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Abstract

This paper develops tests for the correct specification of the conditional variance
function in GARCH models when the true parameter may lie on the boundary of
the parameter space. The test statistics considered are of Kolmogorov-Smirnov and
Cramér-von Mises type, and are based on empirical processes marked by centered
squared residuals. The limiting distributions of the test statistics depend on unknown
nuisance parameters in a non-trivial way, making the tests difficult to implement. We
therefore introduce a novel bootstrap procedure which is shown to be asymptotically
valid under general conditions, irrespective of the presence of nuisance parameters
on the boundary. The proposed bootstrap approach is based on shrinking of the
parameter estimates used to generate the bootstrap sample toward the boundary
of the parameter space at a proper rate. It is simple to implement and fast in
applications, as the associated test statistics have simple closed form expressions.
Although the bootstrap test is designed for a data generating process with fixed
parameters (i.e., independent of the sample size n), we also discuss how to obtain
valid inference for sequences of DGPs with parameters approaching the boundary
at the n

−1/2 rate. A simulation study demonstrates that the new tests: (i) have
excellent finite sample behaviour in terms of empirical rejection probabilities under
the null as well as under the alternative; (ii) provide a useful complement to existing
procedures based on Ljung-Box type approaches. Two data examples illustrate the
implementation of the proposed tests in applications.
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1. Introduction

Generalized autoregressive conditionally heteroscedastic (GARCH) models introduced by

Bollerslev (1986) are widely used for modelling various financial time series processes. The

data generation mechanism of a GARCH model requires the conditional variance to be al-

ways strictly positive, which is generally obtained by imposing a strictly positive intercept

and non-negative GARCH coefficients in the conditional variance equation. Consequently,

in GARCH models, the admissible parameter space typically needs to be inequality re-

stricted. This represents an important difference between GARCH and other popular time

series models, such as AR and ARMA models. Although omnibus specification testing in

GARCH type models against unspecified alternatives has attracted considerable attention

in the recent literature, a crucial weakness in the current theory remains the exclusion

of the presence of nuisance parameters on the boundary. This paper contributes towards

addressing this issue by developing new statistical methodology for specification testing in

GARCH models.

There are a number of different GARCH models available in the literature and many

of them are nonnested models (see Francq and Zaköıan, 2010). Therefore, in many cases,

a sensible way to proceed when testing a specification of a GARCH model is to leave the

alternative model unspecified, or to test the lack-of-fit. This type of tests, also known

as omnibus tests, have their roots in the seminal work of Kolmogorov (1933) on testing

for a specific probability distribution function, and Grenander and Rosenblatt (1957) on

testing the hypothesis of white noise dependence. Several omnibus specification tests in

GARCH type models have been proposed in the literature. These include tests based on

weighted empirical processes of standardized residuals (Koul and Ling, 2006; Escanciano,

2010), spectral distributions based tests in the frequency domain (Hidalgo and Zaffaroni,

2007; Escanciano, 2008), residual based tests for nonnegative valued processes (Fernandes

and Grammig, 2005; Koul et al., 2012), and Khmaladze type (Khmaladze, 1981) martingale

transformations based tests (Bai 2003; Perera and Koul 2017), amongst others.

A key regularity condition imposed by the aforementioned specification tests is to re-

strict the true parameter to the interior of the null parameter space. Since the parameter

space of a GARCH-type model is inequality restricted, this condition is not typically satis-

fied if some ARCH or GARCH coefficients are zero, because then the true parameter may

lie on the boundary of the parameter space. Therefore, for the theory developed in the
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above cited papers, the true parameter being an interior point is essential; for example,

the limiting process obtained in Theorem 2.1 in Hidalgo and Zaffaroni (2007) would not

be Gaussian if, for instance, a GARCH(p, q) model is estimated when the underlying true

process is a GARCH(p − 1, q), or a GARCH(p, q − 1) process. Similarly, the asymptotic

properties of the other aforementioned papers would also not hold when some nuisance

parameters lie on the boundary.

In this paper we contribute towards the literature of specification testing in GARCH

models by developing a new class of tests for the correct specification of the conditional

variance function while allowing the null model to have an unknown number of nuisance

parameters on the boundary of the parameter space. Our test statistics are Kolmogorov-

Smirnov and Cramér-von Mises type statistics based on functionals of an empirical process

marked by centered squared residuals and are easy to compute. The limiting distributions

of the test statistics depend on (unknown) nuisance parameters in a non-trivial way. We

propose a bootstrap method to implement the tests and show that it is asymptotically

valid under general conditions, irrespective of the presence of nuisance parameters on the

boundary. The proposed bootstrap approach is simple to implement, and is based on a

method of shrinkage of the parameter estimates used to generate the bootstrap sample

toward the boundary of the parameter space at an appropriate rate. This approach is

similar to the related bootstrap scheme advocated in Cavaliere et al. (2022), in a different

context, for bootstrapping likelihood ratio statistics, and it also has its roots in the modified

bootstrap approach considered in Chatterjee and Lahiri (2011) for bootstrapping Lasso-

type estimators. Our bootstrap tests are shown to be consistent against fixed alternatives.

We also separately consider the case where the nuisance parameters lie in the interior of

the parameter space, and show that the bootstrap implementations of these tests under

standard residual based bootstrap are asymptotically valid and consistent. Our tests can

be implemented easily because the test statistics have simple closed form expressions. A

simulation study shows that the proposed tests have desirable finite sample properties. We

illustrate the testing procedure by considering two real data examples.

The rest of this paper is structured as follows. Section 2 formulates the problem,

defines the estimators and test statistics. Section 3 provides the results relating to the

asymptotic validity and consistency of the bootstrap tests when the parameters are in

the interior of the parameter space. Section 4 considers inference when some components

of the true parameter lie on the boundary of the parameter space. Section 5 describes
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a simulation study. Two empirical illustrations are discussed in Section 6. Section 7

concludes the paper. The proofs and additional simulation results are relegated to the

online supplementary material.

2. Formulation of the Problem

Let (Y1, Y2, . . . , Yn) be a realization of an observable stationary process {Yt} satisfying

Yt = h
1/2
t εt, t ∈ Z := {0,±1,±2, · · · }, (1)

where the errors εt, t ∈ Z, are independent and identically distributed (i.i.d.) random

variables (r.v.’s) having zero mean and unit variance with common cumulative distribution

function (c.d.f.) F0, and ht = E[Y 2
t | Ht−1], where Ht denotes the information available up

to time t, t ∈ Z.

As is well-known, a GARCH(p1, p2) model for ht takes the form

ht(φ) = ω +

p1∑

j=1

αjY
2
t−j +

p2∑

k=1

βkht−k(φ), t ∈ Z, (2)

where the vector of parameters φ = (φ1, . . . , φp1+p2+1)
′ = (ω, α1, . . . , αp1 , β1, . . . , βp2)

′ be-

longs to a compact parameter space

Φ ⊂ (0,∞)× [0,∞)p1+p2 (3)

with ω > 0, αk ≥ 0 (k = 1, . . . , p1), βk ≥ 0 (k = 1, . . . , p2) and, in order to avoid well-known

identification issues (see also Assumption (A3) below), it is assumed that
∑p1

k=1 αk 6= 0

if p2 > 0.

Suppose we wish to test the adequacy of the above GARCH(p1, p2) model for ht, i.e.,

to test the null hypothesis

H0 : ht = ht(φ0) = ω0 +

p1∑

j=1

α0jY
2
t−j +

p2∑

k=1

β0kht−k(φ0), a.s. for all t, and (4)

for some φ0 = (ω0, α01, . . . , α0p1 , β01, . . . , β0p2)
′ ∈ Φ,

against the alternative H1 : H0 is not true.

Remark 1. Note that in terms of notation, since some ARCH or GARCH coefficients

may be zero, the null model (4) allows some components of φ0 to be on the boundary of the

parameter space Φ. For example, the ARCH(p1 = 4) given by ht = 0.2 + 0.3Y 2
t−1 + 0.6Y 2

t−4

has φ0 = (0.2, 0.3, 0, 0, 0.6)′ with α02 = α03 = 0, and hence α02 and α03 are boundary values.
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Let φ̂n denote the Gaussian quasi maximum likelihood estimator [QMLE] defined by

φ̂n = argmin
φ∈Φ

n∑

t=1

ℓt(φ), ℓt(φ) = log ht(φ) + [Y 2
t /ht(φ)], (5)

with ht(φ) being defined recursively by (2) for t = 1, 2, . . . , n. To simplify the exposition,

the vector of initial values, ς0 = (Y0, . . . , Y1−p1 , h0, . . . , h1−p2)
′ ∈ R

p1×[0,∞)p2 , is assumed to

be fixed for the statistical analysis. The asymptotic results do not change if ς0 is replaced

by an arbitrarily chosen vector (e.g., by setting Yt = 0 and ht = 0, all t ≤ 0); see, for

example, the discussions in Straumann and Mikosch (2006), Perera and Silvapulle (2021)

and Jensen and Rahbek (2004).

We propose an omnibus test statistic based on the marked empirical process:

Un(y,φ) := n−1/2

n∑

t=1

{
Y 2
t

ht(φ)
− 1

}
I(Yt−1 ≤ y), y ∈ R, φ ∈ Φ, (6)

where I denotes the indicator function, evaluated at φ = φ̂n. We allow the domain of

Un(·,φ) to extend over the whole real line by letting Un(−∞,φ) := 0 and Un(∞,φ) :=

n−1/2
∑n

t=1{Y 2
t /ht(φ)− 1}. Hence, Un(·,φ) in (6) can be viewed as a process in the space

of cadlag functions on [−∞,∞], equipped with the uniform metric, which we denote by

D(R). This process is an extension of the so-called cumulative sum process for the one

sample setting to the current setup. Under H0, EUn(y,φ0) = 0, for all y, but not under H1.

Hence, if H0 is true, then we would expect Un(y, φ̂n ) to be close to zero for all y, but not

otherwise. Therefore, a suitable functional of Un(·, φ̂n ) can potentially be used as a test

statistic for testing H0 against H1.

Example 1. (ARCH(1)) As an example consider the ARCH(1) model as given by (1) with

ht = ht (φ) = ω + α1Y
2
t−1, where φ = (ω, α1)

′ ∈ Φ ⊂ (0,∞) × [0,∞). In this case, the

process in (6) is given by

Un(y,φ) = n−1/2

n∑

t=1

{
Y 2
t /
(
ω + α1Y

2
t−1

)
− 1
}
I (Yt−1 ≤ y) .

With φ̂n = (ω̂, α̂1)
′ the test statistic we discuss below is based on Un(y, φ̂n), which with

ε̂t = Yt/
√

ω̂ + α̂1Y 2
t−1 becomes Un(y, φ̂n) = n−1/2

∑n
t=1

{
ε̂2t − 1

}
I (Yt−1 ≤ y) .

