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Investigating Scene Visibility Estimation within

ORB-SLAM3⋆

Dominic Rugg-Gunn, Jonathan M. Aitken

Department of Automatic Control & Systems Engineering, University of Sheffield
{drugg-gunn1, jonathan.aitken}@sheffield.ac.uk

Abstract. Scene Visibility Estimation offers a collection of metrics that
give a good indication of the quality of images that are being supplied
to a Visual or Visual-Inertial Simultaneous Location and Mapping algo-
rithm. This paper will investigate the application of these metrics during
switching between camera and IMU-based localisation within the pop-
ular visual-inertial ORB-SLAM3 algorithm. Application of the metrics
provides more flexibility compared to a static threshold and incorporat-
ing the metrics within the switch provides a reduction in the error in
positioning.

Keywords: Simultaneous Localisation and Mapping · Visibility

1 Introduction

1.1 Background

Simultaneous Localisation And Mapping (SLAM) is a method used by mobile
robots to construct a map of the surrounding environment and to estimate it’s
position within that map. It is now used in an increasing number of practical
fields due to improvements with computation and sensing.

Many environments pose challenges to existing pose estimation strategies
SLAM in conjunction with appropriate sensors, provides a strong alternative [1].
Cameras commonly used as sensors as they provide a large amount of infor-
mation at a relatively low cost [14]. For this, algorithms which perform Visual-
Inertial-SLAM (VI-SLAM), harness the localisation capabilities of Visual Odom-
etry (VO) in conjunction with inertial measurements in order to estimate the
robot’s pose. VI-SLAM also performs a mapping process that tracks observed
features relative to the agent, enabling a computational understanding of an
unknown environment [4].

Cameras suffer from visual artefacts such as lens flares and occlusion, often
reducing the reliability of the localisation and mapping. These artefacts are
detected as features, and propagate into the algorithm as incorrect associations,
significantly impairing performance [2].
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Previous work [7] developed Scene Visibility Estimation (SVE) metrics, that
use a camera feed to assess the quality of the visual data and the visibility of
the scene captured. This paper will implement SVE in a state-of-the-art VI-
SLAM algorithm and use the metrics to evaluate performance with the aim of
generating a more accurate and reliable pose estimation.

2 Related Work

2.1 Visual Simultaneous Localisation and Mapping

Visual Simultaneous Localisation and Mapping (V-SLAM) is a subsection of
SLAM focused on using cameras as the sensor input to the algorithm. This
incorporates functionality from Visual Odometry (VO) and combines it with
the map generation capabilities inherent in SLAM algorithms [12]. VO works
by isolating features in each frame and tracking the movement of these through
multiple frames to infer the motion the agent must have taken.

V-SLAM is an advancement upon VO, introducing capabilities such as loop-
closure which reduces the drift suffered in pose estimation, by referencing fea-
tures to past features in the map and adjusting accordingly [1].

ORB-SLAM2 is a prominent V-SLAM algorithm, but is indirect as it includes
an additional feature identification step. Built upon ORB-SLAM, it uses an ORB
feature detector to incorporate clusters of pixels into a feature description before
selecting features to use in the algorithm [11]. This is often faster and more data
efficient than direct (individual pixel) methods, though some solutions such as
LDSO use feature extraction methods to aid pixel selection and can produce
results comparable to indirect methods [9].

2.2 Visual-Inertial Simultaneous Localisation and Mapping

VI-SLAM incorporates an IMU sensor to the V-SLAM pipeline. This adds precise
measurements of movements and rotations but is prone to drift over extended
periods of time, it therefore complements the V-SLAM algorithm well to increase
system precision and robustness [5]. Two of the most significant VI-SLAM algo-
rithms are VINS-Mono and ORB-SLAM3 [6].

VINS-Mono (monocular Visual Inertial Navigation System) is a tightly cou-
pled mono VI-SLAM algorithm. Using a single camera and IMU, it considers
the coupling of all sensors before pose estimation is performed. To optimise
performance VINS-Mono pre-integrates the IMU data between frames, which
reduces computation of superfluous pose estimation nodes [10]. The algorithm
was primarily designed for use on-board UAS for pose estimation, but has proven
capable in many other fields such as the automotive and agricultural research
areas [8][15].

ORB-SLAM3 is built upon ORB-SLAM2 with the integration of an IMU
sensor. It supports a variety of camera types and configurations, as well as in-
corporating a multi-map strategy to increase robustness to poor quality visual
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data (either from sensor errors or from a feature-sparse environment) [4]. ORB-
SLAM3’s superior performance is well noted [4, 13, 6] and motivates its use within
this paper.

