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CORRESPONDENCE Open Access

Broadening horizons: the case for capturing
function and the role of health informatics
in its use
Denis Newman-Griffis1,2* , Julia Porcino1, Ayah Zirikly1, Thanh Thieu3, Jonathan Camacho Maldonado1,
Pei-Shu Ho1, Min Ding4, Leighton Chan1 and Elizabeth Rasch1

Abstract

Background: Human activity and the interaction between health conditions and activity is a critical part of understanding
the overall function of individuals. The World Health Organization’s International Classification of Functioning, Disability and
Health (ICF) models function as all aspects of an individual’s interaction with the world, including organismal concepts such
as individual body structures, functions, and pathologies, as well as the outcomes of the individual’s interaction with their
environment, referred to as activity and participation. Function, particularly activity and participation outcomes,
is an important indicator of health at both the level of an individual and the population level, as it is highly
correlated with quality of life and a critical component of identifying resource needs. Since it reflects the cumulative impact
of health conditions on individuals and is not disease specific, its use as a health indicator helps to address major barriers to
holistic, patient-centered care that result from multiple, and often competing, disease specific interventions. While the need
for better information on function has been widely endorsed, this has not translated into its routine incorporation
into modern health systems.

Purpose: We present the importance of capturing information on activity as a core component of modern health systems
and identify specific steps and analytic methods that can be used to make it more available to utilize in improving patient
care. We identify challenges in the use of activity and participation information, such as a lack of consistent documentation
and diversity of data specificity and representation across providers, health systems, and national surveys. We describe how
activity and participation information can be more effectively captured, and how health informatics methodologies,
including natural language processing (NLP), can enable automatically locating, extracting, and organizing this information
on a large scale, supporting standardization and utilization with minimal additional provider burden. We examine
the analytic requirements and potential challenges of capturing this information with informatics, and describe
how data-driven techniques can combine with common standards and documentation practices to make activity
and participation information standardized and accessible for improving patient care.
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Recommendations: We recommend four specific actions to improve the capture and analysis of activity and participation
information throughout the continuum of care: (1) make activity and participation annotation standards and
datasets available to the broader research community; (2) define common research problems in automatically
processing activity and participation information; (3) develop robust, machine-readable ontologies for function
that describe the components of activity and participation information and their relationships; and (4) establish standards
for how and when to document activity and participation status during clinical encounters. We further provide specific
short-term goals to make significant progress in each of these areas within a reasonable time frame.

Keywords: Disability evaluation, Electronic health records, Health informatics, Clinical informatics, Public health informatics,
Natural language processing

Background
The way in which we learn about our world as individuals

and how we willfully act within it is fundamental to human

existence. Human activity, and the impact of health condi-

tions on it, is an important component of contemporary

conceptualizations of health. This article is the product of a

collaborative effort between an interdisciplinary group of

health professionals and scientists to summarize the im-

portance of capturing information on activity in health

systems, and to identify analytic tools and techniques that

can support effective utilization of this information for

improving patient care. We draw on particularly relevant

references in the salient fields to highlight the concepts,

techniques, and evidence for a broader incorporation of

activity information into healthcare and data analytics. We

first describe conceptualizations of human activity and its

role in models of health and disability, and existing

methods and applications for measurements of activity. We

then identify current information gaps regarding activity,

along with methods for improving the rate and quality of

capture of activity information and analyzing it to inform

care decisions. Finally, we suggest four specific actions that

can be taken towards more effective use of activity informa-

tion in health systems, and identify practical short-term

goals to make meaningful progress towards each.

Activity and disability

In sociology, action theory describes human activity, and

its purposeful nature, in the context of environments

and societies in which activities take place. Although

first described in 1937 [1], the concept of human action

has more recently been applied to the fields of medicine

and health sciences to characterize the consequences of

health conditions as an important and meaningful indi-

cator of health. This concept is reflected in contempor-

ary models of disability, for instance, where disability is

conceptualized as the outcome of the interaction be-

tween the capabilities of individuals and the demands of

environments with which individuals interact. The

premise that disability reflects how people function given

a particular context was articulated by Saad Nagi in the

early 1960’s [2] and formed the basis for every contempor-

ary model of disability that followed. Now codified in the

World Health Organization’s (WHO) International Classi-

fication of Functioning, Disability, and Health (ICF) [3]

and adopted internationally, human action is embodied in

the domain of activity and participation, where activity

represents the execution of an action by an individual and

participation represents actions through involvement in

life situations. Actions, which take place at the level of the

individual, are distinguished from organ or organ system

function (ICF body structures/functions), or cellular/tissue

function (ICF health conditions).

What is function?