The use of cumulative sum processes for specification testing similar to Un(·, φ̂n ) goes

back to von Neumann (1941), who proposed a test of constant regression based on an

analog of this process. Substantial developments have taken place of hypothesis testing
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in time series models based on such empirical processes marked by certain residuals, see,

e.g, Stute (1997), Koul and Stute (1999), Stute et al. (2006), Escanciano (2007) and Koul

et al. (2012). More recently, analogs of Un(·, φ̂n ) have been used by several authors to

propose asymptotically distribution free specification tests in related time series models;

see, for example, Perera and Koul (2017) and Balakrishna et al. (2019). In the analyses

presented in these papers certain tests based on analogs of Un(·, φ̂n ) have demonstrated

desirable finite sample and asymptotic properties. Therefore, we find it of interest to

develop specification tests based on similar statistics involving the process Un(·, φ̂n ). In

particular, we consider the Kolmogorov-Smirnov (KS) and Cramér-von Mises (CvM) type

statistics which can be defined in terms of Un(·, φ̂n) as

T1 := KS = sup
y

∣∣Un(y, φ̂n)
∣∣, T2 := CvM =

∫
U2
n(y, φ̂n )dGn(y), (7)

where Gn(y) := n−1
∑n

t=1 I(Yt−1 ≤ y). Other suitable functionals of Un(·, φ̂n ) may also be

considered as possible test statistics (see D’Agostino and Stephens, 1986).

3. Inference when the parameters are in the interior of the

parameter space

Before moving to the general case which includes possible parameters on the boundary of

the parameter space, we here consider the case the true parameter is in the interior of Φ.

The asymptotic distribution of Un(·,φ0) under the null hypothesis H0 can be derived

by standard arguments, under the assumptions on the GARCH process discussed in the

next subsection. Specifically, from a martingale central limit theorem (for example Hall

and Heyde (1980), Corollary 3.1) and the Cramér-Wold device it follows that all finite

dimensional distributions of Un(·,φ0) converge weakly to a multivariate normal distribution

with mean vector zero and covariance matrix given by the covariance function

K(x, y) := E(ε2t − 1)2I(Yt−1 ≤ x ∧ y) = (κε − 1)G(x ∧ y), x, y ∈ R, (8)

where G denotes the (unconditional) distribution function (d.f.) of Y0, κε := Eε4t < ∞ and

x ∧ y = min(x, y). Under H0, G may depend on φ0, which is suppressed in the notation.

Then, since the function π(x) := K(x, x) = (κε−1)G(x) is nondecreasing and nonnegative,

tightness of the process Un(·,φ0) follows. Therefore, under H0, Un(·,φ0) converges weakly

to the time-transformed Brownian motion B ◦π(·) := B (π(·)), in the space D(R) equipped

with the uniform metric, where B is a standard Brownian motion on the positive real line.
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However, since φ0 is replaced by φ̂, the weak limit of Un(·, φ̂ ) is not of the form B ◦ π;
rather, it depends on (φ0, G). We derive this result in the next subsection, where weak

convergence of Un(·, φ̂ ) is derived for the case where the true value φ0 lies in the interior

of the parameter space.

3.1. Asymptotics for the original test statistics

First we introduce some notation to facilitate the presentation of the underlying assump-

tions for the asymptotic results. Let Aφ(z) =
∑p1

i=1 αiz
i and Bφ(z) = 1 −∑p2

i=1 βiz
i with

Aφ(z) = 0 if p1 = 0 and Bφ(z) = 1 if p2 = 0. Furthermore, let

A0i =




α01ε
2
i · · · α0p1ε

2
i β01ε

2
i · · · β0p2ε

2
i

Ip1−1 0 0

α01 · · · α0p1 β01 · · · β0p2

0 Ip2−1 0




, i ≥ 1,

with Ik denoting the k × k identity matrix.

In order to study the limiting behaviour of Un(·, φ̂n) we make the following assumptions

on the process {Yt}t∈Z which satisfies (1)–(2).

(A1). The parameter space Φ in equation (3) is a compact subset of (0,∞)× [0,∞)p1+p2,

and contains a hypercube Φ̄ := [ωL, ωU ] × [0, ǫ]p1+p2, for some ǫ > 0 and ωU > ωL > 0,

which includes φ0 with ωL < α0 < ωU and max{α01, . . . , α0p1 , β01, . . . , β0p2} < ǫ.

(A2). The sequence of matrices A0 = (A01, A02, . . .) has a strictly negative top Lyapunov

exponent; i.e., γ(A0) < 0, where γ(A0) := limi→∞ i−1 log ‖A0iA0(i−1) . . . A01‖ a.s., and
∑p2

j=1 βj < 1, ∀φ ∈ Φ.

(A3). If p2 > 0, then assume that Aφ0
(1) 6= 0, α0p1 +β0p2 6= 0, and the polynomials Aφ0

(z)

and Bφ0
(z) have no common roots.

(A4). The errors εt, t ∈ Z, are i.i.d. with zero mean and unit variance, ε2t has a non-

degenerate distribution, E|εt|4+d < ∞ for some d > 0.

Assumption (A1) ensures that the true parameter φ0 does not reach the upper bound

of the hypercube (0,∞)×[0,∞)p1+p2 while allowing some components of φ0 to be zero. The

condition γ(A0) < 0 in (A2) ensures the existence of a unique strictly stationary solution

{Yt}t∈Z to Model (1)–(2); see, for example Bougerol and Picard (1992a). Note that, in (A2),
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the strict stationarity condition γ(A0) < 0 is imposed only on the true value φ0, but for

φ 6= φ0 we only impose the weaker restriction
∑p2

j=1 βj < 1. In Assumption (A3), the

condition Aφ0
(1) 6= 0 rules out the case where all the α0i are zero when p2 > 0; hence, we do

not allow the strictly stationary solution of (1)–(2) to be a strong white noise process when

p2 > 0. This restriction is required to avoid certain identifiability issues when estimating

the GARCH parameters with p2 > 0 (see Francq and Zaköıan, 2004). Note that, in the

ARCH case (i.e. when p2 = 0), Assumption (A3) is not required. For example, suppose

that p2 = 0 and we start with an ARCH(p1) model. Then, Assumption (A3) does not

apply, and hence it is possible to have Aφ0
(1) = 0. Therefore, if p2 = 0, our assumptions

allow the strictly stationary solution of (1)–(2) to be a strong white noise process.

In the general GARCH case, when p2 > 0, the condition α0p1 + β0p2 6= 0 in Assump-

tion (A3) allows for overidentification of either the order of the ARCH parameters p1 or

the order of the GARCH parameters p2, but not both. Here, overidentification of the or-

der means having an order which is higher than what is required for the ARCH/GARCH

parameters; for example, specifying an ARCH(3) model when the DGP is ARCH(2). The

condition E|εt|4+d < ∞ in Assumption (A4) is required for the existence of the variance

of the score vector ∂ℓt(φ0)/∂φ; this is necessary for establishing the limiting distribution

of the QMLE. Note that we do not assume that the true parameter φ0 is in the inte-

rior of Φ. Thus, the assumptions do not exclude the cases where some αi or βj are zero.

Assumptions similar to (A1)–(A4) have previously been discussed in the literature for

establishing asymptotic properties of the QMLE; see, for example, Francq and Zaköıan

(2010) and Cavaliere et al. (2022).

Let

J(y,φ) := E[τ 1(φ)I(Y0 ≤ y)], τ t(φ) :=
(∂/∂φ)ht(φ)

ht(φ)
, t ∈ Z, φ ∈ Φ.

Note that when some components of φ0 lie on the boundary of the parameter space Φ,

we define τ t(φ) at φ = φ0 by using the right derivatives of ht(φ) at φ0, denoted by

(∂/∂φ)ht(φ0) := (∂ht(φ0)/∂φi)i=1,..., p1+p2+1 the vector of partial derivatives of ht at φ0 =

(φ01, . . . , φ0(1+p1+p2))
′ with the i-th derivative replaced by the right derivative when φ0i = 0.

We use the same convention for the derivatives of τ t(φ) and (∂/∂φ)ht(φ) at φ0.

The next lemma provides an asymptotic uniform expansion for Un(y, φ̂n). We make use

of this expansion in the proof of establishing the weak convergence of Un(·, φ̂n).
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Lemma 1. Suppose that Assumptions (A1) and (A4) hold. Then, uniformly in y ∈ R,

Un(y, φ̂n) = Un(y,φ0)− n1/2(φ̂n − φ0)
′J(y,φ0) + op(1). (9)

Unlike the process Un(y,φ0), the estimated process Un(y, φ̂n) does not converge weakly

to a time transformed Brownian motion, because the term n1/2(φ̂n−φ0)
′J(y,φ0) in (9), is

of order Op(1) and hence is not asymptotically negligible. In fact, if Assumptions (A1)–

(A3) are satisfied, then φ̂n converges to φ0 almost surely (a.s.), and additionally, if (A4)

also holds and φ0 is an interior point in Φ, then φ̂n is asymptotically linear and satisfies

n1/2(φ̂n − φ0) = −Σ−1
n (φ0)n

−1/2

n∑

t=1

(1− ε2t )τ t(φ0) + op(1), (10)

where Σn(φ) := n−1
∑n

t=1 τ t(φ)τ t(φ)
′, φ ∈ Φ; see, e.g., Berkes et al. (2003).

By using Lemma 1 and (10), when φ0 is an interior point in Φ, we show that Un(·, φ̂n)

converges weakly to a centred Gaussian process. This result is stated in the next theorem.

Theorem 1. Suppose that (A1)–(A4) are satisfied and φ0 is an interior point in Φ. Let

Mt(φ) := −Σ−1(φ)(1− ε2t )τ t(φ), Σ(φ) := E{τ 1(φ)τ 1(φ)′}, φ ∈ Φ, t ∈ Z.

Additionally, assume that {Yt}t∈Z is square integrable. Then, the process Un(·, φ̂n) converges

weakly to U0 in D(R), where U0 is a centred Gaussian process with covariance kernel

Cov{U0(x),U0(y)} = K(x, y) + J ′(x,φ0)E[M1(φ0)M
′
1(φ0)]J

′(y,φ0)

−J ′(x,φ0)E[(ε
2
1 − 1)M1(φ0)I(Y0 ≤ y)]

−J ′(y,φ0)E[(ε
2
1 − 1)M1(φ0)I(Y0 ≤ x)],

where K(x, y) is as in (8).

In view of Theorem 1, the limiting distributions of KS and CvM statistics defined in (7)

depend on the unknown (φ0, G) in a non-trivial way, despite the fact the true parameter

is in the interior of Φ. Consequently, it does not appear that it would be possible to find a

transformation that would lead to an asymptotically distribution free test, for example as

in Bai (2003); Koul et al. (2012); Perera and Koul (2017); Escanciano et al. (2018). Hence,

we proceed by considering bootstrap implementations of the tests.
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3.2. Bootstrap implementation

In this section, we propose a bootstrap procedure for computing the critical values for the

KS and CvM statistics in (7). We perform the resampling scheme under the null hypothesis

and derive the asymptotic properties of the bootstrap statistics, irrespective of whether or

not the data generating process satisfies the null hypothesis. To this end, we initially

standardize the residuals ε̂t := Yt/{ht(φ̂n)}1/2, t = 1, . . . , n, as

ε̌t :=
{
n−1

n∑

i=1

ε̄2i

}−1/2

ε̄t, ε̄t := ε̂t − n−1

n∑

i=1

ε̂i, t = 1, . . . , n, (11)

and define the associated empirical distribution function (e.d.f.) of {ε̌1, . . . , ε̌n} as

F̌n(x) := n−1

n∑

t=1

I(ε̌t ≤ x), x ∈ R. (12)

By construction,
∫
R
udF̌n(u) = 0 and

∫
R
u2dF̌n(u) = 1, hence a random variable with

distribution function F̌n has zero mean and unit variance, therefore matching the first and

second order moments of the error distribution F0. From Lemma S.1 in the supplementary

material we obtain that F̌n converges to F0 with probability one under the null hypothesis.

