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General-Purpose Methods for Simulating
Survival Data for Expected Value of Sample
Information Calculations

Mathyn Vervaart , Eline Aas, Karl P. Claxton, Mark Strong ,
Nicky J. Welton, Torbjørn Wisløff , and Anna Heath

Background. Expected value of sample information (EVSI) quantifies the expected value to a decision maker of

reducing uncertainty by collecting additional data. EVSI calculations require simulating plausible data sets, typically

achieved by evaluating quantile functions at random uniform numbers using standard inverse transform sampling

(ITS). This is straightforward when closed-form expressions for the quantile function are available, such as for stan-

dard parametric survival models, but these are often unavailable when assuming treatment effect waning and for

flexible survival models. In these circumstances, the standard ITS method could be implemented by numerically eval-

uating the quantile functions at each iteration in a probabilistic analysis, but this greatly increases the computational

burden. Thus, our study aims to develop general-purpose methods that standardize and reduce the computational

burden of the EVSI data-simulation step for survival data. Methods. We developed a discrete sampling method and

an interpolated ITS method for simulating survival data from a probabilistic sample of survival probabilities over

discrete time units. We compared the general-purpose and standard ITS methods using an illustrative partitioned

survival model with and without adjustment for treatment effect waning. Results. The discrete sampling and interpo-

lated ITS methods agree closely with the standard ITS method, with the added benefit of a greatly reduced computa-

tional cost in the scenario with adjustment for treatment effect waning. Conclusions. We present general-purpose

methods for simulating survival data from a probabilistic sample of survival probabilities that greatly reduce the

computational burden of the EVSI data-simulation step when we assume treatment effect waning or use flexible sur-

vival models. The implementation of our data-simulation methods is identical across all possible survival models and

can easily be automated from standard probabilistic decision analyses.

Highlights

� Expected value of sample information (EVSI) quantifies the expected value to a decision maker of reducing

uncertainty through a given data collection exercise, such as a randomized clinical trial. In this article, we

address the problem of computing EVSI when we assume treatment effect waning or use flexible survival

models, by developing general-purpose methods that standardize and reduce the computational burden of

the EVSI data-generation step for survival data.
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� We developed 2 methods for simulating survival data from a probabilistic sample of survival probabilities

over discrete time units, a discrete sampling method and an interpolated inverse transform sampling method,

which can be combined with a recently proposed nonparametric EVSI method to accurately estimate EVSI

for collecting survival data.
� Our general-purpose data-simulation methods greatly reduce the computational burden of the EVSI data-

simulation step when we assume treatment effect waning or use flexible survival models. The implementation

of our data-simulation methods is identical across all possible survival models and can therefore easily be

automated from standard probabilistic decision analyses.
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Expected value of sample information (EVSI) quantifies

the expected value to a decision maker of reducing

uncertainty through a given data collection exercise, such

as a randomized clinical trial.1 Methods for computing

the EVSI for collecting survival data (i.e., time-to-event

data) when there is uncertainty about the choice of

survival model have recently been developed by Vervaart

et al.2 These methods require, in common with other

EVSI methods, the simulation of plausible study data sets

that reflect the study design proposed for collecting future

data and the time-to-event distribution of individuals

included in such a study.3 This is typically achieved by

evaluating quantile functions at random uniform numbers

using standard inverse transform sampling (ITS). The

standard ITS method is straightforward to implement

when closed-form expressions for the quantile function

are available, such as for standard parametric survival

models, but these are often not available when assuming

treatment effect waning and for flexible survival models.

Sufficient evidence on time-to-event outcomes, such as

overall survival (OS) and time to progression, is crucial

for accurately determining the long-term effects of new

treatments.4 Yet, health technology assessments often

have to rely on immature survival data obtained from

trials at an early stage, especially for new cancer treat-

ments.5 This can partly be explained by the introduction

of accelerated licensing schemes for new pharmaceuticals

by regulatory bodies such as the European Medicines

Agency6,7 and the US Food and Drug Administration.8

Immature survival data require a high degree of extrapo-

lation, which led to the introduction of flexible survival

models such as response-based landmark models, mix-

ture cure models, relative survival models, and model-

averaging approaches.9,10 Nevertheless, more complex

models do not necessarily result in plausible extrapola-

tions, and therefore, extrapolations are often supplemen-

ted with assumptions about disease progression and

treatment mechanisms. For example, the National Insti-

tute for Health and Care Excellence recommends that

waning of treatment effects is considered in technology

appraisals,11 for instance, by assuming no more treat-

ment benefit beyond a chosen time point12 or by assum-

ing that the treatment effect diminishes over the long

term.13 This is typically implemented in cost-effectiveness
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models by adjusting the predicted hazards, thereby alter-

ing the survival probabilities generated by parametric

survival models. This poses a challenge for the EVSI

data-simulation step for survival data, as closed-form

expressions for the quantile function are often unavail-

able for custom distributions that incorporate assump-

tions about treatment effect waning and for flexible

survival models. In these circumstances, the standard ITS

method for simulating survival data could be implemen-

ted by numerically evaluating the quantile distributions

at each iteration in a probabilistic analysis, but this can

greatly increase the computational burden.

