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Abstract

We introduce weaves, which are random sets of non-crossing càdlàg paths that cover
space-time R × R. The Brownian web is one example of a weave, but a key feature of
our work is that we do not assume that particle motions have any particular distribution.
Rather, we present a general theory of the structure, characterization and weak convergence
of weaves.

We show that the space of weaves has a particularly appealing geometry, involving a
partition into equivalence classes under which each equivalence class contains a pair of dis-
tinguished objects known as a web and a flow. Webs are natural generalizations of the
Brownian web and the flows provide a pathwise representations of stochastic flows. More-
over, there is a natural partial order on the space of weaves, characterizing the efficiency with
which paths cover space-time, under which webs are precisely minimal weaves and flows are
precisely maximal weaves. This structure is key to establishing weak convergence criteria for
general weaves, based on weak convergence of finite collections of particle motions.
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1 Introduction

In this article we introduce a rich and natural class of objects that generalize the Brownian web.
We call these objects weaves. Informally, a weave is a random set of non-crossing càdlàg paths,
such that each point of space-time is almost surely touched by at least one path. The paths take
values in R and each path runs until time +∞, but paths may begin at any point of space-time.
It is important to note what is missing: we do not require that the paths follow any particular
distribution (in the example of the Brownian web, they follow coalescing Brownian motions).

We will establish a framework for weak convergence (i.e. in law) of general weaves, akin to
the modern theory of weak convergence for real valued stochastic processes. As the example of
the Brownian web shows, individual weaves may display a rich internal geometry. We will see
that space of weaves also has an interesting structure in its own right. This structure has major
implications for the characterization of weaves, thus also for weak convergence.

We use the term half-infinite for paths that, after beginning anywhere within space-time,
continue until time +∞. If such a path begins at time −∞ then it is said to be bi-infinite.
Weaves consisting exclusively of bi-infinite paths provide natural pathwise representations of
(sufficiently regular) stochastic flows, but can also represent more complicated structures of
branching-coalescing paths. We refer to weaves of bi-infinite paths as flows, although formally
we will first give a different definition and later show equivalence to this.

Stochastic flows have been studied for many decades, as detailed in the book of Kunita
(1997). It is remarkable that, despite their long history, stochastic flows have struggled to
give rise to a viable theory of their own weak convergence. A key problem is that stochastic
flows have traditionally been given a ‘pointwise’ representation, where for each pair of times
−∞ < s < t < ∞ a random function Xs,t : R → R represents the movement of particles during
[s, t]. More precisely, Xs,t(x) denotes the position at time t of the particle that, at time s, was
at location x. The concept of a flow is therefore encapsulated by the consistency condition
Xs,t

a.s.
= Xs,u ◦ Xu,t, required at deterministic times. This representation is analogous to the

old-fashioned representation of a real valued stochastic process as an infinite family of random
variables (Xt)t≥0, where Xt ∈ R denotes the position of the particle at time t ≥ 0.

The modern perspective is to view a stochastic process as a single random variable, whose
value is a random path. Such a representation is known as a ‘pathwise’ representation. Skorohod
(1956) introduced a suitable state space D, whose elements are càdlàg paths, and the resulting
theory is detailed within the now ubiquitous texts of Ethier and Kurtz (1986) and Billingsley
(1995). From an analytical point of view it is far more convenient to work with convergence of
one random càdlàg path, than with convergence of infinitely many R valued random variables.
To abstract this principle a little further, it is better to define a single random variable within
a highly structured state space, than to work with infinitely many ‘smaller’ random variables in
a more straightforward state space.

The same principle will apply to random sets of càdlàg paths, however such objects have not
yet made an analogous transition – with the exception of the Brownian web. The present article
seeks to remedy this situation. The Brownian web is a pathwise representation of the stochastic
flow of Arratia (1979), in which particles perform independent Brownian motions until they
meet, after which particles remain coalesced for all remaining time. Loosely, one such particle
begins at each point of space-time.

The modern study of the Brownian web began with Tóth and Werner (1998), who were first
to understand its rich internal structure. Based on this work, Fontes et al. (2004) represented
the Brownian web as a (single) random variable whose value is a random set of continuous paths,
and introduced the term Brownian web. In this representation they gave the first conditions for
weak convergence to the Brownian web, based on the forwards-in-time motions of finite sets of
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particles. A large body of literature has since emerged, leading to the refined criteria available in
the survey of Schertzer et al. (2017). Close relatives of the Brownian web have been investigated
in similar style and the Brownian web is understood to be the scaling limit of a large and diverse
universality class.

The key to this success has been the availability of good criteria for characterization and weak
convergence. Such criteria must strike a careful balance: a type of convergence that preserves
less information is often easier to prove, and is more often true, but is also less meaningful. One
possible approach, used by Berestycki et al. (2015) and Cannizzaro and Hairer (2021) for the
case of continuous coalescing paths, is to map sets of paths to other objects (respectively, to sets
of ‘tubes’ and real trees) in order to induce a topology that may be used as a basis for weak
convergence.

In the present work we handle sets of càdlàg paths directly, in the style that has become
popular within the literature of the Brownian web. We give criteria for characterization and
convergence of general weaves, with no requirement that the particle motions follow any partic-
ular distribution. We must also introduce a suitable state space; a version of Skorohod’s space
D suitable for random sets of càdlàg paths begun at arbitrary points of space-time. The state
space constructed by Fontes et al. (2004) is a subset of our own, with matching induced subspace
topology.

Let us now briefly comment on the significance of webs. Our exploration of the space of
weaves will uncover a natural partition into equivalence classes. Each equivalence class features
two distinguished elements, one of which is a flow (as discussed above) and the other of which we
will refer to as a web. We will see that the property of being a web is equivalent to what remains
if one takes the usual definition of the Brownian web and removes the requirement that the
particle motions have a particular distribution. Webs and flows are in bijective correspondence;
moreover they are the extremal points, respectively minima and maxima, within a structure
that we will shortly describe.

Within much of the literature on the Brownian web, the proofs rely heavily on the distribu-
tion of coalescing Brownian motions. Consequently our own arguments have little in common.
Despite this, we remark that what is known about the Brownian web has been invaluable in
writing the present article, and the Brownian web is a canonical example of a weave. In fact the
majority of our results are new even in the special case of the Brownian web.

1.1 Outline of results

In Section 2 we will introduce our state space and, following that, give rigorous statements of
our main results. Setting up the state space requires some significant work, so we will give here
a non-rigorous presentation of our main results and the ideas that led to them.

We require that càdlàg paths are allowed to jump at their initial times. Naturally, this
requires some supporting structure, which we delay for now and appeal instead to the readers
intuition. Our concept of a càdlàg path is precisely equivalent to the classical càdlàg path
f : [t,∞] → R that is right-continuous with left limits, plus a possible jump at the initial time
t. See Figure 1.1.1 for an example showing why this augmentation is necessary.

The theory of weak convergence of real valued stochastic processes is normally presented in
Skorohod’s J1 topology. We require the (slightly coarser) Skorohod M1 topology. The reasons
for this are rather technical, but roughly speaking our use of non-crossing paths makes it natural
to consider jumps as part of the path, rather than as an empty region of space that the path
jumps over. The former perspective corresponds to Skorohod’s M1 topology, the latter to J1.
An example of càdlàg paths such that fn → f in M1 but not in J1 is fn(t) = 0 ∨ nt ∧ 1 with
limit f(t) = ✶{t≥0}, both defined for all t ∈ R.

2



t

t+ ǫ

t

ǫ

Figure 1.1.1: In both figures, time runs upwards and the spatial axis is horizontal. In each figure a weave
is depicted via solid lines, with the corresponding flow depicted via including dotted lines.
On the left: A weave A, featuring a càdlàg path jumping at its initial time. Order the blue circles from
bottom to top. Consider the particle motion fn starting within the nth blue circle, which then follows
the red dotted line. The limiting path f is a trajectory that jumps rightwards at its initial time t. We
require that weaves are closed sets and we require that weaves have particle motions; consequently we
require that the path f exists.
On the right: A warning example related to Theorems 2.4.5 and 2.4.6. A weave Aǫ is depicted, along
with the corresponding flow Fǫ of bi-infinite paths that do not cross Aǫ. Space-time points within the
horizontal arrows, and forwards in time continuations thereof, are ramified. In the limit as ǫ → 0 the red
area vanishes; the weaves Aǫ converge to a pervasive system of paths that contains crossing (jumping
in both directions at t); the sequence of flows (Fǫ)ǫ>0 are not relatively compact (due to paths that
jump left-right-left between t and t+ ǫ); whilst the m-particle motions Aǫ|z = Fǫ|z from finite sets z of
non-ramified points converge to those of a weave (which contains only the leftwards jump at t).

A key insight from the Brownian web is that we should consider random compact sets of
paths; we do so within a suitable version of the M1 topology. We say that a set of càdlàg paths
is pervasive if each space-time point z = (x, t) is contained within at least one path, including
jumps.

A central concept is the m-particle motion of a weave. Loosely, if we choose a point z = (x, t)
in space-time, we may place a particle at the point within the weave and then watch how it
moves, forwards in time. For most deterministic points of space-time (in fact, Lebesgue almost
all) this operation is well defined and an almost surely unique forwards in time motion exists.
This motion is a single random càdlàg path with initial time t. If we do the same for m ∈ N
space-time points at once, then we obtain the m-particle motion of the weave.

It is clear a priori that a pair of càdlàg paths might cross each other. The meaning is clear
for continuous paths and, for now, we appeal to the readers intuition. When we come to define
crossing rigorously some clarification will be required, to handle cases where càdlàg paths jump
over each other at their initial times. We say that a set of paths is non-crossing if none of its
elements cross each other.

We are now in a position to describe our main results concerning weaves. Formally, a weave
is a probability measure on M1-compact sets of half-infinite càdlàg paths, that is almost surely
non-crossing and pervasive. We also use the term weave for a random variable with such a
law. We adopt the convention of using caligraphic letters, such as A and B, for weaves. We
also remind the reader that within a general partial order, a typical element might sit below
anything from none to infinitely many maxima; similarly for minina.

1. There exists a natural partial order �d on the space of weaves. Informally, the statement
A �d B means: there exists a coupling under which B covers space-time more efficiently
than A i.e. with fewer and/or longer paths.
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By definition, we say that a weave is a web if it is minimal (within the space of all weaves)
with respect to �d. We say that a weave is a flow if it is maximal.

2. The space of weaves is partitioned into equivalence classes, each of which has a flow as
its unique maximal element and a web as its unique minimal element. We write this
equivalence relation as A ∼ B. Elements within the same equivalence class need not be
�d-comparable.

3. There exists a pair of deterministic functions web(·) and flow(·) with the following prop-
erties.

(a) A weave A is a web if and only if web(A)
a.s.
= A.

(b) A weave A is a flow if and only if flow(A)
a.s.
= A.

Moreover, a weave is a flow if and only if it comprises exclusively of bi-infinite paths.
Therefore, flows are natural pathwise representations of stochastic flows.

The web operation is a slight generalization of the operator W 7→ W(D) that is familiar
within the standard characterization of the Brownian web. By definition, flow(A) is the
set of bi-infinite càdlàg paths that do not cross A. The map flow(·) is continuous, but
web(·) is not.

4. Two weaves A and B satisfy A ∼ B if and only if the m-particle motions of A and B have
the same distribution.

5. A weak limit of flows is necessarily a flow. Moreover, for flows, weak convergence is
equivalent to tightness plus weak convergence of the m-particle motions.

An analogous result holds for general weaves, at the level of equivalence classes. Here we
must include the assumption that weak limit points are non-crossing.

6. Each web W has an associated dual web Ŵ, of càdlàg paths running backwards in time,
such that W and Ŵ are almost surely non-crossing.

The triplet (W, Ŵ,F) may be reconstructed from any single one of W, Ŵ and F . If any
one of these three consists exclusively of continuous paths, then they all do.

Underpinning all of these results is a delicate operation that takes a half-infinite path within
a weave and extends it, backwards in time, into a bi-infinite path, without inducing crossing
and preserving càdlàgness. Moreover such extension may be done to all paths within a weave,
without breaking the compactness, to obtain its corresponding flow. Note that weaves are by
definition closed sets, so this operation does not involve taking a limit of suitable paths within
the weave. Let us briefly describe what it does involve.

There is a partial order ⊆ on (individual) càdlàg paths, corresponding to the idea that f ⊆ g
if and only if the path f may be extended, forwards and/or backwards in time, to give g. Paths
within weaves run until time +∞, so for weaves only extension backwards in time is relevant.
For a given weave A, let Amax denote the set of maximal elements of (A,⊆).

It turns out that there is a natural bijection between Dedekind cuts of Amax and bi-infinite
paths that do not cross A. This relationship is reminiscent of Dedekind’s famous construction
of R from Q, but in our case the operation that connects Amax to flow(A) is not a topological
closure. Loosely, we may take a bi-infinite path h that does not cross A, and the corresponding
Dedekind cut is all paths f ∈ Amax that lie strictly to the left of h. The inverse function of
this correspondence is more complicated to define and we do not attempt a description at this
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point. To extend half-infinite paths backwards in time, we note that a Dedekind cut may be
constructed in the same way from any càdlàg path (not necessarily bi-infinite) that does not
cross A, and then use that inverse function to produce a corresponding bi-infinite path.

The proof of this relationship between half-infinite and bi-infinite paths relies on delicate
analysis. It requires a formulation of càdlàg paths where potential jumps at the initial time are
an integral part of the path, rather than an afterthought to the otherwise classical definition.
We introduce such a formulation in Section 2.1, followed by a description of our state space
in Section 2.2. We then introduce key notation concerning crossing and ordering of paths in
Section 2.3, at which point we are able to give a rigorous presentation of our main results in
Section 2.4. We discuss connections to the Brownian web in Section 2.5.1, and connections to
related state spaces in Sections 2.5.2.

The proofs appear in Sections 3-5. In Section 3 we set up machinery to work with general
càdlàg paths, and with jumps at their initial times. Section 4 treats the internal structure of
weaves and the implications thereof for the space of weaves, which is best studied (initially) in
a deterministic context. This includes the key result on path extension. In Section 5 we give
the proofs of our main results.

2 Results

2.1 The split real line

A function is said to be càdlàg, from the French ‘continue à droit, limite à gauche’, if it is right-
continuous with left limits. Kolmogorov (1956) observed that a real càdlàg function together with
its left-continuous modification can be viewed as a continuous function on a peculiar topological
space, introduced by Alexandroff and Urysohn (1929). This will provide an elegant formulation
of our results, as well as being a necessary component of more technical proofs. We give here a
brief introduction to this space.

Let R := [−∞,∞] denote the extended real line. By definition, for any subset I ⊆ R, we let

Is =
{
(t, ⋆) ; t ∈ I and ⋆ ∈ {−,+}

}
.

We will almost always write t⋆ in place of the formal notation (t, ⋆). We call Rs the split real line
and Rs the extended split real line. Loosely, to construct Rs from R, each t ∈ R has been split
into two parts, a left part t− and a right part t+. We equip Rs with the lexicographic order,
from left to right, that is t1⋆1 < t2⋆2 if and only if either t1 < t2 or both t1 = t2 and ⋆1 = −,
⋆2 = +. We use notation for intervals in Rs similar to the usual notation for the extended real
line:

(t1⋆1, t2⋆2) = {t⋆ ∈ Rs : t1⋆1 < t⋆ < t2⋆2} (2.1)

[t1⋆1, t2⋆2] = {t⋆ ∈ Rs : t1⋆1 ≤ t⋆ ≤ t2⋆2}, (2.2)

and analogously for half-open intervals such as (t1 ⋆, t2⋆2] or [t1⋆1, t2⋆2). Note that there is some
redundancy in this notation since, for example, (s−, t+) = [s+, t−]. We say that a set A ⊆ Rs

is bounded if A ⊆ [−T, T ]s for some T < ∞.
We equip Rs and Rs with the order topology. Recall that, in a totally ordered space (S,<),

the order topology is generated by the open intervals (a, b) = {x ∈ S ; a < x < b} where
a < b. The order topology on R thus coincides with the usual Euclidean topology. The following
lemma records all that we need to know about the order topology on Rs. Parts 1 and 4 appear
respectively as Lemma 2.1 and Proposition 2.3 in Freeman and Swart (2023). Parts 2 and 3 are
straightforward consequences of part 1.
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Lemma 2.1.1 The following hold.

1. A sequence tn⋆n converges to the limit t+ (resp. t−) if and only if tn → t in R and
tn⋆n ≥ t+ (resp. tn⋆n ≤ t−) for all n sufficiently large.

2. Intervals of the form (t1⋆1, t2⋆2) are open and intervals of the form [t1⋆1, t2⋆2] are closed.

3. The quotient of Rs by the relation s⋆ ·∼ t⋆ ⇔ s = t is homeomorphic to R.

4. The space Rs is a Hausdorff topological space. It is separable but not metrisable. For C ⊆
Rs, the following three statements are equivalent: (i) C is compact; (ii) C is sequentially
compact; (iii) C is closed and bounded.

The topology on Rs permits an elegant description of càdlàg functions on R, developed in
Section 2.2 of Freeman and Swart (2023). We require this characterization only for the case of
real càdlàg functions on closed intervals, as follows. Let I = [a, b] ⊂ R be a closed interval and
let f : Is → R be a function. The following statements are equivalent:

1. f is continuous with respect to the topology on Is, as a subset of Rs;

2. the function t 7→ f(t+) defined from [a, b] 7→ R is right continuous with left limits, and
t 7→ f(t−) defined from (a, b] → R is its left continuous modification;

3. the function t 7→ f(t−) defined from [a, b] 7→ R is left continuous with right limits, and
t 7→ f(t−) defined from [a, b) → R is its right continuous modification.

Definition 2.1.2 We refer to a function f : [a, b]s → R satisfying (any of) these criteria as a
càdlàg path.

Definition 2.1.2 is a minor extension of the classical notion of a càdlàg function on [a, b] ⊆ R.
Specifically, we attach a formal meaning and value to the ‘left limit’ at a−, which is absent in
the classical definition. It may take any value, which is to say that the value of f(a−) is not
restricted by the values of f(t⋆) for t⋆ > a−. This introduces the possibility that f(a−) 6= f(a+),
corresponding to a jump at the initial time.

Given a càdlàg path f with domain [a, b]s we write I(f) = [a, b] ⊆ R and I(f)s = [a, b]s ⊆ Rs.
We write σf = a for the initial time and τf = b for the final time of f . Similarly, we call
(f(σf−), σf ) and (f(τf+), τf ) respectively the intial and final points of f . We say that f begins
and its initial point and ends at its final point.

We say that f makes a jump at t ∈ [σf , τf ] if f(t−) 6= f(t+). The jump is said to be to the
left if f(t+) < f(t−) and to the right if f(t+) > f(t−). As mentioned, càdlàg paths may jump
at their initial and final times or at any time in between. The number of such jumps is at most
countable. If f(t−) = f(t+) then we say that f is continuous at t, in which case (and only in
this case) we write f(t) = f(t−) = f(t+).

2.2 The path space

In this section we introduce the space Π, whose elements are càdlàg paths defined on closed
intervals of Rs, and the space K(Π), whose elements are compact subsets of Π. We will refer to
Freeman and Swart (2023) which considers a more general setup but also acts as a companion
paper providing the topological basis for the present article. Let

Π =
{
f : Is → R ; f is a càdlàg path and I ⊆ R is a closed interval

}
. (2.3)
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t✐♠❡

s♣❛❝❡

G(f)

t✐♠❡

s♣❛❝❡

H(f)

t✐♠❡

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

Figure 2.2.1: On the left, the closed graph G(f) and interpolated graph H(f) of a path f . On the
right, the compactification R2

c of R × R with the interpolated graph of f , with some points marked for
convenience. In Freeman and Swart (2023) R2

c is referred to as a squeezed space.

We regard two elements f, g ∈ Π as equivalent if they have the same values outside of times
±∞. Formally, define the equivalence relation

f
Π
∼ g ⇔ I(f) = I(g) and f(t±) = g(t±) for all t ∈ I(f) ∩ R, (2.4)

and work implicitly with the resulting equivalence classes of Π. We abuse notation slightly by
continuing to write f ∈ Π for a càdlàg path, but including the notational convention1 that
f(t⋆) = ∗ whenever t = ±∞.

Our main results require Skorohod’s M1 topology on Π, which we now introduce. We will
introduce the J1 topology at the same time, as it is more widely used and the reader may wish
to make a comparison. We define the closed graph G(f) and interpolated graph H(f) of a càdlàg
path f ∈ Π as

G(f) =
{
(x, t) ∈ R

2
; t ∈ I(f), x ∈ {f(t−), f(t+)}

}
,

H(f) =
{
(x, t) ∈ R

2
; t ∈ I(f), x ∈ [f(t−), f(t+)]

}
,

where we use the convention [s, t] := [s ∧ t, s ∨ t] for s, t ∈ R. See Figure 2.2.1 for a picture
displaying the difference between G(f) and H(f): at times t ∈ R when the path makes a jump,
the line segments between (f(t−), t) and (f(t+), t) are drawn in H(f) but not in G(f).

The reason for (2.4) is that we intend to treat G(f) and H(f) as compact subsets of a
suitable space, which in turn will allow us to describe the J1 and M1 topologies. With this in
mind, we define

R2
c :=

(
R× R

)
∪
{
(∗,−∞), (∗,∞)

}

and equip R2
c with a metrisable topology such that the induced subspace topology on R× R is

the product topology and, as n → ∞,

(xn, tn) → (∗,±∞) if and only if tn → ±∞.