We next outline the bootstrap algorithm.

Bootstrap Algorithm 1

Step 1: Compute {φ̂n, Tj} on the original sample {Y1, . . . , Yn}, where Tj is the test statistic

defined in (7) (j = 1, 2);

Step 2: Compute ε̌t, t = 1, . . . , n as in (11) and draw a random sample (with replacement)

of size n, say {ε∗1, . . . , ε∗n}, independent of the original data, from the e.d.f. F̌n(·) in (12);

Step 3: Generate the bootstrap sample {Y ∗
1 , . . . , Y

∗
n } recursively with bootstrap true values

(φ̂n, F̌n) by

Y ∗
t = {h∗

t (φ̂n)}1/2ε∗t , h∗
t (φ̂n) = ω̂ +

p1∑

j=1

α̂j(Y
∗
t−j)

2 +

p2∑

k=1

β̂kh
∗
t−k(φ̂n), t ≥ 1,

initialized with (Y ∗
0 , . . . , Y

∗
1−q, h

∗
0 (φ̂n), . . . , h

∗
1−p(φ̂n))

′ = ς0, where ς0 is an arbitrarily chosen

vector (e.g., Y ∗
t = 0 and h∗

t = 0, all t ≤ 0);

Step 4: Using {Y ∗
1 , . . . , Y

∗
n }, compute φ̂

∗

n, the bootstrap analogue of φ̂n;

Step 5: Compute the bootstrap test statistic T ∗
j as

T ∗
1 = KS∗ = sup

y

∣∣U∗
n(y, φ̂

∗

n)
∣∣, T ∗

2 = CvM∗ =

∫ {
U∗
n(y, φ̂

∗

n )
}2

dG∗
n(y), (13)
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where G∗
n(y) and U∗

n(y,φ) are the bootstrap analogs of Gn(y) and Un(y,φ), respectively.

Step 6: The bootstrap p-value is then defined as

p∗n := p∗n(φ̂n) := P ∗
n(T

∗
j ≥ Tj) (14)

where P ∗
n denotes the probability measure induced by the bootstrap (i.e., conditional on

the original data). �

The bootstrap test corresponds to the decision rule:

Reject H0 at the nominal level α if the bootstrap p-value p∗n is less than α. (15)

As is standard, p∗n of (14) is unknown. It can be approximated with arbitrary accuracy

by repeating steps 2–5 a large number of times, say B, and then setting p
∗(B)
n to be the

fraction of times T ∗
j exceeds Tj.

The above bootstrap algorithm is designed to mimic the null data generating process

(DGP) by replacing the unknown (φ0, F0) by the estimators (φ̂n, F̌n). It can be shown

that, under the null hypothesis H0, the estimators (φ̂n, F̌n) converge to (φ0, F0) almost

surely. Therefore, if φ0 is an interior point of the parameter space, then the arguments

of the proof of Theorem 1 can be extended to a triangular array setup to show that the

bootstrap test in (15) is asymptotically valid (see Theorem 2 below).

In the bootstrap setup, we define G∗
n(y) := n−1

∑n
t=1 I(Y

∗
t−1 ≤ y), y ∈ R. Similarly, the

bootstrap analogue of the marked empirical process Un(y,φ) in (6) is defined by

U∗
n(y,φ) := n−1/2

n∑

t=1

{
(Y ∗

t )
2

h∗
t (φ)

− 1

}
I(Y ∗

t−1 ≤ y), y ∈ R, φ ∈ Φ. (16)

Let O∗
p(1), in probability, o∗p(1), in probability, and E∗ denote the usual stochastic orders

of magnitude and expectation, respectively, with respect to P ∗
n defined above. We denote

convergence in distribution of bootstrap statistics as ‘
d∗−→’. That is, “T ∗

j
d∗→ gj(U0) in proba-

bility” means that P ∗
n(T

∗
j ≤ ·) p→ P{gj(U0) ≤ ·}, at every continuity point of P{gj(U0) ≤ ·}.

Theorem 2 below establishes the asymptotic validity of the bootstrap test (15).

Theorem 2. Suppose that Assumptions (A1)–(A4) and H0 are satisfied and φ0 is an

interior point in Φ. Additionally, assume that the process {Yt}t∈Z is square integrable. Let

U0 be the limit process appearing in Theorem 1. Then, conditional on {Y1, . . . , Yn},

1. U∗
n(·, φ̂

∗

n) converges weakly to U0, in probability.

11



2. T ∗
1 = KS∗ d∗→ supy

∣∣U0(y)
∣∣ and T ∗

2 = CvM∗ d∗→
∫
U2
0 (y)dG(y), in probability.

In view of Theorem 2, the bootstrap test (15) based on Tj is asymptotically valid

(j = 1, 2). Theorem 3 in the next section shows that the bootstrap tests have non-trivial

asymptotic power against any fixed alternative under H1.

For the validity of our bootstrap tests, as stated in Theorem 2, the true parameter φ0

needs to be an interior point of Φ under H0. It is of interest to see whether the bootstrap

implementation of Tj(j = 1, 2) can be modified to obtain a consistent bootstrap test for

the case φ0 lies on the boundary of Φ under H0. We consider this in the next section.

3.3. The behavior of the bootstrap test under the alternative hypothesis

Note that the bootstrap algorithm in Section 3.2 mimics the null data generating process by

replacing the unknown (φ0, F0) by the estimators (φ̂n, F̌n). Under the null hypothesis H0,

(φ̂n, F̌n) converges to (φ0, F0) almost surely. This result is used in the proof of Theorem 2

to show that, when φ0 is an interior point under H0, the standard bootstrap test in (15)

has correct asymptotic level. In order to establish that the standard bootstrap test also has

non-trivial asymptotic power, we need to assume that the limiting behaviour of φ̂n and F̌n,

under the null as well as the alternative satisfy the usual regularity conditions. To this end,

let (φ∗
0, F

∗
0 ) be the probability limit of (φ̂n, F̌n), such that φ̂n

p→ φ∗
0 and d2(F̌n, F

∗
0 )

p→ 0 as

n → ∞, where d2(FX , FY ) is the Mallows metric for the distance between two probability

distributions FX and FY defined by d2(FX , FY ) = inf{E|X − Y |2}1/2, where the infimum

is over all square integrable random variables X and Y with marginal distributions FX

and FY . Since (φ∗
0, F

∗
0 ) := plim(φ̂n, F̌n), where “plim” is the probability limit as n → ∞,

under the null hypothesis H0, we have that (φ∗
0, F

∗
0 ) = (φ0, F0) and under the alternative

hypothesis H1, (φ
∗
0, F

∗
0 ) denotes a pseudo-true value, when the plim exists.

We also need to introduce the following regularity assumption under H1.

(B1). Under the alternative hypothesis H1, the process {Yt}t∈Z is second order stationary

and obeys model (1); moreover, φ̂n

p→ φ∗
0 and d2(F̌n, F

∗
0 )

p→ 0, where F ∗
0 is a c.d.f. with

mean 0 and variance 1. The pseudo-true parameter φ∗
0 = (ω∗

0, α
∗
01, . . . , α

∗
0p1

, β∗
01, . . . , β

∗
0p2

)′

satisfies
∑p1

i=1 α
∗
0i +

∑p2
j=1 β

∗
0j < 1. Furthermore, for some ǫ > 0 and ωU > ωL > 0, the

hypercube Φ̄ = [ωL, ωU ]× [0, ǫ]p1+p2 given in Assumption (A1), contains φ∗
0.

The strict stationarity of the process {Yt : t ∈ Z} obeying (1)–(4), which follows from

(A1), (A2) and (A3), and its square integrability (as assumed under Theorem 2), ensure

12



that the true parameter φ0 = (ω0, α01, . . . , α0p1 , β01, . . . , β0p2)
′ under the null hypothesis

H0 satisfies
∑p1

i=1 α0i+
∑p2

j=1 β0j < 1 (see Bougerol and Picard, 1992a,b). Assumption (B1)

assumes that this continues to hold when φ∗
0 is the pseudo true value under the alternative.

Example 2. (ARCH(1), continued) Consider again the ARCH(1) example. Under H0,

it is known that plim φ̂n = φ0 = (ω0, α01)
′ under Assumptions (A1)–(A3). In particular,

φ0 ∈ [ωL, ωU ]×[0, ǫ], α10 < exp {−E log (ε2t )} and εt is an i.i.d. sequence of r.v.’s. Consider

now the alternative of an ARCH(2), ht (φ0) = ω0 + α10Y
2
t−1 + α20Y

2
t−2, with α20 > 0 and

α10+α20 < 1. The restriction α10+α20 < 1 is required to ensure that the observable process

{Yt : t ∈ Z} is square integrable. In this case Assumption (B1) concerns the large-sample

behaviour of φ̂n; specifically, plim φ̂n = φ∗
0 = (ω∗

0, α
∗
01)

′. It can be shown that

plim α̂1 = α∗
01 =

α10

1− α20

and plim ω̂ = ω∗
0 =

ω0

1− α20

. (17)

Note that, as required 0 < α∗
01 < 1 since α10 + α20 < 1. Furthermore, one can select ǫ > 0

and ωU > ωL > 0 such that [ωL, ωU ]× [0, ǫ] also contains φ∗
0 = (ω∗

0, α
∗
01)

′ as we have ω∗
0 > 0.

To study the large sample behaviour of F̌n (to keep things simple leave out the mean and

scale correction here) consider F̌n (x) = n−1
∑n

t=1 I (ε̂t ≤ x) , ε̂t = Yt/
(
ω̂ + α̂1Y

2
t−1

)1/2
.

Note that, under H1,

ε̂t =
Yt√

ω̂ + α̂1Y 2
t−1

≃
√
1− α20Yt√

ω0 + α10Y 2
t−1

=: ε0t .

Let F ∗
0 be the c.d.f. of ε0t and H0

n(x) := n−1
∑n

t=1 I(ε
0
t ≤ x). From the triangular inequal-

ity d2(F̌n, F
∗
0 ) ≤ d2(F̌n, H

0
n) + d2(H

0
n, F

∗
0 ). Since d2(H

0
n, F

∗
0 )

a.s.→ 0 as n → ∞ (see, e.g.,

Lemma 8.4 of Bickel and Freedman, 1981), to have d2(F̌n, F
∗
0 )

p→ 0 it suffices to show that

d2(F̌n, H
0
n)

p→ 0. By arguing as in the proof of Lemma S.1 in the supplementary material,

{d2(F̌n, H
0
n)}2 ≤ n−1

n∑

t=1

(ε0t − ε̂t)
2 = n−1

n∑

t=1

( √
1− α20Yt√

ω0 + α10Y 2
t−1

− Yt√
ω̂ + α̂1Y 2

t−1

)2

≤ ω−2
L n−1

n∑

t=1

(√
1− α20

√
ω̂ + α̂1Y 2

t−1 −
√

ω0 + α10Y 2
t−1

)
Y 2
t = op(1)

by (17) and because n1/2(φ̂n − φ∗
0) = Op(1) and E(Y 2

t ) < ∞. Therefore, d2(F̌n, F
∗
0 )

p→ 0,

as required under Assumption (B1).