In this article, we address the problem of computing

EVSI when we assume treatment effect waning or use flex-

ible survival models, by developing general-purpose meth-

ods that standardize and reduce the computational burden

of the EVSI data-generation step for survival data. We

develop a discrete sampling method and an interpolated

ITS method for simulating survival data from a probabil-

istic sample of survival probabilities over discrete time

units. The discrete sampling method samples time cycles

using the survival probabilities and sets the event times to

the half-cycle times. The interpolated ITS method extends

this to continuous time by initially sampling random uni-

form numbers between 0 and 1 and then interpolating the

survival probabilities using cubic splines at the sampled

numbers and recording the interpolated cycle times. We

demonstrate in an illustrative case study that, when the

general-purpose data-simulation methods are combined

with a recently proposed nonparametric EVSI method,2,14

EVSI computations for survival data can be automated

from standard probabilistic decision analyses, irrespective

of the assumed data-generating process.

The article is structured as follows. In the second sec-

tion, we first describe the standard ITS method and then

introduce the general-purpose methods for simulating

survival data. In the third section, we compare the stan-

dard ITS method and the general-purpose data-

simulation methods based on an illustrative partitioned

survival model for scenarios with and without adjust-

ment for treatment effect waning. In the final section, we

conclude with a short discussion.

Method

Decision Problem

In health technology assessment, cost-effectiveness mod-

els are widely used to compare alternative health technolo-

gies in terms of expected costs V and health benefits Q

relative to a cost-effectiveness threshold l.15 There is usu-

ally a choice between a small number of D decision

options, indexed d= 1, . . .D, such as a new treatment and

standard care. The cost-effectiveness of decision option d

can be expressed in terms of net health benefit,

NBd =Qd � Vd=l, or net monetary benefit, NB d =

Qdl� Vd . A cost-effectiveness model, which we denote as

NB d(u), predicts the net benefit of decision option d, given

a vector of model input parameters u, such as probabilities,

costs, and health-related quality-of-life weights. We repre-

sent our current knowledge about the cost-effectiveness

model parameters in the joint probability distribution p(u).

The joint distribution p(u) is typically defined using a com-

bination of statistical models fitted to individual patient

data, external data sources, clinical expert opinion, and

assumptions about biological plausibility, and there may

also be dependency between elements of u.

EVSI for a New Study

The expected value of the optimal decision given current

information is the value of the decision option that maxi-

mizes expected net benefit and can therefore be consid-

ered cost-effective,

max
d

EufNBd(u)g, ð1Þ

A new study would provide data X relating to u, which

could for example be a randomized controlled trial that

collects OS data for a new treatment and standard care.

Once the study data have been collected, we update the

joint distribution of the cost-effectiveness model para-

meters with the new data using Bayes theorem, giving a

posterior distribution p(ujX).
The expected value of the optimal decision made after

collecting X is

max
d

EujXfNBd(u)g: ð2Þ

The value of collecting X is derived from its potential to

help a decision maker avoid recommending a treatment

that reduces net benefit, as we may learn that the decision

option that is considered cost-effective given current

information turns out to be cost-ineffective given new

information. However, as we have not yet collected X, we
must take the expectation over the distribution of all pos-

sible data sets, p(X). This requires simulating plausible

data sets from the distribution of the new data, x; p(X).
To simulate x, we usually need to specify a parametric

data-generating distribution, p(Xju), which depends on

the type of data that will be generated by the proposed

study and how it will be used to update the model para-

meters.3 We can simulate data sets from p(X) by first

Vervaart et al. 597



sampling from the joint distribution of the model para-

meters, u�; p(u), and then sampling from the parametric

data-generating distribution given the parameter sample,

x�; p(Xju�). This gives us a pair of samples fx�, u�g
from the joint distribution p(X, u), and therefore the sam-

ples x� are drawn from the marginal distribution p(X).
The expected value of the decision made with addi-

tional sample information is given by

EX½max
d

EujXfNBd(u)g�: ð3Þ

The EVSI16 measures the expected value of reducing

uncertainty about the optimal decision by collecting X,
which is defined as the difference between equation (3)

and equation (1),

EVSI = EX½max
d

EujXfNBd(u)g� �max
d

EufNBd(u)g:

ð4Þ

In the next section, we describe the EVSI estimation pro-

cedure for collecting time-to-event data.

Computing EVSI for Time-to-Event Data

Time-to-Event Data

Time-to-event data, such as time to disease progression

and time to death, are frequently collected in the context

of clinical trials. A special feature of time-to-event data is

censoring, which occurs when the follow-up time is not

long enough to observe the event of interest for all indi-

viduals or when individuals are lost to follow-up.17 A sin-

gle time-to-event data set x, collected between time 0 and

tobs, consists of i= 1, . . . , n survival times xi and censor-

ing indicators di, x= fx1, . . . , xn, d1, . . . , dng, where

di = 1 when xi is an observed event and di = 0 when xi is

a censored observation.

To predict outcomes over the long term, censored

time-to-event data usually need to be extrapolated

beyond the observed follow-up period using a parametric

survival model.4 Parametric models are commonly speci-

fied using either the survivor function, S(t, u), or hazard

function, h(t, u), with time denoted as t.

The survivor function S(t) defines the probability of

survival up to time t, given by

S(t, u)=P(T.t)= 1� F(t, u), 0\t\ inf , ð5Þ

where F(t, u) is the cumulative distribution function.

The hazard function h(t, u) defines the instantaneous

event rate at time t conditional on survival up to time t,

h(t, u)= lim
dt!0

P(t�T\t+ dt j T � t)

dt

� �

=
f (t, u)

S(t, u)
, ð6Þ

where f (t, u) is the probability density function.