Human function can be broadly conceptualized as a con-

tinuum from body structures and functions to outcomes of

interactions between individuals and their environments

[4, 5], and has been argued to reflect “the lived experience

of health” [6, 7]. The ICF defines function as an umbrella

term encompassing all aspects of the interaction “between

an individual (with a health condition) and that individual’s

contextual factors (environmental and personal factors)”

[4]. Within the ICF model, function is broken down into

several components, illustrated in Fig. 1. This model

encompasses all aspects of an individual’s interaction with

the world, including organismal concepts such as individ-

ual body functions/structures and pathologies, as well as

activity and participation, and all the environmental factors

that affect these interactions. Importantly, activity and

participation reflect volitional actions that take place at the

level of the whole person, such as walking, communicating,

applying knowledge, etc., which take place in, and are influ-

enced by, a life situation or social context. For the purposes

of this article, we operationalize the term “function” at this

whole person level, and refer primarily to “activity and

participation” in detailed discussion.

Why are activity and participation important health

indicators?

At both the individual and population levels, the ability

of people to engage in activities and their participation

Newman-Griffis et al. BMC Public Health         (2019) 19:1288 Page 2 of 13



in social roles shapes the need for resources and the as-

sociated response from national agencies, health systems,

home and community-based organizations, and other

support entities [8]. One timely example of the need for

information about activities and participation on a global

scale is a consequence of the dramatic shift in the

world’s demographic profile due to population aging.

Among figures that the United Nations (UN) calculates

in relationship to population ageing is the support ratio,

which is the number of workers per retiree. By 2050, 36

countries, including the U.S., are expected to have sup-

port ratios below 2 [9], meaning that there will be fewer

than 2 working persons to support each person over the

age of 60. Ultimately, an individual’s independence and

ability to participate in meaningful life activities (i.e.,

quality of life) will heavily influence resource needs [10]

and, at the population level, will have an overwhelming

impact on national public health, pensions, and social

programs serving the elderly. As noted in the WHO

World Report on Ageing and Health, complex health

states resulting from the coexistence of multiple chronic

conditions (which can exist at any age) are not ad-

equately represented by identifying or treating one dis-

ease at a time. As a result, there is a need for measures

that are more meaningful to individuals [5].

The need for better information on activity and par-

ticipation at the individual level has also been widely

endorsed [11, 12]. Activity and participation reflect the

cumulative outcome of disease burden, i.e. multimorbid-

ity. In the U.S., it has been reported that over half of

working age adults experience one or more chronic

conditions [13]. It is well established that there is a

strong and consistent association between a greater

number of chronic conditions and the existence and

severity of limitations in activities and participation [14,

15]. Thus, the effect of multiple chronic conditions on

the lives of individuals is realized in their overall func-

tion [6, 7]. Since function reflects, among other factors,

the cumulative impact of health conditions on the per-

son, and is not disease specific [16], its use as a health

indicator helps to address major barriers to holistic, pa-

tient-centered care, such as fragmentation in care resulting

from multiple and often competing disease-specific

interventions [17].

In clinical settings, the inclusion of information on

activity and participation in case mix calculations has

been shown to improve the prediction of patient needs

and resource use [8]. Evidence suggests that in cases of

multi-morbidity, reducing the complexity of an individ-

ual’s overall health state to approaches focusing on each

disease individually fails to provide adequate care for this

growing segment of the global population [18]. Viewing

the outcome of these complexities in the form of whole

person function, i.e., activity and participation, is there-

fore likely to clarify approaches to intervention [8, 10].

Function reflects a health continuum and thus is more

comprehensive in its characterization of health than

other endpoints like morbidity or mortality [17]. Indica-

tors of function are strongly predictive of mortality [19]

but have the additional advantage of being more prox-

imal health indicators, permitting earlier and potentially

more effective interventions [10, 20]. Simple and object-

ive tests of physical performance have been included as

biomarkers in studies of ageing, outperforming more

traditional impairment measures in models predicting

mortality [20]. Markers of frailty that include physical

Fig. 1 Diagram of the International Classification of Functioning, Disability and Health (ICF) model of function. Reproduced by permission of
World Health Organization (WHO), from ICF [3], p18
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function have been associated with employment difficul-

ties in late middle age [21]. In addition to predicting

mortality, indicators of physical function have been

shown to predict other important and more immediate

outcomes such as subsequent disability [22] and demen-

tia [23] among older adults. In the context of population

ageing, the prevalence of multi-morbidity within popula-

tions and within individuals will have associated conse-

quences in function. Thus, information about function

at both the individual and population level is critical for

the design of healthcare systems, home and community-

based supports, and for resource allocation.

How have activity and participation been measured?

Models of function have historically been developed in

the context of discussing disability, which is often de-

scribed in terms of limitations in function [2, 24, 25].

