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We read with great interest the commentary by Fraser1, and wholeheartedly agree that 

understanding how selection acts on patterns of gene expression is key to identifying 

mechanisms of adaptive change. In Price et al2, we identify significant challenges to testing 

how the transcriptome evolves, specifically, that shifts in tissue composition can bias 

inferences of selection over long evolutionary timeframes. However, Fraser1 suggests the 

problems we outline have been ‘largely solved by the research community’ in two ways – 

through studies of cell lines and interspecific hybrids. We are in complete agreement that 

both approaches circumvent issues arising from varying cell type abundance that we highlight 

and so are useful tools to accurately measure expression change. However, neither 

represents a panacea for detecting natural selection on gene expression that Fraser1 suggests. 

Contrasts of cell lines can be used to accurately identify regulatory variation and in principle 

can be applied over greater evolutionary distances to quantify the mode of gene expression 

evolution among distantly-related species. However, creating cell lines is non-trivial and likely 

not feasible for many species. Importantly for multicellular model systems, the diversity of 

cell types that can be cultured is severely limited, and the costs in doing so prohibitive if all 

cell types in a tissue are to be included. This means that this approach is unlikely to extend 

across the tree of life in the near future.  

Most importantly, organisms are far more than the sum of their parts. Changes in tissue 

composition are key to the evolution of many adaptive phenotypes (e.g.3-6) and likely the 

product of differences in expression across development7. Therefore, by their very nature, 

cell types analysed individually have limited potential for studying the developmental 

regulatory changes that produce variation in cell type abundance and complex adaptive traits. 

Consistent with these limitations, none of the vast cell line research cited by Fraser1 tests for 



selection on gene expression levels, with the exception of three studies using primate cell 

lines8-10. Examining cell types one at a time is therefore unlikely to yield a comprehensive 

picture of differences between species. 

The second approach highlighted by Fraser1 is the sign test of selection11, which was extended 

by Fraser et al12 to test for selection on gene expression. This method has provided important 

insight into how gene expression evolves13, including the first known example of polygenic 

gene expression adaptation12, and we have no wish to diminish this important contribution 

to the field. However, since this approach relies on prior knowledge of the directionality of 

genetic changes affecting a quantitative trait, to our knowledge, it has exclusively been 

applied to species that are able to produce viable hybrids, namely very closely related 

species14-16 or subspecies12,17,18. Therefore, whilst informative for understanding expression 

evolution over very short evolutionary timeframes, it’s potential to study many instances of 

adaptive change over the full breadth of evolutionary time is limited. 

Together, neither approach suggested by Fraser1 is widely applicable outside of model 

systems, limited cell types that are readily cultured, or relatively narrow evolutionary 

windows, leaving large gaps in both the scope of questions that can be addressed and the 

range of organisms that can be studied. Instead, we see a number of important points 

emerging from Fraser1. First, developmental context matters for the evolution of many 

adaptive phenotypes, particularly in multicellular organisms. For these traits we should focus 

not on eliminating differences in cellular composition but instead properly accounting for 

such differences when testing for selection on gene expression, potentially through the use 

of single-cell RNA-seq. Second, it is likely that selection pressures vary over short versus long 

evolutionary timeframes and limiting our analyses to closely related species will bias our 

understanding of how the transcriptome evolves. Comparative approaches that sample a 

range of evolutionary scales are clearly essential to understand the full spectrum of 

evolutionary responses to selection. Addressing the confounding issues of cellular 

composition, as discussed in Price et al2, is therefore a major priority for the field. 
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