2.3 Scene Visibility Estimation

Scene Visibility Estimation [7] is a novel method to improve robustness by es-
timating the visibility of detected features. This was achieved on top of the
ORB-SLAM2 algorithm by extracting and analysing tracked visual features.
The results showed it responded reliably in difficult conditions such as fog, di-
rect sunlight, and dirt on the lens.

To track the scene visibility, three metrics (Sa−c) were proposed, where each
tracked a different aspect of the presented scene. The metric Sa represents a
general ratio of the features NF to the desired number of features NF, max such
that: Sa = NF

NF , max
. With a low Sa implying poor visibility, this would also be

effective in low contrast operation or for handling feature sparse environments.
Component Sc broadly operates in the same way but using tracked features

NT . It does, however, incorporate an estimation step to determine the number
of features that should be visible based on the local map NLv, and is defined
as Sc = NT

NLv

. This should be effective in dynamic environments where tracked
features a quickly and frequently lost between keyframes, however results for
this didn’t show a strong correlation .

The final metric (Sb) is the most complex. It aims to capture the distribution
of features, the frame is divided into equal bins and a Chi-Square test is per-
formed to quantify the homogeneity of the extracted features (χ2). This result
is then scaled to a ’worst case’ scenario (χ2

w) where all features appear in one
eighth of the bins. When a part of the view is obscured any features in that sec-
tion cannot be identified, however, estimating which previously tracked features
should be identified can be used to identify feature absence. This presents as a
skew in feature homogeneity, and propagates such that Sb → 0 as χ2

→ 0 [7].

2.4 Adaptation of Scene Visibility Estimation in ORB-SLAM3

A modification was required to component A. The concept of this is that with de-
creased visibility the number of features extracted would decrease and lower the
value of SVEa. As ORB-SLAM3 almost always extracts the requested number
of features, making this value uninformative. This metric was altered to express
the ratio of tracked features (NFT

) to the number required for high quality lo-
calisation expressed as a fraction of the desired number of features (NFmax

).

3 Disturbance Generation

This section will discuss Blur, Downsampling and Occlusion disturbances, and
how they can be applied to the data sequence to be used. These disturbances
can then be used to corrupt elements of the EuRoC dataset [3] commonly used
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with ORB-SLAM3 [4], allowing an insight to the response of ORB-SLAM3 to
varying intensities of different visual disturbances.

3.1 Blur

Bluring of the image feed is an attempt to replicate fog and rain, which are
both very common-place in the real world applications of SLAM for example in
smoke, dust, and generally decreased visibility in underwater situations.

The blur was implemented via OpenCV’s Gaussian Blur, which generates
a Gaussian kernel with dimensions n × n and convolves the input image with
this. To vary the strength of the blur, the kernel dimensions are varied leading
to increased blurring of the image with higher n. In preliminary testing, all
localisation attempts by ORB-SLAM3 failed before the blur kernel size reached
50 pixels. To best explore the range before this point, a step-size of 5 was selected,
giving a testing set of 11 intensities with dimensions n× n for n ∈ [0, 5...45, 50].
Examples of these kernel sizes can be seen in Figure 1, with a weak blur shown
in Figure 1a and a strong shown in Figure 1b.

(a) Kernel Size n = 5 (b) Kernel Size n = 50

Fig. 1: Example Frames with Different Blur Kernel Sizes

3.2 Downsampling

The second augmentation performed was resolution downsampling. This was
chosen partially to present an alternative implementation to blur for low visibility
scenarios. In addition, image resolution is important to consider in it’s own right
as it is closely linked to hardware costs, with higher resolution cameras costing
significantly more. This augmentation helps to investigate the extent to which
a lower resolution, low cost, cameras impact the performance of the localisation
in ORB-SLAM3.

The resolution downsampling was implemented via OpenCV’s Resize, which
is used to resamples the image array according to a provided downsampling
factor (applied to both x and y dimensions). Preliminary tests were conducted
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that identified a downsampling factor of 1/0.1 was the point at which the ini-
tialisation failed, which is a resolution of just 75 × 48 px. Ten sample points
were selected from the range [1,0.1] in order to cover it with a reasonable level
of granularity. This resulted in the final downsampling factors to be tested of
1/[1.0, 0.9...0.2, 0.1].