1To be precise: Freeman and Swart (2023) uses a slightly different compactification procedure to (2.4), which
allows the domain of càdlàg paths to be non-interval sets and defines Rs to be a two-point compactification of
Rs. See Section 2.1 within Freeman and Swart (2023) for details. The space Π from the present article is denoted
there by Π|.
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Equation (2.26) of Freeman and Swart (2023) gives an explicit metric dR2
c
with these properties,

under which R2
c is compact See Figure 2.2.1 for an illustration of G(f), H(f) and the compact-

ification. We endow R2
c with the two-dimensional Lebesgue measure on R × R ⊆ R2

c , placing
zero mass at (∗,±∞).

Let f ∈ Π. There is a natural total order on both G(f) and H(f), which we denote by ⊑.
For G(f) this order is given by (f(t1⋆1), t1) ⊑ (f(t2⋆2), t2) whenever t1⋆1 ≤ t2⋆2. For H(f) it
requires a little more care: we say that (x1, t1) ⊑ (x2, t2) whenever t1 < t2, or if t1 = t2 and x1
is non-strictly closer to f(t1−) than x2.

Informally, the J1 topology on Π corresponds to convergence of closed graphs, and the M1
topology to convergence of interpolated graphs, with the caveat that (in both cases) the total
order ⊑ is preserved by the convergence. Our next step is to formalize this intuition and give a
definition of the two topologies.

For a metric space (M,dM ), let K(M) denote the space of all nonempty compact subsets of
M , equipped with the Hausdorff metric induced by dM . See Appendix A.1 for a brief introduc-
tion to the Hausdorff metric. We define the second order closed graph G(2)(f) and the second
order interpolated graph H(2)(f) of a path f ∈ Π to be

G(2)(f) =
{
(z1, z2) ; zi ∈ G(f) and z1 ⊑ z2

}
,

H(2)(f) =
{
(z1, z2) ; zi ∈ H(f) and z1 ⊑ z2

}
,

where ⊑ is as defined above. Lemma 3.1 of Freeman and Swart (2023) gives that the sets G(f)
and H(f) are compact subsets of R2

c , moreover the sets G(2)(f) and H(2)(f) are compact subsets
of (R2

c)
2. Note that G(2)(f) and H(2)(f) preserve information about the total order ⊑, whereas

G(f) and H(f) do not. It can be seen that G(2)(fn) → G(2)(f) implies G(fn) → G(f), but the
converse is not true. Similarly for H(2) and H. If G(fn) → G(f) then H(fn) → H(f), but the
converse is not true. Similarly for G(2) and H(2).

Proposition 2.2.1 In each case, under the metric listed Π is a Polish space.

1. The J1 topology: dJ1(f, g) = dK((R2
c)

2)

(
G(2)(f), G(2)(g)

)
.

2. The M1 topology: dM1(f, g) = dK((R2
c)

2)

(
H(2)(f), H(2)(g)

)
.

We mention also that dJ2(f, g) = dK(R2
c)
(G(f), G(g)) and dM2(f, g) = dK(R2

c)
(H(f), H(g)) re-

spectively correspond to Skorohod’s J2 and M2 topologies. In Freeman and Swart (2023) it is
shown that each such metric is equivalent to the corresponding classical Skorohod metric on
D[a,b] = {f ∈ Π ; I(f) = [a, b], f(a−) = f(a+)}, for a, b ∈ R. See Sections 2.4, 3.2 and 3.4 of
that article for details and proofs of these facts.

We now specialize to the case that is relevant to the present article:

from now on the space Π is (implicitly) equipped with the M1 topology.

The same applies to subsets of Π. We write dΠ = dM1, generating the M1 topology on Π, but
we remark that the metric space (Π, dΠ) is not complete. In Appendix A.2 we collate together
some results from Freeman and Swart (2023) concerning the M1 topology, including criteria for
relative compactness and tightness.

Let Π↑ = {f ∈ Π ; τf = ∞}, Π↓ = {f ∈ Π ; σf = −∞}, and Πl = Π↑∩Π↓ be the subspaces of
(respectively) forwards and backwards half-infinite paths, and bi-infinite paths. Note that Π and
Πl are both symmetric under time reversal. We write Πc = {f ∈ Π ; f(t−) = f(t+) for all t ∈

I(f)} for the subspace of continuous paths. We write Π↑
c := Π↑ ∩Πc and so on. Informally, the

induced topology on Πc may be described as convergence of starting and final times plus locally
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uniform convergence of continuous paths. In fact Π↑
c is the state space introduced by Fontes

et al. (2004) for the Brownian web. See Proposition 3.4 of Freeman and Swart (2023) for details.
Our main results will concern systems of half-infinite càdlàg paths and we will tend to state

results forwards in time i.e. we will mostly work in Π↑ or its subspace Πl. We require Π↓ only for
results concerning duality. We write K(Π) for the metric space of compact subsets of Π, where
the underlying metric on Π comes from Proposition 2.2.1. It is easily seen from Proposition
2.2.1 that Π↑, Π↓ and Πl are closed subsets of Π, from which it follows that K(Π↑), K(Πl) and
K(Π↓) are closed subsets of K(Π).

2.3 Crossing and ordering

We now introduce notation and terminology associated to Π and Π↑. We say that a càdlàg path
g extends a càdlàg path f if H(2)(f) ⊆ H(2)(g). We note that, in all but the trivial case for
which σf = τf or σg = τg this reduces to the more intuitive condition H(f) ⊆ H(g). The point
is that the total ordering of H(f) (see Section 2.2) should coincide with its induced order as a
subset of H(g).

We write f ⊆ g to denote that g extends f . It is easily seen that ⊆ is a partial order on Π
and we write the corresponding strict order relation as ⊂. For A ⊆ Π we write

Amax = {g ∈ A ; for all f ∈ A, if g ⊆ f then g = f} (2.5)

A↑ = {g ∈ Π↑ ; g ⊆ f for some f ∈ A}. (2.6)

In words, Amax denotes the set of maximal elements of (A,⊆), whilst A↑ denotes the set of
half-infinite paths that may be extended to some f ∈ A.

For sets of paths A,B ⊆ Π↑ we define the relation

A � B ⇔ A↑ ∩B ⊆ A ⊆ B↑, (2.7)

which, as a consequence of Lemma 3.2.2, is a partial order on (the set of) subsets of Π↑. The
corresponding strict order relation is written ≺. The intuition behind (2.7) is one of efficient
covering of space-time: loosely A ≺ B means that B covers more of space-time using longer
and/or fewer paths than A.

Note that if A and B are random variables on the same probability space then we can make
sense of the event {A � B} via (2.7). If A and B are K(Π↑) valued random variables without
an implicit coupling then, with mild abuse of notation, we further extend � by writing A �d B
if and only if there exists a coupling of A and B such that P[A � B] = 1. We write A ≺d B if
A �d B where A and B do not have the same marginal distributions. In Lemma 5.2.3 we show
that �d is a partial order on the space of (laws of) K(Π↑) valued random variables.

Definition 2.3.1 We say that paths f, g ∈ Π are non-crossing if there exists paths f ′, g′ ∈ Πl

such that f ⊆ f ′, g ⊆ g′ and f(t⋆) ≤ g(t⋆) for all t⋆ ∈ Rs.

The precise format of Definition 2.3.1 is motivated by the complication that a pair of càdlàg
paths may share the same initial (or final) time and might both jump at this time, with perhaps
overlapping jumps. The reader may wish to glance forward at Figure 3.1.1 which depicts some
of these complications. We say that a set of paths A ⊆ Π is non-crossing if all pairs of elements
of A are non-crossing. We say that A and B are non-crossing if A ∪B is non-crossing.

If f ∈ Π and z ∈ H(f), then we say that f passes through the space-time point z. For
f ∈ Π↑, if f passes through z ∈ R2

c then we define the restriction

f |z ∈ Π↑ to be the unique g ⊆ f such that (g(σg−), σg) = z. (2.8)
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More generally, we say that f passes through a set D ⊆ R2
c if f passes through some point

(x, t) ∈ D. For an (unordered) set D ⊆ R2
c and A ⊆ Π↑ we write

A(D) =
{
f ∈ A : f passes through D

}
(2.9)

for the set of paths in A that pass through D. For convenience, for z ∈ R2
c we write A(z) =

A({z}). In the same vein we define

A|D = {f |z ∈ Π↑ ; f ∈ A(z) and z ∈ D} (2.10)

for the set of paths in A that pass through some z ∈ B, with the part prior to z removed. For
z ∈ R2

c we write A|z = A|{z}.

2.4 Weaves, webs and flows

We are interested in systems of non-crossing paths that touch every point of space-time. More
rigorously, we say that A ⊆ Π↑ is pervasive if A(z) 6= ∅ for all z ∈ R2

c . We remark that, as a
consequence of Lemma A.2.2, if A ∈ K(Π) then it suffices to check that A(z) 6= ∅ on a dense
subset of z ∈ R2

c . The key objects studied within the present article are as follows.

Definition 2.4.1 A weave is the law of a K(Π↑) valued random variable that is almost surely
pervasive and non-crossing. Let W denote the set of weaves. A weave that is a minimal element
of W with respect to �d is known as a web. A weave that is a maximal element of W with
respect to �d is known as a flow.

A weave is a probability measure on K(Π), however we mildly abuse terminology in the usual
way (c.f. ‘a’ Brownian motion) by saying that a K(Π↑) valued random variable is a weave if its
law satisfies Definition 2.4.1. Similarly for webs and flows. We write

Wdet = {A ∈ K(Π↑) ; A is non-crossing and pervasive}. (2.11)

If A is a weave then P[A ∈ Wdet] = 1. Elements of Wdet are said to be deterministic weaves.
Although Wdet is not formally a subset of W , it may be viewed as such by identifying A ∈ Wdet

with the probability measure that is a point-mass at A. The following concept plays a central
role for both deterministic and random weaves.

Definition 2.4.2 Let A be a weave and let z ∈ R2
c be a possibly random point of space-time.

We say that z is a ramification point of A if there exists f, g ∈ A(z) such that neither f ⊆ g nor
g ⊆ f . Otherwise, z ∈ R2

c is said to be non-ramified in A.

If z is non-ramified in A with f, g ∈ A(z) then f ⊆ g or g ⊆ f . Loosely, ramification points
capture where weaves display atypical path behaviour, for example branching or coalescing of
paths, or perhaps both. We stress that ‘z is non-ramified in A’ is an event, with some associated
probability, and not a deterministic statement. If it is clear from the context which weave is
meant then we may simply say that z ∈ R2

c is non-ramified. We say that D ⊆ R2
c is non-ramified

if all z ∈ D are non-ramified.
A recurring theme in our results is that behaviour at non-ramified points determines the full

behaviour of the weave. This suggests that non-ramified points should be plentiful. In Lemma
5.4.1 we show that for any weave A the deterministic set

{z ∈ R2
c ; P[z is ramified in A] > 0}
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has zero Lebesgue measure. Hence if a random point z ∈ R2
c is sampled independently of A,

according to some non-atomic law, then z is almost surely non-ramified in A.
Let A ∈ K(Π) and let D ⊆ R2

c . We define a key pair of deterministic operations as follows:

webD(A) = (A|D)↑ (2.12)

flow(A) = {f ∈ Πl ; f does not cross A}. (2.13)

Let us briefly comment on the webD(·) operation. The use of (·) denotes closure in K(Π↑). In
Lemma 4.5.3 we will see that, for A ∈ Wdet, the value of webD(A) does not depend upon the
choice of dense and non-ramified D ⊆ R2. Thus (2.12) defines a deterministic function web(·)
with domain Wdet, which we write without explicit specification of D.

We are now ready to state our first main result. It shows that extremal points of (W ,�d)
may be characterized as fixed points of the web and flow operators. This leads to a particularly
nice description of the structure of W .

Theorem 2.4.3 Let A be a weave.

1. The following are equivalent: (a) A is a web; (b) A
a.s.
= web(A).

2. The following are equivalent: (a) A is a flow; (b) A
a.s.
= flow(A); (c) A ⊆ Πl almost surely.

3. Almost surely, web(A) � A � flow(A).

4. There exists a unique (in distribution) web W and a unique flow F such that W �d A �d

F , given by W
d
= web(A) and F

d
= flow(A).

Thus, the space of weaves is partitioned by the equivalence relation

A ∼ B ⇔ web(A)
d
= web(B) ⇔ flow(A)

d
= flow(B), (2.14)

under which each equivalence class has a web as its unique minimal element, and a flow as its
unique maximal element.

The relation ∼ can also be characterized using finite collections of particle motions, for
which we now introduce formal notation. Consider a weave A, a flow F and a non-ramified
point z ∈ R2

c . The set A|z contains a single path, which begins at z. Similarly, F(z) contains a
single path, which passes through z. This makes it natural to define versions of (2.9) and (2.10)
specialized to ordered sets of non-ramified points.

Let m ∈ N. Given a weave A and an almost surely non-ramified z = (zi)
m
i=1 ∈ (R2

c)
m, we

write A|z = (f1, . . . , fm) where {fi}
a.s
= A|zi . Similarly, given a flow F and an almost surely

non-ramified z = (zi)
m
i=1 ∈ (R2

c)
m, we write F(z) = (f ′

1, . . . , f
′
n) where f ′

i ∈ Πl is the almost
surely unique element of F(zi). We say that A|z is the (forwards in time) m-particle motion of
A from z. They are defined up to almost sure equivalence.

Loosely, the relation ∼ also characterizes when two weaves have the same forwards in timem-
particle motions, in distribution. With this in mind, we will need to make statements featuring
multiple weaves that concern non-ramified points. We adopt the implicit convention that non-
ramification is with respect to all weaves featured in the corresponding statement. We are now
ready to state our second main result.

Theorem 2.4.4 Let A,B be weaves.

1. Suppose that A ∼ B. If z ⊆ R2
c is finite and almost surely non-ramified then A|z

d
= B|z.
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2. The following are equivalent:

(a) A ∼ B;

(b) there exists a coupling of A and B such that A ∪ B is almost surely non-crossing;

(c) there exists a (deterministic) countable dense D ⊆ R2, which is almost surely non-

ramified, such that A|z
d
= B|z for all finite z ⊆ D.

Theorems 2.4.3 and 2.4.4 lead towards an appealing limit theory for weaves, which we now

develop. We denote weak convergence (i.e. convergence in law) by
d
→. We saw in Section

2.2 that K(Π↑) is a Polish space, thus weak convergence of K(Π↑) valued random variables, or
equivalently of probability measures on K(Π), is defined in the standard way e.g. as in Section 3.3
of Ethier and Kurtz (1986). This provides a natural sense in which to consider weak convergence
of weaves.

Our next theorem shows that weak convergence of flows is equivalent to tightness plus weak
convergence ofm-particle motions, and explores the same statement in the context of equivalence
classes of weaves. Note that convergence of m-particle motions is a statement about weak
convergence of R

m
valued stochastic processes, which is within the realms of the classical theory

in e.g. Ethier and Kurtz (1986).

Theorem 2.4.5 Let Fn,F be flows.

1. If Fn
d
→ F then for any m ∈ N and non-ramified z ∈ (R2

c)
m we have Fn(z)

d
→ F(z).

2. Any weak limit point of (Fn) is a flow. If (Fn) is tight and for any m ∈ N and almost

surely non-ramified z ∈ (R2)m we have Fn|z
d
→ F|z, then Fn

d
→ F .

3. Let An,A be weaves with An ∼ Fn and A ∼ F . If An
d
→ A then Fn

d
→ F . Conversely, if

Fn
d
→ F then any weak limit point B of (An) is a weave and satisfies B ∼ F .

Lemma 4.4.3, shows that the function flow(·) is continuous on Wdet, which gives the forwards
implication of part 3 of Theorem 2.4.5. The function web(·) is not continuous, as shown by
example in Figure 2.5.1, which depicts a sequence of webs (Wn) converging to a weave A that
is neither a web nor a flow. This suggests that, for purposes of convergence, flows are a more
natural representative element of their equivalence class than webs.

Let us now give analogues for general weaves of parts 1 and 2 of Theorem 2.4.5. In part 3
of Theorem 2.4.5 flows provide an overarching structure for weaves in which the non-crossing
property is preserved by taking limits of paths. The non-crossing property is preserved when
taking limits of bi-infinite paths, but is not necessarily preserved in limits of half-infinite paths.
Consequently, if we wish to establish convergence of weaves but also wish to avoid handling
their associated flows, then it becomes necessary to check that limit points are non-crossing. See
Figure 1.1.1 for a related warning example.

Theorem 2.4.6 Let An,A be weaves.

1. If An
d
→ A then for any m ∈ N and non-ramified z ∈ (R2

c)
m we have An|z

d
→ A|z.

2. If a weak limit point B of (An) is non-crossing then B is a weave. If, additionally, for any

m ∈ N and almost surely non-ramified z ∈ (R2)m we have An|z
d
→ A|z, then A ∼ B.
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Our next result concerns time-reversed duality, for which we must introduce some more
notation. Given f ∈ Π↑, define f� ∈ Π↓ by f�(t±) = −f(−t∓). This operation, which
corresponds to a rotation of space by 180 degrees, is applied pointwise to sets of paths as
A� = {f� ; f ∈ A}. Clearly (A�)� = A. Note that ·� is an automorphism of Π and Πl, and
that (Π↑)� = Π↓. Proposition A.2.1 implies that A ⊆ Π is relatively compact if and only if A�

is, and it is trivial to see that the same holds for pervasiveness and the non-crossing property.
For B ⊆ Π↓ we write

B↓ = {g ∈ Π↓ ; g ⊆ f for some f ∈ B} (2.15)

in analogy to (2.6).
A random subset of Π↓ that is compact, pervasive and non-crossing is said to be a dual

weave. Thus A is a dual weave if and only if A� is a weave. We say that A ⊆ Π↓ is a dual web
if and only if A� is a web. Equivalently, we could define a relation on K(Π↓) akin to (2.7) but
with time reversed (i.e. with ·↓ in place of ·↑) and then a dual web would be a minimal dual
weave with respect to this relation. Note that F is a flow if and only if F� is a flow.

Definition 2.4.7 A pair (W, Ŵ) is said to be a double web if it consists of a web W and dual
web Ŵ coupled such that W ∪ Ŵ is non-crossing.

Our next result states that each web gives rise to a corresponding double web, in which Ŵ
essentially contains the extra segments of paths that are required to construct F directly from
W. There is a subtlety, however: when we come to connect W and its dual Ŵ together to create
F , we must be careful not to introduce crossing. In particular we should be wary of ramification
points, at which the multiple in-going and out-going trajectories must be reconnected in such a
way that they enter and exit z without crossing each other.

Recall our terminology that a path f ∈ Π begins at the point (f(σf−), σf ) ∈ R2
c and ends

at the point (f(τf+), τf ). Given D ⊆ R2
c we say that f begins in D if f begins at some point

of D, and f ends in D if f ends at some point of D. For f ∈ Π↑, g ∈ Π↓ are non-crossing, with
τg = σf and g(τg+) = f(σf−), then we define h = g→֒f ∈ Πl by

h(t⋆) =

{
g(t⋆) for t⋆ ≤ σf−

f(t⋆) for t⋆ ≥ σf + .

Thus g→֒f ∈ Πl is the concatenation of a path f ∈ Π↑ and a path g ∈ Π↓ that (respectively)
begin and end at the same point of space-time.

Theorem 2.4.8 Let A be a weave and let W = web(A), F = flow(A). There exists a dual

web Ŵ on the same probability space such that (W, Ŵ) is a double web, and Ŵ is unique up to
almost sure equivalence. For any D ⊆ R2 that is dense and almost surely non-ramified,

Ŵ = {g ∈ Π↓ ; g does not cross A and g begins in D}↓ (2.16)

F = {g→֒f ∈ Πl ; g ∈ Ŵ ends and f ∈ W begins at the same point of D}. (2.17)

From Theorems 2.4.3 and 2.4.8, if (W, Ŵ,F) is a triplet containing a double web and flow-
lines, all coupled to be non-crossing of each other, then given any one element of the triplet we
may reconstruct the other two.

Recall that Πc = {f ∈ Π ; f is continuous}. Let us end this section by recording that
continuity of paths is preserved through all of the various relationships established above. We
say that a weave A is continuous if A ⊆ Π↑

c , and similarly for dual weaves.

Theorem 2.4.9 Let A and B be weaves such that A ∼ B. Then A is continuous if and only if
B is continuous. If W is a web then W is continuous if and only if Ŵ is continuous.
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ǫ

Figure 2.5.1: In all three figures, time runs upwards and the spatial axis is horizontal. In each figure a
weave is depicted via solid lines, with the corresponding flow depicted via including dotted lines.
On the left: A weave A such that A(D) contains the bi-infinite red path, whereas A|D does not. Here
D ⊆ R2 must be dense and non-ramified with respect to the weave A. In this case we have that
web(A) = (A|D)↑ ≺ A(D)↑.
On the center and right: An example related to continuity of the flow(·) map and lack of continuity of the
web(·) map, as well as to the existence of isolated points within flows and general weaves. In the center,
the weave Aǫ and corresponding flow Fǫ = flow(Aǫ) are depicted. The limiting weave A = limǫ→0 Aǫ is
depicted on the right, with F = flow(A) again depicted via including dotted lines. The red paths collapse
to a single bi-infinite path in the limit. Note that Fǫ → F in accordance with part 3 of Theorem 2.4.5.
In this case Wǫ = web(Aǫ) is equal to (Aǫ)↑. Therefore Wǫ → A↑. On the right, note that W = web(A)
does not include the bi-infinite red path, and that every point of this path ramified. Consequently
limǫ→0 Wǫ 6= W, showing that the map web(·) is discontinuous at W. Note that the bi-infinite red path
on the right is an isolated point of A but is not an isolated point of F .