However, these are conceptual models, describing the

broad components that contribute to function, and have

proven difficult to translate to data models that can

capture specific aspects of function in context and how

they relate to one another. Even the ICF, the most

detailed framework developed for function, does not

formally describe the relationships between different

structures, activities, and environmental factors. Thus,

how best to measure function, and particularly activity

and participation, remains an open question despite

international efforts [26, 27]. Many of the existing mea-

surements are at the population level, in the form of

national survey questions (see [26] for a detailed review

of many such survey instruments). While these are

relatively easy to administer with high coverage, they are

necessarily limited in detail, in order to minimize respond-

ent burden, and are unable to capture the individual per-

spective. Some efforts have been made to systematically

capture information on activities of daily living (ADLs) in

individual healthcare encounters; however, these have

been captured relatively rarely and only present one small

piece of the overall picture of activity and participation

[27, 28]. Notably, information about the environment in

which an individual functions is rarely captured under

either approach, despite being central to concepts of func-

tion and disability. This continuing debate and develop-

ment of instruments to measure function means that even

where measurements of activity and/or participation are

captured, they cannot easily be recognized as such or

mapped to standardized vocabularies and data models for

analysis.

Definitions and examples of terms

One effect of the malleable definitions of function and

its measurement is that language used for these concepts

varies widely, particularly between different scientific

fields. For clarity, we define our key terms here, and

provide examples of each.

– Function – “a dynamic interaction between a

person’s health condition, environmental factors,

and personal factors” [3]. This is an umbrella term

including cellular and tissue function, organ and

body structure function, and whole person function.

– Activity and participation – the outcome of the

interaction between an individual (with some health

condition) and their environment, including specific

activities and participation, as well as personal

contextual factors; also referred to as whole person

function. This encompasses basic willful actions,

specific tasks, organized activities, and role

participation [26, 29]. Examples include walking

(including the environment being walked on,

anything used to assist in performing the activity,

etc), taking public transportation (which combines

walking with other activities such as identifying a

destination, sitting, etc), or participating in work.

– Activity report – a recorded observation of activity

and/or participation, which identifies relevant

components of a specific activity or participation

outcome and records them in structured or

unstructured data. Examples include, “Patient

walked one lap in the hallway,” or “Sue reports to

work every day at 9 and works with no limitations

until 5pm.” Prior work has referred to information

samples of this type variously as “functioning

information” [30], “functional status terms” [31],

“functional status information” [32], “functional

health status” [33], and other terms. However, prior

studies have not specifically distinguished

information about activity and participation from

information about other elements of function; thus,

we adopt the term “activity report” to clearly

distinguish activity and participation information

from other types of health information.

The information gap: What’s missing?

While information on pathology, and even impairments

of individual body functions, has been captured at a high

rate for use in many modern health systems [34], infor-

mation on activity and participation is captured rela-

tively rarely and remains difficult to use effectively [7,

35]. In order to utilize data on activity and participation,

i.e., activity reports, the healthcare field has two primary

needs: (1) standardized procedures and tools for captur-

ing activity reports routinely and quickly (both in and

out of the clinic), and (2) methods for analyzing activity

reports to support evidence-based decision making. We

suggest approaches towards meeting both of these needs,

and provide four concrete calls to action, with example
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short term goals for each, to improve both the availability

and the utility of activity and participation information for

modern health systems.

How can information on activity and participation be

captured?

At the population level, most countries collect basic in-

formation on function via national censuses and surveys

[36], but this information is rarely captured in sufficient

detail or frequency to have an impact on healthcare

systems [7]. Thus, national surveys cannot be responsive

to information needs in real time. At the individual level,

some self-administered surveys for measuring specific

aspects of functional status have been developed [37],

and social media technologies have been shown to

passively capture some information about individual

function [31]; wearable devices are also an emerging

technology for capturing individuals’ activity-related in-

formation. However, these tools are, at least currently,

difficult to standardize and apply to reliably capture in-

formation on activity and participation at scale. Health

systems, which many individuals encounter fairly regularly,

offer another logical source for capturing information about

activity and participation, which can be combined with

other sources for a fuller picture of individual function.

While some information about activity and participation is

already collected during healthcare encounters, there re-

mains significant variability in terms of how often and on

whom it is collected, as well as what information is captured

[7, 17, 20, 35]. In addition to objective observations of activ-

ity and participation, expanded documentation of activity

reports in health records can also capture self-reported data,

which complements clinical assessments [28, 38].

The current scarcity of activity reports at the individ-

ual level, recorded via diverse modalities, instruments,

and language, presents challenges for their use in deci-

sion making. Firstly, to support evidence-based decision

making in health systems, health information must be

standardized and interoperable to optimize its potential

usefulness [17]. Usefulness, in turn, can only be achieved

when raw data are translated into knowledge that can

change practice, requiring analytics. An extraordinary

volume of data is generated in health systems [39], and

many of these data may include errors that impact

analytics [40, 41]. Coordination with data from surveys,

self-reported tools, and other media can improve accur-

acy, but increases the volume of data that must be proc-

essed. Thus, concerted efforts are needed to tap into the

potential of these sources of information on activity and

participation. A data-driven approach leveraging current

techniques in health informatics to extract information

about function, in particular activity and participation, is

needed and represents an effort that requires the

involvement and coordination of many entities [5].