Most cost-effectiveness models are in discrete time

and therefore evaluate S(t, u) at fixed time intervals based

on a set amount of time called model cycles, thereby gen-

erating a vector of survival probabilities over discrete

time units for each sampled value for u, from which the

distribution of patients across the health states over time

can be constructed. The expected costs, life-years, and

quality-adjusted life-years of a new technology can be

estimated by integrating the distribution of patients

across the health states and the health state values, which

reflect the costs and health-related quality-of-life weights

associated with each health state.15

Computing the Expected Net Benefits

Given Current Information

We can compute the expected net benefits given current

information in a probabilistic analysis (PA) using Monte

Carlo simulation. This involves sampling k= 1, . . . ,K

values, u(k), from the distribution of the model para-

meters, p(u), and then evaluating the survivor functions,

S(tc, u
(k)), given model cycle c= 0, . . . ,C. This results in

K vectors of survival probabilities, s(k) = fs(k)
0
, . . . , s

(k)
C g,

where s(k)c = S(tc, u
(k)). We assume s � u and compute

the net benefits conditional on the survival curves and

other model parameters, NBd(u
(k)), for each d. We com-

pute the expected net benefits given current information

by averaging over the K net benefits for each d.

Table 1 illustrates a PA sample in which K vectors of

survival probabilities s(k) have been generated for a single

decision option d.

Table 1 Probabilistic Analysis Sample with K Sampled

Vectors of Survival Probabilities s(k) for a Single Decision

Option

Model Cycle s(1) s(2) s(3) . . . s(K)

0 1.00 1.00 1.00 . . . 1.00
1 0.85 0.79 0.88 . . . 0.92
2 0.76 0.70 0.79 . . . 0.88
3 0.69 0.63 0.72 . . . 0.79

.

.

.
.
.
.

.

.

.
.
.
.

.
.

.
.
.
.

C 0.00 0.00 0.00 . . . 0.00
P

C

c= 0

s(k)c 14.49 10.82 12.11 . . . 18.79
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Simulating Time-to-Event Data

Standard ITS Method

To compute the expected net benefits given new time-

to-event data x, we must first sample plausible data sets

from the distribution of the new data conditional on the

sampled parameter values, x(k); p(Xju(k)). We can simu-

late random survival times from a parametric survival

distribution using standard functions, such as the rwei-

bull function in R.18 These standard functions use ITS,

which is a method for generating random values from an

arbitrary distribution. Let F be a continuous cumulative

distribution function (CDF), with inverse CDF (i.e.,

quantile function) denoted by F�1. The intuition behind

the ITS method is that if we define T =F�1(U ), where

U ;Unif½0, 1�, then T is distributed according to F, that

is, F(T ). Since the survivor function is defined as

S(t, u)= 1� F(t, u), we can generate survival times by

sampling values ui, i= 1, . . . , n, from a uniform distri-

bution on the interval ½0, 1� and plugging these into the

inverse survivor function, S�1(ui, u). The inverse survivor

function can be derived from the inverse CDF,

S�1(1� ui, u) = F�1(ui, u), and if U ;Unif½0, 1�, it fol-
lows that 1� U is also ;Unif½0, 1�. We then censor the

survival times at the new follow-up time tnew.

The standard ITS scheme for simulating time-to-event

data is given in Box 1.

Sampling from a Weibull distribution, such as by

using the rweibull function in R, can result in any value

between 0 and infinity. If we want to ensure that the

sampled survival times do not exceed a biologically plau-

sible time horizon th, which would typically be equal to

the time horizon used in the decision model, then we need

to sample u
(k)
i on the interval ½p(k)

1
, 1�, where p(k)

1
is the sur-

vivor function evaluated at th, that is, S th, u
(k)

� �

. If, how-

ever, the chance of simulating implausible survival times

that exceed th is substantial, the analyst should consider

using a more realistic survival model, in particular mod-

els that incorporate background mortality and other

external information.9,19 However, this evidence may not

be available and is exactly the evidence that is under con-

sideration to collect in the value-of-information analysis.

The algorithm in Box 1 could, in theory, be used for

any survival model for which we can define a hazard func-

tion, h(t, u). The hazard could be integrated to produce a

cumulative hazard function, H(t, u), from which we can

derive the survivor function, S(t, u)= exp½�H(t, u)�. The
survivor function could then be inverted to produce the

quantile function, S�1(	 , u), and survival times could be

simulated by evaluating S�1(	 , u) at a random uniform

sample, as described in Box 1.

Analytic solutions to the integrals and function

inverses, such as implemented in the rweibull func-

tion, may not be available for flexible survival models,

such as relative survival models, spline models, mixture

cure models, and response-based landmark models9,10

and for custom distributions, including hazard functions

that incorporate assumptions about treatment effect

waning. In these circumstances, the integrals and func-

tion inverses could be evaluated numerically, for exam-

ple, by using the integrate() and uniroot()

functions in base R. The flexsurv and msm packages on

CRAN also have a function qgeneric() designed to

invert a generic CDF. These numerical methods, how-

ever, greatly increase the computational burden of the

EVSI computations, as the integration and inversion

steps need to be repeated for each of k= 1, . . . ,K simu-

lations. In Appendix A, we provide a simple example

and step-by-step implementation in R of the standard

ITS method based on analytic and numerical solutions.

The example illustrates that even for a simple exponen-

tial model, numerically evaluating the integrals and func-

tion inverses results in a greater than 10,000-fold increase

in computational time (Table A1).

In the next section, we will introduce general-purpose

methods for simulating survival data that can be standar-

dized from standard probabilistic decision analyses and

greatly reduce the computational burden of the standard

ITS method when closed-form expressions for the quan-

tile function are unavailable.

Simulating Time-to-Event Data from a Vector of Survival

Probabilities over Discrete Time Units

Interpolated ITS method. We can also use the ITS

method to generate x from a vector of survival probabil-

ities over discrete time units, as illustrated in Figure 1.