2.5 Discussion

In this section we first discuss how various objects related to the Brownian web fit into the
framework of weaves. We then discuss other topologies that have been introduced for sets of
paths and closely related objects. Some open problems are mentioned along the way.

2.5.1 The equivalence class of the Brownian web

We write Wb for the Brownian web, as defined in (for example) Theorem 2.3 of the survey article
of Schertzer et al. (2017). Let us first resolve an apparent conflict in notation. In common with
the literature of Wb, Schertzer et al. (2017) defined Wb(D) to be the set of paths in Wb that
begin at some z ∈ D, where D ⊆ R2

c . According to (2.9) we reserve Wb(D) for the set of paths
that pass through some z ∈ D. This may seem to conflict at first glance, but in fact there is no
conflict here, as we now explain.

For the Brownian web, the notation Wb(D) is widely used when D ⊆ R2
c is deterministic

and countable, for example in the well known identity Wb
a.s.
= Wb(D). For the Brownian web,

almost surely, for each z ∈ D the set Wb(z) = {f ∈ Wb ; f passes through z} consists of a single
path that begins at z. Thus, for the Brownian web, Wb(z)

a.s.
= Wb|z and Wb(D)

a.s.
= Wb|D. In

general the distinction between A(D) and A|D does matter and (2.12), which features the latter,
is required to construct web(A). See the left part of Figure 2.5.1 for a related example.

Lemma 2.5.1 It holds that Wb is a web.

A short proof of Lemma 2.5.1 is given in Appendix A.4. It rests on combining Theorem
2.4.3 with the key property Wb

a.s.
= Wb(D), from which we may deduce that Wb

a.s.
= web(Wb).

We refer to the equivalence class of the Brownian web as the class of Brownian weaves, which
are introduced for the first time in the present article. The double Brownian web (Wb, Ŵb) as
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defined in Theorem 2.4 of Schertzer et al. (2017) consists of a pair of coupled random variables,

where (Ŵb)
� and Wb have the same marginal distributions, such that Wb and Ŵb do not cross.

It follows from Theorem 2.4.8 that (Wb, Ŵb) is a double web in our framework.
Let us now comment on the role of special points of the Brownian web versus ramification

points of weaves. Within the Brownian web each space-time point z = (x, t) is assigned a ‘type’
denoted (zin, zout). Here, zin is the number of equivalence classes of incoming paths of z = (x, t)
that are distinct under the relation that two paths are equivalent if they are equal on a time
interval [t−ǫ, t] for some ǫ > 0. Similarly for zout, using outgoing paths and [t, t+ǫ]. See Section
2.5 of Schertzer et al. (2017) for further detail. Note that zin and zout are local properties (in
space-time) of z, whereas ramification of z is not a local property, because ramification depends
on the behaviour of paths within A(z) for all time. The two concepts are related but have
different purposes.

Theorem 2.11 of Schertzer et al. (2017) describes the various types of special point withinWb,
plus their associated local geometry and Hausdorff dimension. This provides a highly detailed
understanding of the microscopic structure of Wb. Within the Brownian web points of type
(0, 1) have full measure in R2 and are non-ramified. Points of all other types are regarded as
‘special’ points of Wb and are ramified in Wb. This is something of a coincidence: in general
weaves points of type (0, 1) can be ramified (for example, if they are upstream of a branch point)
and points of type (1, 1) can be non-ramified (for example, the constant paths in Figure 1.1.1
that do not interact with the jumps). Moreover, for general weaves the most abundant type is
not necessarily (0, 1). Within Figures 1.1.1 and 2.5.1 all weaves depicted have points of type
(1, 1) with full measure.

Fontes and Newman (2006) explored two examples of Brownian weaves. They considered the
full Brownian web, which in our terminology is precisely the flow Fb associated to the Brownian
weave, and the full forwards Brownian web, which in our terminology is (Fb)↑, and is an example
of a Brownian weave that is neither a flow nor a web. Extension of paths, backwards in time,
also features within Fontes and Newman (2006). Their treatment relies fully on the structure
of the Brownian web, using the forwards-backwards reflection of Brownian paths established by
Soucaliuc et al. (2000). The particular case of our own Theorem 2.4.8 corresponding to (Wb, Ŵb)
and Fb is essentially Proposition 2.5 of Fontes and Newman (2006). They also adapated results
of Fontes et al. (2004) and the earlier work of Piterbarg (1998) to give weak convergence criteria
for Fb.

The Brownian net of Sun and Swart (2008) is not a weave, because it contains paths that
cross. It is interesting to ask if a generalized form of nets exist, as a family of K(Π) valued
random variables corresponding to general weaves, but we do not attempt to answer this question
within the present article. It is also interesting to ask if there is a generalization of our results
to pervasive systems that permit crossing, such as the α-stable web of Mountford et al. (2019),
however at present very few non-trivial examples of such systems are available.

2.5.2 Related topologies

We have already mentioned that the state space K(Π↑
c) constructed by Fontes et al. (2004), upon

which most of the recent work on the Brownian web is based, is a topological subspace of our
own state space K(Π↑). In this section we discuss some other recent works concerning topologies
induced upon sets of paths.

Berestycki et al. (2015) mapped sets of paths to sets of ‘tubes’. Loosely, a tube is a subset
of space-time that possesses a bottom face, sides and a top face. The so-called tube topology is
then induced based on which tubes are traversed (i.e. from bottom to top, as time passes, whilst
remaining within the sides) by the paths. It is restricted to sets of continuous coalescing paths,
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but permits paths to cross.
The state space defined by Berestycki et al. (2015) is compact, which has substantial technical

advantages (in particular, tightness becomes automatic) but this comes at the cost of some loss

of detail: the tube topology is coarser than that of K(Π↑
c) and the map from sets of paths to sets

of tubes is not injective. In fact, the tube topology regards the sets A and A↑ as identical, where
f ∈ Π↑, and similarly for all A′ such that A↑ � A′ � A, meaning that much of the structure
displayed in Theorem 2.4.3 is lost. However, the weaker representation makes characterization
and convergence easier.

Another piece of detail that is kept visible in K(Π↑), but is dropped by the tube topology,
is behaviour near the start times of paths. This can have implications for universality. For
example, Berestycki et al. (2015) showed that systems of coalescing random walkers with heavy
tailed jumps (linearly interpolated) will converge in law to the Brownian web, under the tube

topology; Newman et al. (2005) had previously shown that such convergence failed within K(Π↑
c)

because jumps attempt to form in the limit at the initial times of some paths. We conjecture
that such systems will converge but not to the Brownian web if considered as elements of K(Π↑).
Loosely, we expect that the limit of such systems will be a Brownian web that is suitably
augmented with jumps at initial times of paths.

Aside from tubes, another possibility is to view the Brownian web as a real tree, where
the natural root is a point at time +∞ at which all paths coalesce. In this representation,
loosely, each space-time point on a path within the Brownian web becomes a point within the
corresponding real tree, and a metric is induced that captures both the natural tree structure
and the distances travelled, forwards in time, along individual paths within the Brownian web
until coalescence points. Of course, not all sets of paths are suited to such a representation;
systems that contain branching are not.

Cannizzaro and Hairer (2021) identify a subset of K(Π↑
c) that can be naturally represented as

real trees. A similar theme underlies the framework of marked metric measure spaces introduced
by Depperschmidt et al. (2011). Like the tube topology, the setup of Cannizzaro and Hairer
(2021) does not distinguish between A↑ and A, in this case by associating real trees with sets
of paths of the form A↑ (i.e. decreasing sets under ⊆). They construct a Polish topology that
is shown to be finer than that of K(Π), in particular it enforces that coalescence times of paths
are preserved when taking limits.

3 Preliminaries

We now begin the proofs. In this section we develop some underlying concepts that we require
for our theory of weaves, related to the structure of K(Π↑). In Section 3.1 we relate our notion
of crossing to a relation ⊳ that describes when one path lies to the left of another. In Section 3.2
we show that the relation � is a partial order. Finally, in Section 3.3 we examine the interaction
between order relations and topology, including to what extent the relations ⊆, ⊳ and � are
preserved by taking limits. These results are technical in nature. Readers wishing to gloss over
technical issues may prefer to note the key results and definitions (at minimum, Definition 3.1.1
and Lemma 3.1.6), then proceed to Section 4.

3.1 On crossing

In this section we study the interaction between crossing and the idea of one path staying to the
left (or right) of another. The results in this section have straightforward extensions to Π but
for brevity we will state results covering Π↑. Consequently we must handle jumps at the initial
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time σf of f ∈ Π↑ but our compactification of space-time, in Figure 2.2.1, means that jumps do
not occur at time τf = +∞.

Definition 3.1.1 For f, g ∈ Π↑, we write f ⊳ g if there exist f ′, g′ ∈ Πl with f ⊆ f ′ and g ⊆ g′

such that f ′(t⋆) ≤ g′(t⋆) for all t⋆ ∈ Rs. We write f ⋪ g if this property fails to hold.

The statement f ⊳ g should be interpreted as ‘f lies to the left of g’. There is some subtlety
involved here. If f ⊳ g then f(t⋆) ≤ g(t⋆) for all t⋆ ≥ σ+, but no such guarantee exists
concerning g(σ−) and f(σ−). An example of f ⊳ g with g(σ−) < f(σ−) appears as (i) in
Figure 3.1.1.

The relation ⊳ does not define a partial order on Π↑. Antisymmetry fails because if g ⊆ f
with g 6= f then we have both g ⊳ f and f ⊳ g. Transitivity fails too, for example if f(t⋆) =
−1

2 + ✶{t⋆ = σf−}, g(t⋆) = 0, h(t⋆) = 1
2 − ✶{t⋆ = σf−}, with σf = σh = 0 and σg = 1, then

f ⊳ g and g ⊳ h but f ⋪ h (we leave it as an exercise for the reader to construct an example
where transitivity fails and {f, g, h} is also non-crossing!). For this reason we will not use the
symbols ⊲ and ⋫ in this article: it would be possible to define them as analogous concepts to
⊳ and ⋪ with the roles of right and left swapped, but the notation would be unintuitive since
⋪ and ⊲ would not be equivalent. In Lemma 3.1.6 we will establish a more restricted setting in
which ⊳ is better behaved.

Definition 3.1.1 is intuitive and interacts well with Definition 2.3.1, but it is helpful to have
a more explicit characterization of when one path lies to the left of another. We define subsets
L(f) and R(f) of R× Rs, and Lt⋆(f) and Rt⋆(g) of R by:

Lt⋆(f) =

{
∅ if t⋆ < σf−, or if t⋆ = σf − and f(σf−) ≤ f(σf+),

[−∞, f(t⋆)) if t⋆ ≥ σf+, or if t⋆ = σf − and f(σf+) < f(σf−),

Rt⋆(f) =

{
∅ if t⋆ < σf−, or if t⋆ = σf − and f(σf+) ≤ f(σf−),

(f(t⋆),∞] if t⋆ ≥ σf+, or if t⋆ = σf − and f(σf−) < f(σf+),

L(f) =
⋃

t⋆∈Rs

Lt⋆(f)× {t⋆}, R(f) =
⋃

t⋆∈Rs

Rt⋆(f)× {t⋆}. (3.1)

Note that L(f) and R(f) are subsets of R×Rs. The significance of L(f) is that if g(t⋆) ∈ Lt⋆(f)
then g must stay ‘to the left’ of f in order to avoid crossing it. Similarly if g(t⋆) ∈ Rt⋆(g), to
the right. We will formalize this intuition in Lemma 3.1.4. See Figure 3.1.1 for a picture.

For t ≥ σf+, the sets Lt⋆(f) and Rt⋆(f) are, respectively, the set of points strictly to the left
and right of f(t⋆). However, for t = σf we must take into account the presence and direction of
a jump at time σf . Note that t⋆ with t = ±∞ are excluded from L(f) and R(f), in accordance
with the compactification of space-time in Figure 2.2.1.

Lemma 3.1.2 Let f, g ∈ Π↑. Then f ⊳ g if and only if L(f) ∩R(g) = ∅.

Proof: We prove the forwards and backwards implications in turn, beginning with the former.
Suppose that f ⊳ g. Then there exists f ′, g′ ∈ Πl with f ⊆ f ′ and g ⊆ g′ such that f ′(t⋆) ≤ g′(t⋆)
for all t⋆ ∈ Rs. It follows from (3.1) that L(f ′) ∩ R(g′) = ∅, which since L(f) ⊆ L(f ′) and
R(g) ⊆ R(g′) implies that L(f) ∩R(g) = ∅.

For the reverse implication, let f, g ∈ Π↑ with L(f) ∩ R(g) = ∅. Let σ = σf ∨ σg. It follows
immediately from (3.1) that f(t⋆) ≤ g(t⋆) for all t⋆ ≥ σ+. We will construct explicit f ′, g′ ∈ Πl

such that f ⊆ f ′, g ⊆ g′ and f ′(t⋆) ≤ g′(t⋆) for all t⋆ ∈ Rs. Note that we have nothing to prove
if σf = σg = −∞, and that we do not need to define f ′ or g′ at t⋆ for t = ±∞. We consider
three cases, at least one of which must occur.
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L(f)

R(g)

gf

✭✐✮

gf

✭✐✐✮

gf

✭✐✐✐✮

gf

✭✐✈✮

Figure 3.1.1: On the left: A schematic depiction of the subsets L(f) and R(f) of R×Rs. Time is running
upwards, with values taken by f(t⋆) shown as a thick black line. To help visualize, when f jumps at
time t we depict time as split into t− and t+ via thin horizontal lines. The path f makes a jump at its
starting time σf , at the very bottom of the figure. Note that Lσf−(f) = ∅ and Rσf−(f) = (f(σf−),∞]
because the jump at σf is rightwards.
On the right: Four examples of sets {f, g} containing two paths. In each example, the initial point of g
lies to the left of the initial point of f . The paths in (i) satisfy f ⊳ g and do not cross, but in examples
(ii)–(iv) we have that f crosses g from right to left.

1. Consider if Lσ−(f) = ∅. By (3.1) we have σ = σf ≥ σg and f(σ−) ≤ f(σ+). In this case
set

f ′(t⋆) =

{
f(t⋆) if t⋆ ≥ σf+

−∞ if t⋆ ≤ σf−
g′(t⋆) =

{
g(t⋆) if t⋆ ≥ σg+

g(σg−) if t⋆ ≤ σg − .

2. Consider if Rσ−(g) = ∅. By (3.1) we have σ = σg ≥ σf and g(σ+) ≤ g(σ−). In this case
set

f ′(t⋆) =

{
f(t⋆) if t⋆ ≥ σf+

f(σf−) if t⋆ ≤ σf−
g′(t⋆) =

{
g(t⋆) if t⋆ ≥ σg+

∞ if t⋆ ≤ σg − .

3. Consider if Lσ−(f) = [−∞, f(σ−) and Rσ−(g) = (g(σ−),∞]. Using that L(f) ∩R(g) = ∅
we have f(σ−) < g(σ−). If σ = σf ≥ σg then we set

f ′(t⋆) =





f(t⋆) if t⋆ ≥ σf+

f(σf−) + g(t⋆)− g(σf−) if t⋆ ∈ [σg+, σf−]

f(σf−) + g(σg−)− g(σf−) if t⋆ ≤ σg−

g′(t⋆) =

{
g(t⋆) if t⋆ ≥ σg+

g(σg−) if t⋆ ≤ σg − .

Note that f ′ copies the increments of g′ during t⋆ ∈ [σg+, σf−], backwards in time starting
from the condition f ′(σf ) = f(σf−) < g(σf−) = g′(σf ), and then backwards from time
σg− both paths remain constant. This ensures that f ′(t⋆) ≤ g′(t⋆) for all t⋆. If σ =
σg ≥ σf then we may employ a similar strategy, where g copies the increments of f during
[σf+, σg−], backwards in time starting from g(σg−).

In all cases it is clear that f ⊆ f ′, g ⊆ g′ and f ′(t⋆) ≤ g′(t⋆) for all t⋆ ∈ Rs. �

Lemma 3.1.3 Let f, g ∈ Π↑. The following statements are equivalent: (i) f and g are non-
crossing; (ii) L(f) ∩R(g) = ∅ or R(f) ∩ L(g) = ∅; (iii) f ⊳ g or g ⊳ f .

Proof: Equivalence of (ii) and (iii) follows immediately from Definition 2.3.1 and Lemma
3.1.2. It follows trivially from Definitions 2.3.1 and 3.1.1 that (iii) implies (i). Let us now show
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that (i) implies (ii). If f and g are non-crossing then we have f ′, g′ ⊆ Πl such that f ⊆ f ′,
g ⊆ g′ and f ′(t⋆) ≤ g′(t⋆) for all t⋆ ∈ Rs or g

′(t⋆) ≤ f ′(t⋆) for all t⋆ ∈ Rs. In the former case by
(3.1) we have L(f ′) ∩ R(g′) = ∅, which implies L(f) ∩ R(g) = ∅. In the latter case by (3.1) we
have L(g′) ∩R(f ′) = ∅, which implies L(g) ∩R(f) = ∅. Thus we have (ii). �

By Lemma 3.1.3, if f and g cross, then there must exist t1⋆1 6= t2⋆2 such that Rt1⋆1(π) ∩
Lt1⋆1(π

′) 6= ∅ and Lt2⋆2(π) ∩ Rt2⋆2(π
′) 6= ∅. If this happens for t1⋆1 < t2⋆2 (resp. t1⋆1 > t2⋆2),

then we say that f crosses g from left to right (resp. from right to left). Of course, it can happen
that f crosses g from left to right and also from right to left. See Figure 3.1.1 for a picture.

Lemma 3.1.4 Suppose that f, g ∈ Π↑ are non-crossing and let Is = I(f)s∩I(g)±. If there exists
t⋆ ∈ Is such that (f(t⋆), t⋆) ∈ L(g) then f ⊳ g. If there exists t⋆ ∈ Is such that (f(t⋆), t⋆) ∈ R(g)
then g ⊳ f . Moreover, in either case f 6= g.

Proof: We will establish the first claim first: let f, g be as given and suppose (f(t⋆), t⋆) ∈ L(g).
Hence (f(t⋆), t⋆) ∈ Lt⋆(g) so Lt⋆(g) = [−∞, g(t⋆)) and f(t⋆) < g(t⋆). Let σ = σf ∨σg. Consider
if s• ≥ σ+ and f(σ•) < g(s•) for some s• ≥ σ−. Then, from Definition 3.1.1, we have
Ls•(g) = [−∞, g(s•)) and Rs•(f) = (f(s•),∞], which implies L(g) ∩ R(f) 6= ∅. Lemma 3.1.3
thus implies L(f) ∩ R(g) = ∅, from which Lemma 3.1.2 gives f ⊳ g. In particular, if t⋆ ≥ σf+
then f ⊳ g.

It remains only to consider the case of t⋆ = σf− and, from what we have shown in the
paragraph above, in this case we may assume without loss of generality that f(s•) ≤ g(s•) for
all s• ≥ σ+. We have f(σf−) < g(σf−) and Lσf−(g) = [−∞, g(t⋆)). If f(σf−) < f(σf+) then
Rσf−(f) = [−∞, f(σf−)) and hence L(g)∩R(f) 6= ∅, so here also Lemmas 3.1.3 and 3.1.2 imply
f ⊳ g. Otherwise, f(σf+) ≤ f(σf−), in which case it is immediate from Definition 3.1.1 that
f ⊳ g.

The second claim, regarding the case (f(t⋆), t⋆) ∈ R(g), follows by symmetry (consider space
R reflected about the origin). Lastly, the fact that f 6= g follows from noting that points of the
form (g(t⋆), t⋆) ∈ R2

c are not elements of L(g) or R(g). �

Lemma 3.1.5 The following hold:

1. Suppose f, g ∈ Π↑ with f ⊳ g and write σ = σf ∨ σg. Precisely one of following occurs:

(i) f ⊆ g or g ⊆ f ;

(ii) f(t⋆) < g(t⋆) for some t⋆ ≥ σ+;

(iii) f(t⋆) = g(t⋆) for all t⋆ ≥ σ+, f(σ−) < f(σ+) = g(σ+) < g(σ−);

(iv) f(t⋆) = g(t⋆) for all t⋆ ≥ σ+, f(σ−) < g(σ−) ≤ f(σ+) = g(σ+) and σg < σf = σ;

(v) f(t⋆) = g(t⋆) for all t⋆ ≥ σ+, f(σ+) = g(σ+) ≤ f(σ−) < g(σ−) and σf < σg = σ.

In cases (ii)-(v) we have g ⋪ f .

2. Let f, g ∈ Π↑. Then f ⊳ g and g ⊳ f if and only if f ⊆ g or g ⊆ f .

Proof: Let us begin with the first statement. It is clear that all five cases are distinct. Suppose
neither of (ii), (iii) (iv) and (v) occurs, and we will seek to prove that (i) holds. Since (ii) fails
we have g(t⋆) ≤ f(t⋆) for all t⋆ ≥ σ+. Since f ⊳ g we also have f(t⋆) ≤ g(t⋆) for all such t⋆,
hence in fact we have equality for t⋆ ≥ σ+, in particular at t⋆ = σ+. Since (iii) fails, f(t−) and
g(t−) lie (non-strictly) on the same side of f(t+) = g(t+).

Consider first when they both lie to the left, that is f(t−) ∨ g(t−) ≤ f(t+) = g(t+). We
divide into three cases based upon whether σf = σg, σf < σg or σg < σf .
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• If σf = σg then σf = σg = σ, in which case (i) occurs.

• If σf < σg then σg = σ, so we have Lσ−(f) = [−∞, f(σ−)) and Rσ−(g) = (g(σ−),∞]. By
Lemma 3.1.2 we have Lσ−(f) ∩Rσ−(g) = ∅ so f(σ−) ≤ g(σ−). Hence g ⊆ f .

