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Abstract
This paper introduces the concept of transfer assurance for Machine Learning (ML) components used as part of an au-
tonomous system (AS). In previous work we developed the first approach for assuring the safety of ML components such
that a compelling safety case can be created for their safe deployment. During operation it may be necessary to update
an ML component by re-training the model using new or updated development data. If model re-training is required post-
deployment, the safety case that was created for the ML component may no longer be valid, since a new model has been
created that can no longer be assured to meet its safety requirements. In particular, the nature of machine learnt components
means that one may not be able to predict how even small changes in the development data may affect the model and its
performance. As a result, current practice would require that a full assurance assessment is undertaken for the re-learned
model, and that a new safety case is created. Given the desirability of updatingML components during operation, we see it as
imperative that the assurance process become more proportionate to the size of the change that is made to the model, whilst
ensuring that assurance can still be demonstrated. Retraining ML components is known to be a costly and complex process
and as such techniques such as transfer learning have been developed which aim to reduce this burden through incremen-
tal development. Approaches such as transfer learning provide an inspiration for how the challenge of efficiently assuring
updated models could be addressed through understanding which aspects of a model may have been affected by changes to
the development data. We refer to this as transfer assurance, where parts of the assurance case for an ML component can
remain fixed whilst other parts are re-assessed.
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1. Introduction
The use of ML models promises to revolutionise a num-
ber of societally-significant, safety-critical domains in-
cluding healthcare, transport and defence [1, 2, 3]. Whilst
such systems may be reported to exceed human perfor-
mance [4, 5], their adoption is dependent on establish-
ing justified confidence in the safety of systems not only
at development time but also once deployed in complex
open-world environments.

In our previous work we developed a methodology,
called AMLAS (Assurance of Machine Learning for use
in Autonomous Systems) that systematically integrates
safety assurance into the development ofML components
in order to generate a safety case to demonstrate the
ML component is safe to use in a particular autonomous
system (AS) application [6]. Through evaluative stud-
ies [7, 8, 9, 10] it has been shown that through following
AMLAS it is possible to produce an assurance casewhich
is valid for deployment.

The assurance case that is created for the ML compo-
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nent is based upon predictions and assumptions made
during development about the system and the environ-
ment in which the ML component will be used. These
predictions and assumptions may turn out during opera-
tion of the system not to be true, or may become untrue
as things change in unexpected ways. When this hap-
pens the safety case created during development may
no longer be valid. It is necessary therefore to identify
when such changes occur and what the impact of those
changes may be on the ML component and therefore on
the safety of the system.

During operation it may be necessary to update an
ML component by re-training the model using new or
updated development data. There are a number of rea-
sons why it may be desirable to update a learned model
after deployment. For example, as more data becomes
available during operation of the AS, it may be possible
to use that data to improve the performance of themodel.
It may also be the case that during operation the oper-
ational inputs to the ML model are observed to diverge
from the development data used in the model learning
process.

Such shifts in the distribution of the operational data
with respect to the development data may require that
the model is re-trained with data sets that more closely
reflect the current operational data in order to ensure
that the model continues to perform as required in the
operational context [11]. A further consideration is that
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the safety case for the ML component is based upon pre-
dictions and assumptions about the environment inwhich
the ML component will be used. Due to the complex-
ity and dynamicity of the operating environment of the
autonomous system, there is the possibility that the pre-
dictions and assumptions may be incorrect, or become
invalid as the environment evolves in unexpected ways
[12]. Again this may require model re-training to ensure
the assurance case remains valid.

In each of these cases, if the model is re-trained post-
deployment, the safety case that was created for the ML
component may no longer be valid, since a new model
has been created that can no longer be assured to meet
its safety requirements. In particular, the nature of ma-
chine learnt componentsmeans that onemay not be able
to predict how even small changes in the development
data may affect the model and its performance. As a
result, current practice would require that a full assur-
ance assessment is undertaken for the re-learned model,
and that a new safety case is created. This would in-
volve applying the whole of the AMLAS process again
following any change to the ML component. Given the
desirability of updating ML components during opera-
tion, we see it as imperative that the assurance process
become more proportionate to the size of the change
that is made, whilst ensuring that assurance can still be
demonstrated.