In the general case, if H1 holds under (B1), then regardless of whether φ∗
0 is in the

interior of Φ or some components of φ∗
0 are zero, one can fix ωU > ωL > 0 and ǫk > 0,
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k = 1, . . . , p1 + p2, such that

Φ̄∗ := [ωL, ωU ]× [0, ǫ1]× [0, ǫ2]× · · · × [0, ǫp1+p2 ] ⊂ Φ̄ (18)

contains φ∗
0 = (ω∗

0, α
∗
01, . . . , α

∗
0p1

, β∗
01, . . . , β

∗
0p2

)′ with ωL < ω∗
0 < ωU , 0 ≤ φ∗

0 < φ̄U :=

(ωU , ǫ1, . . . , ǫp1+p2)
′,
∑p1

i=1 αi+
∑p2

j=1 βj < 1 for every φ = (ω, α1, . . . , αp1 , β1, . . . , βp2)
′ ∈ Φ̄∗.

Fix such ǫ1, . . . , ǫp1+p2 > 0 and ωU > ωL > 0. Then, for every φ ∈ Φ̄∗ and c.d.f. F (with

mean 0 and variance 1), the model defined by

Y
(φ,F )
t = {h(φ,F )

t (φ)}1/2ε(F )
t , h

(φ,F )
t (φ) = ω +

p1∑

j=1

αj{Y (φ,F )
t−j }2 +

p2∑

j=1

βjh
(φ,F )
t−j (φ), (19)

has a unique strictly stationary and ergodic solution with E[{Y (φ,F )
0 }2] < ∞, where ε

(F )
t =

F−1(Ut) := inf{y ∈ R : F (y) ≥ Ut} and {Ut, t ∈ Z} are i.i.d. uniform(0,1) random variables;

see, e.g., Theorem 2.1 of Chen and An (1998). If (A1)–(A3) and H0 hold and {Yt}t∈Z is

square integrable (as assumed under Theorem 2), then
∑p1

i=1 α0i+
∑p2

j=1 β0j < 1, and hence

w.l.o.g. we assume that the set Φ̄∗ in (18) also contains φ0 with ωL < ω0 < ωU and

0 ≤ φ0 < φ̄U . For (φ, F ) = (φ0, F0) the model (19) is equivalent to the null DGP: (1)–(4).

We also need to introduce the following additional assumption.

(B2). E(| F ∗
0
−1(Ut) |4+d) < ∞ for some d > 0.

This condition extends the moment restriction in Assumption (A4) to the model defined

by the pseudo true values (φ∗
0, F

∗
0 ) under H1.

Example 3. (ARCH(1), continued) To understand the nature of condition (B2) con-

sider again the ARCH(1) example. Suppose that the alternative model is ARCH(2), where

ht (φ0) = ω0+α10Y
2
t−1+α20Y

2
t−2, with α20 > 0 and α10+α20 < 1. Then, under the alterna-

tive, F ∗
0 is the c.d.f. of ε0t = Yt{1− α20}1/2{ω0 + α10Y

2
t−1}−1/2 (see Example 2). Therefore,

one can view Assumption (B2) essentially as a condition on the moments of ε0t ; interest-

ingly, this can be reverted into a (sufficient) condition on the moments of Yt (as it usually

happens when one analyzes the bootstrap under the alternative; see, e.g., Cavaliere et al.,

2017). More precisely, we obtain

E



∣∣∣∣∣

√
1− α02Yt√

ω0 + α01Y 2
t−1

∣∣∣∣∣

4+d

 ≤ E

(∣∣∣∣
√
1− α02Yt√

ωL

∣∣∣∣
4+d
)

=

(
1− α02

ωL

)2+d/2

E
(
|Yt|4+d

)
.

Hence, the moment condition E(|Yt|4+d) < ∞ is sufficient for the Assumption (B2) to hold.
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The next assumption ensures that the moment condition (A6) introduced later is sat-

isfied by the stationary solution of the model (19) for any given φ ∈ Φ̄∗ and c.d.f. F .

(A5). For every φ ∈ Φ̄∗ and c.d.f. F (with mean 0 and variance 1), the unique stationary

and ergodic solution {Y (φ,F )
t : t ∈ Z} of the model (19) satisfies E|Y (φ,F )

t |6 < ∞.

Assumption (A5) allows us to extend the arguments of Lemma 2 when (φ0, F0) is

replaced by arbitrary but fixed (φ, F ), including (φ∗
0, F

∗
0 ) under H1, with φ ∈ Φ̄∗. This

condition is required in the proof of showing that, when some components of φ∗
0 are allowed

to be zero, the limiting distribution of n1/2(φ̂
∗

n−φ̂n), conditional on (Y1, . . . , Yn), is of order

O∗
p(1), in probability, under H1. This result is essential for establishing that the tests have

non-trivial asymptotic power, when some components of φ∗
0 are allowed to be zero under H1.

Theorem 3 below establishes the consistency of the bootstrap test (15).

Theorem 3. Suppose that H1 holds and there exists a y ∈ R, with ht = E(Y 2
t | Ht−1), t ∈ Z,

such that E[{h1/h1(φ∗
0) − 1}I(Y0 ≤ y)] 6= 0. Additionally, assume that Assumptions (B1)

and (B2) hold and n1/2(φ̂n −φ∗
0) = Op(1). Then, conditional on {Y1, . . . , Yn}, (a) if φ∗

0 is

an interior point in Φ, the bootstrap test (15) based on Tj has asymptotic power 1 (j = 1, 2),

and (b) if additionally Assumption (A5) is also satisfied, then irrespective of whether φ∗
0 is

an interior point of Φ, the bootstrap test (15) based on Tj has asymptotic power 1 (j = 1, 2).

In view of Theorem 3, for the bootstrap test (15) to have asymptotic power against a

given alternative, it is necessary to have a y ∈ R such that E[{h1/h1(φ∗
0)−1}I(Y0 ≤ y)] 6= 0,

where ht = E(Y 2
t | Ht−1), t ∈ Z. Since ht is not of the form ht(φ) under H1 and (φ∗

0, F
∗
0 ) is

the pseudo-true value, the requirement E[{h1/h1(φ∗
0)− 1}I(Y0 ≤ y)] 6= 0 is not very restric-

tive under H1. However, in finite samples, the power of the tests can be sensitive to the form

of the discrepancy between ht and ht(φ̂n). More precisely, if ht(φ̂n) is significantly different

from ht such that the magnitude of the process n−1/2
∑n

t=1{Y 2
t /ht(φ̂) − 1}I(Yt−1 ≤ y) is

‘large’ for some y, then the KS and CvM functionals of n−1/2
∑n

t=1{Y 2
t /ht(φ̂)−1}I(Yt−1 ≤ y)

are likely to be significantly large compared to realizations from the empirical distributions

of KS∗ and CvM∗, respectively, leading to finite sample power of the bootstrap tests.

For example, if the true conditional variance ht is non-linear while the null parametric

form ht(φ) is linear, then our tests are likely to have better finite sample power com-

pared to the case where ht and ht(φ) are both linear and the misspecification is only in

terms of some missing lags, because in the latter case the KS and CvM functionals of

n−1/2
∑n

t=1{Y 2
t /ht(φ̂)− 1}I(Yt−1 ≤ y) are likely to be smaller compared to the former.
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4. Inference when the true value may lie on the boundary

Heuristic arguments suggest that T1 and T2 in (7) could serve as possible test statistics for

testing H0 against H1 regardless of whether φ0 lies in the interior or on the boundary of

the parameter space. In fact, from Lemma 1, under assumptions (A1) and (A4), we have

Un(y, φ̂n) = Un(y,φ0)− n1/2(φ̂n − φ0)
′J(y,φ0) + op(1), (20)

uniformly in y ∈ R, irrespective of whether φ0 is in the interior or on the boundary

of Φ, with Un(·,φ0) converging weakly to a time transformed Brownian motion. Therefore,

the weak limit of Un(·, φ̂n ), and hence the limiting distributions of T1 and T2, depend

on the asymptotic behaviour of n1/2(φ̂n − φ0)
′J(·,φ0). Hence, to establish the limiting

distributions of the test statistics it is essential to study the large sample properties of φ̂n

when φ0 lies on the boundary of the parameter space. Several important results on this

have already been obtained by Andrews (2001) and Francq and Zakoian (2007). For the

ease of reference, in the next subsection, we summarize some of these results in the notation

used in this paper.

4.1. Limiting distributions of the estimators

In this section, we summarize several technical results regarding the asymptotic behaviour

of the QMLE φ̂n in (5) when some components of φ0 are allowed to be zero, and hence φ0

could be on the boundary of Φ.

In Theorem 1, when φ0 is an interior point of Φ, no moment condition of Y 2
t is needed

to establish the weak convergence of Un(·, φ̂n) and for the existence of Σ(φ0). This is

possible because when φ0 is an interior point of Φ, since τ t(φ) is obtained by dividing

the score vector by ht, the strict stationarity condition γ(A0) < ∞ is sufficient to obtain

E‖τ t(φ0)‖ < ∞, E‖τ t(φ0)τ t(φ0)
′‖ < ∞ and E‖(∂/∂φ)τ t(φ0)

′‖ < ∞; see, e.g. Francq and

Zaköıan (2004). However, if some components of φ0 are zero, then one requires additional

assumptions to ensure the existence of these moments. To see this, consider the score for

the ARCH(2), with φ = (ω, α1, α2)
′ and α20 = 0 and ℓt(φ) defined in (5); the score in the

direction of α2 is given by,

n∑

t=1

∂ℓt(φ)

∂α2

∣∣∣∣
φ=φ0

=
n∑

t=1

(1− ε2t )st, st =
Y 2
t−2

ω0 + α10Y 2
t−1

.

Hence, for st to have finite variance (and the CLT to apply), we need E(Y 4
t ) < ∞.
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In order to ensure that Σ(φ0) exists when some components of φ0 are zero, we assume

the following moment condition.

(A6). EY 6
t < ∞.

Note that, in view of the above example, the moment condition EY 4
t < ∞ appears to be

necessary (for the existence of Σ(φ0)) and is also probably sufficient. However, in the proof

given in Francq and Zakoian (2007) (which we rely on), the stronger moment condition

(A6) is required to establish the asymptotic distribution of n1/2(φ̂n − φ0) when some

components of φ0 are zero. Therefore, here we use the stronger moment assumption (A6).

Since the parameter φ0 is allowed to contain zero components, by the assumption that Φ

contains a hypercube (see (A1)), the space n1/2(Φ− φ0) increases to the convex cone

Λ = Λ(φ0) = Λ1 × Λ2 × · · · × Λp1+p2+1,

where Λ1 = R, and for each i = 2, . . . , p1 + p2 + 1, denoting φ0 = (φ01, . . . , φ0(1+p1+p2))
′,

Λi = R if φ0i 6= 0 and Λi = [0,∞) if φ0i = 0. Next lemma shows that, under (A1)–(A6),

the asymptotic distribution of n1/2(φ̂n − φ0) can be represented as the projection of a

normal vector distribution onto Λ; for further details on the nature of this projection, see

Section 4 in Francq and Zakoian (2007).