• If σg < σf then σf = σ and as (iv) does not occur we must have g(σ−) ≤ f(σ−), which
means f ⊆ g.

In all three cases we have that (i) occurs. It remains to consider when both f(σ−) and g(σ−)
lie to the right of f(σ+) = g(σ+). A symmetric argument, in which (v) takes the place of (vi),
shows that (i) also occurs. Note that in case (ii) we have Lt⋆(f)∩Rt⋆(g) 6= ∅. In cases (iii), (vi)
and (v) we have Lσ−(g) ∩ Rσ−(f) 6= ∅. Thus, in all of cases (ii)-(v) Lemma 3.1.2 gives g ⋪ f .
For the second claim of the present lemma, the reverse implication is trivial from Definition
3.1.1 and the forwards implication follows from part 1 of the present lemma. �

Part 1 of Lemma 3.1.5 makes explicit the difficulties inherent to paths that may jump at
their initial times. We will often use arguments that give some special attention to the initial
times of paths. The sets L(f), R(g) and the relation ⊳ allow us to do so without having to work
through cases (i)–(v) in turn.

Lemma 3.1.6 Let A ⊆ Π↑ be non-crossing. Then (Amax,⊳) is a totally ordered space.

Proof: Recall that Amax was defined in (2.5). By Lemma 3.1.3 all pairs f, g ∈ A satisfy f ⊳ g
or g ⊳ f , which holds in particular for Amax. It is clear from Definition 3.1.1 that f ⊳ f for all
f ∈ Π↑, thus also for all f ∈ Amax. If f, g ∈ Amax satisfy f ⊳ g and g ⊳ f , then Lemma 3.1.5
tells us that f ⊆ g or g ⊆ f . By maximality, this implies f = g. We have now shown that ⊳ is
reflexive and antisymmetric, and that all pairs of elements are comparable. It remains to show
that ⊳ is transitive.

Let f, g, h ∈ Amax with f ⊳ g and g ⊳ h. If f = g or g = h then it is trivial that f ⊳ h.
If f = h then we have f ⊳ g and g ⊳ h = f , so Lemma 3.1.5 implies that f ⊆ g or g ⊆ f ,
which by maximality implies f = g, hence also f ⊳ g. Thus we may assume without loss of
generality that f, g, h are distinct elements of Amax. By Lemma 3.1.2 we have L(f) ∩R(g) = ∅
and L(g) ∩R(h) = ∅, and we must show that L(f) ∩R(h) is also empty.

We will argue by contradiction. Suppose that (x, t⋆) ∈ L(f) ∩ R(h), which implies that
Lt⋆(f) = [−∞, f(t⋆)), Rt⋆(h) = (h(t⋆),∞] and h(t⋆) < x < f(t⋆). Consider first if t⋆ ≥ σg−. If
g(t⋆) ≤ x then g(t⋆) ∈ Lt⋆(f), Lemma 3.1.4 gives that g ⊳ f , in which case part 2 of Lemma
3.1.5 and maximality gives that g = f , which is a contradiction to our assumptions. Similarly,
if g(t⋆) ≥ x then g(t⋆) ∈ Rt⋆(h), Lemma 3.1.4 gives that g ⊳ h, from which part 2 of Lemma
3.1.5 and maximality give g = h, which is again a contradiction.

It remains to consider when t < σg. In this case σf ∨ σh < σg. Definition 3.1.1 thus implies
that for all s⋆ ≥ σg+ we have f(s⋆) ≤ g(s⋆) ≤ h(s⋆). Applying part 1 of Lemma 3.1.5 to f ⊳ g
and g ⊳ h, and noting that these are distinct maximal paths (so case (i) of that lemma may not
occur), we obtain that for some s, s′ ≥ σg it holds that f(s−) < g(s−) and g(s′−) < h(s′−). If
s = s′ = σg then f(s−) < g(s−) < h(s−). If s > σg then f(s−) < g(s−) ≤ h(s−), similarly if
s′ > σg then f(s′−) ≤ g(s′−) < h(s′−). In all three cases we have u ≥ σ such that f(u−) <
h(u−). We have σf ∨ σh < σg ≤ s, so Lu−(h) = [−∞, h(u−)) and Ru−(f) = (f(u−),∞],
meaning that L(h)∩R(f) 6= ∅. However now both L(f)∩R(h) and L(h)∩R(f) are non-empty,
which by Lemma 3.1.3 implies that f and h cross, which is contradiction. �

Lemma 3.1.7 Let A be non-crossing and let B be non-crossing, both subsets of Π↑. Suppose
A � B. Then A ∪B is non-crossing.
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Proof: Let f ∈ A, g ∈ B and assume that A � B. Since A ⊆ B↑ there exists h ∈ B↑ such
that f ⊆ h. We have that g, h ∈ B and B is non-crossing, so {g, h} is non-crossing, thus also
{f, h} is non-crossing. The result follows. �

3.2 On partial orders of sets

For the duration of Section 3.2 let (E,≤) denote a partially ordered set. We now recall some
standard notation associated to partial orders. For A ⊆ E, we write A≤ := {e ∈ E : e ≤
e′ for some e′ ∈ A} for the downset of A. Note that (A≤)≤ = A≤. The upset A≥ of A is
defined in the same way as the downset A≤, but for the reversed order. A maximal element of
a subset A ⊆ E is an element e ∈ A such that there exists no e′ ∈ A with e < e′. We write
Amax = {e ∈ A : e is a maximal element of A}. A minimal element is defined in the same way
but for the reversed order. As usual, we write e < e′ if e ≤ e′ and e 6= e′.

Remark 3.2.1 For A ∈ K(Π), we have specified in (2.5) that Amax refers to the maximal
elements of (A,⊆). In (2.6) we defined the set A↑ to be the downset of A ⊆ Π↑ in (Π↑,⊆). In
Remark 3.3.4 we will note that A ⊆ (Amax)↓ when A is compact i.e. each path in A extends to
at least one element of Amax. Note that B↓ ⊆ Π↓ from (2.15) is the downset of B in (Π↓,⊆).

The following lemma puts the relation � introduced in (2.7) into a wider framework. It is
a natural concept that might have been studied elsewhere but have not been able to locate a
reference. With slight abuse of notation we will briefly use the notation � in the more abstract
setting. We noted in Section 2.3 that � on Π is related to how efficiently paths cover space.
In the abstract setting there is a somewhat clearer interpretation. Specifically, under ≤ both of
the following two operations will make a set A ⊆ E strictly increase: inserting a new element
to A that (once inserted) is a ≤-maximal element; removing an existing element that (prior to
removal) is not a ≤-maximal element.

Lemma 3.2.2 Let (E,≤) be a partially ordered set. For A,B ⊆ E, write A � B to mean that
A≤ ∩B ⊆ A ⊆ B≤. Then � is a partial order on the set of all subsets of E.

Proof: Clearly A � A. Also, A � B � A implies A ⊆ B≤ ∩ A ⊆ B and by a symmetric
argument also B ⊆ A, so to complete the proof we must show that the relation � is transitive.
The relations A � B � C say that

(i) A≤ ∩B ⊆ A, (ii) A ⊆ B≤, (iii) B≤ ∩ C ⊆ B, (iv) B ⊆ C≤.

When we apply one of these facts we will indicate which with a superscript above the corre-

sponding ⊆. This implies (v) A≤

(ii)

⊆ B≤, (vi) B≤

(iv)

⊆ C≤, and (vii) B≤ ∩ C
(iii)

⊆ B≤ ∩ B, from
which we get

A≤ ∩ C
(v),(vii)

⊆ A≤ ∩B
(i)

⊆ A and A
(ii)

⊆ B≤

(vi)

⊆ C≤,

proving that A � C. �

A set A is said to be decreasing if A = A≤ and increasing if A = A≥. If A and B are
decreasing sets, then A � B if and only if A ⊆ B. The proof is trivial and is left to the reader.

3.3 On compatibility of order and topology

We now turn our attention to the interaction between orders and limits. We have now introduced
several partial orders related to càdlàg paths: the ‘path extension’ order ⊆ on Π, the ‘coverage
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efficiency’ order � on K(Π↑), and the ‘leftwards of’ relation ⊳ that was shown in Lemma 3.1.6
to be a total order on Amax, when A is closed. In general ⊳ is not even a partial order. With
these situations in mind we make the following general definition.

Definition 3.3.1 Let (E,T ) be a topological space. We say that a binary relation ≤ on E is
compatible if

{
(e, f) ∈ E2 : e ≤ f

}
is a closed subset of E2 (in the product topology). With

mild abuse of notation we also apply this terminology to metric spaces (E, dE) where dE is a
metric generating the topology on E.

The point is that compatibility implies that if en → e and fn → f with en ≤ fn, all elements
of E, then we may conclude that e ≤ f . We wish to study this notion in the three situations
listed above, but as per our comments above we do not always wish to assume (in particular,
for ⊳) that (E,≤) is partially ordered. Our first result in this direction is negative:

Remark 3.3.2 It is straightforward to see that (K(Π↑), dK(Π),�) is not compatible. For ex-
ample, let f(t±) = 0 with σf = 0 and let gn(t±) = 1/n with σgn = 1. Then {f} ≺ {f, gn}
and {f, g} ≺ {f}. Examples also exist where An ≺ Bn but the limits of (An) and (Bn) are
incomparable; we leave this as an exercise for the reader. From a purely abstract point of view,
the non-trivial interaction of � with taking limits in K(Π↑) is the main source of interesting
structure within the space of weaves.

Lemma 3.3.3 The partial order ⊆ is compatible with (Π, dΠ).

Proof: Proposition 2.2.1 gives that convergence in dΠ is equivalent to convergence under the
metric (f, g) 7→ dK((R2

c)
2)(H

(2)(f), H(2)(g)). By definition (see Section 2.3) f ⊆ g means that

H(2)(f) ⊆ H(2)(g). With these facts in mind the stated result follows from Lemma A.1.4, which
asserts that the partial order of set inclusion is compatible with the Hausdorff metric. �

Remark 3.3.4 Using Lemma 3.3.3 it is straightforward to check that if A ∈ K(Π) then for all
f ∈ A there exists g ∈ Amax such that f ⊆ g. We will use this fact repeatedly, without referring
back to this remark, from now on.

We now consider the relation ⊳, which will require rather more work. The following lemma
shows that any lack of compatibility between ⊳ and (Π↑, dΠ) must involve a jump at the initial
time of a limiting path. The reader should bear in mind examples like gn(t⋆) = ✶{t⋆ ≥ 1

n+},
g(t⋆) = ✶{t⋆ ≥ 0+}, f(t) = ✶{t⋆ = 0−}, where σgn = 1

n and σf = σg = 0. Note that f ⊳ gn
and gn → g, but f and g cross by jumping over each other in opposite directions at time 0. This
example shows that ⊳ is not compatible with (Π↑, dΠ).

Lemma 3.3.5 Let f, g, fn, gn ∈ Π↑ with fn → f and gn → g. Write σn = σfn ∨ σgn and
σ = σf ∨ σg. Suppose that Ls•(fn) ∩ Rs•(gn) = ∅ for all n ∈ N and s• ≥ σn+. Then also
Ls•(f) ∩Rs•(g) = ∅ for all s• ≥ σ+.

Proof: We will argue by contradiction. Suppose that Ls•(fn)∩Rs•(gn) = ∅ for all n ∈ N and
s• ≥ σn+, and that Lt⋆(f) ∩ Rt⋆(g) 6= ∅ where t⋆ ≥ σ+. By the càdlàg property of f and g,
without loss of generality we may take t > σ and assume that both f and g are continuous at
t. Let ǫ ∈ (0, t− σ) and N ∈ N be large enough that |(σfn ∨ σgn)− σ| ≤ ǫ/2 for all n ≥ N . Our
assumption that Ls•(fn) ∩Rs•(gn) = ∅ implies that fn(s•) ≤ gn(s•) for all s• ≥ σn+, which in
particular for N ≥ n includes all s• ≥ (t− ǫ/2)+.
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Let tn⋆n → t⋆. It follows from Lemma 2.1.1 that tn⋆n ≥ (σ ∨ σn)+ for all sufficiently large
n, so let us pass to a subsequence and assume that this holds for all n ∈ N. By Lemma A.2.3
and continuity of f, g at t we have fn(tn⋆n) → f(t⋆) and gn(tn⋆n) → g(t⋆). As g(t⋆) < f(t⋆)
we obtain that there exists δ > 0 such that gn(tn⋆n) ≤ fn(tn⋆n)− δ. For sufficiently large n we
have |tn − t| < ǫ/2, which implies tn⋆n ≥ (t− ǫ/2)+. This contradicts the result of the previous
paragraph. �

Lemma 3.3.6 The relation ⊳ is compatible with (Πl, dΠ). Moreover: let fn, gn, f, g ∈ Πl with
fn → f and gn → g. If {fn, gn} is non-crossing for each n ∈ N, then {f, g} is non-crossing.

Proof: The first claim follows from Lemmas 3.3.5 and 3.1.2, noting that for f, g ∈ Πl the
relation f ⊳ g is equivalence to requiring that Ls+(f)∩Rs+(g) = ∅ for all s ∈ R. For the second
claim, by part 2 of Lemma 3.1.5 for each n ∈ N we have that fn ⊳ gn or fn ⊳ gn . At least one
of these two possibilities must hold for infinitely many n. From what we have already proved,
it follows that f ⊳ g or g ⊳ f , from which Lemma 3.1.3 gives that f and g do not cross. �

Lemma 3.3.7 The relation ⊳ is compatible with (Π↑
c , dΠ). Moreover: let fn, gn, f, g ∈ Π↑

c with
fn → f and gn → g. If {fn, gn} is non-crossing for each n ∈ N, then {f, g} is non-crossing.

Proof: The first claim follows from Lemmas 3.3.5 and 3.1.2, noting all f ∈ Π↑
c satisfy f(σf−) =

f(σf+) so that Lσf−(f) = Rσf−(f) = ∅. The proof of the second claim is essentially the same
as that of Lemma 3.3.6. �

The remainder of this section concerns conditions under which ⊳ is preserved in limits
fn ⊳ gn with fn → f and gn → g for half-infinite càdlàg paths. We will see, in Lemma 3.3.10
that the key (extra) condition is that {f, g} must be non-crossing. From Lemma 3.3.5 if any
crossing is too occur in such a limit, it must take place at time σ = σf ∨ σg. It is helpful to
introduce another relation, which quantifies the ‘amount that f and g cross by at σ’, whilst f
and g are otherwise non-crossing.

Definition 3.3.8 Let ǫ > 0. Let f, g ∈ Π↑ and write σ = σf ∨ σg. We write f ◭ǫ g if σ ∈ R
and Ls•(f)∩Rs•(g) = ∅ for all s• ≥ σ+, as well as g(σ−) + ǫ ≤ f(σ−) and f(σ+)+ ǫ ≤ g(σ+),
with g(σ−) + ǫ ≤ g(σ+) and f(σ+) + ǫ ≤ f(σ−).

Lemma 3.3.9 Let f, g ∈ Π↑ and let σ = σf ∨ σg.

1. If f ◭ǫ g for some ǫ > 0 then f and g cross.

2. Suppose that fn, gn ∈ Π↑ with fn → f and gn → g. If fn ⊳ gn for all n and f ⋪ g then
there exists ǫ > 0 such that f ◭ǫ g.

Proof: We prove the two claims in turn. For the first, suppose that f ◭ǫ g. Then g(σ−) <
g(σ+), f(σ+) < f(σ−) and g(σ−) < f(σ−). Hence Lσ−(f)∩Rσ−(g) 6= ∅. Since f(σ+) < g(σ+)
we have Lσ+(g) ∩Rσ+(f) 6= ∅. By Lemma 3.1.3, f and g cross.

For the second claim, let fn → f , gn → g with fn ⊳ gn and f ⋪ g. From Lemma 3.3.5
we have Lt⋆(f) ∩ Rt⋆(g) = ∅ and f(t⋆) ≤ g(t⋆) for all t⋆ ≥ σ+. Since f ⋪ g, by Lemma
3.1.2 we must have L(f) ∩ R(g) 6= ∅, which implies that Lσ−(f) ∩ Rσ−(g) 6= ∅. Therefore
Ls−(f) = [−∞, f(σ−)), Rσ−(g) = (g(σ−),∞] with g(σ−) < f(σ−).

If g(σ+) ≤ g(σ−) then f(σ+) ≤ g(σ+) ≤ g(σ−) < f(σ−) which implies f ⊳ g, so this may
not occur. Similarly, if f(σ−) ≤ f(σ+) then g(σ−) < f(σ−) ≤ f(σ+) ≤ g(σ+), which implies
f ⊳ g, so this may not occur either. Thus g(σ−) < g(σ+) and f(σ+) < f(σ−).
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It remains only to show that f(σ+) < g(σ+). Recall that we have f(σ+) ≤ g(σ+), so we
need only eliminate the case f(σ+) = g(σ+). We will argue by contradiction. We thus assume
g(σ−) < g(σ+) = f(σ+) < f(σ−). Our strategy is to show that compactness must fail for (fn)
or (gn), because in avoiding crossing each other the paths fn and gn must become too erratic in
a short time interval near σ.

Let
κ = min{g(σ+)− g(σ−), f(σ−)− f(σ+)} (3.2)

By right continuity of f and g at σ+, there exists δ > 0 such that

|f(t⋆)− f(σ+)| ∨ |g(t⋆)− g(σ+)| ≤ κ/4 for all t⋆ ∈ [σ+, (σ + δ)+]. (3.3)

By Lemma A.2.4 there exists sn•n and tn⋆n such that sn → σ, tn → σ and fn(sn•n) → f(σ−)
and gn(tn⋆n) → g(σ−). Without loss of generality (or consider the following argument with the
roles of fn and gn swapped) we may assume that sn•n ≤ tn⋆n for infinite many n ∈ N, and let
us pass to a subsequence upon which sn•n ≤ tn⋆n holds for all n. In particular, σn− ≤ sn•n.
Without loss of generality we may pass to a further subsequence and assume that sn•n ≤ tn⋆n ≤
(σ + δ/3)+ for all n ∈ N. Let u = σ + δ. By Lemma A.2.4 there exists un⋄n such that un → u
and fn(un⋄n) → f(u+). Without loss of generality we may pass to a further subsequence and
assume that un ≥ σ + 2δ/3, which implies that

sn•n ≤ tn⋆n < un ⋄n . (3.4)

Again, without loss of generality we may pass to a further subsequence and assume that

|fn(sn•n)− f(σ−)| ≤ κ/4

|gn(tn⋆n)− g(σ−)| ≤ κ/4

|fn(un⋄n)− f(u+)| ≤ κ/4

for all n. It follows from the above equations, (3.2) and (3.3) that

fn(sn•n) ≥ f(σ+) + 3κ/4 (3.5)

gn(tn⋆n) ≤ f(σ+)− 3κ/4 (3.6)

|fn(un⋄n)− f(σ+)| ≤ κ/2 (3.7)

for all n.
We must now briefly divide into two cases. If gn(tn−) < gn(tn+) then Ltn−(gn) = [−∞, gn(tn−))

and by Lemma 3.1.4 we have fn(tn−) ≤ gn(tn−) < gn(tn+). Alternatively, if gn(tn+) ≤ gn(tn−)
then we have fn(tn+) ≤ gn(tn+) < gn(tn−). In either case we have ◦ ∈ {−,+} such that
fn(tn◦n) ≤ gn(tn−) ∧ gn(tn+) ≤ gn(tn⋆n). From (3.6) we thus obtain

fn(tn◦n) ≤ f(σ+)− 3κ/4. (3.8)

We must again briefly divide into two cases. If ⋆n = − then (3.4) gives sn < tn, so trivially
sn•n ≤ tn◦n ≤ un⋄n. Alternatively, if ⋆n = + then we have fn(tn⋆n) ≤ gn(tn⋆n), which from
(3.5) and (3.6) we have that sn•n 6= tn⋆n. From (3.4) we thus have sn•n ≤ tn−, so in this case
too we obtain that

sn•n ≤ tn◦n < un ⋄n . (3.9)

From Proposition A.2.1 and (3.5), (3.7), (3.8), (3.9) we obtain that the sequence (fn) is not
relatively compact. This is a contradiction, and completes the proof. �
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Lemma 3.3.10 If A ⊆ Π↑ is non-crossing and closed then the relation ⊳ is compatible with
(A, dΠ). Moreover: suppose that fn → f and gn → g, where f, g, fn, gn ∈ Π↑ and fn ⊳ gn for all
n. If f and g do not cross each other then f ⊳ g.

Proof: Note that the second claim is a stronger statement than the first. The second claim
permits paths within the sequence (fn) to cross each other, and paths within the sequence (gn)
to cross each other, requiring only that fn ⊳ gn for each n ∈ N. We will prove the second claim.
Let fn → f and gn → g, where f, g, fn, gn ∈ Π↑ and fn ⊳ gn for all n. By (both parts of)
Lemma 3.3.9, if f ⋪ g then f and g cross. The result follows. �

We commented below Definition 3.1.1 that the relation ⊳ is (in general) not a partial order.
In Lemma 3.1.6 we showed that ⊳ is a total order on Amax, provided A ⊆ Π↑ is non-crossing.
However, the set Amax is typically not a closed subset of Π↑, even if A is a closed subset of
Π↑. For example, consider when A contains the paths f(t) = k for k ∈ [0, 1] and t ≥ σf = 0,
plus the single path g(t) = 0 for t ≥ σg = −1. For this reason Lemmas 3.1.6 and 3.3.10 are
both important to us, but we must take care when using them together. The following technical
lemma will be used in Section 5.1 to help prove that Wdet is measurable.