Our PA sample consists of K vectors of survival

probabilities, s(k) = fs(k)
0
, . . . , s

(k)
C g, given model cycle

c= 0, . . . ,C. We can approximate values from the quan-

tile function by interpolating the vectors of survival

probabilities, S�1( 	 , s(k)). We can achieve this by fitting

Box 1 Standard Inverse Transform Sampling Scheme for

Simulating Time-to-Event Data

for k= 1, . . . ,K parameter samples u(k) do

Sample a vector of values u(k) = fu(k)
1
, . . . , u(k)n g, with each

element drawn from Unif½0, 1�

Generate a dataset of n survival times x(k) = fx(k)
1
, . . . , x(k)n g

by plugging u(k) into S�1(u(k), u(k))
Censor each element of x(k) at the new follow-up time tnew

end
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monotone cubic splines, a type of piecewise polynomial

interpolation, to each consecutive set of survival

probabilities and cycle times, f(s(k)
0
, s

(k)
1
), (t0, t1)g, . . . ,

f(s(k)C�1
, s

(k)
C ), (tC�1, tC)g. We can then sample survival

times from the approximate quantile function S�1( 	 , s(k))
using the ITS method.

The interpolated ITS sampling scheme for simulating

time-to-event data from a vector of survival probabilities

over discrete time units is given in Box 2.

Discrete sampling method. An alternative approach for

simulating x from a vector of survival probabilities over

discrete time units s(k) is by sampling discrete ‘‘bins’’ of

cycle times with probability equal to the cumulative

density of each bin, which is illustrated in Figure 2. We

set the value of each bin equal to the half-cycle time

tc+ 0:5, c= 0, . . . ,C � 1, that is, the midpoint in between

each consecutive set of cycle times. We can estimate the

cumulative density of each bin from the survival

probabilities, (s(k)c � s
(k)
c+ 1

). We can then generate survival

times by sampling ft0:5, . . . , tC�0:5g with probability

f(s(k)
0

� s
(k)
1
), . . . , (s

(k)
C�1

� s
(k)
C )g.

The discrete sampling scheme for simulating time-to-

event data from a vector of survival probabilities over

discrete time units is given in Box 3.

Appendix A describes a step-by-step implementation

in R of the interpolated ITS and discrete sampling

Box 2 Interpolated Inverse Transform Sampling Scheme for

Simulating Time-to-Event Data from a Vector of Survival

Probabilities over Discrete Time Units

for k= 1, . . . ,K vectors of survival probabilities

s(k) = fs(k)
0
, . . . , s

(k)
C g do

Sample a vector of values u(k) = fu(k)
1
, . . . , u(k)n g, with each

element drawn from Unif½s(k)C , 1�

Generate a dataset of n survival times x(k) = fx(k)
1
, . . . , x(k)n g

by interpolating s(k) at u(k) using monotone cubic splines and
recording the interpolated cycle times

Censor each element of x(k) at the new follow-up time tnew
end

Figure 1 Illustration of the interpolated inverse transform

sampling method for simulating time-to-event data. A survival

time of 3.6 y has been simulated by first sampling a value of

0.32 from a uniform distribution between 0 and 1 and then

interpolating the survival probabilities over discrete time units

using monotone cubic splines at 0.32 and recording the

interpolated cycle time of 3.6 y.

Figure 2 Illustration of the discrete sampling method for

simulating time-to-event data. Survival times can be simulated

by sampling from the half-cycle times on the x-axis with

probability derived from the survival probabilities over

discrete time units, as indicated by the arrows.

Box 3 Discrete sampling scheme for simulating time-to-event

data from a vector of survival probabilities over discrete time

units.

for k= 1, . . . ,K vectors of survival probabilities

s(k) = fs(k)
0
, . . . , s

(k)
C g do

Generate a dataset of n survival times x(k) = fx(k)
1
, . . . , x(k)n g

by sampling n values from the half-cycle times,
ft0:5, . . . , tC�0:5g, with probability

f(s(k)
0

� s
(k)
1
), . . . , (s

(k)
C�1

� s
(k)
C )g

Censor each element of x(k) at the new follow-up time tnew
end

600 Medical Decision Making 43(5)



methods, and a comparison of their computational effi-

ciency with the standard ITS method based on analytic

and numerical solutions.

Computing the expected net benefits given new data. We

could compute the expected net benefits given the

k= 1, . . . ,K sampled data sets for each decision option,

x
(k)
d , using a nested Monte Carlo scheme, but this can be

very computationally demanding as it requires sampling a

large number of values from the posterior distribution of

the model parameters conditional on each simulated data

set, p(ujx(k)d ). A number of efficient approximation meth-

ods have therefore been developed in recent years that

reduce the computational burden of the nested Monte

Carlo procedure to EVSI.20 One of these efficient EVSI

methods is a nonparametric regression-based method

developed by Strong et al.14 that does not require a para-

metric distribution for the data. The regression-based

method for computing EVSI relies on estimating the func-

tional relationship between the posterior expected net

benefits and the simulated data sets, thereby avoiding the

need to sample from the posterior distributions p(ujx(k)d ),

as is required for the nested Monte Carlo scheme.