How can information on activity and participation be

analyzed?

The field of health informatics involves the use of

health-related data for scientific inquiry and discovery

and for decision making in healthcare and government

[42]. This definition encompasses a wide variety of

analytic methods, which can be broadly separated into

analyses of structured data (i.e., data fields such as vital

signs, demographics, lab readings, etc) and unstructured

data (e.g., free-text health records or medical images).

Analysis of structured data has proven invaluable in

advances in medical informatics and public health, such

as monitoring cancer incidence and treatment at a popu-

lation level [34], predicting the need for specific inter-

ventions in individual breast cancer treatment [43],

cohort identification in Nordic countries [44], and many

others [45, 46]. In the area of functional status measures

and its correlation to mortality risk, factors such as age,

gender, and some ADL information have been used to

predict 2-year mortality [47]. However, a lack of stan-

dardized data models means that activity reports are

difficult to capture in structured form. Even where some

simpler aspects such as ADLs are captured in health re-

cords, they are difficult to correlate across samples [35];

existing structured judgments also often lack the granu-

larity to capture functional limitations informatively

[48]. Ongoing development of standards for recording

information relevant to activity, such as physical therapy

outcomes, offers one way to improve capture of struc-

tured data for analysis [49]. Further, imaging techniques

are growing as an area of assessing impairments and

associated functional limitations [50, 51], although such

techniques impose high provider burden. Thus, we focus

our discussion on unstructured text—particularly in

health data—where activity reports have historically been

captured [28, 48], and which offers flexilibity to capture

relevant details such as environmental or personal

factors. While this flexibility can contribute both to

provider burden in writing documentation and analytic

burden in extracting useful information from it [52, 53],

technologies such as speech recognition and natural lan-

guage processing (NLP) can be used to reduce this bur-

den while enabling automatic extraction, organization,

and summarization of relevant information [53–55].

How has NLP been used in clinical care and research?

Natural Language Processing (NLP) is a broad field of

research that has been used for a variety of purposes in

processing health-related text data. The most common

application of NLP for health has been automatically

extracting and recognizing health-related information in

text [56–58], such as symptoms, procedures, and diseases

[59–61], medications [62, 63] health events [64, 65], and

patient characteristics [66], among other examples. Many
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advances in NLP for health have been enabled through

shared tasks [67], which engage a wider research commu-

nity to solve a specific research problem such as detecting

smoking status [68] or heart risk factors [69]. NLP has a

long history of research and operational use in clinical

informatics [70], and has proven especially helpful for

several tasks that are difficult or expensive for humans to

complete, such as detecting rates of patient readmission to

different facilities [71]. NLP methods have also been in-

corporated operationally in diverse decision support sys-

tems including modeling disease progression, identifying

cancer-related information in pathology reports, and risk

assessment tools [72, 73].

While NLP for healthcare applications has historically

focused on diagnostic information such as diseases,

symptoms, medications, and procedures, more recent re-

search is expanding both within and outside the clinic to

consider contextual factors and other data sources. For

example, homelessness is an important social indicator

of health that can be extracted from the text of clinical

encounters [74, 75]. NLP techniques have also been

instrumental in leveraging pervasive social media data

for diverse applications, from detecting adverse drug re-

actions to epidemiological surveillance [72]. Social media

data have been particularly transformative for monitor-

ing and analyzing mental health, a critical component of

function. For instance, NLP techniques have been used

to assist moderators of online forums by automatically

flagging posts suggesting a mental health crisis—such as

suicide risk—for immediate human intervention [76].

Current efforts are also being put into creating datasets

that would further application of NLP techniques in this

domain [77, 78].

How has unstructured activity and participation

information been analyzed?

Structured data about activities, participation, and associ-

ated limitations are central to disability research, assistive

technology development, and many other fields. These

data can be gathered from national surveys [79, 80],

obtained via specialized research instruments [81], or

modeled from available clinical information [82], although

use of this information in healthcare delivery remains rela-

tively limited [83]. Analyzing unstructured text informa-

tion about activity and participation, however, along with

associated environmental and personal factors, is an emer-

ging area of interest in health informatics research. Recent

work has included collecting self-reported function terms

by manually reviewing clinical documents and online

forums [31], and identifying groups of phrases describing

various aspects of function via clinical chart review [33];

notably, the majority of these terms were not found in

established terminological resources like the Unified Med-

ical Language System (UMLS) [84]. To address this issue

of coverage, some researchers interested in activity and

participation have utilized application-specific vocabular-

ies compiled by clinical staff. Such handcrafted approaches

have been successful in various applications, including

automatically assigning some ICF codes in discharge

summaries [85], using ICF codes for information retrieval

[86], and predicting patients’ rehospitalization risk [87].