Lemma 3.3.11 Let ǫ > 0. Suppose that fn → f and gn → g, where f, g, fn, gn ∈ Π↑, with
σf ∨ σg ∈ R. If fn ◭ǫ gn for all n then f ◭ǫ g.

Proof: We remark that the condition σf ∨σg ∈ R is necessary, in fact this is all that prevents
◭ǫ from being compatible with (Π↑, dΠ). Let f, g, fn, gn ∈ Π↑ be as given and write σ = σf ∨σg.
Suppose that fn ◭ǫ gn for all n. Lemma 3.3.5 gives that Ls•(f) ∩ Rs•(g) = ∅ for all s• ≥ σ+.
Noting that σn → s, for all sufficiently large n we have σn ∈ R. Let us pass to a subsequence
and assume that σn ∈ R for all n.

We have gn(σn−) + ǫ ≤ gn(σn+). It follows from Lemma A.2.2 that g(σ−) + ǫ ≤ g(σ+).
Similarly, it follows from fn(σn+)+ ǫ ≤ fn(σn−) that f(σ+)+ ǫ ≤ f(σ−). From gn(σn−) + ǫ ≤
fn(σn−) we obtain

lim inf
n→∞

gn(σn−) + ǫ ≤ lim sup
n→∞

fn(σn−). (3.10)

By Lemma A.2.2 we have that lim infn→∞ gn(σn−) lies between g(σ−) and g(σ+). We have
already shown that g(σ−) < g(σ+), so in fact g(σ−) ≤ lim infn→∞ gn(σn−). Similarly, Lemma
A.2.2 gives that lim supn→∞ fn(σn−) lies between f(σ−) and f(σ+). We have already shown
that f(σ+) < f(σ−), so in fact lim supn→∞ fn(σn−) ≤ f(σ−). From these facts and (3.10) we
obtain g(σ−) + ǫ ≤ f(σ−).

By compactness and Lemma A.2.3 the sequence (fn(σn+)) has a limit point a between f(σ−)
and f(σ+). We have shown that f jumps leftwards at σ, thus f(σ+) ≤ a. Similarly, (gn(σn+))
has a limit point b between g(σ−) and g(σ+). We have shown that g jumps rightwards at σ, thus
b ≤ g(σ+). Using that fn(σn)+ǫ ≤ gn(σn+) we obtain that a+ǫ ≤ b, hence f(σ+)+ǫ ≤ g(σ+).
This completes the proof. �

4 Deterministic weaves

Recall the space Wdet introduced in (2.11). An element of Wdet is known as a deterministic
weave and is, by definition, a deterministic element of K(Π↑) that is pervasive and non-crossing.
We study deterministic weaves in this section, although some results will involve probability
within their proofs. The results in this section will feed into the proofs of our main results,
in Section 5. Our long term strategy is to establish what can be said in general about the
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internal structure of deterministic weaves, to translate this information into statements about
the geometric structure of Wdet, and finally lift such results into W .

Definition 2.4.1 defines webs and flows as, respectively, minimal and maximal elements of
the space of weaves W under �d. Recall that elements of W are formally probability measures
on K(Π). We identify Wdet with the subset of W consisting of point-mass measures. It is
not immediately clear what Definition 2.4.1 means for deterministic weaves: extremal points
of (Wdet,�) are not a priori extremal points of (W ,�d), nor vice versa We will resolve these
difficulties in Lemma 5.2.4, which shows that a random weave W is a web (resp. flow) if and
only if P [W is almost surely minimal (resp. maximal) in (Wdet,�)] = 1. The proof of Lemma
5.2.4 will rely on key results established in Section 4. Therefore, until we have proved Lemma
5.2.4 we will avoid calling any deterministic or random elements of K(Π) a ‘web’ or ‘flow’.

However, we will use the deterministic maps A 7→ webD(A) and A 7→ flow(A) defined in
(2.12) and (2.13) from this point on. The meaning of these maps on Wdet is clear, where in the
former case D ⊆ R2 is also taken to be deterministic.

4.1 Weaves and the non-crossing property

Weaves provide a structure inside of which càdlàg paths behave rather better than within arbi-
trary subsets of K(Π). We remark that if f ∈ Π↑ does not cross a weave A then it is trivial to
see that A∪ {f} is also a weave. Combining these two facts, to some extent weaves are able to
control the behaviour of paths that do not cross them. We begin to explore this idea within the
present section. We start with a key technical lemma that uses all of the defining properties of
weaves: compactness, pervasiveness and the non-crossing property. It captures what happens
when we approximate the middle of a jump with paths beginning earlier in time.

Lemma 4.1.1 Let A be a deterministic weave and let f ∈ Π↑ be a path that does not cross A.

1. Suppose f(t−) < f(t+). Then there exists h ∈ A such that h(t−) ≤ f(t−) and f ⊳ h.

2. Suppose f(t+) < f(t−). Then there exists h ∈ A such that f(t−) ≤ h(t−) and h ⊳ f .

Proof: The second statement follows from the first by considering space reflected about the
origin (and is written out in full for clarity) so we will prove only the first statement. Suppose
f(t−) < f(t+). We will now argue that it suffices to prove that

for any x ∈ (f(t−), f(t+) there exists h ∈ A such that h(t−) ≤ f(t−) and f ⊳ h. (4.1)

With (4.1) in hand, let us write h(x) for the path h generated from x, and note that compactness
of A implies the existence of a subsequential limit h(x) → h′ as x ց f(t−). As f ⊳ h(x) we have
h(x)(t−) ≤ f(t−) < f(t+) ≤ h(x)(t+), so Lemma A.2.2 ensures that h′(t−) ≤ f(t−). Lemma
3.3.10 ensures that f ⊳ h′. Thus h′ has the desired properties.

It remains to establish (4.1). Let x′ ∈ R be such that f(t−) < x < f(t+), and suppose
that f does not cross A. Let (an) ⊆ (0,∞) be such that an → 0. Let zn = (x, t − an) and by
pervasiveness let hn ∈ A(zn). By compactness of A, pass to a subsequence and assume without
loss of generality that hn → h ∈ A. By Lemma A.2.3 we have

h(t−) ∧ h(t+) ≤ x ≤ h(t−) ∨ h(t+). (4.2)

We have that f and hn ∈ A do not cross. By Lemma 3.1.3 this means that f ⊳ hn or hn ⊳ f .
We now consider two cases.
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Consider first if f ⊳ hn for infinitely many n ∈ N. Then Lemma 3.3.10 implies that f ⊳ h.
In this case f(t+) ≤ h(t+), so x < h(t+) which by (4.2) implies h(t−) ≤ x′. Hence h(t−) ≤ y,
and we have established all the required properties of h.

If the above case does not occur then there exists N ∈ N such that hn ⊳ f for all n ≥ N .
Without loss of generality we may pass to a subsequence and assume hn ⊳ f for all n ∈ N. As
σhm < t and Lt−(f) = [−∞, f(t−)), Lemma 3.1.4 implies that hn(t−) ≤ f(t−). We have also
that hn((t − an)−) ∨ hn((t − an)+) ≥ x. Clearly (t − an)± < t− for all n. Hence by Lemma
A.2.3 we have h(t−) ≥ x > f(t−) ≥ h(t+), which as f(t−) < f(t+) means that f and h cross
(by Definition 2.3.1). This is a contradiction, so in fact this case does not occur. This completes
the proof. �

Lemma 4.1.2 Let A be a deterministic weave. Let f, h ∈ Π↑ be such that A ∪ {f} is non-
crossing, and A ∪ {h} is non-crossing. Let σ = σf ∨ σh. Suppose that f(t⋆) < h(t⋆) for some
t⋆ ≥ σ+. Then for all ǫ > 0 there exists g ∈ A with σg ≤ t+ ǫ such that f ⊳ g and g ⊳ h.

Further, we may choose g such that g * f , f * g, g * h and h * g.

Proof: By the càdlàg property of f and h for any ǫ > 0 there exists t′ such that |t− t′| < ǫ/2
and f(t′+) < h(t′+). Hence we may choose ǫ > 0 chosen sufficiently small that f(s±) < h(s±)
for all s ∈ [t′, t′ + ǫ/2), with |t− t′| < ǫ/2 and t′ > σ. By the càdlàg property of f and h, choose
s ∈ (t′, t′ + ǫ) such that both f and h are continuous at s. Note that s ≤ t + ǫ. Recall that
when f is continuous at s we write f(s) = f(s±). Let x ∈ (f(s), h(s)) and by pervasiveness of
A let g ∈ A(x, s). Hence g(s−) ∧ g(s+) ≤ x ≤ g(s−) ∨ g(s+). By continuity of f at s we have
Ls−(f) = Ls+(f) = [−∞, f(s)). Note that f(s) < h(s) implies that at least one of g(s−) and
g(s+) is strictly greater than f(t⋆). By Lemma 3.1.4 we thus have f ⊳ g, and as σf < s this
means f * g and g * f . A symmetrical argument (reflect space about the origin) shows that
g ⊳ h, with g * h and h * g. �

Lemma 4.1.3 Let A ⊆ Π↑ be a deterministic weave. If B,C ⊆ Π↑ are such that A ∪ B is
non-crossing, and A ∪ C is non-crossing, then A ∪B ∪ C is non-crossing.

Proof: Note that our conditions imply that B is non-crossing, and C is non-crossing. It
suffices to prove the case where B = {f} and C = {h} are singletons, from which the general
case follows immediately. To this end, suppose that f, g ∈ Π↑ are such that A ∪ {f} is non-
crossing and A ∪ {h} is non-crossing.

We will argue by contradiction. Suppose that A ∪ {f} ∪ {h} contains a pair of paths that
cross. From our assumptions, the only possibility is that f and h cross. By Lemma 3.1.3 f and
h cross if and only if L(g) ∩R(f) 6= ∅ and L(f) ∩R(h) 6= ∅. Hence there exists t⋆, s• ∈ Rs such
that t⋆ < s•, with

Lt⋆(h) = [−∞, h(t⋆)), Rt⋆(f) = (f(t⋆),∞],

Ls•(f) = [−∞, f(s•)), Rs•(h) = (h(s•),∞],

f(t⋆) < h(t⋆) and h(s•) < f(s•). Let σ = σf ∨ σh.
Consider, first, if t⋆ ≥ σ+. In this case, Lemma 4.1.2 implies that there exists g ∈ A such

that f ⊳ g and g ⊳ h, with σg < s•. As s• ≥ σ+ this means f(s•) ≤ g(s•) ≤ h(s•), which is a
contradiction to h(s•) < f(s•).

It remains to consider the case t⋆ = σ−. In this case σf = σ or σh = σ. Without loss
of generality (or consider space reflected about the origin) let us assume that σf = σ. As
Rσ− = (f(σ−),∞] and σf = σ it follows from (3.1) that f(σ−) < f(σ+). Lemma 4.1.1 implies
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the existence of g ∈ A such that f ⊳ g and g(σ−) < f(σ+). Hence g(σ−) < h(σ−). If
σh < σ then it follows immediately by Lemma 3.1.4 that g ⊳ h. Alternatively, if σh = s then
Lt⋆(h) = [−∞, h(σ−)) so in this case too we have g ⊳ h. We now have f ⊳ g and g ⊳ h. As
s• ≥ σ+ this means f(s•) ≤ g(s•) ≤ h(s•), which is a contradiction to h(s•) < f(s•). �

Lemma 4.1.4 Let A,B be deterministic weaves and suppose that A ∪ B is non-crossing. Let
C ⊆ Πl be non-crossing. Then A ∪ C is non-crossing if and only if B ∪ C is non-crossing.

Proof: It suffices to consider the case C = {f} where f ∈ Πl, from which the general case
follows immediately. Assume that f ∈ Πl does not cross A. Let b ∈ B. By assumption b does
not cross A. By Lemma 4.1.3, we have that A ∪ {b} ∪ {f} is non-crossing, so in particular f
and b do not cross each other. Since b ∈ B was arbitrary, f does not cross B. �

In the proof of Lemma 4.1.3 we saw that Lemma 4.1.2 was a natural counterpart to Lemma
4.1.1. The underlying principle is as follows. If two paths f and g are such that f * g and g * f
then either: f(t+) 6= g(t+) for some t, or at least one of f and g has made a jump at its initial
time, in a direction away from the other. Lemma 4.1.2 applied to the former case, Lemma 4.1.1
to the latter, resulting in a path h that lay between f and g. Variations upon this theme will
feature in the proof of several future results, including the next lemma.

The following lemma is stated for paths f, h ∈ Π↑ that do not cross a weave A, but at this
stage it is perhaps best understood by considering the special case f, h ∈ Amax. Note that
for maximal paths, the condition f * h and h * f is simply the requirement that f 6= h. In
this case Lemma 4.1.5 provides a key piece of information about the geometric structure of
(Amax,⊳), namely that any two distinct points, within the total order, will always have another
point strictly in between them. This lemma will be a key tool in Section 4.3.

Lemma 4.1.5 Let A be a deterministic weave. Suppose f, h ∈ Π↑ do not cross A, with f ⊳ h,
f * h and h * f . Then there exists g ∈ Amax such that f ⊳ g and g ⊳ h, and f * g, g * f ,
g * h, h * g.

Proof: Let f, h be as given in the lemma and set σ = σf ∨ σh. By part 2 of Lemma 3.1.5 our
conditions on f and h imply that h ⋪ f . From Lemma 3.1.2 we thus have L(h) ∩R(f) 6= ∅. In
particular there exists t⋆ ≥ σ− such that Lt⋆(h) = [−∞, h(t⋆)) and Rt⋆(f) = (f(t⋆),∞] with
f(t⋆) < h(t⋆).

Consider first if t⋆ ≥ σ+. Then Lemma 4.1.2 implies the existence of g ∈ A with f ⊳ g and
g ⊳ f , also f * g, g * f , g * h and h * g. Without loss of generality we may take g ∈ Amax,
which completes the proof in this case.

It remains to consider the case t⋆ = σ−. In this case we have σ = σf or σ = σh. Without
loss of generality let us assume that σ = sf (or consider space reflected about the origin). As
Rσ−(f) is non-empty this implies that f(t−) < f(t+).

Remark 4.1.6 Let us briefly comment on the strategy for the remainder of the proof. Although
f jumps at σ, Lemma 4.1.1 is not suitable for use here because (if used to construct g) it allows
the possibility that g ⊆ f . Instead, we require a more sophisticated version of the approximation
scheme used in the proof of Lemma 4.1.1, but the path we are looking for here is not the limiting
path; rather it is some path that occurs sufficiently close to the limit. We require a path with
several different properties. To find it, we will repeatedly show that one such desired property
can fail only for finitely many n, then (without loss of generality) pass to a subsequence on
which the property holds for all n.
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As t⋆ = σ− we have f(σ−) < h(σ−), so

f(σ−) < f(σ+) ∧ h(σ−). (4.3)

Let ǫ > 0 be such that f(σ−)+ 2ǫ ≤ f(σ+)∧ h(σ−) and let (an) ⊆ (0,∞) be such that an → 0.
Let (y, sn) = (f(σ−) + ǫ, σ − an) and note that (y, sn) → (y, σ) where y = f(σ−) + ǫ. By
pervasiveness of A let gn ∈ A((y, sn)) so that

gn(sn−) ∧ gn(sn+) ≤ y ≤ gn(sn−) ∨ gn(sn+). (4.4)

Without loss of generality we may take gn ∈ Amax. By compactness of A we may pass to a
subsequence and assume that gn → g ∈ A.

Consider if f ⊆ gn for infinitely many n. For such n, noting from (4.3) that f jumps
rightwards at σ, we have gn(σ−) ≤ f(σ−). From (4.4) we have gn(sn−) ∨ gn(sn+) ≥ y =
f(σ−)+ ǫ, and sn± < σ− with sn → σ, so Lemma A.2.3 gives that g jumps leftwards at σ, from
right of f(σ−) + ǫ to left of f(ǫ). This would make f and g ∈ A cross, which is a contradiction.
Hence in fact f ⊆ gn for at most finitely many n, so we may pass to a subsequence and assume
f * gn for all n. If gn ⊆ f then we would have σgn ≥ σf , which is not the case because
σgn ≤ sn < σf . Hence we also have gn * f for all n.

Consider if gn ⊳ f for infinitely many n ∈ N. For such n, noting that we have f *
gn and gn * f , by part 2 of Lemma 3.1.5 we have f ⋪ gn. Hence, for such n, using that
Rσ−(f) = (f(σ−),∞], by Lemma 3.1.4 we must have gn(σ−) ≤ f(σ−). From (4.4) we have
y ≤ gn(sn−) ∨ gn(σn+), where sn < σ with sn → σ. By Lemma A.2.3, taking a limit along a
subsequence of such n would result in g(σ−) ≥ y > f(σ−) ≥ g(σ+), in which case f and g cross
(by jumping over each other in opposite directions at time σ). This may not occur. Hence in
fact gn ⊳ f for at most finitely many n. By Lemma 3.1.3 for all n we have f ⊳ gn or gn ⊳ f .
We may thus pass to a subsequence and assume that f ⊳ gn for all n.

We now have f ⊳ gn, f * gn and gn * f . We will move on to establishing properties of gn
with h. Here we divide into two cases, based upon whether h(σ−) ≤ h(σ+) or h(σ+) < h(σ−).

• Firstly, consider if h(σ+) < h(σ−).

Consider if h(σ−) ≤ gn(σ−) for infinitely many n. From (4.4) we have gn(sn−)∧gn(sn+) ≤
y and sn± < σ− with sn → σ, so by Lemma A.2.3 we obtain that g jumps rightwards at σ,
from left of y to right of h(s−). This means that g ∈ A crosses h, which is a contradiction.
Therefore we may pass to a subsequence and assume that gn(σ−) < h(σ−) for all n.

We have σg ≤ sn < σ and σh ≤ σ. If h ⊆ gn then, noting that h jumps leftwards at σ,
we would have hn(σ−) ≤ gn(σ−), which is a contradiction. Hence h * gn. Similarly, if
gn ⊆ h then σh ≤ σg < σ, so we would have gn(σ−) = hn(σ−), which is a contradiction,
so gn * h.

Consider if h ⊳ gn. We have already seen that h * gn and gn * h, so by part 2 of
Lemma 3.1.5 we have gn ⋪ h. We have Lσ−(h) = [−∞, h(σ−)) so Lemma 3.1.4 gives that
h(σ−) ≤ gn(σ−), which again may not occur. Hence in fact gn ⊳ h.

• Secondly, consider if h(σ−) ≤ h(σ+).

Our assumption f ⊳ h implies that f(σ•) ≤ h(s•) for all s• ≥ σ+, so from what we
have already proved (in the case t⋆ ≥ σ+) we may assume without loss of generality that
f(s•) = h(s•) for all s• ≥ σ+. Using that h(σ−) ≤ h(σ+) we must therefore have σh < σ,
as otherwise by (4.3) we would have h ⊆ f .
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By left continuity of h at σ− there exists some δ > 0 such that h(s•) ≥ h(σ−) − ǫ/2 for
all s• ∈ [σ−, (σ − δ)+]. From (4.4) for all sufficiently large n we have sn ∈ (σ − δ, s) and

gn(sn−) ∧ gn(sn+) ≤ y < h(σ−)− ǫ/2 ≤ h(sn±). (4.5)

It follows immediately that, for such n, gn * h and h * gn. For sufficiently large n we also
have sn > σh, in which case (4.5) gives gn(sn−) ∈ Lsn−(h) or gn(sn+) ∈ Lsn+(h). Hence
Lemma 3.1.4 gives gn ⊳ h. We may thus pass to a subsequence and assume that gn * h,
h * gn and gn ⊳ h for all n.

In both cases we have now shown, for all gn within the subsequence that we have passed into,
that f ⊳ gn, gn ⊳ h, and that none of f, gn, h are ⊆-comparable with each other. Therefore,
any such gn has the required properties and the proof of the present lemma is complete. �

4.2 Weaves of bi-infinite paths

In this section we establish some geometric properties of deterministic weaves that comprise
entirely of bi-infinite paths. One key result is that if A ⊆ Πl is a deterministic weave then set of
ramification points of A has zero (two dimensional) Lebesgue measure. This result will be later
extended to all deterministic weaves, in Lemma 4.4.6. Whenever we refer to Lebesgue measure
in this section, we mean two dimensional Lebesgue measure on R2

c .

Lemma 4.2.1 For each f ∈ Π, the set H(f) has zero Lebesgue measure

Proof: This lemma is almost self-evident but in view of the example of Jordan curves with
positive Lebesgue measure we will give a short proof. Since càdlàg functions have only countably
many discontinuities, the result holds for the part of H(f) corresponding to jumps of f . The
remaining part of H(f) can be shown to have zero Lebesgue measure via Fubini’s theorem. We
leave the details to the reader. �

Lemma 4.2.2 Let A ⊆ Πl be a deterministic weave and h ∈ A.

1. If h(t⋆) > −∞ for some t⋆ ∈ Rs then there exist a strictly monotone sequence (fn) with
fn ⊳ fn+1 such that fn → h.

2. If h(t⋆) < ∞ for some t⋆ ∈ Rs then there exist a strictly monotone sequence (gn) with
gn+1 ⊳ gn such that gn → h.

Proof: We will show only the existence and properties of (fn). The corresponding statements
for (gn) follow by symmetry. By Lemma 3.1.6 (A,⊳) is totally ordered. Let h ∈ A and set
L = {f ′ ∈ A ; f ′ ⊳ h, f ′ 6= h}. As h(⋆) > −∞, by the càdlàg property of h ∈ Πl there exists
some s ∈ R such that h is continuous at s and h(s) > −∞. Taking g ∈ A((h(s)/2, s)) gives
g ∈ L, so L is non-empty. By compactness of A the set L is compact, which by Lemma 3.3.10
implies that (L,⊳) contains a unique maximal element f . By Lemma 3.3.10 we have f ⊳ h.