In the regression-based approach, we require only the

vectors of k= 1, . . . ,K prior net benefits NBd(u
(k)) for

each decision option d that we generated in the PA, and

the corresponding data sets x
(k)
d that we have simulated

using either of the sampling schemes above. The observed

net benefits NBd(u
(k)) can be expressed as a sum of the

conditional expectation of the net benefit given the data,

E
ujx(k)

d

fNB d(u)g, which we require to estimate the EVSI

(equation [4]), and a mean-zero error term, e(k),

NBd(u
(k))= E

ujx(k)
d

fNBd(u)g+ e
(k): ð7Þ

Strong et al.14 explain that the conditional expectation

E
ujx(k)

d

fNBd(u)g can be thought of as an unknown func-

tion of x
(k)
d . We denote this function g(x

(k)
d ) and substi-

tute this into equation (7), giving

NBd(u
(k))= g(x

(k)
d )+ e

(k): ð8Þ

We then summarize x
(k)
d using a low-dimensional sum-

mary statistic for each d, T (x
(k)
d ),

NBd(u
(k))= gfT (x(k)d )g+ e

(k): ð9Þ

A convenient choice for T (x
(k)
d ) is the number of observed

events e
(k)
d and the total time at risk y

(k)
d for each simu-

lated data set x
(k)
d , that is, T (x

(k)
d )= fe(k)d , y

(k)
d g, which has

been shown to give good results for various survival

models.2

We can estimate the posterior net benefits by regres-

sing the prior net benefits, NBd(u
(k)), on the summary

statistic T (x
(k)
d ),

NBd(u
(k))= gfT (x(k)d )g+ e, ð10Þ

where gd is a function of the data x
(k)
d for each d and e is

an error term with zero mean. We can achieve this by

fitting a generalized additive model (GAM), which is a

flexible nonparametric regression model, to each d and

extracting the regression model fitted values ĝ
(k)
d , which

are estimates of the posterior net benefits.

The GAM-based EVSI estimate is given by

EVSI ’
1

K

X

K

k= 1

max
d

ĝ
(k)
d �max

d

1

K

X

K

k= 1

ĝ
(k)
d : ð11Þ

EVSI for an ongoing study. When a trial is ongoing at

the point of decision making, there could be value in

reducing uncertainty by collecting additional data from

the ongoing trial before making an adoption decision.

This is especially common for cost-effectiveness analyses

of new cancer drugs, which increasingly rely on imma-

ture data obtained from trials in an early stage.5

We denote the new data collected between the

observed follow-up time tobs and future point tnew as

~x= f~x1, . . . ,~x~n, ~d1, . . . , ~d~ng, where ~n is the number of

study participants at risk at tobs. As we have not yet

collected the new data, we need to simulate plausible

new data sets conditional on the current data, ~x; (~XjX).
The value of extending an existing trial’s follow-up from

tobs to future point tnew is given by2

EVSI(ongoing study)= E ~XjX½max
d

EujX, ~XfNBd(u)g�

�max
d

EujXfNBd(u)g,

ð12Þ

where the first term is the expected value of a decision

based on the joint posterior distribution of u given both

new data, ~X, collected between tobs and tnew, and current

data, X, collected between time zero and tobs, which is

computed by averaging over the posterior net benefits of

the decision option that maximizes this quantity condi-

tional on both new data and current data. The second

term is the expected value of a decision based on the joint

distribution of u given current data collected up until tobs.
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Events beyond tobs are conditional on survival up to

tobs. Therefore, to simulate future survival times for ~n

patients at risk at tobs, we need to sample from a condi-

tional distribution that is left truncated at tobs. For the

standard ITS scheme in Box 1, this requires evaluating

the survivor function at tobs, p
(k)
2

= S tobs, u
(k)

� �

and then

sampling random uniform numbers, u(k), on the interval

½p(k)
1
, p

(k)
2
�, where p(k)

1
is the survivor function evaluated at

the model time horizon, S th, u
(k)

� �

. For the interpolated

ITS scheme in Box 2, we can find p
(k)
2

by interpolating

s(k) at tobs and then sampling u(k) on the interval ½s(k)C , p
(k)
2
�.

For the discrete sampling scheme in Box 4, we need to

sample from the subset of half-cycle times that are larger

than tobs, i.e. ftc+ 0:5, . . . , tC�0:5g for tc+ 0:5.tobs.

Model-averaged EVSI. Uncertainty about the choice of

survival model is often a key driver of decision uncer-

tainty, particularly when data are immature.21 If we are

uncertain about choosing from a set of competing sur-

vival models for extrapolating study data over the long

term, M=Mr, r= 1, . . . ,R, then we could account for

this in the EVSI computations2 by using model aver-

aging.22–24 Before we collect new data X, our beliefs

about the plausibility of each model is represented by the

prior model probabilities P(Mr). These could, for exam-

ple, be derived from the Akaike’s information criterion25

or other measures of model fit and parsimony. In the PA,

we then sample a survival model M (k)
r with probability

P(Mr) before sampling u(k)r from the distribution of the

parameters of the sampled survival model, p(ur,M
(k)
r ).

Since this changes only the values for s(k), the discrete

sampling scheme in Box 2 and interpolated ITS scheme

in Box 3, as well as the GAM-based EVSI estimation fol-

lowing equation (11), are identical to the single-model

case.