Examples of the frames at these resolutions can be seen in Figure 2 where
Figure 2a shows the smallest downsampling factor, taking the image to a reso-
lution of 676 × 432 px. Figure 2b depicts the largest amount of downsampling
(enlarged for visibility), and is the point at which the resolution is too low for
the system to initialise.

(a) Downsampling Factor DF = 1/0.9 (b) Downsampling Factor DF = 1/0.1

Fig. 2: Example Frames with Different Downsampling Factors

3.3 Occlusion

The third disturbance selected was Occlusion. The ORB-SLAM3 system incorpo-
rates a place recognition module from ORBSLAM2, which is designed to resume
tracking after temporal occlusions. In this test set the occlusion is static and per-
sistent throughout the sequence, in order to investigate the systems robustness
to scenarios with dirt or rain on the camera lens. To achieve this, a black square
is generated in the center of the image as though an object was stuck to the lens
of the camera. This appear in the centre of the image and different intensities
are generated by adjusting the region’s dimensions to produce a n × n absence
of data. The smallest dimension of the image was 480 px, so the upper bound
for n was chosen to be 450 px as this could be easily divided into ten steps to
produce the final range of n ∈ [50, 100...400, 450]. Examples of the extremes of
the occlusion disturbance can be seen in Figure 3 with the smallest and largest
occlusion sizes are shown in Figure 3a and Figure 3b respectively.
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(a) Occlusion Size n = 50 (b) Occlusion Size n = 450

Fig. 3: Example Frames with Different Occlusion Sizes

3.4 Data Aggregation

In summary, three simple disturbances are applied to a baseline sequence from
the EuRoC dataset. These each have 9-10 different levels, on which ORB-SLAM3
was be tested 100 times in order to aggregate the results and reject anomalies
in the system’s performance.

4 Improving SVE and Adapting ORB-SLAM3

The original ORB-SLAM3 pipeline incorporates a switching-behaviour for using
visual or inertial data which is based on the number of features extracted from
the image, typically set to 15 with the IMU initialised, or 50 when not. This is
used as a primitive equivalent of the SVE, used to dictate to the system whether
the image localisation should be used or the IMU odometry.

To test the current state of behaviours these evaluations were replaced with
comparisons to the SVE using thresholds of 0.1 and 0.3 respectively. With little
to no disturbances applied, the majority of the SVE (µ ± σ) lies above 0.3 so
this was chosen to be a reasonable upper threshold. The lower threshold of 0.1
was chosen from manually inspecting how the SVE responds to the visually
challenging portions of the sequence.

Combining the insights learnt so far, the components of the SVE metric
appear to work well to indicate the visibility. However the process of combining
them does not focus on the most important aspects for ORB-SLAM3’s switching-
behaviour. The equation currently used to do this is outlined in Equation (1),
where it can be seen that the number of extracted features (represented in SVEa)
only constitutes 20% of the overall metric. In order to improve the performance of
the ORB-SLAM3 pipeline when the SVE metric is used to govern the switching-
behaviour, two improvements are proposed to weight SVEa more heavily.

SVE = 0.2× SVEa +0.4× SVEb +0.4× SVEc (1)

The first of improvement proposal is outlined in Equation (2), and alters
the weightings such that component A bears twice the weighting of either com-
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ponents B or C, which are equally weighted. This keeps to the same structure
in [7], but seeks to redistribute the influence such that the switching-behaviour
is more accurate and robust.

SVE = 0.5× SVEa +0.25× SVEb +0.25× SVEc (2)

The alternate improvement deviates from the original structure as shown in
Equation (3), making the number of tracked features of paramount importance
to dictate the scene’s visibility. This structure uses the SVEa metric as a scaling
factor for the remaining metrics, and returns this result to a linear response by
taking the square-root which results in a behaviour similar to a geometric mean.

The thresholds for this method were determined by scaling the original
thresholds of 15 and 50, with best visibility (SVE = 1) set to occur with 250
tracked features, the original thresholds were divided by this to produce values
of 0.04 for 15 features and 0.2 for 50.

SVE =
√

SVEa ×(0.5× SVEb +0.5× SVEc) (3)

5 Results

To analyse the performance of the two options for improving the SVE met-
rics, each was built into separate ORB-SLAM3 instances with the thresholds
described in the previous section. These two ORB-SLAM3 builds were then run
with each of the 31 sequences 100 times.

5.1 SVE Improvements

The plots of the SVE metrics are shown in Figure 4, Figure 5, and Figure 6,
showing the responses to each of the different disturbances.