Lemma 2. Suppose that Assumptions (A1)-(A3) are satisfied. Then, φ̂n
a.s.→ φ0, as n →

∞. Additionally, assume that Assumptions (A4) and (A6) are also satisfied. Then,

n1/2(φ̂n − φ0)
d→ λΛ := arg inf

λ∈Λ
(λ− Z)′Σ(φ0)(λ− Z),

where Z ∼ N (0, (κε − 1)Σ−1(φ0)), Σ(φ) := E{τ 1(φ)τ 1(φ)′}, φ ∈ Φ.

The proof of Lemma 2 follows from Francq and Zakoian (2007). If φ0 is an interior point,

then Λ = R
p1+p2+1 and λΛ = Z ∼ N (0, (κε− 1)Σ−1(φ0)), which is the same as the classical

case (e.g., see Berkes and Horváth, 2004) as we also considered in the previous section.

4.2. Consistent bootstrap with parameters on the boundary

The bootstrap true parameter value, say φ∗
n, plays a crucial role in defining the properties

of any bootstrap test. For the standard bootstrap test in Section 3.2 we set φ∗
n equal to φ̂n.

In the proof of Theorem 2, under Assumptions (A1)–(A4), we obtain that the limiting

behaviour of n1/2(φ̂
∗

n−φ∗
n), conditional on (Y1, . . . , Yn), is the same as that of n1/2(φ̂n−φ0),
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under H0, since φ0 is an interior point and φ∗
n = φ̂n. This result plays a key role in the

proof of establishing the validity of the bootstrap tests for the case the true parameter lies

in the interior of the parameter space. Convergence results of this type have also been used

in establishing the asymptotic validity of other bootstrap methods in similar contexts (see

Hidalgo and Zaffaroni, 2007; Perera et al., 2016; Perera and Silvapulle, 2022).

However, in the current setup, the parameter φ0 is allowed to contain zero components,

and hence we require additional conditions to ensure that the bootstrap tests are consistent.

In particular, a crucial requirement for the validity of the bootstrap tests is to have the

following rate of consistency for the bootstrap true value φ∗
n = (φ∗

n1, . . . , φ
∗
n(1+p1+p2)

)′:

n1/2(φ∗
ni − φ0i) =





op(1), if φ0i = 0

Op(1), if φ0i > 0
, i = 1, 2, . . . , 1 + p1 + p2. (21)

This requirement has previously been introduced in Cavaliere et al. (2022) for establishing

the validity of a bootstrap based inference procedure in a different context. In the current

setup, (21) ensures that the bootstrap method based on φ∗
n replicates the unknown limiting

distribution of Tj under the null, while being of order O∗
p(1), in probability, under the

alternative (j = 1, 2), as is established in Theorems 4 and 5 below. If we set φ∗
n = φ̂n,

then it only holds that n1/2(φ∗
ni − φ0i) = Op(1) for i = 1, 2, . . . , 1 + p1 + p2, and hence

(21) is not satisfied. Therefore, the standard bootstrap test outlined in Section 3.2 is

not valid when some parameters lie on the boundary of Φ under H0. Hence, instead of

the standard bootstrap, we propose a new bootstrap method based on using a different

mechanism in choosing the bootstrap true values φ∗
ni, i = 1, 2, . . . , 1+p1+p2. The modified

bootstrap testing procedure is based on shrinking the parameter estimators in the bootstrap

data generation. Specifically, instead of using φ∗ = φ̂n = (φ̂n1, . . . , φ̂n(1+p1+p2))
′ as the

true value in the bootstrap data generation, we use a transformed version of φ̂n, denoted

φ̂
†

n = (φ̂
†

n1, . . . , φ̂
†

n(1+p1+p2)
)′ defined by φ̂

†

n1 = φ̂n1 and

φ̂
†

ni := φ̂niI(φ̂ni > cn) i = 2, . . . , 1 + p1 + p2, (22)

where cn is a scalar sequence converging to zero at a rate satisfying:

cn → 0, and n1/2cn → ∞ as n → ∞. (23)

This approach has its roots in the Hodges-Le Cam super-efficient type estimators, see, for

example, Bickel et al. (1998), Chatterjee and Lahiri (2011) and Cavaliere et al. (2022).
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In view of the parameter restrictions in (3), denoting φ0 = (φ01, . . . , φ0(1+p1+p2))
′, we

have that φ01 = ω0 > 0, φ0i = α0(i−1) ≥ 0 (i = 2, . . . , 1 + p1), and φ0i = β0(i−1−p1) ≥ 0

(i = 2+ p1, . . . , 1+ p1 + p2). Thus, φ01 is always in the interior, and φ0j is on the boundary

of the parameter space only if φ0j = 0 for some j ∈ {2, 3, . . . , 1+ p1 + p2}; i.e. some ARCH

or GARCH coefficient is zero. Since φ̂n is root-n consistent, the proposed shrinkage in

terms of the cn sequence ensures that P (φ̂
†

nj = 0) → 1 as n → ∞ whenever plim φ̂nj = 0,

j ∈ {2, 3, . . . , 1 + p1 + p2}, where “plim” is the probability limit as n → ∞. Hence,

unlike φ̂nj, in large samples, the transformed estimator φ̂
†

nj lies on the boundary of the

parameter space with large probability whenever φ0j is on the boundary; i.e. φ0j = 0.

Since n1/2(φ̂n − φ0) = Op(1) and cn converges at a rate slower than n−1/2, this ensures

that the requirement (21) is satisfied by the parameter φ̂
†

n defined by (22)–(23). Hence,

as established in Theorems 4 and 5 below, the bootstrap based on φ∗
n = φ̂

†

n allows us to

replicate the unknown limiting distributions of T1 and T2 under H0, while being of order

O∗
p(1), in probability, under the alternative.

We next provide a step-by-step guide of the proposed modified bootstrap approach.

Bootstrap Algorithm 2

Step 1: Compute {φ̂n, Tj} on the original sample {Y1, . . . , Yn}; moreover, compute φ̂
†

n using

{φ̂n, cn} as in (22)–(23);

Step 2: Compute ε̌t, t = 1, . . . , n as in (11) and draw a random sample (with replacement)

of size n, say {ε∗1, . . . , ε∗n}, independent of the original data, from F̌n(·) = n−1
∑n

t=1 I(ε̌t ≤ ·);
Step 3: Generate the bootstrap sample {Y ∗

1 , . . . , Y
∗
n } with bootstrap true values (φ̂

†

n, F̌n) as

Y ∗
t = {h∗

t (φ̂
†

n)}1/2ε∗t , h∗
t (φ̂

†

n) = ω̂† +

p1∑

j=1

α̂†
j(Y

∗
t−j)

2 +

p2∑

k=1

β̂
†

kh
∗
t−k(φ̂

†

n), t ≥ 1

initialized with (Y ∗
0 , . . . , Y

∗
1−p1

, h∗
0 (φ̂

†

n), . . . , h
∗
1−p2

(φ̂
†

n))
′ = ς0, where ς0 is an arbitrarily cho-

sen vector (e.g., set Y ∗
t = 0 and h∗

t = 0, all t ≤ 0);

Step 4: Using {Y ∗
1 , . . . , Y

∗
n }, compute {φ̂∗

n, T
∗
j } the bootstrap analogs of {φ̂n, Tj}.

Step 5: Compute the bootstrap test statistic T ∗
j as T ∗

1 = KS∗ = supy

∣∣U∗
n(y, φ̂

∗

n)
∣∣ and

T ∗
2 = CvM∗ =

∫ {
U∗
n(y, φ̂

∗

n )
}2

dG∗
n(y), where G

∗
n(y) and U∗

n(y,φ) are the bootstrap analogs

of Gn(y) and Un(y,φ), respectively.

Step 6: The bootstrap p-value is defined as p∗n := p∗n(φ̂
†

n) := P ∗
n(T

∗
j ≥ Tj) where P ∗

n is the

probability measure induced by the bootstrap (i.e., conditional on the original data). �

As for the previous bootstrap algorithm, the bootstrap test rejects H0 at the nominal level
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α if the bootstrap p-value p∗n is less than α.

Note that, the limiting distribution of n1/2(φ̂
†

n−φ0) is the same as that of n1/2(φ̂n−φ0)

whenever φ0 is in the interior of Φ. Hence, the bootstrap test collapses into the bootstrap

method outlined in Section 3.2 as n → ∞, whenever φ0 is in the interior of Φ.

4.3. Asymptotic validity

In this section we establish the asymptotic validity of the bootstrap based on the shrinking

parameter estimators approach introduced in the previous subsection.

The bootstrap analogue of the marked empirical process Un(y,φ) for the bootstrap test

based on Algorithm 2 is defined as in (16), with

U∗
n(y,φ) := n−1/2

n∑

t=1

{
(Y ∗

t )
2

h∗
t (φ)

− 1

}
I(Y ∗

t−1 ≤ y), y ∈ R, φ ∈ Φ,

except that Y ∗
t and h∗

t (φ) are now based on the bootstrap method outlined in Section 4.2.

Note that, Assumptions (A1)–(A6) correspond to the original data generating process,

and hence the underlying true parameter value ζ0 = (φ0, F0) is fixed. However, in the

bootstrap data generation the true parameter (φ̂
†

n, F̌n) is not fixed but converges to (φ∗
0, F

∗
0 )

as n → ∞. Therefore, it is not adequate to assume only (A1)–(A6) in order to establish

the validity of the bootstrap tests. As mentioned earlier, Assumption (A5) allows us to

extend the arguments of Lemma 2 to a triangular array setup to obtain that the limiting

distribution of n1/2(φ̂
∗

n−φ̂
†

n), conditional on (Y1, . . . , Yn), is the same as that of n1/2(φ̂n−φ0)

under H0, while being of order O∗
p(1), in probability, under H1. This result is required in

the proofs of the asymptotic validity and consistency of the bootstrap tests.

The next theorem establishes the asymptotic validity of the bootstrap Algorithm 2.

Theorem 4. Suppose that H0 holds and Assumptions (A1)–(A5) are satisfied. Addi-

tionally, w.l.o.g., assume that the set Φ̄∗ in (18) contains φ0 with ωL < ω0 < ωU and

0 ≤ φ0 < φ̄U . Then, the conditional weak limit of U∗
n(·, φ̂

∗

n) is the same as that of Un(·, φ̂n),

in probability, and hence the bootstrap test based on Tj is asymptotically valid (j = 1, 2).

The next theorem establishes the consistency of the bootstrap test under the alternative.

Theorem 5. Suppose that H1 holds and Assumptions (B1), (B2) and (A5) are satisfied.

Additionally, assume that n1/2(φ̂n − φ∗
0) = Op(1) and there exists a y ∈ R, with ht =

E(Y 2
t | Ht−1), t ∈ Z, such that E[{h1/h1(φ∗

0) − 1}I(Y0 ≤ y)] 6= 0. Then, conditional on

{Y1, . . . , Yn}, the bootstrap test based on Tj has asymptotic power 1 (j = 1, 2).
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Theorem 4 shows that the proposed shrinkage in terms of the cn sequence, or more gen-

erally, the requirement (21) ensures that the bootstrap test statistics T ∗
1 and T ∗

2 based on

Algorithm 2 replicate the unknown limiting distributions of T1 and T2 under the null. The-

orem 5 establishes that T ∗
1 and T ∗

2 are of order O∗
p(1), in probability, under the alternative;

that is, the proposed bootstrap method is also consistent even if it is unknown whether

any of the nuisance parameters are on the boundary. Finally, since ht is not of the form

ht(φ) under H1, the requirement on E[{h1/h1(φ∗
0)− 1}I(Y0 ≤ y)] is not very restrictive.