Suppose, in preparation for an argument by contradiction, that f 6= h. Since f, h are both
bi-infinite there exists t ∈ R such that f(t+) < h(t+). By Lemma 4.1.2 and using that A ⊆ Πl,
there exists g ∈ A such that f 6= g and g 6= h. This is a contradiction to maximality of f in L.

We thus have f = h, which by definition of L implies that there exists (fn) ⊆ L such that
fn → h, with fn 6= h for all n. Without loss of generality we may choose a strictly monotone
subsequence, which completes the proof. �

30



Lemma 4.2.2 fails for general deterministic weaves, which may contain paths that are isolated
points (from the left, right or both). For example see the weave A on the right hand side of
Figure 2.5.1. We will shortly show, as a consequence of Lemma 4.2.4, that if a deterministic
weave consists entirely of bi-infinite paths then it does not contain any isolated points.

Lemma 4.2.3 Let A ⊆ Πl be a deterministic weave. The order topology induced on A by the
total order ⊳ coincides with its topology as a subspace of Π.

Proof: By Lemma 3.1.6, (A,⊳) is totally ordered. Recall that the order topology on A is
generated by the open rays

Rf = {g ∈ A ; g ⊳ f and f 6= g},

R′
f = {g ∈ A ; f ⊳ g and f 6= g}

where f ∈ A. We will show that Rf is open in the M1 topology on A. The same result follows
for R′

f by a symmetrical argument. Note that if f is the bi-infinite path with constant value
at −∞ then Rf = ∅ and R′

f = A \ {f}, which are automatically open. Similar considerations
apply to if f is the bi-infinite path with constant value ∞. We may therefore restrict to f ∈ A
such that f(t⋆) > −∞ for some t⋆ ∈ Rs.

By Lemma 3.1.6 A is totally ordered, from which it follows that A \ Rg = {f ∈ A ; g ⊳ f}.
By Lemma 3.3.10 this is a closed subset of A in the M1 topology, thus Rg is an open subset of
A in the M1 topology. It follows that any subset of A that is open in the order topology is also
open in the M1 topology, and it remains to prove the converse.

It suffices to show that if B ⊆ A is closed in the M1 topology, then it is also closed in the

order topology. Let us write
M1
→ for convergence in the M1 topology and

⊳
→ for convergence in

the order topology. Let B ⊆ A be closed in the M1 topology i.e. if fn ∈ B and fn
M1
→ f ∈ A

then f ∈ B. Suppose that hn ∈ B and hn
⊳
→ h ∈ A. By Lemma 4.2.2 there exists fn, gn ∈ A

such that fn ⊳ fn+1, gn+1 ⊳ gn for all n, and fn
M1
→ h, gn

M1
→ h as n → ∞. For each m ∈ N the

set
Om = {h′ ∈ A ; fm ⊳ h′, h′ ⊳ gm, fm 6= h′, h′ 6= gm}

is an open interval in the order topology, hence there exists Nm ∈ N such that for all n ≥ Nm

we have hn ∈ ONm . Without loss of generality we may assume Nm → ∞ as m → ∞. We thus
have that for all n ≥ Nm

fm ⊳ hn and hn ⊳ gm. (4.6)

Let h′ be any limit point of (hn) in the M1 topology, thus h′ ∈ Πl Letting m → ∞ in (4.6),
by Lemma 3.3.10 we obtain h ⊳ h′ and h′ ⊳ h. Since both are bi-infinite, we have h = h′. It

follows that hn
M1
→ h, which (since B is closed in the M1 topology) shows that h ∈ B, and thus

completes the proof. �

Lemma 4.2.4 Let A ⊆ Πl be a deterministic weave. There exists an order preserving homeo-
morphism φ between the totally ordered spaces (A,⊳) and ([0, 1],≤).

Proof: Note that the result of Lemma 4.2.3 is implicit in the statement of the present lemma.
Throughout the proof we will use the result of Lemma 3.1.6, that (A,⊳) is totally ordered. For
f ∈ Πl we define

H−(f) = {(x, t) ; t ∈ x < f(t−) ∧ f(t+)},

H+(f) = {(x, t) ; t ∈ x > f(t−) ∨ f(t+)}.
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Note that R × R = H−(f) ∪H(f) ∪H+(f) and that this union is disjoint. Recall that dR2
c
is

a metric that generates the topology on R2
c and recall that for A ⊂ R2

c the open ǫ-expansion
of A is given by A(ǫ) = {z ∈ R2

c : distR2
c
(z,A) < ǫ}, where dist(z,A) = infa∈A dR2

c
(z, a). Let µ

be a measure on R2
c that is absolutely continuous with respect to Lebesgue measure, with full

support. Let φ(f) = µ(H−(f)).
It is immediate that φ is non-decreasing and that φ(f−∞) = 0, φ(f∞) = 1 where f±∞ are the

constant paths at ±∞ (it is trivial to check that f±∞ ∈ A). We next show that φ is continuous.
Assume that fn, f ∈ A and that fn → f . From our remarks above Proposition 2.2.1 we have
H(fn) → H(f) in the Hausdorff metric induced by d. Hence, for each ǫ > 0, for sufficiently
large n we have both H−(fn) ⊆ H−(f)(ǫ) and H+(fn) ⊆ H+(f)(ǫ). Thus

lim sup
n→∞

µ
(
H−(fn)

)
≤ µ

(
H−(f)(ǫ)

)
and lim sup

n→∞
µ
(
H+(fn)

)
≤ µ

(
H+(f)(ǫ)

)
.

Letting ǫ ↓ 0 and using the fact that φµ(π) = µ
(
H−(π)

)
= 1 − µ

(
H+(π)

)
by Lemma 4.2.1, we

see that φµ(πn) → φµ(π) as n → ∞.
Our next goal is to show that φµ is a bijection. From what we have already proved, φ is

surjective and non-decreasing, so it suffices to prove that if f ⊳ g with f 6= g then φ(f) < φ(g). If
f ⊳ g are not equal then, since both are bi-infinite, there exists t ∈ R such that f(t+) < g(t+),
from which it follows by right continuity that the set O = {(x, s) ; f(t+) < x < g(t+)} has
non-empty interior, and thus positive Lebesgue measure. Since O ⊆ H−(g) \ H−(f) and µ is
absolutely continuous with Lebesgue measure, we have φ(f) < φ(g), as required.

We have now shown that φ is a continuous bijection from the compact space A to (the
Hausdorff topological space) [0, 1], which implies that φ is a homeomorphism. The fact that φ
is non-decreasing and bijective implies that φ is order preserving. �

Lemma 4.2.5 The function (A, z) → ✶{z is ramified in A} is measurable from K(Π) × R2
c →

{0, 1}. Moreover, for any deterministic weave A ⊆ Πl the set of ramification points of A has
zero Lebesgue measure.

Proof: Let A = {B ∈ K(Π) ; ∃f ∈ A with B ⊆ {f}↑} and let ram(A) ⊆ R2
c denote the

set of ramification points of A. Note that z ∈ R2
c is non-ramified if and only if A(z) ∈ A .

It is straightforward to check that A ⊆ K(Π) is closed, as a consequence of Lemma A.2.2.
From Lemma A.3.1 the map (A, z) 7→ A(z) from K(Π) × R2

c → K(Π) is measurable. We have
✶{z ∈ ram(A)} = ✶{A(z) ∈ A }, hence that the map (A, z) 7→ ✶{z ∈ ram(A)} is measurable.
It follows immediately that ram(A) is a measurable subset of R2

c , for any A ∈ Wdet.
It remains to show that the measure of ram(A) is zero. Take φ : A → [0, 1] as in the

statement of Lemma 4.2.4, and let z ∈ R × Rs. By Lemma A.2.2 the set A(z) is closed. By
definition of ⊳ (and the fact that A ⊆ Πl) we have that A(z) is an interval of the totally ordered
space (A,⊳). Thus A(z) is a closed interval of (A,⊳) and φ(A(z)) is a closed interval of [0, 1].

Let U be uniformly distributed on [0, 1]. Note that z ∈ R2
c is ramified if and only if the closed

interval A(z) is more than just a single point, which occurs if and only if P[U ∈ φ(A(z))] > 0.
Let µ be a measure on R2

c that is absolutely continuous with respect to Lebesgue measure. Let Z
be a random variable with law µ, independently of U . By Lemma A.3.1 A(Z) is a K(Π) valued
random variable. Then P[U ∈ φ(A(Z))] = P[φ−1(U) ∈ A(Z)] is the probability that the random
path φ−1(U) passes through the random point Z. Recalling that µ is absolutely continuous with
respect to Lebesgue measure, by Lemma 4.2.1 this probability is zero. Thus Z is almost surely
not ramified, which implies that the set of ramification points has zero Lebesgue measure. �

Lemma 4.2.6 Let A ⊆ Πl be a deterministic weave. If h ∈ Πl does not cross A then h ∈ A.
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Proof: We will argue by contradiction. Suppose that h ∈ Πl does not cross A and that
h /∈ A. Since A is closed, this means that h is an isolated point of A ∪ {h}. Since h does not
cross A it is straightfoward to check that A∪ {h} is a deterministic weave. Thus, from Lemma
4.2.4 we have that A∪ {h} does not contain any isolated points. This is a contradiction, which
completes the proof. �

Remark 4.2.7 By Lemma 4.2.6 a deterministic weave A ⊆ Πl always contains a constant path
at spatial location −∞, similarly at +∞. These are the minimal and maximal elements of
(A,⊳).

Lemma 4.2.8 Let A ⊆ Πl be a deterministic weave. If D ⊆ R2 is dense then A = A(D).

Proof: It is immediate that A(D) ⊆ A. Thus A(D) is compact. Since D is dense, it is easily
seen from Lemma A.2.2 that A(D) is pervasive, and since A(D) ⊆ A it is also non-crossing.
Hence A(D) is a deterministic weave. If h ∈ A then since A(D) ⊆ A we have that h does not
cross A(D). Hence by Lemma 4.2.6 we have h ∈ A(D). Thus A = A(D). �

4.3 Extensions of paths in weaves

Our results on weaves rely fundamentally on the fact that, within a weave, half-infinite paths
may be extended into bi-infinite paths, without inducing crossing. We also require that such
extensions preserve compactness; this point will be addressed later on in Lemma 4.4.2. As one
might expect, bi-infinite extensions of paths are closely related to maximal paths under the
partial order ⊆ of path extension. From Lemma 3.1.6, if A is a weave then (Amax,⊳) is totally
ordered. It is tempting to hope that bi-infinite extensions of paths could be constructed via
taking a suitable limit of paths in A, but in general this is not possible because deterministic
weaves are closed sets. A more delicate operation is required.

Definition 4.3.1 Let A be a deterministic weave. We say that a subsetX ⊆ Amax is a Dedekind
cut of Amax if (i) whenever f, g ∈ Amax with f ⊳ g and g ∈ X we have f ∈ X and (ii) X has no
maximal element.

Let us outline the main results within this section. Recall that flow(A) denotes the set of
bi-infinite càdlàg paths that do not cross A. Dedekind cuts are best known as part of Dedekind’s
construction of R from Q. A related situation presents itself here, in which Amax plays the role
of Q and flow(A) plays the role of R. Specifically: in Lemma 4.3.2 we show that if h ∈ Π↑ does
not cross A then the paths of Amax that lie strictly to the left of h are a Dedekind cut of Amax.
In Theorem 4.3.9, which will be proved across several lemmas, we show that Dedekind cuts of
Amax are in bijective correspondence with bi-infinite paths that do not cross A. Thus, each
f ∈ Π↑ gives rise to a Dedekind cut, which in turn gives rise to a bi-infinite path h, extending
f without crossing A.

Lemma 4.3.2 Let A be a deterministic weave and let h ∈ Π↑ be a path that does not cross A.
Then

Xh = {f ∈ Amax ; f ⊳ h, f * h, h * f} (4.7)

is a Dedekind cut of Amax. If h, h′ ∈ Π↑ do not cross A, and are such that h * h′ and h′ * h,
then Xh 6= Xh′.
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Proof: Let us first check that Xh is a Dedekind cut of Amax. We must check that Xh satisfies
conditions (i) and (ii) of Definition 4.3.1. For (i), suppose that f ∈ X and g ∈ Amax with g ⊳ f .
We have f ⊳ h. Lemma 3.1.6 (which includes that ⊳ is transitive) gives that g ⊳ h, as required.
For (ii), let f ∈ Xh. Lemma 4.1.5 implies that there exists g ∈ Amax, such that f * g, g * h,
g * h,h * g, with f ⊳ g and g ⊳ h. As f, g, h ∈ Amax this implies that f, g, h are all distinct.
Thus f is not a maximal element of X, as required.

It remains to check that Xh 6= Xh′ whenever h, h′ ∈ Π↑ do not cross A and satisfy h * h′

and h′ * h. Noting that both h and h′ do not cross A, by Lemma 4.1.3 h and h′ also do not
cross each other. Lemma 3.1.3 gives that h ⊳ h′ or h′ ⊳ h. Without loss of generality suppose
that h ⊳ h′. Then by Lemma 4.1.5 there exists g ∈ Amax such that g * h, h * g, g * h′, h′ * g
with h ⊳ g and g ⊳ h′. It follows that g ∈ Xh and g /∈ Xh′ , as required. �

We now consider the inverse map to (4.7), in that we seek to reconstruct a bi-infinite path
from its corresponding Dedekind cut. This part is rather technical and will involve the topology
introduced in Section 2.1 on Rs. which we invite the reader to recall at this point. In particular
recall from Lemma 2.1.1 that tn⋆n → t+ if and if and only if tn → t and tn⋆n ≥ t+ for all
sufficiently large n; similarly tn⋆n → t− if and if and only if tn → t and tn⋆n ≤ t− for all
sufficiently large n.

If A is a weave and X is a Dedekind cut of Amax then we set

L (X) =
⋃

f∈X

L(f) (4.8)

where L(f) is defined in (3.1). Note that L (X) is a subset of R×Rs, which we equip with the
product topology. Recall also that Lt⋆(f) = {x ∈ R ; (x, t⋆) ∈ L (X)} which, according to (3.1)
is either empty or equal to [−∞, f(t⋆)). Roughly, our strategy is to show that the right-hand
boundary of L (X) is the graph (in space-time R × Rs) of a càdlàg path. With this in mind,
given a Dedekind cut X of Amax let PX : Rs → R be given by

PX(t⋆) = sup
{
x ∈ R ; (x, t⋆) ∈ L (X)

}
. (4.9)

Taking the closure of L (X) in (4.9) is crucial, because being a càdlàg path corresponds to being
a continuous function on Rs, and being a continuous function corresponds to having a closed
graph.

Lemma 4.3.3 Let A be a deterministic weave and let X be a Dedekind cut of Amax. If (y, t⋆) ∈
L (X) and x ≤ y then (x, t⋆) ∈ L (X).

Proof: Let (y, t⋆) ∈ L (X) and x < y By (4.8) there exists fn ∈ X and (yn, tn⋆n) ∈ R × Rs

such that (yn, tn⋆n) → y and yn ∈ Ltn⋆n(fn). Thus x ≤ yn for all sufficiently large n ∈ N. For
such n we have xn ∈ Ltn⋆n(fn), which implies (xn, tn⋆n) ∈ L (X), hence (x, t⋆) ∈ L (X). �

Lemma 4.3.4 Let A be a deterministic weave and let X be a Dedekind cut of Amax. The
following hold:

1. Let f ∈ X and g ∈ Amax \X. Then f ⊳ g.

2. Suppose that (x, t⋆) ∈ (R × Rs) \ L (X). Then for all ǫ > 0 there exists t′ ∈ R and
g ∈ Amax \X such that |t− t′| ≤ ǫ and g ∈ A((x, t′)).
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Proof: For the first part, take f ∈ X and g ∈ Amax \ X. Note that f, g ∈ A so f and g
may not cross, which by Lemma 3.1.3 implies that f ⊳ g or g ⊳ f . If f ⊆ g or g ⊆ f then by
maximality f = g, in which case f ⊳ g. Alternatively, if both f * g and g * f then g ⊳ f
would imply g ∈ X, because X is a Dedekind cut; so we must have f ⊳ g. Thus, in all cases we
have f ⊳ g.

Let us now consider the second claim. First consider the case t⋆ = t+. Let ǫ > 0. As
(x, t+) /∈ L (X) there exists ǫ0 > 0 such that

(
[x− ǫ0, x+ ǫ0]× [t+, (t+ ǫ0)+]

)
∩ L (X) = ∅. (4.10)

Without loss of generality, assume ǫ ∈ (0, ǫ0). By pervasiveness of A there exists g ∈ A((x, t′))
where t′ = t+ ǫ/2. Without loss of generality we may take g ∈ Amax. It is clear that |t− t′| ≤ ǫ.

Consider if g ∈ X. Note that we have g(t′+) ∨ g(t′−) ≥ x. If g(t′+) ≥ x then [−∞, x) ⊆
Lg(t

′+) which would imply (x, t′+) ∈ L(g) ⊆ L (X), contradicting (4.10), so this may not
happen. The remaining case is that g(t′+) < x ≤ g(t′−), in which case [−∞, x) ⊆ Lt′−(g),
implying that (x, t′) ∈ L(g) ⊆ L (X), contradicting (4.10), so this may not happen either. We
conclude that g /∈ X. This completes the proof of the case t⋆ = t+. The case t = t− is similar,
using in place of (4.10) that for some ǫ0 > 0 we have [x− ǫ0, x+ ǫ0]× [(t− ǫ0)−, t−]∩L (X) = ∅.
�

Lemma 4.3.5 Let A be a deterministic weave and let X be a Dedekind cut of Amax. Then PX

is a bi-infinite càdlàg path.

Proof: Let us write h = PX for the duration of this proof. We must show that h is a
continuous map from Rs to R. By the closed graph theorem, the function h : Rs → R is
continuous if and only if its graph H = {(h(t⋆), t⋆) ; t⋆ ∈ Rs} is a closed subset of R × Rs.
Let tn⋆n → t⋆ in Rs. By compactness of R the sequence (h(tn⋆n), tn⋆n) is relatively compact.
Let (x, t⋆) be a limit point of this sequence, and (with slight abuse of notation) let us pass
to a subsequence such that h(tn⋆n) → x. To establish the present lemma we must show that
x = h(t⋆).

By (4.9), for each n ∈ N there exists a sequence (xn,m, tn,m⋆n,m)m∈N ⊆ L (X) such that
(xn,m, tn,m⋆n,m) → (h(tn⋆n), tn⋆n) as m → ∞. By a diagonal argument there exists a strictly
increasing function m : N → N such that (xn,m(n), tn,m(n)⋆n,m(n)) → (x, t⋆). Hence (x, t⋆) ∈

L (X), which implies that x ≤ h(t⋆). If h(t⋆) = −∞ then we now have x = h(t⋆), so in what
follows we may assume that −∞ < h(t⋆).

We will now argue by contradiction: suppose that x < h(t⋆). Let ǫ > 0 be such that
x+ 3ǫ ≤ h(t⋆), and note that x+ ǫ < h(t⋆)− ǫ. We consider the cases t⋆ = t+ and t⋆ = t− in
turn.

Suppose, first, that t⋆ = t+. Let us briefly outline the strategy. We will construct a sequence
of fn ∈ X that come close to the space-time point (h(t+), t+), and a sequence of gn ∈ Amax \X
that come close to (h(tn⋆n), tn⋆n) ≈ (x, t+). Note that x < h(t+), whilst Lemma 4.3.4 gives
fj ⊳ gk for all j, k ∈ N. This combination causes (fn) and (gn) to become tangled up in each
other, so much so that their limit points f, g ∈ A will cross, by jumping over each other in
opposite directions at time t, resulting in a contradiction. We now proceed with the proof.

By Lemma 2.1.1, the fact that tn⋆n → t+ implies that for sufficiently large n we must have
tn⋆n ≥ t+. As h(tn⋆n) → x < h(t+), in fact for sufficiently large n we have tn⋆n > t+, and
also h(tn⋆n) ≤ x+ ǫ. Without loss of generality we pass to a subsequence and assume that both
these properties hold for all n.
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By (4.9) there exists (yn, sn•n)n∈N ⊆ L (X) such that (yn, sn•n) → (h(t+), t+). The fact
that sn•n → t+ implies that for sufficiently large n we must have sn•n ≥ t+, and for sufficiently
large n we also have yn ≥ h(t⋆)− ǫ. so without loss of generality we pass to a subsequence and
assume that both these properties hold for all n.

Consider if
h(t+) = sup{x ; (x, t+) ∈ L (X)}. (4.11)

In this case there exists f ∈ X such that Lt+(f) = [−∞, f(t+)) and 0 < h(t+)− f(t+) ≤ ǫ, so
f(t+) ≥ x+2ǫ. Right continuity (i.e. forwards in time) of f thus implies h(tn⋆n) ≥ x+ ǫ for all
sufficiently large n, which contradicts the fact that h(tn⋆n) → x. So this case may not occur.

Therefore, h(t+) 6= sup{x ; (x, t+) ∈ L (X)}, which implies that for sufficiently large n we
have sn•n 6= t+ (because (yn, sn•n) → (h(t+), t+) and (yn, sn•n) ∈ L (X)). We have already
seen that sn•n ≥ t+, so without loss of generality we pass to a subsequence and assume that
sn•n > t+ for all n.

As (yn, sn•n) ∈ L (X) there exists fn ∈ X such that (yn, sn•n) ∈ L(fn). Hence fn(sn•n) ≥
yn ≥ h(t⋆) − ǫ. By compactness of A, without loss of generality we pass to a subsequence and
assume that fn → f ∈ A.