Other work has avoided the coverage issue by using

vocabulary-agnostic methods that are targeted to specific

types of activity reports [88]. Additionally, activity and

participation information has been used in the extraction

and modeling of other functional outcomes, such as frailty

or grave illnesses, from clinical text [89–91]. These studies

represent significant initial efforts in analyzing activity and

participation information with NLP, but the lack of sys-

tematic alignment with an overall conceptual framework

for activity and participation and lack of shared definitions

of the analytic tasks pose challenges for synthesizing and

building on these efforts.

What is needed to improve analysis of activity and

participation information?

While activity reports may not yet be commonplace or a

robust part of medical records, important information

on activity and participation is currently being recorded,

and is most often located in the free text portions of

clinical notes. Thus, we focus on NLP as a critical tool

for capturing this information for use and analysis. NLP,

like other techniques used in health informatics, is a

complex field that relies on a multitude of resources to

achieve optimal performance. In the following sections,

we walk through several factors in effective informatics,

what is needed to support them, and the particular

challenges of supporting these needs in the context of

activity and participation information analysis. These

points are also summarized in Table 1.

What data are needed for successful informatics?

Much of the potential of health informatics is predicated

on the availability of data. To develop and evaluate

informatics methods for activity and participation, it is

necessary to have data that have been annotated, or

marked by experts as to what relevant information it

contains and where that information can be found.

Annotation serves two primary roles in informatics: to

tell analysts and machine learning systems what specific

information to focus on; and to serve as a gold standard

for evaluating proposed automated methods and sup-

porting benchmarking and comparison within a broader

research community.

Examples of annotations for activity and participation

information might include highlighting descriptions of

specific actions (e.g., walking, climbing, shopping, clean-

ing) or life situations in free text, or even what type of
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clinical evaluation is being described. Annotating such

information requires both identifying and standardizing

the components of activity reports in clinical records.

Function is defined within the ICF as the outcome of the

interaction of individuals with various contextual factors,

which means that descriptions of activity and participa-

tion tend to be complex and rely on multiple pieces of

evidence. For example, a therapist might observe that a

patient is able to walk with a rolling walker for 300 ft.

While the activity report that needs to be captured is

focused on the action (“walk”), this information is con-

textualized by other factors such as the assistive device

(“rolling walker”), and these relationships must be cap-

tured in annotation as well.

In addition to annotating data, it is important to de-

vote research and administrative efforts to collecting and

sharing large volumes of data that represent activity and

participation information. Many recent advances in stat-

istical methods for NLP, particularly deep learning tech-

nologies, have relied on the availability of thousands or

millions of documents [92], but virtually no documents

with activity and participation information are available

to the broader research community at present. Semantic

approaches leveraging expert knowledge have been used

to great effect in low-data settings in the past [93];

however, such methods have typically relied on robust

standardized resources that are lacking for activity and

participation, emphasizing the value of statistical learn-

ing from large datasets.

In medical data, which often contains protected health

information (PHI), there are two main strategies for

collecting such datasets. First, research groups within a

single institution or collaboration may collect private

data under an IRB-approved protocol. These data may

be re-used or shared after the initial study via mecha-

nisms such as protocol amendments, designing new pro-

tocols, and developing business or data use agreements.

While these tend to be limited to specific named parties

included in the protocol or legal agreements, and may

involve lengthy approval processes, such mechanisms

have been effectively used for a large variety of data

sharing scenarios in health research [94]. A second strat-

egy is to curate de-identified datasets that remove PHI

and are then made more widely available while taking

appropriate precautions for data stewardship. This is not

a simple task: though de-identification can be performed

without significantly reducing relevant clinical informa-

tion [95], it is by no means a perfect process [96, 97],

and defining what qualifies as de-identified requires

agreement between all relevant stakeholders, such as

IRBs, privacy offices, government entities, and most cer-

tainly patients. De-identified datasets are thus rare, but

have an outsize impact in supporting rapid and effective

research within a whole community. Under any chosen

Table 1 Four approaches to addressing the information gap on activity and participation

Approach: Common datasets for research Shared understanding of
analytic tasks

Expert knowledge of activity and
participation

Records of activity and
participation

Analytic
Needs:

• Volume: sufficient data to support
modern methods of analysis.

• Representation: data must be
widely representative.

• Annotation: gold standard
descriptions of activity reports for
benchmarking and comparison.

• Problem definitions: common
definitions of analytic tasks
and evaluation.

• Problem sharing: information
exchange in the community.

• Interdisciplinary collaboration:
input from clinical and
analytic stakeholders.

• Standardized information
structure: clear standards of
information components and their
relationships.

• Robust sources of information:
capture variation and common
usage of language and data.

• Recorded observations:
activity reports
explicitly recorded
during patient
encounters.

Challenges
for Activity
and
Participation:

• Records from general encounters
often have few activity reports.

• Activity reports are expressed in
diverse language and in varying
levels of detail.

• No common datasets with activity
and participation information
available for community research.

• Prior NLP work on activity
and participation information
has been highly specific and
does not generalize easily.