4.4. The case of parameters near the boundary

Throughout the section we have assumed that the parameter vector φ is a fixed element

of the parameter space. This assumption rules out the case of drifting sequences of pa-

rameters converging to the boundary at the usual n−1/2 rate, which is the standard way of

investigating the effect of parameter values which are close to, but not on the boundary;

see, for example, Ketz (2018) and the references therein.

To shed some light on the implication of this setup, consider again the case where the

true parameter φ0 is fixed. Then, the classical bootstrap will fail if some of the elements in

φ0 are on the boundary, since the limiting bootstrap measure will be random in the limit;

see the discussion in Section 4.3. A similar result has been obtained e.g. by Chatterjee

and Lahiri (2011) for the standard bootstrap of lasso-type estimators, which fails when

some elements of the parameter vector are zero. Nevertheless, our proposed bootstrap –

similarly to the modified bootstrap in Chatterjee and Lahiri (2011, eq. (2.4)) – will be

valid, for in large samples the shrinkage-based estimator φ̂
†

n, employed as bootstrap true

value, converges to the (zero) true value at a rate faster than n−1/2. As a consequence, the

conditional distribution of our modified bootstrap statistic is not random in the limit and,

instead, it converges to the asymptotic distribution of the original statistic.

However, should the true parameter be in a n−1/2-neighborhood from the boundary,

then our method would incorrectly place the parameter on the boundary, and hence would

not be asymptotically valid. This is because φ̂
†

n is still of order op(n
−1/2) when φ0 ∼ n−1/2;

see below. To conclude, the proposed test is valid for sequences, φ0,n say, close to boundary

provided φ0,n ∼ n−δ with δ > 1/2, while for δ = 1/2 it is invalid.

In Section 5.2 below we analyze by Monte Carlo simulation the effects of this incorrect

classification on the performance of our tests, and we do not see particular evidence of a

critical behaviour of our proposed approach near the boundary.
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Should the lack of validity near the boundary be a concern, a modified bootstrap pro-

cedure, which would be asymptotically valid even if the true parameter is in a n−1/2 neigh-

borhood of the boundary, can be derived following the approach in Doko Tchatoka and

Wang (2021). To describe this procedure, suppose for the sake of simplicity that φ = φ

is one-dimensional and takes value in the parameter space [0,∞) (a simple example is the

ARCH(1) model with known intercept Yt = (1 + φY 2
t−1)

1/2εt, where φ ≥ 0), such that if

φ = 0 the parameter is on the boundary. Let φ∗
n denote the bootstrap true value and let

p∗n(φ
∗
n) denote the bootstrap p-value based on φ∗

n. The standard bootstrap, see Algorithm 1,

is obtained by setting φ∗
n = φ̂n (with associated bootstrap p-value given by p∗n(φ̂n)), while

the shrinkage-based bootstrap, see Algorithm 2, requires φ∗
n = φ̂

†

n := φ̂nI(φ̂n > cn) (with

associated bootstrap p-value given by p∗n(φ̂
†

n)). When the true parameter is φ0 ∼ n−1/2,

both bootstrap algorithms are invalid, as emphasized. Specifically, on the one hand the

shrinkage-based bootstrap fails as n1/2φ̂
†

n = op (1) and, asymptotically, the bootstrap p-

value is equivalent to a bootstrap which sets φ∗
n = 0; i.e., p∗n(φ̂

†

n) = p∗n(0) + op(1). The

invalidity arises because p∗n(φ̂
†

n) does not match the “infeasible” bootstrap p-value based

on the true parameter, p∗n(φn). On the other hand, the classical bootstrap fails because

φ∗
n = φ̂n is consistent at the n1/2 rate, which is too slow for the bootstrap to work (see,

e.g., the discussion in Andrews, 2000).

A conservative bootstrap, which allows to generate a bootstrap p-value p∗n which controls

the type-I error rejection probability asymptotically, can be designed as follows (see also

the “hybrid bootstrap” algorithm in Doko Tchatoka and Wang, 2021).

Bootstrap Algorithm 3

Step 1: Compute φ̂n. If I(φ̂n > cn) = 1, set φ∗
n = φ̂n as in Algorithm 1 and set p∗n = p∗n(φ̂n);

otherwise, proceed to Step 2;

Step 2: Create a fine grid on the interval [0, cn], and call it Cn;
Step 3: For each c ∈ Cn, compute the bootstrap p-value p∗n(c);

Step 4: The (conservative) bootstrap p-value is computed as p∗n := supc∈Cn p
∗
n(c).

As for the other bootstrap algorithms, the null hypothesis is rejected if p∗n is below the

chosen nominal significance level. This bootstrap will deliver a valid conservative test for

the null hypothesis H0 of correct model specification; i.e., under H0, P (p∗n ≤ η) ≤ η + o(1)

as n → ∞, with equality holding when n1/2φn − cn → ∞ (which includes the special case

of fixed parameter, φn = φ0). The proof follows by simply noticing that, if φ = φn ∼ n−1/2,
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then for n large enough φn ∈ [0, cn]; hence, p
∗
n from Step 4, for Cn fine enough, satisfies

p∗n ≥ pn(φn), the right hand side being the p-value corresponding to the infeasible bootstrap

based on the true parameters.

Remark 2. Note that Algorithm 3 is specified for a single parameter. In general, the

shrinking is applied to φ̂ni, for i = 2, 3, . . . , p1 + p2 + 1, and hence the grid in step 2

accordingly should be defined as a cube [0, cn]
d, with d the number of parameters for which

φ̂ni ≤ cn, that is, d =
∑p1+p2+1

i=2 I(φ̂ni ≤ cn).

Remark 3. The bootstrap-based test described in Algorithm 3 is conservative; that is, it

controls the type-I error probability asymptotically. Hence, the actual rejection probability

could be below the nominal significance level. Since ours is a misspecification test, the

practitioner might prefer to use a liberal test; i.e. such that the probability of rejecting the

null H0 of correct model specification when H0 is false is at least equal to the nominal level.

Should this be the case, then it suffices to define the (liberal) bootstrap p-value in Step 4

as p∗n := infc∈Cn p
∗
n(c).

Remark 4. The test described in this section is computationally intensive in large dimen-

sional models. However, the dimension of the grid in Step 3 depends on the parameters

which are near or on the boundary, and not on the dimension of the whole parameter set.

Hence, it is feasible in most applications.

5. Numerical Study

In this section we carry out a Monte Carlo simulation study to evaluate the finite sample

performance of the KS and CvM tests based on the shrinking-based bootstrap method

proposed in Section 4.2. Our main focus is the case where the true parameter value φ0 of

the data generating process lies on the boundary of the parameter space. For comparison,

we also consider the case where φ0 is an interior point. Several data generating processes

under the alternative hypothesis are also considered in order to investigate the finite sample

power properties of the tests. Although there are several other tests that can be applied

for testing the conditional variance specification in GARCH-type models, as mentioned in

the introduction, the theory for their validity does not hold when the true parameter is

on the boundary. Hence, in these simulations, we compare the proposed tests with the

general purpose Ljung-Box Q test which tests the significance of the serial dependence of

the squared residuals estimated from the fitted model. We denote the Ljung-Box Q test
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for a lag length ℓ by LBQ(ℓ). For comparison, we also consider the standard bootstrap (as

proposed in Section 3.2), the hybrid bootstrap (as proposed by Algorithm 3 in Section 4.4),

and ‘m out of n’ bootstrap (see Hall and Yao, 2003). The asymptotic validity of the ‘m out

of n’ bootstrap implementation of KS and CvM tests does not directly follow from Hall and

Yao (2003). Nevertheless, for comparison, we use it as an alternative approach to estimate

the finite sample null distributions of the test statistics.

5.1. The null hypothesis and the Monte Carlo design

We assume that the observable process {Yt} obeys model (1). The tests are evaluated when

the parametric form ht(φ) under H0 is

ht(φ) = ω + α1Y
2
t−1 + α2Y

2
t−2 + β1ht−1(φ) + β2ht−2(φ), ω > 0, α1, α2, β1, β2 ≥ 0, (24)

where φ = (ω, α1, α2, β1, β2)
′.

The results are based on 20, 000 Monte Carlo replications. For each replication and

data generating process, we first compute the QMLE φ̂n and compute the test statistics

KS, CvM, and LBQ(ℓ), ℓ = 3, 5, 10, 15, 20. In the bootstrap implementations, to reduce

the computational burden, we adopt the ‘Warp-Speed’ Monte Carlo method of Giacomini

et al. (2013). The results of LBQ(ℓ) are presented for only ℓ = 15; the patterns of the

results for ℓ = 3, 5, 10 and 20 are similar to those for ℓ = 15 and hence are omitted.

5.2. Empirical rejection probabilities under the null hypothesis

The data generating process [DGP] is

Yt = h
1/2
t εt, ht = ω0 + α01Y

2
t−1 + α02Y

2
t−2 + β01ht−1 + β02ht−2.

For the error distribution, we consider the standard normal distribution. For the conditional

variance ht of the true DGP we consider the following cases:

(ω0, α01, α02, β01, β02) =





(0.3, 0, 0.4, 0, 0) [D0]

(0.3, 0.5, 0.45, 0, 0) [D1]

(0.3, 0.2, 0.3, 0.45, 0) [D2]

(0.3, 0, 0.4, 0, 0.55) [D3]

(0.3, 0, 0.4, 0.55, 0) [D4]

(0.3, 0.2, 0.25, 0.2, 0.3) [D5]

(25)

Thus, for the DGPs D0–D4, the true parameter φ0 = (ω0, α01, α02, β01, β02)
′ has at least

one component on the boundary of the parameter space, and for the DGP D5, the true
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parameter is an interior point of the parameter space. Note for D1-D5, the sixth order

moment assumption is deliberately not satisfied in order to assess robustness of our tests.

As for the choice of the shrinkage sequence cn, as in Cavaliere et al. (2022), we set cn =

vn−ǫ, with ǫ = 0.45 and v = 1.60. For the ‘m out of n’ bootstrap implementation, we set the

sizemn of the bootstrap sample to be the integer value of cn/ log(n), with c = 1.5. Different

choices of cn and mn are discussed in Section S.4.3 in the supplementary material. For the

hybrid bootstrap algorithm 3 we select the grid Cn = {kcn : k = 0, 0.1, 0.2, . . . , 0.9, 1}.
Table 1 presents the results for empirical level. The sample sizes n = 100, 600 and 2000

are considered. All the tests are run at the nominal 10% significance level. In these results

both shrinking based and standard bootstrap approaches exhibit excellent performance.

The ‘m out of n’ bootstrap based tests are oversized for small samples, that is they have

larger rejection probability than the nominal significance level. Although their performance

becomes better as the sample size increases they do not perform as well as the tests based

on the first two bootstrap methods. As expected, the tests based on hybrid bootstrap turn

out to be conservative (that is they have smaller rejection probability than the nominal

significance level) as they are designed to control the type-I error probability asymptotically.