Retraining ML models is known to be a costly and
complex process and as such techniques have been de-
veloped which aim to reduce this burden through incre-
mental development. Transfer learning is one such tech-
nique that enables large parts of a convolutional neu-
ral network (CNN) to remain fixed during re-learning,
whilst some of the layers are learned using the updated
development data. Approaches such as transfer learn-
ing provide an inspiration for how the challenge of effi-
ciently assuring updatedmodels could be addressed through
understanding which aspects of a model may have been
affected by changes to the development data. We refer
to this as transfer assurance, where parts of the assur-
ance case for an ML component can remain fixed whilst
other parts are re-assessed. This paper conceptualises
transfer assurance and looks at how a transfer assurance
approach can be used to re-assure the ML model and up-
date the safety case for the ML model without having to
apply the whole AMLAS process.

The rest of the paper is structured as follows. In Sec-
tion 2 we discuss related research. Section 3 introduces
the transfer assurance process thatwe propose. Section 4
discusses some of the key open challenges related to trans-
fer assurance that we aim to address. Section 5 presents
our conclusions.

2. Related Work

2.1. Model Updating
The need to update models at run-time is well under-
stood, however model updating presents a number of
challenges [13, 14] including:

1. deciding when a model is no longer valid
2. suitable mechanisms for retraining

Model retraining can be scheduled to occur period-
ically when the environment in which the system op-
erates can be assumed to be stable for a fixed period
of time. However when the environment is less pre-
dictable, mechanisms need to be employed which are
able to detect the potential for a deterioration in sys-
tem performance through themonitoring of data to iden-
tify distribution shifts [15]. In order to detect shifts in
data distributions we can monitor the performance of
the model, when the ground truth is known, or the in-
put/output distributions in order to detect any signif-
icant changes [16] which may invalidate assumptions
made at design time.

Once the need to retrain has been identified we need
to establish how to undertake such retraining. Two ap-
proaches are proposed in the literature:

1. offline using batches of data [13], or
2. online, continuously updating the model in op-

eration [17].

In both cases the dataset used for retraining contains
both new and historical data in order to avoid catastrophic
forgetting [18]. In this paper we consider only offline re-
training methods.

2.2. AMLAS
AMLAS is a methodology for the assurance of machine
learning in autonomous systems [6]. AMLAS provides
a set of defined processes that describe activities that
should be undertaken as well as the artefacts that are
used by, or generated from those activities. AMLAS also
provide a set of safety argument patterns that describe
how these artefacts are used to create a compelling safety
case for the ML component. AMLAS is split into six life-
cycle stages as shown in Figure 1. The ML assurance ac-
tivities run in parallel to the ML development activities;
the assurance activities defined in AMLAS should be an
integral part of developing an ML component. Feedback
and iteration between the stages of AMLAS is also im-
portant. It is expected that it might be necessary to re-
visit stages of AMLAS multiple times. For example, the
verification stage might identify a need to revisit data
management and then learn a new model, and so on.
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Figure 1: AMLAS assurance process in context [6]

Figure 1 also shows the input to the AMLAS process
from the system safety requirements. Safety considera-
tions for the ML component are only meaningful when
scoped within the wider system and operational context.
The system safety requirements provide that crucial link
between AMLAS and the system safety process. Hav-
ing followed the AMLAS process the outputs from each
stage can be integrated together to form an overall safety
case for the ML component. [9] provides an example
how AMLAS has been used to create a safety case for a
neural network used to detect wildfires. AMLAS can be
used as mean for compliance with standards as part of
emerging regulatory frameworks [19] [20].

2.3. Assurance of ML at Run-time
There has been some previouswork that has investigated
run-time assurance of ML systems ([21], [22]), however
these typically focus on particular applications such as
reinforcement learning for self-driving cars [23] or ML
for robotic systems [24]. The approach proposed in [25]
usesmonitors to determine if safety critical requirements
are violated byML components at run-time and provides
feedback to improve the models.

None of this work considers how an assurance case is
impacted by changes at run-time or how the validity of
the assurance case is maintained. Other work [12] has
highlighted the need to dynamically update safety cases
in operation, but has not considered how this could be
done for ML components.