• Requires both data science
and clinical expertise to
effectively adapt existing
methods to data that contain
activity reports.

• Existing resources lack sufficient
structure to accurately represent
activity and participation
information in practice.

• Current vocabularies have poor
coverage of activity and
participation concepts and terms.

• Multiple competing
standards exist for
documenting
information in
rehabilitation medicine.

• Standards are not
widely adopted outside
of rehab for standard
clinical care.

Action: • Develop and publish standards for
annotating activity reports.

• Develop resources for research that
can be shared through regulatory
frameworks.

• Identify and define common
research problems and
applications for processing
activity reports.

• Develop a clinically-informed
ontology for activity and participa-
tion information, along with repre-
sentative terminologies from
multiple sources.

• Establish common
standards for observing
and documenting
activity reports in
patient encounters.

Short-term
Goals:

• Develop and publish annotation
schema for 1–2 specific aspects of
activity and participation. Make
small sets of annotated data
available through existing data
sharing mechanisms.

• Establish shared tasks for
extracting particular activity
reports from an annotated
dataset.

• Develop mappings across existing
conceptual frameworks, such as
ICF and SNOMED.

• Identify minimal
interventions that can
capture high-impact
activity and participation
status.
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mechanism, sharable datasets of activity reports will

contribute significantly to informatics research and ap-

plications using activity and participation information.

How do we make use of these data?

Applying informatic methods to use activity and partici-

pation information in clinical and administrative practice

requires addressing a wide variety of analytic challenges.

One challenge is that many specific analytic tasks do not

clearly correspond to existing informatics research prob-

lems. For example, activity reports, such as “walks with-

out gait aid 50 feet in hallway”, involve the interaction of

several concepts. Recognizing and extracting such re-

ports from text requires both identifying the component

concepts (e.g., the action “walks”, environmental factors

“in hallway” and “without gait aid”, and the specific

distance “50 ft”) and linking them together. Walking in

an indoor hallway is significantly different from walking

across rough terrain outside; connecting these elements

is necessary to extract the atomic outcome being re-

corded. This task is further complicated when multiple

outcomes are described in a single report; for example,

“ambulate in the hallway and stairs” refers both to walk-

ing and to climbing (two distinct activities in the ICF).

Thus, modeling the complex semantics of activity re-

ports may involve combining multiple existing research

problems, such as named entity recognition, syntactic

dependency parsing, and even conceptual inference.

Even well-studied problems such as information retrieval

or relation extraction can face new challenges for activity

and participation information. For example, some patient

records, such as History and Physical Examinations, often

contain only a few sentences describing physical and

mental function among a much larger concentration of

diagnostic history, past procedures, etc. For a healthcare

provider or administrator attempting to locate activity and

participation information about a patient, such as a phys-

ical therapist tracking activity history or an analyst survey-

ing inpatient functional outcomes, it is therefore necessary

to pinpoint which sections or paragraphs of a long docu-

ment include important information to review. Further-

more, such users must be able to quickly access and

intuitively organize patient records from a variety of disci-

plines. These applications encompass diverse NLP tasks,

including information extraction and retrieval, for identify-

ing and organizing activity and participation information in

the medical record; knowledge representation, for captur-

ing clinically-informed relationships between activity and

participation concepts; and determining the relevance of

documents with respect to particular criteria, such as

potential limitations in function. As with all complex tasks

and modern problem solving approaches, addressing these

issues for practical care will require interdisciplinary collab-

oration between clinical or domain experts, knowledge

representation specialists, and informaticians at all stages

of the analytic process, from defining goals to practical

implementation in healthcare systems.

What resources do we need?

Beyond the quantity and quality of available data, many

successful clinical applications of NLP have been

enabled by robust medical knowledge sources. These

sources are referred to by various names, including (but

not limited to) taxonomies, terminologies, and ontol-

ogies. These terms are used inconsistently in the litera-

ture, so we define each of them for this article as

follows. Terminologies capture the diverse names used

to refer to biomedical concepts, such as diseases, sub-

stances, measurements, etc., and are intended to both

catalogue distinct concepts and provide a more or less

comprehensive reference for the ways these concepts

can be referred to. Biomedical terminologies often

include elements of domain-specific ontology in their

structure, which describe invariant classes of concept,

such as diseases, symptoms, biological processes, func-

tions, etc. Ontology also describes relations that hold

universally between these classes: for example, that

convulsions are a symptom of seizure [98]. Many ter-

minologies have been developed as formalized coding

systems, and can be referred to as classifications or

taxonomies; the International Classification of Diseases

(ICD), another WHO reference classification, being a

salient example. As a result, the organization of many

terminologies distinguishes not only between ontologic-

ally different classes (e.g., febrile vs afebrile seizure), but

also epistemologically distinct observations (e.g., tuber-

culosis identified via microscopy or bacterial culture)

[98]. Both types have been critical components of many

successes in health informatics [45, 99].