Hence, the actual rejection probability for the tests based on hybrid bootstrap could be

below the nominal significance level. The LBQ test turns out to be significantly undersized.

5.2.1. Uniform size properties

To evaluate the (uniform) finite sample size properties of the tests when some component

of the true parameter is near the boundary, we initially consider the DGPs:

Dn1 : Yt = h
1/2
t εt, ht = 0.3 + fnY

2
t−1 + 0.25Y 2

t−2 + 0.35ht−1 + 0.25ht−2,

Dn2 : Yt = h
1/2
t εt, ht = 0.3 + 0.25Y 2

t−1 + 0.25Y 2
t−2 + fnht−1 + 0.35ht−2,

with fn = 1.4n−1/2 and a standard normal error distribution. We investigate the rejection

probabilities of the null hypothesis H0 specified by ht(φ) in (24), against the above two

DGPs, as n varies. Thus, for both Dn1 and Dn2, one of the ARCH/GARCH coefficients

converges to the boundary of the null parameter space at the n−1/2 rate.

Figure 1 presents results on empirical level at 10% level of significance, for the DGPs Dn1

and Dn2. Since the true parameter is in a n−1/2 neighborhood of the boundary, the hybrid

bootstrap approach based on Algorithm 3 is asymptotically valid, although it could be

conservative in finite samples (see Remark 3 above). The results in Figure 1 are consistent
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Table 1: Empirical rejection probabilities for testing the null hypothesis H0 : ht = ht(φ) =

ω + α1Y
2
t−1 + α2Y

2
t−2 + β1ht−1 + β2ht−2, for some ω > 0, α1, α2, β1, β2 ≥ 0.

Shrinking based Standard ‘m out of n’ Hybrid

bootstrap bootstrap bootstrap bootstrap

n KS CvM KS CvM KS CvM KS CvM LBQ(15)

DGP D0: (ω0, α01, α02, β01, β02) = (0.3, 0, 0.4, 0, 0)

100 0.088 0.093 0.087 0.089 0.099 0.090 0.025 0.023 0.018

600 0.094 0.095 0.093 0.093 0.094 0.098 0.079 0.079 0.021

2000 0.098 0.101 0.098 0.097 0.092 0.102 0.085 0.086 0.021

DGP D1: (ω0, α01, α02, β01, β02) = (0.3, 0.5, 0.45, 0, 0)

100 0.112 0.107 0.107 0.102 0.117 0.110 0.031 0.029 0.016

600 0.095 0.096 0.093 0.094 0.081 0.092 0.046 0.046 0.023

2000 0.094 0.096 0.094 0.092 0.078 0.086 0.051 0.050 0.023

DGP D2: (ω0, α01, α02, β01, β02) = (0.3, 0.2, 0.3, 0.45, 0)

100 0.108 0.104 0.100 0.095 0.119 0.105 0.030 0.028 0.014

600 0.097 0.096 0.096 0.095 0.086 0.088 0.044 0.042 0.019

2000 0.100 0.096 0.099 0.096 0.086 0.090 0.060 0.054 0.018

DGP D3: (ω0, α01, α02, β01, β02) = (0.3, 0, 0.4, 0, 0.55)

100 0.109 0.107 0.108 0.106 0.147 0.128 0.021 0.020 0.020

600 0.105 0.106 0.104 0.103 0.102 0.103 0.036 0.032 0.032

2000 0.103 0.103 0.105 0.102 0.099 0.103 0.042 0.039 0.036

DGP D4: (ω0, α01, α02, β01, β02) = (0.3, 0, 0.4, 0.55, 0)

100 0.099 0.098 0.091 0.089 0.124 0.102 0.027 0.027 0.022

600 0.101 0.102 0.097 0.095 0.098 0.097 0.040 0.039 0.026

2000 0.105 0.104 0.101 0.101 0.094 0.097 0.042 0.043 0.025

DGP D5: (ω0, α01, α02, β01, β02) = (0.3, 0.2, 0.25, 0.2, 0.3)

100 0.107 0.106 0.101 0.098 0.125 0.110 0.033 0.032 0.018

600 0.099 0.093 0.098 0.091 0.090 0.091 0.043 0.040 0.019

2000 0.102 0.099 0.101 0.099 0.092 0.097 0.069 0.066 0.017

Notes: The DGPs are of the form Yt = h
1/2
t εt, ht = ω0+α01Y

2
t−1+α02Y

2
t−2+β01ht−1+β02ht−2.

The nominal level is 10%. The simulation is based on 20,000 Monte Carlo replications.
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Figure 1: Empirical size at the nominal 10% significance level for the DGPs Dn1 and Dn2.
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with this because although the tests based on hybrid bootstrap exhibit significant size

distortions in small samples they perform increasingly better as the sample size increases

and fn approaches the boundary. The shrinking based bootstrap exhibits the best overall

performance followed by standard bootstrap (the results for the standard bootstrap are

given in Table S1 in the supplementary material). The tests based on ‘m out of n’ bootstrap

turn out to be oversized for small samples, although their performance becomes better as

the sample size increases. The LBQ test continues to be significantly undersized for all n.

We end this subsection by investigating how well size is controlled both at, near and far

away from the boundary. We do so by computing the empirical null rejection probabilities

as a function of parameters that start at the boundary and move toward the interior of

the parameter space, with the sample size being kept fixed. Specifically, we consider the

following two DGPs:

D(α) : Yt = h
1/2
t εt, ht = 0.3 + 0.25Y 2

t−1 + αY 2
t−2 + 0.35ht−1 + 0.25ht−2,

D(β) : Yt = h
1/2
t εt, ht = 0.3 + 0.25Y 2

t−1 + 0.25Y 2
t−2 + 0.35ht−1 + βht−2,

with the standard normal error distribution. The tests are evaluated for testing the null

hypothesis H0 specified by ht(φ) in (24). For the DGPs D(α) and D(β), the parameters α

and β are chosen in the set {0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, . . . , 0.085, 0.09, 0.095, 0.1}.
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Figure 2: Empirical size at the nominal 10% significance level for the DGPs D(α) and D(β).
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Figure 2 provides the empirical null rejection probabilities as a function of the param-

eters α and β for the DGPs D(α) and D(β), respectively, at the nominal 10% significance

level. The sample size is n = 1000. Since the shrinking based bootstrap and standard

bootstrap are asymptotically equivalent for α, β > 0, we do not include the standard boot-

strap in Figure 2. Detailed results including standard bootstrap and sample sizes n = 600

and 1000 are provided in Figure S1 in the supplementary material. When the tests are

implemented using the ‘m out of n’ bootstrap, the CvM test exhibits better performance

than the KS test; however, when they are implemented using either the shrinking based

bootstrap or the standard bootstrap the KS test performs marginally better than the CvM

test. The hybrid bootstrap approach appears to control size better (although not as well

as the shrinking based bootstrap) at or near the boundary when n = 1000, however, as we

move away from the boundary towards the interior of the parameter space the hybrid boot-

strap tests exhibit smaller empirical rejection probabilities than the nominal significance

level. The LBQ test appears to be significantly undersized.

5.3. Empirical power and the choice of the shrinkage sequence

In order to investigate empirical power properties of the tests we consider several DGPs

under the alternative, including local alternatives (the details are provided in the sup-

plementary material in Section S.4.2). In addition, we also consider DGPs that start at
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the boundary of the null parameter space and move further into the alternative space.

These simulations are discussed in detail in Section S.4.2 in the supplementary material

(see Table S2, and Figures S2 and S3). In these simulation experiments the shrinking

based, standard and ‘m out of n’ bootstrap methods all perform very similarly and exhibit

excellent empirical power properties. As expected, the empirical null rejection probabili-

ties of the tests increase as the DGP moves away from the boundary and further into the

alternative space. The LBQ test does not exhibit any notable power.

In order to investigate the effect of the choice of the shrinkage parameter cn we evaluate

the performance of the shrinking-based bootstrap tests while considering different choices

for cn. These simulations are discussed in Section S.4.3 in the supplementary material and

the results are presented in Tables S3 and S4. In these simulations the shrinking-based

bootstrap performs consistently well throughout with good empirical size properties for

both KS and CvM tests, and the test results do not vary significantly on the choice of the

shrinkage parameter cn. By comparison, the test results for the ‘m out of n’ bootstrap

exhibit some sensitivity to the choice of the tuning parameter mn, particularly for small n.

5.4. Standard and shrinking-based bootstrap: further comparisons

As discussed earlier, the standard bootstrap is theoretically invalid when the true parameter

lies on the boundary of the parameter space. However, the Monte Carlo simulation results

reported in Section 5.2 show that the differences between the standard bootstrap and the

(theoretically valid) shrinking-based bootstrap under the null are not always particularly

substantial. In this section we investigate this finding further by means of a small additional

Monte Carlo study as well as through some theoretical considerations.

Let us focus on the case where data are generated either as i.i.d., i.e. Yt = zt, zt being

i.i.d. N (0, 1), or as the ARCH(4), Yt = h
1/2
t zt, ht = 1 + 0.4Y 2

t−4. The null hypothesis is

that the DGP belongs to the ARCH(8) class of models; hence, for both DGPs, the null

hypothesis is satisfied; however, many of the unknown parameters (respectively, 8 for the

i.i.d. case and 7 for the ARCH(4) case) lie on the boundary of the parameter space. In

Figure 3 we report the empirical rejection probabilities of the standard and the shrinking-

based bootstrap tests for nominal levels in the set {0.01, 0.02, ..., 0.25}. We consider samples

of size n ∈ {600, 6000}; the number of Monte Carlo replications is set to 10, 000. From

the inspection of the Figure 3 it can be noticed that indeed there are differences – albeit

not large – between the standard bootstrap tests and the shrinking–based bootstrap tests,
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Figure 3: Empirical type-I error rates for the bootstrap tests. In each panel, the Y -axis is

the proportion of times the H0 was rejected and the X-axis is the level of significance.

0.05 0.1 0.15 0.2 0.25

level of significance

0.05

0.1

0.15

0.2

0.25

p
ro

b
. 
o
f 
re

je
c
ti
o
n

0.05 0.1 0.15 0.2 0.25

level of significance

0.05

0.1

0.15

0.2

0.25

p
ro

b
. 
o
f 
re

je
c
ti
o
n

0.05 0.1 0.15 0.2 0.25

level of significance

0.05

0.1

0.15

0.2

0.25

p
ro

b
. 
o
f 
re

je
c
ti
o
n

0.05 0.1 0.15 0.2 0.25

level of significance

0.05

0.1

0.15

0.2

0.25

p
ro

b
. 
o
f 
re

je
c
ti
o
n

30



with the former being in terms of empirical size closer to the corresponding nominal level.

Such differences, which as expected can be appreciated more at larger nominal levels, do

not disappear as the sample size increases from n = 600 to n = 6000. Finally, a by-product

result from this small exercise is that tests based on CvM tends to perform better than

tests based on KS.