Synthetic Case Study

Decision Problem and Model Definition

To demonstrate the application of our methods, we devel-

oped a simple yet realistic synthetic case study based on a

partitioned survival model (PSM)26 comparing a new

treatment (d = 1) with standard care (d = 2). The PSM

uses OS and progression-free survival (PFS) curves to

estimate the proportion of patients in 3 health states:

PFS, postprogression survival (PPS), and death, given

c= 0, . . . , 360 monthly model cycles corresponding to an

overall time horizon th = 30 y. We assumed OS and PFS

follow independent Weibull distributions for each d, para-

meterized in terms of log shape a and log scale b. The
Weibull model parameters for OS are uos1 =(aos1,bos1)

for the new treatment and uos2 =(aos2,bos2) for standard

care, and upfs1 =(apfs1,bpfs1) and upfs2 =(apfs2,bpfs2) for

PFS, respectively. We estimated the Weibull model para-

meters using maximum likelihood from a synthetic data

set containing 100 OS times and 100 PFS times for each

trial arm with a maximum follow-up of 24 mo. Further

details about the synthetic case study data set are given in

Appendix B. The other model parameters are utility for

PFS (Upfs), utility for postprogression (Upps), drug costs

for the new treatment (Cdrug1) in PFS, medical costs for

the new treatment (Cmed1), medical costs for standard care

(Cmed2), annual discount rate (r), and monetary value of 1

quality-adjusted life-year, (l). The definitions and prior

distributions for the case study model parameters are

given in Table 2, and the net benefit functions are given in

Appendix C.

Treatment-stopping rule and treatment effect waning. We

also considered a scenario with a 2-y treatment-stopping

rule, after which the drug costs for the new treatment

Cdrug1 = 0. We assumed that, on expectation, the treat-

ment effect on OS and PFS would wane after stopping

treatment at year 2 until there was no more treatment

effect by year 4. A treatment effect waning is commonly

implemented in cost-effectiveness models by setting the

hazards in the treatment arm and comparator arm equal

at a chosen time point. This approach has a number of

limitations. First, this could lead to counterintuitive

results when the hazard in the comparator arm is below

the hazard in the treatment arm after the treatment dura-

tion cutoff, in which case the treatment effect increases

during the waning period.12 Second, setting the hazards

in the treatment and comparator arm equal underesti-

mates uncertainty about independent survival endpoints.

Third, this approach ignores uncertainty about the start

time and duration of the waning period.

To avoid these limitations, we used an alternative

approach to implement treatment effect waning. For

k= 1, . . . ,K, we first sampled values, t
(k)
w1 and t

(k)
w2, for the

start time and duration of the waning period from

p(tw1);LogNormal(2:83, 0:69) and p(tw2);LogNormal

(2:83, 0:69), corresponding to mean times and standard

deviations of 24 months for both tw1 and tw2. In practical

applications, p(tw1) and p(tw2) could be estimated from

previous studies or by expert elicitation.27 We then com-

puted vectors of ‘‘waning hazards’’ from the Weibull

mean survival probabilities for the new treatment and

standard care that in linear proportions increase from no

waning to full waning over the time periods defined by

t
(k)
w1 and t

(k)
w2, and added these to the sampled Weibull

hazards for the new treatment, h
(k)
1
.
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The waning-adjusted hazard function for OS and PFS

for the new treatment is given by

Waning-adjusted hazard h�
1
(t)=

eua1

eub1

t

eub1

� �eua1�1

+FUnif

t � tw1

tw2
j 0, 1

� 	

max½0, fspline(t, ĥ2 � ĥ1)�,

ð13Þ

where the first term is the Weibull hazard function,

FUnif ( 	 j 0, 1) is a uniform cumulative distribution func-

tion on the interval ½0, 1� evaluated at (t � tw1)=tw2, and
fspline(t, ĥ2 � ĥ1) is a spline function fitted to the differ-

ence in mean survival hazards for the new treatment and

standard care, ĥ1 and ĥ2, respectively, with mean survival

hazards for treatment option d given by

Mean survival hazards ĥd = � log 1�
f�sd, 1, . . . ,�sd,Cg

f�sd, 0, . . . ,�sd,C�1g

� 	

,

ð14Þ

where �sd, c, c= 0, . . . ,C, are mean Weibull survival prob-

abilities over discrete time units for each d, given by

Mean survival probability �sd, c =
1

K

X

K

k= 1

e
� tc=e

b
(k)

d

� �e
a
(k)

d

:

ð15Þ

All other model assumptions and net benefit functions

are as above.

The expected Weibull survival curves for the scenarios

with and without adjustment for treatment effect waning

are given in Figure 3.

Computations

We assume we want to compute the EVSI for a new

study that will collect OS and PFS data for the new treat-

ment and for standard care. We considered a sample size

of n= 100 study participants for each treatment arm and

a study follow-up period tnew = 1, 2, 3, 4, 5 and 10 y. We

first performed a PA in which we sampled K= 2, 000

parameter values u(k) from the distribution of the model

parameters p(u) and then evaluated the PSM to obtain

the net benefits for each d, NBd(u
(k)).

Simulating OS and PFS data. In the scenario without

adjustment for treatment effect waning, we simulated OS

data sets, x
(k)
os1 for the new treatment and x

(k)
os2 for stan-

dard care, with n= 100 times for each treatment arm

using the standard ITS method, the interpolated ITS

method and the discrete sampling method following the

sampling schemes in Box 1, Box 2, and Box 3, respec-

tively. In the scenario with adjustment for treatment

effect waning, we implemented the standard ITS method

Table 2 Prior Parameter Distributions for the Partitioned Survival Model Parameters

Weibull Survival Model Parameters Mean, m Covariance Matrix, S Distribution
Overall survival
Log shape for new treatment aos1

bos1

� 	

0:312
4:089

� 	

0:037 �0:036
�0:036 0:056

� 	

Bivariate normal (m,S)
Log scale for new treatment

Log shape for standard care aos2

bos2

� 	

0:361
3:842

� 	

0:029 �0:021
�0:021 0:030

� 	

Bivariate normal (m,S)
Log scale for standard care

Progression-free survival
Log shape for new treatment apfs1

bpfs1

� 	

0:161
3:590

� 	

0:019 �0:010
�0:010 0:021

� 	

Bivariate normal (m,S)
Log scale for new treatment

Log shape for standard care apfs2

bpfs2

� 	

0:209
3:294

� 	

0:014 0:004
�0:004 0:013

� 	

Bivariate normal (m,S)
Log scale for standard care

Utility parameters Mean, m Standard error, SE Distribution
Utility for progression-free survival Upfs 0.80 0.04 Beta(80,20)
Utility for post-progression survival Upps 0.50 0.05 Beta(50,50)