3. Transfer Assurance Process
In this section we discuss in detail the proposed 3 stage
transfer assurance process shown in Figure 2.

The first stage concerns the initial development of the
ML component for deployment into the operational sys-
tem. The two activities result in the creation of an ML
component along with its assurance case and a set of

appropriate monitors to be deployed to the autonomous
system.

The second and the third phases deal with analysing
and responding to changes during operation of the au-
tonomous system. These phases will be executed multi-
ple times during the lifetime of the system as and when
the monitor issues a response trigger. In the following
subsections we explain in detail each of the proposed
stages.

3.1. Initial Development
The Initial Development stage contains two activities gen-
erating two artefacts as well as the ML component and
a set of monitors.

The first of the activities creates the ML component
and the associated assurance case using the AMLAS pro-
cess [6]. The resulting assurance case report is used in
the second activity in order to create a component moni-
tor. The monitor is created by considering the evidence,
assumption, context and justification elements present
in the assurance case to identify those environmental
and system conditions that, if theywere to change, would
invalidate the safety argument. The data to be mon-
itored may be concerned with environmental changes
outside the autonomous system, changes in physical or
software components which constitute the autonomous
system platform or in the behaviour of one or more ML
components enacting autonomous behaviours.

Thus a monitoring strategy is created which consid-
ers how the nature of potential changes in operational
data will impact the assurance case to undermine safety
assurances. The strategy then defines what data is to be
monitored, the nature of the sensors to be used, and the
analytical basis upon which a response trigger should be
generated.

As an example let us consider an object classification
component which is deemed acceptable in the assurance
safety case under the assumption that the risk to be con-
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Figure 2: Three Stage Transfer Assurance Process with activities shown in green and artefacts in yellow.

trolled is a function of the impact caused by misclassi-
fication and likelihood of encounter. Verification of the
component shows that an accuracy of 0.87 and assump-
tions of the operating domain determine a likelihood of
encounter rate of one per 10 hours of operation. A mon-
itor for likelihood may then be created which counts
the number of class predictions such that a trigger is
raised should we identify that there has been a distri-
bution shift in the probability of class encounter.

We can also consider the example of an ML model for
speech recognition trained on adult voices. The assur-
ance argument will have a context element defining the
training data as adult voices. This can then be used to
identify the requirement for amonitor to recognise if the
input to the model is not an adult voice, as it cannot be
assured that the model will meet its safety requirements
when exposed to non-adult voices as input.

There are two main problems with creating monitors
for ML systems during operation. Firstly it is difficult
to detect distribution shifts in complex inputs such as
images. Secondly it is often difficult to monitor the cor-
rectness of the output of the model due to unavailabil-
ity of ground truth. We can overcome these problems
using sensor fusion, contextual information and estab-
lished beliefs. In the rest of the subsection we illustrates
some methods using examples.

Typically autonomous systems make use of multiple
sensors during normal operation and we may be able to
use these to either directly or indirectly infer properties
of interest. Specifically sensor agreement and compari-
son can be used to check the validity of a sensor read-
ings at run-time. For example we may consider a drone
which utilises a 6 channel multi-spectral camera for agri-
cultural monitoring [26]. Whilst each channel may have

independent analysis pipelines, using ML components
with different functional requirements, the output from
each sensor is correlated since it refers to the same phys-
ical objects in space. From development activities we
will have extracted expectations for the distributions of
component outputs for each of the 6 channels in opera-
tion. For example when Channels 1, 3 and 4 predict out-
come A then with probability 0.98 Channel 2 will agree.
Through monitoring the combinatorial behaviour char-
acteristics of sensors we may be able to identify distribu-
tion shifts in the data which compromise safety at run-
time.

Whilst components are typically quoted with point
values for expected performance (e.g. accuracy, preci-
sion) perturbations encountered at run-time can signifi-
cantly impact ML performance [27]. Understanding the
link between real world phenomena and component per-
formance allow for the creation of sensors which moni-
tor such phenomena and allow for the validation of oper-
ating assumptions at run-time. Consider for example an
image classifier utilised to identify road signs in an au-
tonomous vehicle. Experimental results at development
time may provide a performance profile with respect to
the amount of fog, or mist, in the air [28]. A simple mois-
ture monitor deployed at run-time may be employed to
update the anticipated accuracy of the sensor and to say
when the sensor falls outside it’s safe operating mode,
hence triggering a redevelopment of the component and
the associated assurance case.