In terms of theory, in order to explain why the differences between the two bootstrap

schemes are not dramatically large, we note the following. Recall that the large-sample

behaviour of the original test statistics depends on the following expansion (see Lemma 1)

Un(y, φ̂n) = Un(y,φ0)− n1/2(φ̂n − φ0)
′J(y,φ0) + op(1). (26)

The standard bootstrap fails because it is unable to mimic the term n1/2(φ̂n − φ0) on

the right hand side when the true parameter is on the boundary. Specifically, while the

asymptotic distribution of n1/2(φ̂n−φ0) is “truncated normal” (see Lemma 2), its bootstrap

analog n1/2(φ̂
∗

n − φ̂n) has a random limit. In contrast, when the shrinking bootstrap is

employed, n1/2(φ̂
∗

n−φ̂n) approaches the correct limit. In general, the fact that the difference

between the two bootstraps is not striking depends on the fact that the term Un (φ0; y) is

of larger magnitude order than the second term, n1/2(φ̂n − φ0)
′J(y,φ0). For instance, for

the ARCH(1) DGP in Example 1, if the unknown parameter α lies on the boundary and

zt is i.i.d. N (0, 1), it is straightforward to see that (jointly)

(
Un (y,φ0) , n

1/2(φ̂n − φ0)
′J(y,φ0)

)
d→
√
2
(√

Φ(y)Z1,
√

1/3J (y,φ0)Z
+
2

)

where J(y,φ0) = E (z2t I (zt ≤ y)), Φ is the N (0, 1) cdf, Z+
2 = max{0, Z2} and Z1, Z2 ∼

N (0, 1). Hence, Un(y, φ̂n) has asymptotic representation

Un(y, φ̂n)
d→
√

2Φ(y)Z1 +
√

2/3J (y,φ0)Z
+
2 .

Clearly, Φ (y) is larger than J2(y,φ0)/3 and, in this sense, Un (y,φ0) is the dominating

term. Stated differently, the Z+
2 term, which is not replicated by the standard bootstrap,

has a small weight relative to the main term in (26), which is therefore the main driver of

the asymptotic distributions of both the standard and the bootstrap test statistics. Because

of this small weight, the invalidity of the standard bootstrap in simulations is often hard

to see.

6. Empirical illustrations

To illustrate the bootstrap testing procedure, we briefly discuss two real data examples.
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Table 2: P-values of the specification tests for testing GARCH(1,1) and GARCH(1,2)

specifications for the conditional variance of the daily log-return of the SPDR ETF.

Shrinking based Standard ‘m out of n’ Hybrid

bootstrap bootstrap bootstrap bootstrap

Null model KS CvM KS CvM KS CvM KS CvM LBQ(20)

GARCH(1,1) 0.008 0.007 0.008 0.007 0.007 0.006 0.008 0.007 0.079

GARCH(1,2) 0.000 0.001 0.000 0.000 0.000 0.001 0.413 0.363 0.123

Application 1

We first consider a data example based on the daily log returns of the SPDR exchange-

traded fund (ETF) for the S&P 500 index. This ETF is usually denoted by the tick symbol

SPY. The data spans the period January 3, 2007 to June 30, 2017 and contains 2640 obser-

vations. A shorter version of this data set was previously studied by Tsay and Chen (2018),

and by using some preliminary diagnostics, they concluded that a GJR-GARCH(1,1) model

provides a good fit. In their empirical analysis, Tsay and Chen (2018) concluded that the

leverage effect of the fitted GJR-GARCH(1,1) model is statistically significant at the 5%

level. This indicates that if one specifies a GARCH(1,1) or a GARCH(1,2) model for the

conditional variance then that may not provide a good fit for the data. In order to inves-

tigate this, in this empirical illustration, we employ the proposed KS and CvM bootstrap

tests to test the adequacy of GARCH(1,1) and GARCH(1,2) specifications, expecting that

the proposed tests would be able to detect a misspecification. For comparison the LBQ

test considered in the simulations in the previous section is also considered.

In view of the results in Table 2, all the tests, except LBQ, convincingly reject the

GARCH(1,1) specification with significantly small p-values. For the GARCH(1,2) specifi-

cation, the shrinking based, standard, and ‘m out of n’ bootstrap p-values (of KS and CvM)

are all zero up to 2 decimal places, whereas the p-values for the hybrid bootstrap based

tests and LBQ(20) are larger than 0.1. Thus, the KS and CvM tests based on the shrinking

based, standard, and ‘m out of n’ bootstrap methods clearly reject the GARCH(1,2) spec-

ification, but the hybrid bootstrap based tests and LBQ(20) fail to reject the GARCH(1,2)

specification at the 10% level of significance. Since the hybrid bootstrap implementation

is conservative and may produce larger p-values in finite samples (as evident from the
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Figure 4: Autocorrelogram of the squared SPY log returns time series (first panel), and

the squared residual correlogram for the fitted GARCH(1,2) model (second panel). The

sample period is from January 3, 2007 to June 30, 2017.
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simulations presented in the previous section), the results from the first three bootstrap

approaches may be more reliable in this case. Note that the Ljung-Box Q test is designed

to check the significance of the autocorrelations of the squared residuals at multiple lags

jointly. Figure 4 shows the sample autocorrelations for both the squared values of the

observed time series and the squared residuals estimated from the fitted GARCH(1,2). As

expected, squared SPY log returns are significantly serially correlated, but the correlogram

of squared residuals suggests no significant serial correlations except for some minor ones

at lags 1 and 10. This explains the relatively large p-values of the LBQ test. However,

squared residuals can be serially uncorrelated, but dependent, and hence it appears that

the tests proposed in this paper are better suited than the Ljung-Box Q test in detecting

the misspecification of the conditional variance specification in this case.

Application 2

In this illustrative example we consider a data set from the Caterpillar stock traded on the

New York Stock Exchange. The variable of interest is the daily log return of the Caterpillar

stock, defined by Yt = 100(logPt − logPt−1) where Pt is the stock price at time t. The

sample contains 2515 observations and spans the period Jan 02, 2001 to Dec 31, 2010.

Tsay (2013) analyzed this data set by applying several diagnostic methods, and fitted a

GARCH(1,1) model (see Table 5.1 in Tsay, 2013). When we fit a GARCH(1,2) model to

this data set, the estimated GARCH(2) coefficient turns out to be statistically insignificant,

practically at any level of significance. This indicates that, when testing the GARCH(1,2)
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Table 3: P-values of the specification tests for testing GARCH(1,1) and GARCH(1,2)

specifications for the conditional variance of the daily log-return of the Caterpillar stock.

The data spans the period Jan 02, 2001 to Dec 31, 2010.

Shrinking based Standard ‘m out of n’ Hybrid

bootstrap bootstrap bootstrap bootstrap

Null model KS CvM KS CvM KS CvM KS CvM LBQ(20)

GARCH(1,1) 0.362 0.314 0.362 0.314 0.219 0.227 0.362 0.314 0.999

GARCH(1,2) 0.499 0.416 0.499 0.416 0.312 0.289 0.500 0.461 0.999

specification, one component of the true parameter could potentially be a boundary point

of the parameter space, whereas when the null model is GARCH(1,1) the true parameter

could potentially be an interior point. Of course we do not have any certainty that this

is actually true. But, as an illustration, we employ the proposed KS and CvM bootstrap

tests to test GARCH(1,1) and GARCH(1,2) specifications. For comparison the LBQ test

is also considered. The p-values of the tests are given in Table 3. As expected the tests

support both GARCH(1,1) and GARCH(1,2) specifications with large p-values. In the

simulations in the previous section, the LBQ test was undersized when testing for the

correct specification. Thus, the large p-values of the LBQ test in Table 3 are consistent

with the simulation results reported in the previous section.

7. Conclusion

This paper contributes to advance the current statistical methodology for inference in

GARCH models by developing bootstrap based omnibus specification tests while allowing

parameters on the boundary of the parameter space. In particular, Kolmogorov-Smirnov

and Cramér-von Mises type test statistics are proposed based on a certain empirical process

marked by centered squared residuals. We first derive the asymptotic null distributions of

the proposed test statistics when the true parameter is in the interior of the parameter

space. Since the limiting distributions of the test statistics are not free from (unknown)

nuisance parameters, we propose a bootstrap method to implement the tests and establish

that the proposed bootstrap method is asymptotically valid and consistent. In view of

our Monte Carlo simulations it appears that the finite sample performance of standard
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bootstrap is not strongly affected by the presence of parameters on the boundary. However,

this bootstrap approach is not asymptotically valid if some components of the nuisance

parameters lie on the boundary of the parameter space. Therefore, as an alternative, we

also propose a modified version of the bootstrap by employing a method of shrinkage of the

parameter estimates in the bootstrap data generation. We show that the modified bootstrap

procedure is asymptotically valid and consistent, regardless of the presence of nuisance

parameters on the boundary. We also consider a hybrid version of this bootstrap approach

that allows parameter values which are close to, but not on the boundary. Our bootstrap

methods can be implemented easily under fairly general and easily verifiable assumptions

and have desirable finite sample properties in terms of empirical size and power. In practical

applications, they can be used as a first step in model selection, where validity of a general

model is assessed via misspecification tests. Then, as a second step, the researcher can

search for a more parsimonious model using, for example, the tests in Cavaliere et al.

(2022).

Our results can be extended in several directions. For instance, it is of interest to see

if the methods we propose in this paper can be extended to models beyond the standard

GARCH(p1, p2). To this end, consider the model M defined by

M : Yt = h
1/2
t εt, ht = gφ(Yt−1, · · · , Yt−p1 , ht−1, · · · , ht−p2), t ∈ Z, (27)

for some φ ∈ Φ ⊂ R
p1+p2+1, where {gφ;φ ∈ Φ} is a parametric family of nonnegative func-

tions on R
p1+p2+1, and the error terms {εt}t∈Z are i.i.d. with zero mean and unit variance.

Thus, ht = ht(φ) = Var(Yt | Ht−1), t ∈ Z. Consider the hypothesis testing problem

H0 : Model M is correct vs H1 : Model M is not correct. (28)

The GARCH(p1, p2) model is a special case of M. Another example is the asymmet-

ric AGARCH(p1, p2) model defined by ht = ht(φ) = α0 +
∑p1

j=1 αj

(
|Yt−j| − γYt−j

)2
+

∑p2
k=1 βkht−k, where φ = (α0, . . . , αp1 , β1, . . . , βp2 , γ)

′, α0 > 0, αj ≥ 0, βk ≥ 0 (t ∈ Z,

1 ≤ j ≤ p1, 1 ≤ k ≤ p2). Similarly, several other extensions of the standard GARCH

model can also be written in the general form (27).

Heuristic arguments suggest that the bootstrap tests proposed in this paper for ARCH(p)

and GARCH(p1, p2) models can also be extended to this general setup. In fact, the boot-

strap algorithm outlined in Section 4.2 can be readily applied to any model of the form (27),

based on a suitable estimator for φ. However, the theory for QML parameter estimation,
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when the true value is on the boundary of the parameter space, in the family of mod-

els in (27), has not been developed yet. Therefore it is not a trivial task to extend the

methods developed in this paper to a general setup of the form (27). One potential option

would be to use penalized likelihood estimators as proposed by Fan and Li (2001), based on

smoothly clipped absolute deviation (SCAD) thresholding penalty functions. Alternatively,

it may be possible to use Adaptive Lasso type estimators (see Zou, 2006). Furthermore,

our testing procedures can also be potentially extended to Poisson autoregressions with

exogenous covariates as considered in Agosto et al. (2016). All these extensions are left for

future research.

Supplementary material

The supplementary material contains some additional simulation results, the proofs of the

main results stated in the paper, as well as some auxiliary lemmas.
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