Cost parameters (monthly) Mean m Standard error, SE Distribution
Drug costs for new treatment Cdrug1 1, 200 — Constant
Medical costs for new treatment Cmed1 500 250 Gamma(4,0.008)
Medical costs for standard care Cmed2 500 250 Gamma(4,0.008)

Other parameters Mean, m Standard error, SE Distribution
Annual discount rate r 0.035 — Constant
Monetary value of 1 quality-adjusted life-year l 80, 000 — Constant
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by numerically integrating the waning hazard function

and inverting the waning survivor function, as analytic

solutions are unavailable. The implementation of the

interpolated ITS method and the discrete sampling

method is identical to the scenario without treatment

effect waning. We summarized each simulated data set

using the number of observed OS events, e
(k)
os1 and e

(k)
os2,

and the total time at risk for OS, y
(k)
os1 and y

(k)
os2, that is,

T (x
(k)
os1)= fe(k)os1, y

(k)
os1g and T (x

(k)
os2)= fe(k)os2, y

(k)
os2g.

We simulated PFS data sets for the new treatment and

standard care (x
(k)
pfs1 and x

(k)
pfs2) using the same sampling

schemes as for OS for the scenarios with and without

adjustment for treatment effect waning. To prevent dou-

ble counting of OS data, we censored the simulated PFS

times at the proposed follow-up time or at the time point

at which, if at all, the PFS curve crosses and is set equal

to the OS curve, whichever is soonest. We then computed

the number of observed PFS events, e
(k)
pfs1 and e

(k)
pfs2, and

the total time at risk for PFS, y
(k)
pfs1 and y

(k)
pfs2, for each

simulated PFS data set, that is, T (x
(k)
pfs1)= fe(k)pfs1, y

(k)
pfs1g

and T (x
(k)
pfs2)= fe(k)pfs2, y

(k)
pfs2g.

Computing EVSI via GAM regression. To reduce the

number of regression equations14 and improve the

stability of the EVSI computations,28 we used the incre-

mental net benefit (INB), defined as INB(u(k))=

NB1(u
(k))� NB2(u

(k)). We estimated posterior INB by

fitting a single GAM model with INB(u(k)) as the

dependent variable and separate sets of summary

statistics per treatment arm, fe(k)os1, y
(k)
os1, e

(k)
pfs1, y

(k)
pfs1g and

fe(k)os2, y
(k)
os2, e

(k)
pfs2, y

(k)
pfs2g, as the independent variables. We

implemented the GAM regression using the R package

mgcv29 and specified a tensor product cubic regression

spline basis for the independent variables, with a maxi-

mum basis dimension of 4 to prevent the model from

estimating too many coefficients. This has syntax gam

(inb; te(e_os1, y_os1, e_pfs1, y_pfs1, k=4) + te(e_os2,

y_os2, e_pfs2, y_pfs2, k=4)). We extracted the GAM

model fitted values, ĝ(k), which are estimates of the pos-

terior INB, and estimated EVSI using the equation given

by

EVSI ’
1

K

X

K

k= 1

maxf0, ĝ(k)g �max
1

K

X

K

k= 1

f0, ĝ(k)g: ð16Þ

We computed 95% intervals for the GAM estimator

by sampling 2,000 values from a multivariate normal dis-

tribution of the GAM coefficients, as described in an

appendix of the article by Strong et al.30

Figure 3 Expected Weibull survival curves for overall survival and progression-free survival for the new treatment and for

standard care without adjustment (left) and with adjustment for treatment effect waning (right).
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Results

Figure 4 shows the EVSI values and 95% intervals with-

out adjustment for treatment effect waning for follow-up

times of 1, 2, 3, 4, 5, and 10 y. There is excellent agree-

ment between the standard ITS method, interpolated

ITS method, and discrete sampling method both for OS

only and OS and PFS. The EVSI reflects diminishing

marginal returns for increasing follow-up durations,

ranging from 2,711 to 11,311 for OS only and from 3,387

to 11,547 for OS and PFS, and converges toward the

partial EVPI for the respective sets of model parameters.

This indicates that the value of reducing uncertainty

about PFS in addition to OS is relatively small. We did

not compute the EVSI for PFS only, since PFS is a com-

posite endpoint that is defined as time to progression or

time to death, whichever is soonest, and therefore also

requires the collection of OS data. The total computation

times for the data-simulation procedures in the scenario

without adjustment for treatment effect waning are 12 s,

32 s, and 12 s for the standard ITS method, interpolated

ITS method, and discrete sampling method, respectively.

The EVSI estimates in the scenario with adjustment

for treatment effect waning (Figure 5) are greater than in

the scenario without adjustment for treatment effect

waning, reflecting the added value of learning about

treatment effect waning. The EVSI estimates range from

5,433 to 11,961 for OS only and from 6,064 to 12,384 for

OS and PFS, almost twice as high for the 1-y follow-up

period compared with the scenario without adjustment

for treatment effect waning. The interpolated ITS

method and discrete sampling method again agree

closely with the standard ITS method but at a greatly

reduce computational cost. The computation times for

the interpolated ITS and discrete sampling methods are,

in fact, the same as in the scenario without adjustment

for treatment effect waning, and approximately 3,600

and 10,000 times faster, respectively, than the standard

ITS scheme that used numerical solutions for the inte-

grals and function inverses.