The output of an ML component can also be moni-
tored using contextual information combinedwith knowl-
edge about the physical world in order to estimate ground
truth. For example, in a self-driving car an object de-
tection component identifies pedestrians with an associ-



ated bounding boxwhich is used to estimate the position
and size of the pedestrian. This estimate is updated as
each frame of the video is presented to the component
and the movement of the box reflects behaviours in the
real-world which must be consistent with physical laws.
For example the pedestrian may not ’disappear’ or sud-
denly ’relocate’ to impractical areas of the scene. When
such changes are detected this is indicative of a failure of
the sensing pipeline. In this way data consistency may
be used to estimate false positives, area of union or mean
average precision at run-time.

Another way to estimate the ground truth is combin-
ing sensor predictions with contextual meaningful in-
formation. As an example let’s consider a self-driving
car with an assumption in the assurance case asserting
that the frequency of false positive on speed limit signals
shall be less than a certain threshold. On a motorway in
the UK a vehicle is unlikely to encounter a 30 mph speed
sign. Using a GPS unit on the car confirms the position
and ,combining this with the contextual information, we
can determine that if a 30 miles per hour speed limit is
detected this represents a false positive.

In order to assess safety during operations usually the
precursor events or leading indicators (i.e. events likely
to happen before an accident) are monitored [29]. In
other words monitoring the output of the system detect-
ing precursor event can be a good indication that the ML
component is not safe as required. As an example we
could monitor the frequency of emergency stops contex-
tually knowing that these should not happen frequently
or in self-driving cars we could easily monitor the dis-
engagement rate knowing that if the car hand-over the
control to the human driver too often then something is
not working as it should. When a precursor event hap-
pens frequently, the development team should perform
a casual analysis to understand where the problem could
be in the pipeline.

3.2. Change Analysis
The change analysis stage seeks to evaluate the impact
of any change that activates a response trigger. The re-
sponse trigger may be flagged by a monitor, or be initi-
ated by an ML developer who has identified a desire to
change the model (for example to improve model per-
formance during operation). Once the change is trig-
gered, the impact of the change is analysed to determine
whether updates to the model, or to the safety case, or to
both are required. Where an update is required, a strat-
egy for doing so in an effective manner is determined.

Changes will generate a response trigger if they have
been determined to be potentially importantwith respect
to the validity of the safety case. When a response trig-
ger is activated during the operation of the autonomous
system, it is necessary to assess the nature and extent of

the impact the change has on the safety case. It should be
noted that the impact assessment activity is not expected
to be an automated process. The assessment will require
an understanding of the reason that the monitor was cre-
ated (informed by the monitoring strategy justification),
as well as of the safety case itself. The assessment there-
fore relies upon human expertise and judgement. The
change impact report should therefore be used to docu-
ment how the impact of the change was determined.

Where the change has an impact on the safety case
it is necessary to determine an update strategy that will
ensure a valid safety case can be maintained. It may be
that the impact on the safety case can be mitigated with-
out requiring an update to the model itself. For exam-
ple, system level mitigation may be possible, such as by
introducing additional operating restrictions on the au-
tonomous system. These restrictions would serve to en-
sure that, for example the systemwas not exposed to the
situations that triggered the change response. In such
cases the scope of the safety case can be updated to re-
flect the change in operation.

Where it is determined that model retraining is re-
quired in order to mitigate the impact of the change on
the safety case, an appropriate update strategy must be
determined. It is desirable to create an update strategy
that limits the amount of costly and time consuming as-
surance rework that is required (such as a need to re-
apply the whole of the AMLAS process). In the transfer
assurance approach we propose that the model retrain-
ing strategy and the assurance strategy should be closely
linked, such that the model retraining strategy enables a
reduction in the assurance effort required to re-establish
a valid safety case.