Let xn = h(tn⋆n)+2−n. As h(tn⋆n) → x, without loss of generality we pass to a subsequence
and assume that xn ≤ x + ǫ for all n. Lemma 4.3.3 gives that (xn, tn⋆n) /∈ L (X). Thus, by
the second part of Lemma 4.3.4, for each n ∈ N there exists t′n ∈ Rs and gn ∈ Amax \ X such
that |tn − t′n| ≤ 2−n, t′n⋆n > t+ and gn ∈ A((xn, t

′
n)). By compactness of A, without loss of

generality we pass to a subsequence and assume that gn → g ∈ A. By the first part of Lemma
4.3.4 we have fi ⊳ gj for all i, j ∈ N.

We have that t′n⋆n and sn•n are both strictly greater than t+, and both tend to t+ as n → ∞.
Consequently, passing to further subsequences, there exists a strictly increasing function n 7→ n′

such that
sn+1•n+1 < t′n′⋆n′ < sn•n (4.12)

for all n.
We now examine the sequence (gn) as n → ∞. We will show that

gn′(t′n′−) ∨ gn′(t′n′+) ≤ xn′ ≤ x+ ǫ, (4.13)

gn′(sn•n) ≥ yn ≥ h(t⋆)− ǫ. (4.14)

Equation (4.13) follows because gn′ ∈ A((xn′ , t′n′)). To see equation (4.14): we have that fn ⊳ gn′

and that [−∞, yn) ⊆ Lsn•n(fn). Lemma 3.1.2 implies L(fn) ∩ R(gn′) = ∅, and σgn′ < sn•n so
we must have gn′(sn•n) ≥ yn.

From Lemma A.2.2, combined with (4.12), (4.13) and (4.14) we obtain that the limit g makes
a rightwards jump at time t, from below x+ ǫ at time t− to above h(t⋆)− ǫ at time t+.

We now turn our attention to (fn), in similar style. Here, we show that

fn+1(sn+1•n+1) ≥ yn+1 ≥ h(t⋆)− ǫ (4.15)

fn+1(t
′
n′−) ∧ fn+1(t

′
n′+) ≤ xn ≤ x+ ǫ (4.16)

Equation (4.15) follows from the fact that (yn, sn•n) ∈ L(fn). To see equation (4.16): we
have that fn+1 ⊳ gn′ . If gn′(t′n′+) ≤ gn′(t′n′−) then we have fn+1(t

′
n′+) ≤ gn′(t′n′+) ≤ xn.

Alternatively, if gn′(t′n′−) < gn′(t′n′+) then we have [−∞, xn) ⊆ Rt′
n′−

(gn′), and Lemma 3.1.2

gives L(fn+1) ∩R(gn′) = ∅, which implies fn+1(t
′
n′−) ≤ xn. In both cases we have (4.16).

From Lemma A.2.2 combined with (4.12), (4.15) and (4.16) we obtain that the limit f makes
a leftwards jump at time t, from above h(t⋆) − ǫ at time t− to below x + ǫ at time t+. Thus

36



f and g cross (by jumping in opposite directions over each other at time t). As both f, g ∈ A,
this is a contradiction. This completes the proof of the case t⋆ = t+.

It remains to consider the case t⋆ = t−. The argument is essentially the same, except that
Lemma 2.1.1 requires that we now approach t− from the left (i.e. from backwards in time) rather
than t+ from the right. In outline: construct a sequence of fn ∈ X that come close to the space-
time point (h(t−), t−), and a sequence of gn ∈ Amax that come close to (h(tn⋆n), tn⋆n) ≈ (x, t−).
Note that x < h(t−), whilst Lemma 4.3.4 gives fj ⊳ gk for all j, k ∈ N. This combination causes
(fn) and (gn) to become entangled with each other, so that once again their limit points f, g ∈ A
will cross – resulting in a contradiction.

There is one point at which a difference worthy of comment emerges. This concerns (4.11).
If h(t−) = sup{x ; (x, t−) ∈ L (X)} then there exists f ∈ X such that Lt−(f) = [−∞, f(t−))
and 0 < h(t−)− f(t−) ≤ ǫ.

• If σf < t then a similar argument to that in the same paragraph as (4.11) applies, using
left continuity of f instead of right continuity; this reaches a contradiction.

• If σf = t then we require a new step within the argument, one that features only here
because of the ‘extra’ behaviour of Lt⋆(f) when t⋆ = σf−, see (3.1). In particular, for
t = σf the fact that Lt−(f) = [−∞, f(t−)) implies that f(t+) < f(t−). We then proceed
as before to construct g ∈ A such that g(t−) ≤ x+ ǫ and g(t+) ≥ h(t−)− ǫ. Thus f and
g cross, reaching a contradiction.

If h(t−) 6= {x ; (x, t−) ∈ L (X)} then we can (and moreover can only) approximate (h(t−), t−) ∈
L (X) using space-time points in L (X) with times strictly less than t−. In this case we may
proceed as before. This completes the proof. �

Lemma 4.3.6 Let A be a deterministic weave and let X be a Dedekind cut of Amax. Then PX

does not cross A. Moreover, if f ∈ X then f ⊳ PX , and if g ∈ Amax \X then PX ⊳ g.

Proof: Let us write h = PX for the duration of this proof. From Lemma 4.3.5 we have
h ∈ Πl. Note that h crosses A if and only if h crosses Amax. We will show, in turn, that (a)
f ∈ X ⇒ f ⊳ h and (b) g ∈ Amax \X ⇒ h ⊳ g. With this in hand it follows from Lemma 3.1.3
that h does not cross Amax, thus h does not cross A.

We begin with (a). Let f ∈ X and t⋆ ≥ σf−. If Lt⋆(f) = [−∞, f(t⋆)) then (f(t⋆), t⋆) ∈
L (X) and hence f(t⋆) ≤ h(t⋆), which implies Lt⋆(f) ∩Rt⋆(h) = ∅. Alternatively, if Lt⋆(f) = ∅
then it is immediate that Lt⋆(f) ∩ Rt⋆(h) = ∅. Hence L(f) ∩ R(g) = ∅, which by Lemma 3.1.4
implies that f ⊳ h.

We now move on to (b). Let g ∈ Amax \X. We will argue by contradiction. Suppose that
h ⋪ g. Then by Lemma 3.1.2 we have L(h) ∩ R(g) 6= ∅. In particular, for some t⋆ ≥ σg− we
have Lt⋆(h) = [−∞, h(t⋆)) and Rt⋆(g) = (g(t⋆),∞] with g(t⋆) < h(t⋆).

Consider first if t⋆ ≥ σg+. Then, using the càdlàg property of g and h there exists ǫ > 0 an
interval [a+, b−] with a < b such that

g(s•) + ǫ ≤ h(σ•) (4.17)

for all s• ∈ [a−, b+] (to see this: if ⋆ = + take a = t, if ⋆ = − take b = t). Let us briefly
note our strategy here: we will use (4.17) to show that g lies to the left of some path in X.
Fix some s• ∈ Rs with a+ < s• < b−. By (4.9) there exists (yn, sn•n) ∈ L (X) such that
(yn, sn•n) → (h(s•), s•) as n → ∞. For all sufficiently large n ∈ N we have

h(s•)− ǫ/2 ≤ yn and a− ≤ sn•n ≤ b+ . (4.18)
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By Lemma 4.3.5 we have h(sn•n) → h(s•), so for all sufficiently large n we also have

|h(s•)− h(sn•n)| ≤ ǫ/2. (4.19)

Fix n ∈ N large enough that (4.18) and (4.19) both hold. By (4.8) there exists fn ∈ X such that
(yn, sn•n) ∈ Lsn•n(f), which means that yn < f(sn•n). Combining this inequality with (4.17),
(4.18) and (4.19) we obtain that

g(sn•n) ≤ h(sn•n)− ǫ ≤ h(s•)− ǫ/2 ≤ yn < fn(sn•n).

Hence g(sn•n) ∈ Lsn•n(f), which by Lemma 3.1.4 means that g ⊳ fn. As X is a Dedekind cut
and fn ∈ X, we thus have g ∈ X, which is a contradiction.

It remains to consider the case t⋆ = σg−. In this case by (3.1) we have Rσ−(g) = (g(σ−),∞]
and g(σ−) < g(σ+). We have also that g(σ−) < h(σ−). By (4.9) there exists (yn, sn•n) ∈ L (X)
such that (yn, sn•n) → (h(σ−), σ−), and fn ∈ X such that yn ∈ Lsn•n(f) = [−∞, fn(sn•n)).
By compactness of A we may pass to a subsequence and assume that fn → f ∈ A. Without
loss of generality we may assume that sn•n ≤ s−, so σfn ≤ σg.

Suppose that fn(σ−) ≥ g(σ−): then fn(σ−) ∈ Rσ−(g) which, by Lemma 3.1.4 would give
g ⊳ fn, and as X is a Dedekind cut this would give g ∈ X, which is false. Hence in fact
fn(σ−) < g(σ−). We now have sn•n ≤ σ− with σn•n → σ−, along with fn(sn•n) ≥ yn and
fn(σ−) ≤ g(σ−). By Lemma A.2.3, this implies that f jumps leftwards at σ, from right of
h(σ−) to left of g(σ−). This implies that g and f cross, by jumping over each other in opposite
directions as σ, which is a contradiction as both f, g ∈ A. This completes the proof. �

Lemma 4.3.7 Let A be a deterministic weave and suppose that h ∈ Πl does not cross A. Define
X = Xh according to (4.7). Then PX = h.

Proof: Let us write h′ = PX for the duration of this proof. We must show that h = h′. We
will argue by contradiction. Noting that h is bi-infinite, if h 6= h′ then there exist t+ ∈ Rs such
that h(t+) 6= h′(t+). Without loss of generality (or consider space reflected about the origin)
we may assume that h(t+) < h′(t+). Thus h ⊳ h′. By Lemma 4.1.2, again using that h and h′

are bi-infinite, there exists g ∈ A such that h ⊳ g and g ⊳ h′ with g * h and g * h′. Without
loss of generality we may take g ∈ Amax. Hence either g ∈ X or g ∈ Amax \ X. We consider
these two cases separately.

If g ∈ X then, recalling that X = {f ∈ Amax ; f ⊳ h and f * h}, we have g ⊳ h. From
Lemma 3.1.3, noting that h is bi-infinite, we thus obtain g ⊆ h, which is a contradiction. If
g ∈ Amax \ X then by Lemma 4.3.6 we have h′ ⊳ g. From Lemma 3.1.3, noting that h′ is
bi-infinite, we thus obtain g ⊆ h′, which is a contradiction. Having reached a contradiction in
both cases, we conclude that in fact h = h′. �

Lemma 4.3.8 Let A be a deterministic weave and let X be a Dedekind cut of Amax. There
exists h ∈ Πl such that X = Xh, where Xh is given by (4.7).

Proof: Let us write h = PX for the duration of this proof. By Lemma 4.3.5 we have h ∈ Πl.
Define Xh as in (4.7), that is Xh = {f ∈ Amax ; f ≤ h and f * h}. Note that since h ∈ Πl we
may discard the condition h * f , because if h ⊆ f then f = h and thus also f ⊆ h. We must
show that X = Xh.

Let f ∈ X. Lemma 4.3.6 gives that f ⊳ h. Moreover Lemma 4.3.6 gives that g ⊳ h for all
g ∈ X. Thus, if f ⊆ h then we would also have g ⊳ f for all g ∈ X, which would make f a
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maximal element of X; this a contradiction as X is a Dedekind cut. Hence f * h. We thus have
X ⊆ Xh. We now move on to the reverse inclusion.

Let f ∈ Xh, so we have f ∈ Amax, f ⊳ h and f * h. If f /∈ X then Lemma 4.3.6 gives that
h ⊳ f , from which part 2 of Lemma 3.1.5 implies that f ⊆ h or h ⊆ f ; this is a contradiction.
Hence Xh ⊆ X, so X = Xh as required. �

Theorem 4.3.9 Let A be a deterministic weave. Let X denote the set of Dedekind cuts of
Amax.

1. The map h 7→ Xh given by (4.7) is a bijection between flow(A) and X . The inverse map
X 7→ PX is given by (4.9).

2. For any f ∈ Π↑ that does not cross A, there exists h ∈ flow(A) such that f ⊆ h.

Proof: Recall from (2.13) that by definition flow(A) = {h ∈ Πl ; h does not cross A}. Lemma
4.3.2 gives that the range of the map h 7→ Xh (with domain flow(A)) is within X and that this
map is injective. Lemma 4.3.8 gives that h 7→ Xh has range X . Lemmas 4.3.5 and 4.3.6 ensure
that the range of the map X 7→ PX (with domain X ) is within flow(A), so Lemma 4.3.7 gives
that h 7→ Xh and X 7→ PX are inverses of each other, between flow(A) and X . This establishes
the first claim of the present theorem.

To see the second claim, let f ∈ Π↑ and suppose that f does not cross A. By Lemma 4.3.2
we have Xf ∈ X , from which part 1 of the present theorem gives that h = PXf

∈ flow(A) does
not cross A. It remains to show that f ⊆ h. We will argue by contradiction.

Suppose that f * h, which as h ∈ Πl implies that h * f . We have that A ∪ {f} is
non-crossing and that A ∪ {h} is non-crossing. It follows by Lemma 4.1.3 that A ∪ {f, h} is
non-crossing, so in particular f does not cross h. By Lemma 3.1.3 we have f ⊳ h or h ⊳ f . We
treat these two cases in turn.

Consider, first, if f ⊳ h. Then Lemma 4.1.5 gives g ∈ Amax such that f ⊳ g, g ⊳ h, with
f, g, h all incomparable under ⊆. Hence g ∈ Amax \Xf , which by Lemma 4.3.6 gives h ⊳ g. By
Lemma 3.1.6 we thus have g ⊆ h or h ⊆ g, which is a contradiction.

The argument when h ⊳ f is similar. Now Lemma 4.1.5 gives g ∈ Amax such that h ⊳ g,
g ⊳ f with f, g, h all incomparable under ⊆. Hence g ∈ Xf , which by Lemma 4.3.6 gives g ⊳ h,
and Lemma 3.1.6 again arrives at a contradiction. This completes the proof. �

4.4 The flow map

In this section we establish further properties of the flow operation defined in (2.13), including
Lemma 4.4.3 which shows thatA 7→ flow(A) is continuous on Wdet. Another key result, contained
within Lemma 4.4.1, is that the path extension of Theorem 4.3.9 preserves compactness. Here,
for the first time, we see interaction between all the main concepts of the present article: relative
compactness in K(Π↑), path extension, and the pervasiveness and non-crossing properties of
weaves.

Lemma 4.4.1 Let A ⊆ K(Π↑) be a relatively compact subset of K(Π↑), where each A ∈ A is a
deterministic weave. Suppose that any limit point of A is non-crossing. Then {flow(A) ; A ∈ A }
is a relatively compact subset of K(Πl).

Proof: As Πl is a closed subset of Π↑, also K(Πl) is a closed subset of K(Π↑). It therefore
suffices to consider relative compactness in K(Π↑). By Lemma A.1.1 the set {flow(A) ; A ∈ A }
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is a relatively compact subset of K(Π↑) if and only if F =
⋃

A∈A
flow(A) is a relatively compact

subset of Π↑. We will argue by contradiction.
Suppose that F is not relatively compact. Then, by Proposition A.2.1 there exists T, κ > 0

and sequences (δn) ⊆ (0, 1), (fn) ⊆ F such that δn ց 0 and wT,δn(fn) ≥ κ. For convenience,
recall from (A.2) that

wT,δ(f) = sup
{
dR
(
f(t2⋆2), [f(t1⋆1), f(t3⋆3)]

)
; t1⋆1, t2⋆2, t3⋆3 ∈ Is(f),

− T < t1 < t2 < t3 < T, t3 − t1 < δ
}
.

So, we have tni ⋆
n
i ∈ Is(fn) such that −T < tn1 < tn2 < tn3 < T and tn3 − tn1 < δ, with

dR (fn(t
n
2⋆

n
2 ), [fn(t

n
1⋆

n
1 ), f(t

n
3⋆

n
3 )]) ≥ κ. (4.20)

By the càdlàg property of the bi-infinite path fn, we may assume without loss of generality
(reducing κ > 0 if necessary) that fn is continuous at tni ⋆

n
i for i = 1, 2, 3. Using that R2

c is
compact, without loss of generality we may pass to a subsequence and assume additionally that
fn(t

n
i ) → yi ∈ R in R2

c . Using that [−T, T ] is compact, we may pass to a further subsequence
and assume additionally that tni → ti, with ti ∈ [−T, T ]. Since 0 ≤ tn3 − tn1 < δn in fact
t1 = t2 = t3 = t. To summarise, we thus have

tn1 < tn2 < tn3 for all n and tni → t ∈ [−T, T ] as n → ∞. (4.21)

Without loss of generality (or consider the same setup with space reflected about the origin) we
pass to a further subsequence and assume additionally that fn(t

n
1 ) ≤ fn(t

n
2 ), which by (4.20)

implies that
fn(t

n
i ) + κ ≤ fn(t

n
2 ) for i = 1, 3. (4.22)

Note that fn ∈ A, for some A ∈ A , and let us write An for such A. By pervasiveness of An

there exist
gn ∈ An

(
(tn1 , fn(t

n
1 ) +

κ
3 )
)

and hn ∈ An

(
(tn2 , fn(t

n
2 )−

κ
3 )
)
. (4.23)

Since An is a weave, gn and hn do not cross each other. By Lemma A.1.1, relative compactness
of A gives that B =

⋃
A∈A

A is a relatively compact subset of Πl. Hence we may pass to a
further subsequence and assume additionally that gn → g ∈ B and hn → h ∈ B. The sequence
(An) is a subset of A and therefore is relatively compact, so we may pass to a subsequence
and assume that An → A. Hence g, h ∈ A. The set A is a limit point of A , therefore (as a
hypothesis of the present lemma) A is non-crossing. Hence g and h may not cross.

Let us briefly comment on the strategy for the remaining part of the proof: we will establish
a contradiction through showing that g and h cross at time t, at which time they will jump
past each other in opposite directions. By Lemma 3.1.3 we have that gn, hn are comparable
under ⊳ to fn. Since fn is continuous at tni , by (4.23) and Lemma 3.1.2 we have fn ⊳ gn
and hn ⊳ fn. Hence fn(t

n
2 ) ≤ gn(t

n
2±) and hn(t

n
3±) ≤ fn(t

n
3 ). By definition of gn, hn we have

gn(t
n
1−) ∧ gn(t

n
1+) ≤ fn(t

n
1 ) +

κ
3 and fn(t

n
2 ) −

κ
3 ≤ hn(t

n
2−) ∨ hn(t

n
2+). Combining these facts

with (4.22) we thus have tni •
n
i such that

gn(t
n
1•

n
1 ) +

2κ
3 ≤ fn(t

n
1 ) + κ ≤ fn(t

n
2 ) ≤ gn(t

n
2•

n
2 )

hn(t
n
3•

n
3 ) + κ ≤ fn(t

3
n) + κ ≤ fn(t

n
2 ) ≤ hn(t

n
2•

n
2 ) +

κ
3 .

Hence,

gn(t
n
1•

n
1 ) +

κ
6 ≤ fn(t

n
2 )−

κ
2 ≤ gn(t

n
2•

n
2 )−

κ
2
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hn(t
n
3•

n
3 ) +

κ
2 ≤ fn(t

n
2 )−

κ
2 ≤ hn(t

n
2•

n
2 )−

κ
6 .

Using that [−T−, T+] ⊆ Rs is compact (which follows from Lemma 2.1.1) we may pass to a
subsequence and assume that for i = 1, 2, 3 the sequence (tni •

n
i ) converges as n → ∞. We will

now send n → ∞. Recalling that fn(t
n
2 ) → y2, we thus obtain from Lemma A.2.2 and (4.21)

that

g(t−) < y2 −
κ
2 < g(t+)

h(t+) < y2 −
κ
2 < h(t−),

which implies that g and h cross. This is a contradiction since g, h ∈ A. �

The M1 topology and particular form of wT,δ is crucial to the above argument. We do not
know of an analogous result for the J1 topology.

Lemma 4.4.2 Let A be a deterministic weave. Then flow(A) is a deterministic weave and
flow(A) ⊆ Πl.

Proof: Note that equation (2.13) gives that flow(A) ⊆ Πl. Let us first establish that flow(A)
is compact. By Lemma 4.4.1 (taking A = {A}) we have that flow(A) is relatively compact. We
will show that flow(A) is closed (and thus compact). Suppose that gn → g where gn ∈ flow(A).
For any f ∈ A there exists f ′ ∈ flow(A) such that f ⊆ f ′. Thus f ′ and gn do not cross, for all
n. Lemma 3.3.6 gives that f ′ and g do not cross, which implies that f and g do not cross. Thus
f does not cross A, which implies that f ∈ flow(A).

To check that flow(A) is a weave, it remains to show that flow(A) is pervasive and non-
crossing. If g, h ∈ flow(A) then by (2.13) we have that A ∪ {g} is non-crossing and A ∪ {h} is
non-crossing. By Lemma 4.1.3 we thus have that {g, h} is non-crossing, so in fact flow(A) is
non-crossing. If z ∈ R2

c then pervasiveness of A implies that there exists some f ∈ A such that
f ∈ H(f). Theorem 4.3.9 implies that there exists f ′ ∈ flow(A) with f ⊆ f ′, hence z ∈ H(f ′).
Thus flow(A) is pervasive. �

Lemma 4.4.3 Let An,A be deterministic weaves with An → A. Then flow(An) → flow(A).