However, comparable knowledge sources are few and

far between for non-medical aspects of function. The

ICF, originally developed in 1980 as the International

Classification of Impairments, Disabilities, and Handicaps

(ICIDH) and revised in 2001 to better model environmen-

tal aspects of function [100], is a conceptual terminology

that was designed to provide a common language for a

wide variety of administrative and policy needs such as

reporting, service coordination, and policy development

[4]. Though the ICF has been integrated into the UMLS,

and some efforts have been made to map it to other onto-

logical resources [101], comprehensive coverage of prac-

tical vocabulary has never been its intent, and mappings

to other well-developed terminologies such as SNOMED

CT or LOINC are minimal. As a result, its coverage and

granularity for coding practical information on activity

and participation has been shown to lag behind higher-

coverage medical terminologies [102]. Additionally, the

distinctions it draws do not necessarily reflect a clinically-
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based organization of knowledge. As a practical example,

the mobility-related action of walking is not linked within

the ICF to terms commonly used in practice, such as am-

bulation. A recent review found several other criticisms of

the organization of the ICF, such as its emphasis of the

health condition component, the ambiguity of concepts,

and its “lack of a clear ontological structure” [103]. Some

of these criticisms may be related to the lack of revisions

to the ICF over the years. While the WHO publishes

updates to the language of the ICF each year, it has never

been revised, unlike the ICD, which is currently under its

11th revision. Thus, while the ICF has been hailed as the

“best prospect for an internationally recognized, suffi-

ciently complete and powerful information reference for

the documentation of functioning information” [17], and

it has the potential to be effectively combined with other

vocabularies for coding purposes [104], a number of prac-

tical shortcomings make it difficult to utilize for successful

NLP methods relying on dictionary definitions or com-

mon patterns in order to extract activity and participation

information.

A call to action

Incorporating information on activity and participation

into the operation of health systems is not a simple task,

and fully utilizing activity and participation status to im-

prove the quality of life of populations and individuals

will require concerted long-term efforts. In the following

sections, we describe four major components of this

overall goal. These approaches are highly inter-related,

but reflect distinct steps to be taken by the medical and

research communities to enable greater capture and

utilization of activity reports. While these steps are com-

plex and may require coordination between international

entities, we have identified short-term goals that can

achieve significant initial progress within a reasonable

time frame.

Action 1: Develop annotation standards and data

In order to understand how to process activity and par-

ticipation information as it is currently documented, it is

necessary to develop and publish standards for anno-

tating activity reports in structured and unstructured

data, and develop data resources for research that

can be shared through regulatory frameworks. Pre-

liminary investigations into the variety of ways in which

activity reports are documented in various text sources

can lay the groundwork for this effort, but published

annotation standards establish a common base for com-

munication and comparison within the research com-

munity. Development of sharable datasets regarding

individuals’ health data faces significant challenges in

data privacy and interoperability, as well as a lack of

robust legal frameworks or incentives for development

[105]. However, there are well-developed risk-tolerant

mechanisms for data exchange, including IRB procedures,

data use agreements, and business agreements [106], and

when such mechanisms are used, sharable datasets

contribute significantly to rapid advancement of research.

For example, the MIMIC Critical Care database is a de-

identified dataset made available through a signed data

use agreement that, through active maintenance, has

expanded to include over 2 million text documents in

addition to lab readings, vital signs, etc. [107]. MIMIC has

been invaluable for clinical informatics and NLP research

into extracting diagnoses, symptoms, medications, model-

ing patients’ course of care, and many other purposes.

While more datasets of the scale of MIMIC are needed,

they are achievable only through long-term effort. In the

short term, significant first steps could be made for activ-

ity and participation information by developing and pub-

lishing an annotation schema for one or two specific

aspects of activity, and by making a small set of annotated

data available to the research community through existing

data sharing mechanisms. This will enable rapid, effective

communication in research via common reference points

and shared benchmarking for evaluation.

Action 2: Define analytic tasks

As a companion effort to developing these data resources

and standards, we must also identify and clearly define

common research problems and applications for pro-

cessing activity reports. In computational research com-

munities such as NLP, shared definitions of analytic tasks

are the bones of effective research and evaluation. Identify-

ing the characteristics of activity reports in structured and

unstructured data and evaluating how these problems fit

existing frameworks in NLP and other fields will enable

development and adaptation of methods within the re-

search community. Together with identifying downstream

analytic tasks where information on activity and participa-

tion can be leveraged, such as cohort selection or rehospi-

talization risk prediction, this process will also help identify

relevant data needs in collecting and storing activity re-

ports. This task is thus interdependent with documentation

and annotation standards; the challenge for analysis is to

define how the information is to be automatically extracted

and used. These problems and tasks must be defined with

input from clinicians and data scientists alike. A major first

step in this direction could be to develop a shared task for

extracting one particular type of activity report from an

annotated dataset. Such efforts promote broader research

by laying the groundwork for the collaborative effort in

developing and evaluating analytic methods.