3.3. Redevelopment
In the redevelopment stage we update theMLmodel and
its associated safety case in line with the recommenda-
tions from the previous stage.

While the majority of ML learning is stateless [15],
i.e. the model is re-learnt from scratch each time, such
approaches result in “catastrophic forgetting” where all
previously learnt knowledge is discarded. Given the high
cost of building models this is undesirable and where
knowledge remains valid across model iterations it is de-
sirable to retain knowledge encoded in the model. In
an attempt to achieve this techniques, such as transfer
learning [30], have been developed which allow for ap-
propriate features of a model to be retained whilst also
allowing for new features to be learnt. One benefit of
transfer learning is to reduce the amount of data required
for model development as well as development costs.

Undertaking the AMLAS process from scratch each
cycle is also to be avoided if possible and, where we can
control the scope of retraining, we may also reduce the



assurance effort. For example, the identification of a new
subclass may lead us to gather a small set of data and re-
label some existing data. These activities will require us
to justify the accuracy of data labelling and the collec-
tion of appropriate data, however undertaking new as-
surance activities associatedwith historic data or “frozen”
portions of the model may be unnecessary.

A transfer assurance approach would allows us to re-
consider only a subset of the AMLAS activities originally
undertaken in stage 1 of the proposed process. The up-
dated safety case resulting from the partial reapplication
of AMLAS will, however, introduce new evidence and
may modify assumptions, contexts and justification ele-
ments. These changes may necessitate the updating of
existing monitors as well as the creation of new moni-
tors for deployment. In addition each modified monitor
will have an associated monitoring strategy justification
document which will inform subsequent impact assess-
ment activities.

Once the new model and associated monitors have
been deployed we return to operation and await a new
response trigger to undertake stages 2 and 3 once more.

4. Addressing Open Challenges
In order to deliver transfer assurance we must address
a number of open challenges which will be the focus of
future work.

In stage 1 of the proposed approachwe suggest a num-
ber of techniques which may be employed to monitor
environments for distributional shifts which invalidate
assurance claims. In open environments however such
changes are combinatorial in nature and identifying im-
pact factors in high dimensional space remains challeng-
ing. Being able to identify small regions of the input
space will however limit the need for new data to be
generated for training and potentially allow for larger re-
gions of themachine learnt component to be retained be-
tween redevelopment cycles. In addition an understand-
ing of the factor interactions in decision space will im-
prove the specification of monitoring strategies,reduce
the number of response triggers and potentially reduce
the time taken for developing assurance cases.

In stage 2 of the process we proposed the develop-
ment of update strategies through an analysis of the trig-
ger response and monitoring strategy justification doc-
ument. There exists no guidance at present concern-
ing how trade offs and design decisions should be de-
rived. For example we may become aware that the per-
formance of a component with respect to a subclass is
insufficient but it is unclear at present as to whether
one is better to a) gather new data b) label sub classes
or c) restrict the scope of assurance. Each option has
costs and benefits and guidance on how to decide the

correct course of action in a contextually relevant man-
ner is needed.

In stage 3 we recognise that continual learning and
transfer learning strategies are in sight for many real
world applications and that research in this area is well
underway. We do not, at present however, have a strat-
egy for partial assurance of incrementally learnt models.
We intend to address this by building on the work of AM-
LAS to construct processes and safety patterns to guide
the assurance of such models.

In future work we intend to address these challenges
with application to a range of real world problemswhere
we will consider: the needs of different operating con-
texts including autonomous driving and healthcare; a
range of model forms including neural networks and re-
inforcement learning policies; and different modes of
change including evolutionary drift and step changes in
the environment.

5. Conclusions
In this paper we proposed a process by which we may
update, simultaneously, an ML model integrated into an
autonomous system and its assurance case as defined
prior deployment. Such an approach is necessary due to
the evolutionary nature of the open contexts into which
autonomous systems are being deployed and a desire to
ensure safety through life.

We have presented a number of examples of how the
approach may be practically achieved and highlighted
open challenges and opportunities for future work. We
believe that transfer assurance promises to allow for re-
duced development and assurance costs, more respon-
sive deployment cycles and ultimately safer autonomous
systems in real-world contexts.
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