit Theorem, (possibly

uniform) law of large numbers, and with probability approaching 1.

Proof of Theorem 1. By A2(ii), the first order conditions 0 = ∂p+1ĝK
(
ĥ, u0

)τ
Ŵp+1 (u0) ĝ

K
(
ĥ, u0

)

are satisfied w.p. → 1. Then, by a mean value expansion

0 = ∂p+1ĝK
(
ĥ, u0

)τ
Ŵp+1 (u0)

[
ĝK (h0, u0) + ∂p+1ĝK

(
h, u0

)τ
(Tb)1/2 Bp+1

(
ĥ− h0

)τ]
,

where h is on the line segments between h0 and ĥ. By A2(ii) the class of functions GK
∂ ={

∂p+1gK (h) , h ∈ HC , u
}
, for all u in a neighborhood of u0, is Euclidean (see ? for a defi-

nition) since it’s the pointwise multiplication of the two Euclidean classes of functions G∂ =
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{∂p+1g (h) , h ∈ HC} and GK = {K (v − u) /b, u}, hence by the envelope assumption A3(iii), the

LLN implies that
∥∥∥∂p+1ĝK

(
ĥ, u0

)
−Gp+1 (u0)

∥∥∥ = op (1) , hence

(Tb)1/2 Bp+1

[(
ĥ− h0

)τ]τ
= Σ̂−1

p+1Ŵ
(u0) ∂

p+1ĝK
(
ĥ, u0

)τ
Ŵp+1 (u0) (Tb)

1/2 ĝK (h0, u0)

where Σ̂p+1Ŵ (u0) = ∂p+1ĝK
(
ĥ, u0

)τ
Ŵp+1 (u0) ∂

p+1ĝK
(
h, u0

)
, hence by A3(v) and CMT

(Tb)1/2 Bp+1

[(
ĥ− h0

)τ]τ
= Σ−1

p+1W (u0)Gp+1 (u0)
τ W (u (0)) (Tb)

1/2 ĝK (h0, u0) + op (1) .

Next, we prove the asymptotic normality of (Tb)1/2
(
ĝK (h0, u0)− E

(
ĝK (h0, u0)

))
; the proof is

similar to that of Cai et al. (2000), so we just sketch it. First notice that

V ar
(
(Tb)1/2 ĝK (h0, u0)

)
= V ar

(
1

b1/2
gKt (h0, u0)

)
+

2

T

T−1∑

t=1

(T − t)Cov

(
gK1
b

(h0, u0) , g
K
t+1 (h0, u0)

)
:= A1T + A2T ,

and

∥A2T∥ ≤

dT∑

t=1

∥∥∥∥Cov

(
gK1
b

(h0, u0) , g
K
t+1 (h0, u0)

)∥∥∥∥+
T∑

t=dT+1

∥∥∥∥Cov

(
gK1
b

(h0, u0) , g
K
t+1 (h0, u0)

)∥∥∥∥ := A21T+A22T ,

for a sequence of positive integers dT → ∞ as T → ∞, such that dT b → 0. Then by A3(iii)

A21T ≤ O (bdT ) → 0, while A22T ≤ Cb
∑T

t=dT
α (t)

δ
2+δ b−2(1+δ)/(2+δ) = o (1) by Davydov’s in-

equality (Hall and Heyde 1980)[Corollary A.2] and d2+δ
T b = O (1), hence by a standard kernel

calculation

A1T = E

[
1

b

(
gKt (h0, u0)

)⊗2
]
−

[
E
1

b

(
gKt (h0, u0)

)]⊗2

= Ωp+1 (u0) + o (1) .

Let
1

(Tb)1/2

T∑

t=1

θτ
(
gKt (h0, u0)− E

(
gKt (h0, u0)

))
:= (Tb)−1/2

T∑

t=1

Dt

for any θ ∈ R
(p+1)l such that ∥θ∥ = 1, and note that V ar

(
(Tb)−1/2∑T

t=1 Dt

)
= ω (u0) + o (1),

where ω (u0) = θτΩp+1 (u0) θ. Partition {1, ..., T} in 2qT +1 subsets, where qT = ⌊T/ (rT + sT )⌋

with rT =
⌊
(Tb)1/2

⌋
and sn =

⌊
(Tb)1/2 / log T

⌋
, where ⌊·⌋ is the integer part function, and

define

A31jT =

j(rT+sT )+rT∑

t=j(rT+sT )+1

Dt, A32jT =

(j+1)(rT+sT )∑

t=j(rT+sT )+rT+1

Dt, A33T =
T∑

t=qT (rT+sT )+1

Dt,

10



so that

1

(Tb)1/2

T∑

t=1

Dt =
1

(Tb)1/2

(
qT∑

j=1

A31jT +

qT∑

j=1

A32jT + A33T

)
:= A41T + A42T + A43T .

Then, it is possible to show (see Cai et al. (2000) for details) that E (A2
4lT/T ) → 0 (l = 2, 3),∣∣∣E [exp (ιτA41T )]−

∏qT
j=1 E [exp (ιτA31jT )]

∣∣∣→ 0,
∑qT−1

j=1 E
(
A2

31jT/T
)
→ ω (u0) and

∑qT−1
j=1 E

(
A2

31jT

)
I
(
|A31jT | ≥ εω (u0) (Tb)

1/2
)
/ (Tb)1/2 → 0 for any ε > 0. Thus, by the Lindeberg-

Feller CLT, (Tb)−1/2 A41T
d
→ N (0, ω (u0)) and the conclusion follows by the Cramer-Wold device.