Action 3: Develop machine-readable ontologies

For both capturing and analyzing activity reports, it is

critical to develop a robust ontology that describes
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the components of activity and participation infor-

mation and their relationships to one another and to

other biomedical, psychological, and social concepts.

Such an effort has two major components: formalizing

the conceptual framework and developing machine-

readable resources. The first component involves defin-

ing the concepts necessary to represent activity and

participation and activity reports, and capturing the ne-

cessary relationships between these concepts to describe

their interaction. Many such resources and conceptual

models—such as the ICF—already exist in rehabilitation

medicine, mental health research, etc., and drawing on

and connecting these proven resources should be the

starting point for any analytically-focused effort. In

addition, some important elements of activity and par-

ticipation have coverage in other biomedical vocabular-

ies such as SNOMED CT and LOINC; by mapping to

these resources, well-developed analytic methods for

clinical information can inform work on analyzing activ-

ity reports. As such models and mappings are developed,

machine-readable implementations, similar to the UMLS,

will enable analytic methods to build directly on the

conceptual structure. One initial step towards this goal

could be leveraging previous findings of activity and

participation information in SNOMED [102] to develop

mappings from SNOMED concepts to the ICF framework,

providing a powerful tool for identifying and analyzing

components of activity information. Development of onto-

logical models needs to be a clinically-motivated process

that is verified empirically, and thus must be developed in

concert with engaged practitioners and researchers. Such

standardized resources will support training in document-

ing activity and participation, as well as methods for

analyzing it.

Action 4: Establish documentation standards

A key step in improving the availability of information

on activity and participation within healthcare delivery is

to establish standards for how and when to document

activity and participation status during clinical en-

counters. While this is a much larger task than a single

paper can accomplish, potentially involving the coordi-

nated efforts of international entities, multiple such stan-

dards have already been developed within rehabilitation

medicine, as mentioned in the previous section; addition-

ally, the Institute of Medicine has made some specific

recommendations for documenting social and behavioral

information in EHRs, including some activity and partici-

pation information [108]. However, awareness and adop-

tion of these standards by the broader medical community

are limited, and different standards compete even within

the rehabilitation community. Establishing a single stand-

ard for the medical field at large to use is a long-term

effort, but in the short term, small, focused efforts can be

made within local institutions or health systems to in-

crease the availability of activity reports. In some cases,

such as team settings involving an occupational or phys-

ical therapist, activity reports are likely already being

captured, and need only be intentionally analyzed. In

other settings, relatively minimal interventions can cap-

ture high-impact activity and participation status. For

example, a clinician could regularly note a patient’s ability

to move through the clinic independently, and ask the

patient if they are currently experiencing any limitations

in their regular activities. Developing small sets of such

practices can significantly improve the availability of activ-

ity reports within health records while broader standards

are established.

Conclusion
Function is an important indicator of health from both

population and individual perspectives. However, infor-

mation on function, and particularly on activity and

participation, has not been used in a routine and stan-

dardized way when evaluating and monitoring the health

of individuals from a holistic viewpoint. We believe rapid

advances in data management and analytic tools have

the potential to address barriers facing the effective use

of activity and participation information, by locating,

extracting, organizing, and summarizing activity reports

from massive quantities of medical records. We find

health informatics, and natural language processing in

particular, to be a promising avenue for accelerating

these efforts. Informatics can enable identification, ex-

traction, and organization of activity and participation

information for applications such as disability assess-

ment and health monitoring [90, 91], and can also be

used in software or devices to assist people with disabil-

ities to engage in daily activities effectively [109, 110].

While existing applications of informatics methodologies

to activity and participation information have shown

promise, they face several challenges, including reliance

on manual collection of non-standardized terminologies

in text by domain experts, a lack of a shared systematic

framework for activity and participation analysis, and a

lack of relevant data. To drive informatics forward as a

tool for capturing and utilizing activity and participation

information, we recommend four important steps: (1)

make activity and participation annotation standards and

datasets available to the broader research community;

(2) define common research problems in automatically

processing activity and participation information; (3) de-

velop robust, machine-readable ontologies for function

that describe the components of activity and participation

information and their relationships; and (4) establish

standards for how and when to document activity and

participation status during clinical encounters. These are

challenging steps, requiring international coordination,
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but we provide short-term goals for each that can be

accomplished in a reasonable timeframe and measurably

improve ability to capture and use activity and participa-

tion data.

Whole-person function, as embodied by activity and

participation, is a strong predictor of mortality, disability,

employment, and resource utilization. Moreover, it out-

performs comorbidities in predicting acute care readmis-

sions in medically complex patients. We envision that

standardized and accessible activity and participation

information yielded from these efforts will provide valu-

able evidence-based knowledge that can be translated

into practice by helping provide holistic and patient-

centered care and ultimately improving the efficiency

and effectiveness of health care delivery, management,

and planning.
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