(a) Option 1 (b) Option 2

Fig. 4: Comparison of Modified SVE Metrics Subjected to Blur
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The modified metrics showed the least difference from the original metric
when subjected to the Blur disturbances, the results of which can be seen in
Figure 4. These mean values for both metric options are almost completely
parallel to the original for all intensities. Which indicates they generally agree
on the relative visibilities of the different blur intensities. The larger standard
deviation illustrates a greater variation of the metric throughout each test run,
so it is likely that the modified metrics provide a more varied and accurate
indication of the true visibility throughout the sequence.

(a) Option 1 (b) Option 2

Fig. 5: Comparison of Modified SVE Metrics Subjected to Downsampling

The responses to downsampling shown in Figure 5 also exhibit the increased
standard deviation of the modified metrics, with this being continually demon-
strated throughout the sequence. As was seen in responses to the Blur, the mean
value of both metrics stay parallel up to a downsampling factor of 1/0.5. A this
point Option 2 drops first, but it shortly followed by Option 1 and the Original
at 1/0.4, however both the modified versions do so with a steeper gradient. This
shows an increased sensitivity to poor visibility conditions which is even more
exaggerated in Option 2.

Figure 6 shows some of the most significant improvement with the modified
metrics. Option 1 demonstrates an increased sensitivity to poor visibility by
diverging from the unmodified equivalent from the lowest occlusion size and
continuing this through to the highest. It also exhibits the increased standard
deviation making it likely to be identifying high and low visibility areas more
effectively throughout the individual sequences. This shows a very promising
step towards representing the true scene visibility, as it is known that there is
disturbance at this point yet neither of the other two metrics indicate this.
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(a) Option 1 (b) Option 2

Fig. 6: Comparison of Modified SVE Metrics Subjected to Occlusion

5.2 Adapted ORB-SLAM3 Results

With the original ORB-SLAM3 switching algorithm as the baseline, Figure 7a,
Figure 7b, and Figure 7c show comparisons between this baseline and to two
pipelines with the SVE-based switching-behaviour implemented.

Figure 7a shows the relative performance of the localisation as the Blur kernel
size increases. It can be seen that all algorithms completely fail beyond a kernel
size of 35, indicating the first steps in successfully stopping visual localisation
when scene visibility is severely affected. Throughout the lower ranges Option 1
displays poor performance, multiple points deviate significantly from the baseline
and almost always have greater RMS error. By contrast, Option 2 exhibits very
good performance with little deviation from the performance of ORB-SLAM3’s
Original switching-behaviour, and strongly reflects the expected general trend.

With Downsampling applied to the visual data, Figure 7b shows a generally
similar performance between all three systems, this is most evident when DF =
1/0.8 → 1/0.4. Both the Original and Option 1 switching-behaviours show spikes
at DF = 1/0.9, this is due to a couple of smaller outliers not being rejected which
appear to be the same reason for the peak in Option 1. Interestingly, Option 2
seems to be more robust to this with no unexpected spikes observed due to
outliers in either the blur or downsampling tests.

The final filter applied was occlusion, the results of which can be seen in
Figure 7c. In this it can be seen that Option 1 is again showing relatively poor
rejection of bad tracking data, with the SVE metric failing to trigger adequate
switching in order to prevent failures within the localisation process. The per-
formance of this remained in line with the other two systems until an occluded
area of 150× 150 px, at which point the error began to increase before sharply
failing beyond 250 × 250 px. Option 2’s performance remained much closer to
the Original results, with a slight peak likely due to outliers at 300 × 300 px.
Notably, neither Option 1 or Option 2 were successful in preventing tracking at
450× 450. The Original failing to reach this point indicates that the number of
tracked features was very low which would make localisation estimates poor.
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Fig. 7: Comparison of Original ORB-SLAM3 Switching Behaviour and
Proposed SVE-Based Switches

6 Conclusions and Future Work

This paper has investigated the application of Scene Visibility Estimation within
ORB-SLAM3. The EuRoC dataset has been corrupted using a collection of tech-
niques that produce effects analogous to blur, occlusion and downsampling. The
SVE metrics have been implemented within ORB-SLAM3, and used to provide
an adaptive threshold for switching between localisation using either the camera
or IMU feeds. SVE provides a more complete set of measurements of the qual-
ity of the image feed, and this allows the switching process to be more efficient
resulting in a more accurate localisation when compared to the standard ORB-
SLAM3 baseline. Option 2 performed very well, being consistently similar to the
original pipeline and in some cases out performing it. Future work will focus on
the optimisation of the mix of the SVE metrics to minimise position error.
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