Finally, we find an explicit expression for the asymptotic bias E
(
ĝK (h0, u0) /b

)
. For p odd, in

a neighborhood of |Ut − u0| < b, (2) and A2(iii) imply

h0 (Ut) =

p+1∑

j=1

1

(j − 1)!
h′...j
j (Ut − u0)

j + op
(
bp+1

)
,

hence

E

[
gKt (h0, u0)

b

]
=

∫ [
1 Ut−u

b
· · ·

(
Ut−u

b

)p ]τ
⊗

E

[
mt (h0 (Ut))−

∂mt (h0 (Ut))

∂hτ

bp+1h′...p+1
0

(p+ 1)!

(
Ut − u0

b

)(p+1)

|Ut

]
×

K

(
Ut − u0

b

)
f (Ut) dUt

= −
[ ∫

vp+1K (v) dv
∫
vp+2K (v) dv · · ·

∫
v2p+1K (v) dv

]τ
⊗

E

[
∂mt (h0 (Ut))

∂hτ
|Ut = u0 + vb

]
(f (u0) +O (b))

bp+1h′...p+1
0

(p+ 1)!
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and the conclusion follows by the symmetry of K (·). For p even

E

[
gKt (h0, u0)

b

]
=

∫ [
1 Ut−u0

b
· · ·

(
Ut−u0

b

)p ]τ
⊗

E

[
mt (h0 (Ut))−

∂mt (h0 (Ut))

∂hτ

(
bp+1h′...p

0

(p+ 1)!

(
Ut − u0

b

)(p+1)

+

bp+2h′...p
0

(p+ 2)!

(
Ut − u0

b

)(p+2)

|Ut

]
K

(
Ut − u0

b

)
f (Ut) dUt

=

∫ [
1 v · · · vp

]τ
⊗ E

[
−
∂mt (h0 (Ut))

∂hτ

(
bp+1h

′...(p+1)
0

(p+ 1)!
v(p+1)+

bp+2h
′...(p+2)
0

(p+ 2)!
v(p+2)

)
|Ut = u0 + vb]K (v)

(
f (u0) + f ′ (u0) vb+

f ′′ (u0)

2
(vb)2

)
dv

= −bp+2
[ ∫

vp+2K (v) dv · · ·
∫
v2p+1K (v) dv

∫
v2p+2K (v) dv

]
⊗ E

[
∂mt (h0 (Ut))

∂hτ
|Ut = u0

]

(
h′...p+1
0 f ′ (u0)

(p+ 1)!f (u0)
+

h′...p+2
0

(p+ 2)!

)(
f (u0) +O

(
b2
))

and the conclusion follows again by the symmetry of K (·)

Proof of Theorem 2 . By A2(ii) the first order conditions

0 =
[
∂ρ̂
(
vK
(
λ̂, ĥ, u0

))
/∂λτ , ∂p+1ρ̂

(
vK
(
λ̂, ĥ, u0

))]τ

are satisfied w.p. → 1. Then by a mean value expansion

0 =

[
∂ρ̂(vK(0,h0,u0))

∂λ

∂p+1ρ
(
vK (0, h0, u0)

)
]
+




∂2ρ̂(vK(λ,hρ
,u0))

(∂λ)⊗2

∂2ρ̂(vK(λ,hρ
,u0))

∂λ∂hτ

∂2ρ̂(vK(λ,hρ
,u0))

∂h∂λτ

∂2ρ̂(vK(λ,hρ
,u0))

(∂h)⊗2


 (Tb)1/2 Bp+1

(
ĥρ − h0

)
,

where λ is on the line segment between 0 and λ̂ and hρ is on line segments between h0 and ĥρ.

Since
∂2ρ̂

(
vK
(
λ, h

ρ
, u0

))

(∂λ)⊗2 =
1

Tb

T∑

t=1

ρ2

(
vKt

(
λ, h

ρ
, u0

))(
gKt

(
h
ρ
, u0

))⊗2

,

Assumption A6(iii) and CMT imply that maxt≤T

∣∣∣ρj
(
vKt

(
λ, h

ρ
, u0

))
+ 1
∣∣∣ = op (1) (j = 1, 2),

hence the triangle inequality and the same arguments used in the proof of Theorem 1 for the

Euclidean class of functions Gg2 =
{
gK (h)⊗2 , h ∈ HC , u

}
show that

∥∥∥∥∥∥

∂2ρ̂
(
vK
(
λ, h

ρ
, u0

))

(∂λ)⊗2 + Ωp+1 (u0)

∥∥∥∥∥∥
≤ max

t≤T

∣∣∣ρ2vKt
(
λ, h

ρ
, u0

)
+ 1
∣∣∣×

∥∥∥∥∥
1

Tb

T∑

t=1

(
gKt

(
h
ρ
, u0

))⊗2

∥∥∥∥∥+
∥∥∥∥∥
1

Tb

T∑

t=1

(
gKt

(
h
ρ
, u0

))⊗2

+ Ωp+1 (u0)

∥∥∥∥∥
p
→ 0
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and similarly for
∥∥∥∂2ρ̂

(
vK
(
λ, h

ρ
, u0

))
/∂λ∂hτ +Gp+1 (u0)

∥∥∥ = op (1) and

∥∥∥∥∂2ρ̂
(
vK
(
λ, h

ρ
, u0

))⊗2
∥∥∥∥ =

op (1). Thus by CMT

(Tb)1/2 [I, Bp+1]
[
λ̂τ ,
(
ĥρ − h0

)τ]τ
= −

[
Ωp+1 (u0) Gp+1 (u0)

Gp+1 (u0)
τ O

]−1 [
(Tb)1/2 ĝK (h0, u0)

0

]
+op (1)

and the conclusion follows as in the proof of Theorem 1.
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