Discussion

Strengths and Limitations

We developed an interpolated ITS method and a discrete

sampling method for simulating survival data from a

probabilistic sample of survival probabilities over dis-

crete time units. Our general-purpose methods greatly

reduce the computational burden of the standard ITS

method when closed-form expressions for the quantile

function are unavailable, such as for custom distributions

Figure 4 EVSI values for the synthetic case study without adjustment for treatment effect waning. Total computation times for

the data-simulation procedures are 12 s (standard ITS), 32 s (interpolated ITS) and 12 s (discrete sampling). EVSI, expected

value of sample information; ITS, inverse transform sampling.
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that incorporate assumptions about treatment effect

waning as commonly encountered in practice,11 and for

flexible survival models, including relative survival mod-

els, spline models, mixture cure models, and response-

based landmark models.9,10 The implementation of our

methods is identical across all possible survival models

and can therefore be easily standardized from standard

probabilistic decision analyses.

Generally, the precision of the EVSI estimator is

influenced by the number of simulated data sets and the

effective sample size of the simulated data. The discrete

sampling method and, to a lesser degree, the interpolated

ITS method, additionally introduce an approximation

error that depends on the cycle length. It is generally rec-

ommended that discrete-time health economic models

use a short cycle length to reduce the discrete-time

approximation error, which could be as short as 1 week

for slowly progressing chronic diseases.31 Our synthetic

case study suggests that the approximation error intro-

duced by our general-purpose methods is very small even

when using a longer cycle length of 1 mo in combination

with short follow-up times and a low effective sample

size of the simulated data given a rapidly progressing

disease.

We structured the synthetic case study around a PSM,

a type of model that is frequently used to inform reim-

bursement decisions for new oncology drugs.27 The key

assumption behind a PSM is that survival endpoints,

such as OS and PFS, are independent. This also implies

that dependency between OS and PFS is not reflected in

the EVSI data-simulation procedure when using a PSM.

Joint modeling of OS and PFS could be implemented in

a state transition model (STM), which uses transition

probabilities to describe movements between health states

over time. STMs require individual patient data to esti-

mate all relevant transition probabilities, unlike PSMs,

which can use digitized Kaplan–Meier data from pub-

lished trials. OS and PFS data can be simulated jointly

from a STM by first sampling a PFS time and then decid-

ing whether the sampled PFS time is a progression or

death event using a binomial experiment with probability

derived from the hazards of transitioning from PFS to

PPS and OS.32 If the sampled PFS time is a progression

event, residual time until death can be simulated using

the survival distribution for PPS to OS. Since transition

probabilities are typically derived from survival curves

fitted to time-to-event data, our data-simulation methods

could also be useful in a STM framework.

Figure 5 EVSI values for the synthetic case study with adjustment for treatment effect waning. Total computation times for the

data-simulation procedures are 120,180 s (standard ITS), 33 s (interpolated ITS), and 12 s (discrete sampling). EVSI, expected

value of sample information; ITS, inverse transform sampling.
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If individual patient data are available with a similar

study design and at least the same length of follow-up as

the proposed study, study data sets could alternatively

be simulated using a 2-level resampling method based on

bootstrapping.33 In this approach, the observed data set

is first resampled K times with replacement, and then n

values are sampled with replacement from the

k= 1, :::,K resampled data sets, thereby generating K

new data sets with n observations each. In most situa-

tions, particularly for novel treatments, this type of data

will, however, not be available.

The key notion behind EVSI is that the prior distribu-

tion of the model parameters is updated with simulated

study data to estimate the joint posterior distribution

given both prior information and the simulated study

data. In EVSI analyses, the prior distribution is often

informed by external evidence, such as digitized Kaplan–

Meier data. This may, however, not match the way in

which real-world analyses of study data are conducted,

since these may not synthesize the collected study data

and the external evidence. Analysts should therefore

ensure that the way in which the study data is analyzed

once it has been collected is aligned with the assumptions

underpinning the EVSI analysis.

Despite its routine application in cost-effectiveness

analyses, there is currently a lack of guidance on how to

model treatment effect waning.12 In the synthetic case

study, we modeled treatment effect waning by specifying

probability distributions for the start and duration of the

waning period, while preserving uncertainty about inde-

pendent survival endpoints using a novel additive hazard

approach. This had a large impact on the EVSI esti-

mates, which highlights the importance of appropriately

incorporating uncertainty about treatment effect waning

in the EVSI calculations. There may be other possible

approaches to model treatment effect waning, and these

can easily be captured by our data-simulation methods

as well.

Conclusion

The increasing prevalence of immature survival data in

decision making, particularly for new cancer treat-

ments,5 has been accompanied by the introduction of

increasingly complex approaches for extrapolation,9,10

which complicates the EVSI data-simulation step. Our

general-purpose data-simulation methods greatly

reduce the computational burden of the EVSI data-

simulation step when custom distributions that incor-

porate treatment effect waning or flexible survival

models are used for which closed-form expressions for

the quantile function are unavailable. Our methods are

straightforward to implement and can easily be auto-

mated from standard probabilistic decision analyses,

such as those used in technology assessments of new

pharmaceuticals.11,34–36 This means that our general-

purpose methods can be used to simulate survival

data—with a similar accuracy and computational

cost—as using the correct closed-form quantile func-

tion for any survival model. Efficient EVSI calculations

for survival data can help decision makers determine

whether current evidence is sufficient or whether there

is a need for collecting additional survival data before

making an adoption decision.
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