Proof: The set A = {An ; n ∈ N} is a relatively compact subset of K(Π↑). The only limit
point of A is A, which is non-crossing. Thus by Lemma 4.4.1 the set {flow(An) ; n ∈ N} is a
relatively compact subset of K(Π↑). Suppose that we have An → F along some subsequence
and pass to this subsequence, with mild abuse of notation. To prove the present lemma we must
show that F = flow(A).

By Lemma 4.4.3 we have that flow(A) is a deterministic weave. Let us show that F is also
a deterministic weave, with F ⊆ Πl. From the previous paragraph we have F ∈ K(Π↑). As
An → F and each An is a subset of the closed set Πl, we have F ⊆ Πl. If f, g ∈ F then we
have fn, gn ∈ flow(An) such that fn → f and gn → g. We have that fn and gn do not cross,
so by Lemma 3.3.6 f and g do not cross. Thus F is non-crossing. For all z ∈ R2

c there exists
fn ∈ An such that z ∈ H(fn). By Lemma A.1.1, relative compactness of (An) implies relative
compactness of (fn), thus we may pass to a subsequence and assume fn → f ∈ F . Lemma A.2.2
gives that z ∈ H(f). Thus F is pervasive. We have now shown that F ⊆ Πl is a deterministic
weave.

Our next goal is to show that F and flow(A) are non-crossing. Let f ∈ F and g ∈ A. Then
there exists fn ∈ flow(An) and gn ∈ An such that fn → f and gn → g. By Theorem 4.3.9, there
exists g′n ∈ flow(An) such that gn ⊆ g′n. We have flow(An) → F , so by Lemma A.1.1 the set
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F ∪ (
⋃

n∈N flow(An)) is compact, which implies that {g′n ; n ∈ N} is relatively compact. Hence
there exists g′ ∈ F such that g′n → g′. By Lemma A.2.2 we have g ⊆ g′. Both fn and g′n are
elements of An, hence they do not cross each other. By Lemma 3.3.6, f and g′ do not cross each
other. As g ⊆ g′ this means that f and g do not cross.

We now have that F and A do not cross, and that both are deterministic weaves consisting
entirely of bi-infinite paths. Lemma 4.2.6 gives that F = A. �

Lemma 4.4.4 Let A,B be deterministic weaves and assume that A ∪ B is non-crossing. Then
A ∪ B is a deterministic weave and flow(A) = flow(B).

Proof: It is trivial to check that A ∪ B is a deterministic weave. Lemma 4.4.2 gives that
flow(A) and flow(B) are deterministic weaves, composed entirely of bi-infinite paths. Lemma
4.1.4 gives that a path f ∈ Πl crosses A if and only if it crosses B, so by Lemma 4.2.6 we have
flow(A) = flow(B). �

Lemma 4.4.5 Let A be a deterministic weave. Then flow(A) is a maximal element of (Wdet,�)
and A � flow(A).

Proof: The reader may wish to check (2.7) for the definition of the partial order �. Note that
Lemma 4.4.2 gives that flow(A) ∈ Wdet. Let us first show that A � flow(A). Theorem 4.3.9
gives that A ⊆ (flow(A))↑. Now consider f ∈ A↑ ∩ flow(A). For such f we have f ∈ Πl, which
implies f ∈ A. Thus A � flow(A).

It remains to show that flow(A) is a maximal element of Wdet. Lemma 4.4.2 gives that
flow(A) ∈ Wdet. Suppose that B ∈ Wdet, comparable under � to flow(A). We must show that
B � flow(A). From Lemma 3.1.7 we have that flow(A)∪B is non-crossing. From what we have
already proved we have that A � flow(A), so using Lemma 3.1.7 again gives that A∪flow(A) is
non-crossing. Thus by Lemma 4.1.3 we have that A∪B is non-crossing. Lemma 4.4.4 gives that
flow(A) = flow(B). From what we have already proved we now have that B � flow(B) = flow(A),
as required. This completes the proof. �

Lemma 4.4.6 Let A be a deterministic weave. The set of ramification points of A has Lebesgue
measure zero.

Proof: By Lemma 4.4.2 we have that flow(A) = {f ∈ Πl ; f does not cross A} is a weave.
Lemma 4.2.5 gives that the set of ramification points of flow(A) has measure zero. By Theorem
4.3.9 any ramification point of A is also a ramification point of F . The result follows. �

In view of Lemma 4.4.6, for any deterministic weave A there exists a dense countable subset
D ⊆ R2

c that is non-ramified. In Lemma 5.4.1 we will address, for random waves, how such a
subset may be chosen to be a random variable.

4.5 The web map

In this section we study properties of the web operation defined in (2.12). Some results in this
section are analogues of properties that were proven (for the flow operation) in Section 4.4.
We also address the dependence, or rather the lack thereof, of (2.12) on the set D. The web
operation involves both the ‘downset’ operation A↑ = {f ∈ Π↑ ; f ⊆ g for some g ∈ A} and
taking closure in Π↑, so we begin with the interaction between these two operations.

Lemma 4.5.1 If A ⊆ Π↑ is relatively compact then A↑ is relatively compact and (A)↑ = (A↑).
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Proof: The first claim follows immediately from Proposition A.2.1. It remains to establish
that (A)↑ = (A↑). To this end, suppose that f ∈ (A)↑. Then there exists (gn) ⊆ A such that

gn → g ∈ Π↑ and f ⊆ g. Let z ∈ R2
c denote the initial point of f . By Lemma A.2.2 z ∈ ∪nH(gn).

Hence, we may pass to a subsequence of the (gn) and choose zn ∈ H(gn) such that zn → z. It
follows from Lemma A.2.2 that gn|zn → g|z = f , so f ∈ (A↑). Thus (A)↑ ⊆ (A↑).

In preparation for proving the reverse inclusion, let us first show that if B ⊆ Π is compact
then B↑ is closed. Take such an B, and let (fn) ⊆ B↑ with fn → f . We have (gn) ⊆ B such that
fn ⊆ gn. By compactness, and passing to a subsequence of (gn), we have that gn → g ∈ B. By
Lemma 3.3.3 we have f ⊆ g, thus f ∈ B↑, which establishes that B↑ is closed.

We now show the reverse inclusion. Suppose that f ∈ (A↑). Then there exists (gn) ⊆ A and
fn ⊆ gn such that fn → f . In particular, gn ∈ A which implies fn ∈ (A)↑. From the previous

paragraph we have that (A)↑ is closed, so f ∈ (A)↑. Thus (A)↑ ⊇ (A↑), as required. �

Lemma 4.5.2 Suppose that A is a deterministic weave. Then A↑ is a deterministic weave and
A↑ � A.

Proof: Relative compactness of A↑ is given by Lemma 4.5.1. Since A is a weave, A is closed,
so from Lemma 4.5.1 we have that A↑ is closed, which thus implies compactness. The non-
crossing property of A↑ is inherited from A by Definition 2.3.1. Using that A↑ = (A↑)↑ it is
straightforward to check that (2.7) gives A↑ � A. �

Lemma 4.5.3 Let A be a deterministic weave and D,D′ be dense non-ramified subsets of R2.
Define webD(A) as in (2.12). Then webD(A) = webD′(A).

Proof: Let A be a weave and let D, D′ be dense non-ramified subsets of R2. We note that it
suffices to prove that

(A|D)↑ ⊆ (A|D′)↑. (4.24)

With (4.24) in hand, by symmetry we also have that (A|D′)↑ ⊆ (AD)↑. Taking closures shows
that webD(A) = webD′(A).

Let f be an element of the left hand side of (4.24). Then there exists z ∈ D and g ∈ A(z)
with f ⊆ g|z. Using that D′ is dense, take zn ∈ D′ such that zn → z, and using that A is
pervasive take g′n ∈ A(zn). By compactness of A we may pass to a subsequence and assume
that g′n → g ∈ A(z), which by Lemma A.2.2 implies that g′n|zn → g|z.

Since g, g′ ∈ A(z) and z is non-ramified, we have that g|z = g′|z. Thus f ⊆ g′|z. Let w
denote the initial point of f . Using that g′n|zn → g′|z, by Lemma A.1.1 we thus have

w ∈ H(g′|z) ⊆
∞⋃

n=1

H(g′n|zn).

If w ∈ H(g′n|zn) for some n ∈ N then we have f ⊆ g′n|zn ∈ A|D′ , and we are done. Otherwise,
there exists a subsequence of n such that wn ∈ H(g′n|zn) and wn → w, and without loss of
generality we pass to this subsequence. We thus have g′n|wn ⊆ g′n|zn , so g′n|wn ∈ (AD′)↑. Noting

that wn → w and g′n → g, it follows form Lemma A.2.2 that g′n|wn → f . Hence f ∈ (AD′)↑.
This establishes (4.24) and completes the proof. �

Remark 4.5.4 From the point onwards we will often invoke Lemma 4.5.3 implicitly, through
writing webD(A) = web(A). Lemmas 4.4.6 and Lemma 4.5.3 combine to show that web : Wdet →
Wdet is a deterministic function.
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Lemma 4.5.5 Let A,B be deterministic weaves and assume that A ∪ B is non-crossing. Then
web(A) = web(B).

Proof: Since A ∪ B is non-crossing, it is trivial to check that A ∪ B is a weave. By Lemma
4.4.6 there exists D ⊆ R2 that is dense and non-ramified with respect to A ∪ B. Note that this
implies D is also non-ramified with respect to both A and B. Fix some z ∈ D and consider
f ∈ A(z) and g ∈ B(z). Note that (A ∪ B)(z) = A(z) ∪ B(z). We have f, g ∈ (A ∪ B)(z)
and z is non-ramified, so we have f |z = g|z. Since z, f, g were arbitrary, by (2.12) this implies
webD(A) = webD(B). �

Lemma 4.5.6 Let A be a deterministic weave. Then web(A) is a deterministic weave.

Proof: Fix a dense non-ramified D ⊆ R2. By Lemma 4.5.3 it suffices to check that W =
webD(A) is a weave. Noting that (A|D)↑ ⊆ A↑, compactness of A and Lemma 4.5.1 implies
compactness of W. Similarly, W inherits the non-crossing property from A by Lemma 4.5.2.
Lastly, for any z ∈ R2 there exists (zn) ⊆ D such that zn → z. Take fn ∈ A(z) and note
gn = fn|zn ∈ W. By compactness gn has a sub-sequential limit point g ∈ W, and by Lemma
A.2.2 we have g ∈ W(z). Thus W is pervasive, so we have that W is a weave. �

Lemma 4.5.7 Let A be a deterministic weave. Then web(A) is a minimal element of (Wdet,�)
and web(A) � A.

Proof: Let D ⊆ R2 be non-ramified with respect to A and let us write W = webD(A).
Note that Lemma 4.5.6 gives that W ∈ Wdet. Let us first show that W � A. It is immediate
from (2.12) that W ⊆ (A↑), so by Lemma 4.5.1 and compactness of A we have W ⊆ A↑.
Proposition A.2.1 implies that A|D is relatively compact, thus from Lemma 4.5.1 and (2.12) we
have W↑ = ((A|D)↑)↑ = (A|D)↑ = W, so trivially W↑ ∩A ⊆ W. According to (2.7) we now have
W � A.

Suppose that B is a deterministic weave, comparable to web(A). We must show that
web(A) � B. The argument is analogous to that of Lemma 4.4.5. From Lemma 3.1.7 we have
that web(A) ∪ B is non-crossing. From what we have already proved we have that web(A) � A
so using Lemma 3.1.7 again gives that A ∪ web(A) is non-crossing. Thus by Lemma 4.1.3 we
have that A∪B is non-crossing. Lemma 4.5.5 now gives that web(A) = web(B). From what we
have already proved we have that web(A) = web(B) � B, as required. �

5 Random weaves

We now turn our attention to random weaves. We will give the proof of our main results (stated
in Section 2.4) in Sections 5.3–5.7. We require some technical matters to be dealt with first,
largely concerning measurability, before we are in a position to rigorously work with random
weaves. The proofs in Sections 5.1 and 5.2 are not necessary for the reader wishing to understand
the proofs of our main results in later sections.

5.1 On measurability

To make sense of the statements of our main results in Section 2.4 we require that several objects
are measurable. For example, if A and B are random weaves the we need {A � B} to be an
event and we need web(A) and flow(A) to be random variables. In Appendix A.3 we show
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that several basic maps associated to the space K(Π↑) are measurable, whereas here we consider
measurability with a focus specific to weaves. We have also seen in Lemma 4.4.3 that the map
A 7→ flow(A) is a continuous map from Wdet to itself. The map web(·) is not continuous on Wdet,
as shown by example in Figure 2.5.1. We defined web and flow as maps with domain Wdet but
we check measurability in terms of the topology on K(Π↑), so the following lemma is a technical
necessity.

Lemma 5.1.1 It holds that Wdet is a measurable subset of K(Π↑).

Proof: We have Wdet = {A ∈ K(Π↑) ; A is pervasive} ∩ {A ∈ K(Π↑) ; A is non-crossing}.
Using Lemma A.2.2 it is straightforward to check that {A ∈ K(Π↑) ; A is pervasive} is closed.
It remains to show that {A ∈ K(Π↑) ; A is non-crossing} is measurable.

Consider if An, A ∈ K(Π) are such that An → A, and An is non-crossing for each n. Suppose
that A fails to be non-crossing, in particular suppose that f, g ∈ A cross each other. We have
fn, gn ∈ An such that fn → f and gn → g. By Lemma 3.1.3 we have fn ⊳ gn or gn ⊳ fn, at
least one of which must hold for infinitely many n. It follows by part 2 of Lemma 3.3.9 that A
contains a pair of paths f ′, g′ such that f ′ ◭ǫ g

′, for some ǫ > 0. Writing

N = {A ∈ K(Π↑) ; A is non-crossing},

Mǫ = {A ∈ K(Π↑) ; there exists f, g ∈ A with f ◭1/n g}

L = {A ∈ K(Π↑) ; there exists f ∈ A with σf = −∞ or σf = +∞}.

we thus obtain N = N ∪
(
N ∩

⋃
n∈NM1/n

)
. By part 1 of Lemma 3.3.9 we have N ∩ Mǫ = ∅,

hence N = N \
(⋃

n∈NM1/n

)
. Lemma 3.3.11 implies that M1/n ∪L is closed, for each n ∈ N, so

noting that L is also closed we obtain that M1/n = (M1/n ∪ L) \ L is measurable. Hence N is
measurable. This completes the proof. �

Lemma 5.1.2 The map A 7→ web(A) is measurable from Wdet to itself.

Proof: From Lemma 5.1.1 we have that Wdet is measurable. Recall that in Remark 4.5.4 we
noted that for A ∈ Wdet the value of webD(A) does not depend upon D, provided that D ⊆ R2

c

is dense and non-ramified. We thus write web(A) = webD(A).
Let µ be a measure on R2

c with full support and no atoms. Let (zi)
∞
i=1 be a sequence of

independent random variables with distribution µ, on the probability space (Ω,F ,P). The
following argument is somewhat unusual, so let us give an outline. We will show that the map
from A ∈ Wdet to the law of webD(A) is a measurable map, and that this law is precisely the
probability measure with a point-mass at web(A). The stated result then follows, using that
the map from point-mass measures, to their associated points, is a measurable map.

From Lemma A.3.2 the map (A,ω) 7→ A|zi(ω) is measurable from K(Π) × Ω → K(Π). It
follows from Lemma A.3.3 that

(A,ω) 7→ Mn(A,ω) =

(
n⋃

i=1

A|zi(ω)

)

↑

(5.1)

is measurable, for each n ∈ N, as a function Mn : Wdet × Ω → Wdet.
For all A ∈ Wdet and ω ∈ Ω we have Mn(A, ω) ⊆ Mn+1(A, ω) ⊆ A↑. Lemma 4.5.1 gives

that A↑ is a compact subset of Π, which implies that the sequence (Mn(A, ω))∞n=1 is a relatively
compact subset of K(Π). Let B be a limit point in K(Π↑) of (Mn(A, ω)) as n → ∞.
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We aim to show that P[B = web(A)] = 1. For each A ∈ Wdet we have that

P[(zi) is dense in R2 and non-ramified in A] = 1. (5.2)

We write D = (zi(ω))i∈N. Let us condition on the event in (5.2) occurring. Then, if g ∈ B
we have zin ⊆ R2, fn ∈ A(zin) and gn ∈ Π↑ such that gn ⊆ fn|zin and gn → g. It follows
immediately that g ∈ webD(A), thus B ⊆ webD(A). Similarly, if g ∈ webD(A) then there exists
zi ∈ R2, fi ∈ A(zn) and gi ∈ Π↑ such that gi ⊆ fi and gi → g. Hence for all i there exists n ∈ N
such that gi ∈ Mn(A, ω). Thus g ∈ B and B = webD(A), which by Lemma 4.5.3 is equal to
webD(A). We thus have P[B = web(A)] = 1.

Let P(Wdet) denote the space of probability measures on Wdet and let P0(Wdet) denote
the closed subspace of point-mass probability measures. Let δA ∈ P0(Wdet) be the probability
measure that is a point-mass on A ∈ Wdet. Let L A

n ∈ P(Wdet) denote the law of the random
variable ω 7→ Mn(A, ω). From what we have proved, it follows that L A

n converges weakly to
δweb(A) the probability measure on K(Π↑) that is a point-mass on web(A).

For measurable S ⊆ Wdet we have

LA
n (S) = P[Mn(A, ·) ∈ S] =

∫

ω∈Ω
✶S(Mn(A, ω)) dP(ω),

from which it follows that A 7→ LA
n is a measurable function from Wdet to P0(Wdet). Hence

A 7→ δweb(A) is also measurable. It is easily seen that the map m : P0(Wdet) → Wdet given
by δA 7→ A is continuous, and thus measurable. Compositions of measurable functions are
measurable, hence the map A 7→ m(δwebA) = web(A) is measurable. �

Lemma 5.1.3 The set {(A,B) ∈ K(Π)2 ; A � B} is a measurable subset of K(Π)2.

Proof: Recall the definition of � on K(Π) from (2.7). It suffices to show that

C1 = {(A,B) ∈ K(Π)2 ; A ⊆ B↑}

C2 = {(A,B) ∈ K(Π)2 ; B ∩A↑ ⊆ A}

are both measurable subsets of K(Π)2, where K(Π)2 is equipped with the product topology and
corresponding Borel σ-field. We note that A↑ is closed whenever A ∈ K(Π) is closed. Using
Lemma A.2.2 it is straightforward to check that the set C1 = {(A,B) ∈ K(Π)2 ; ∀f ∈ A ∃g ∈
B such that f ⊆ g} is closed. We now move on to C2. To this end note that B ∩ A↑ * A if
and only if there exists f ∈ A↑ and g ∈ B such that g ⊆ f and f /∈ A. The condition f /∈ A is
equivalent to dK(Π)({f}, A) > 0 which, as A is closed, is in turn equivalent to dK(Π)({f}, A) ≥ ǫ
for some ǫ > 0. We thus have that C2 =

⋃
n∈N S1/n where

Sǫ =
{
(A,B) ∈ K(Π)2 ; ∃f ∈ A↑, g ∈ B such that g ⊆ f and dK(Π)({f}, A) ≥ ǫ

}
.

Similar to above, using Lemma A.2.2 it is straightforward to check that Sǫ is closed, for any
ǫ > 0. Thus C2 is measurable. �

5.2 On partial ordering of random weaves

In this section we show that �d is a partial order on (the laws of) random weaves, as defined
shortly below (2.7). More precisely, recall that P(M) denotes the space of probability measures
on a metric space M . We have shown in Lemma 3.2.2 that � given by (2.7) defines a partial
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order on K(Π↑). In Section 2.3 we defined an extension of � to P(K(Π↑)), namely if A and B
are K(Π↑) valued random variables then we write A �d B if there exists a coupling of A and B
such that P[A � B] = 1. We aim to show that that �d is a partial order on P(K(Π↑)).

If � was compatible with (K(Π), dΠ), in the sense of Definition 3.3.1, then we could use a
classical result e.g. Theorem 2.4 in Liggett (1985) to obtain the extension to P(K(Π)). However,
as we saw in Remark 3.3.2 compatibility fails in this situation. Instead we require an original
argument that uses compactness and the precise form of (2.7). We first give a preliminary
lemma.

Lemma 5.2.1 Suppose that D,D′ are K(Π↑) valued random variables, with the same marginal
distributions, coupled such that P[D � D′] = 1. Then P[D = D′] = 1.

Proof: By Proposition 2.2.1 the metric space Π↑ is separable, which implies that its topology
has a countable base: there exists a family (Ui)i∈N of non-empty open subsets of Π↑ such that
any open subset O ⊆ Π can be written as O = ∪i∈IUi for some I ⊆ N.

Assume the conditions of the lemma on D,D′. The proof comes in two parts, corresponding
respectively to the inequalities P[D′ \ D 6= ∅] > 0 and P[D \ D′ 6= ∅] > 0, each of which will be
shown to be impossible through an argument by contradiction.

Part 1. Suppose P[D′ \ D 6= ∅] > 0. The reader may wish to glance at Remark 5.2.2,
immediately below the present proof, for a toy example to illustrate our strategy here. For
A ⊆ Π, we write

A◦ = {b ∈ Π↑ ; there exists a ∈ A such that a ⊆ b}. (5.3)

On the event that {D′ \ D}, let d′ ∈ D′ \ D and let Bǫ(d
′) be the open ball in Π↑ of radius

ǫ about d′. We will now show that, almost surely, Bǫ(d
′)◦ ∩ D is empty, for sufficiently small

ǫ > 0. Suppose that Bǫ(d
′)◦ ∩ D 6= ∅ for all ǫ > 0. Then, taking ǫ = 1/n, we have sequences

fn ∈ B1/n(d
′) and gn ∈ B1/n(d

′)◦ ∩ D, with fn ⊆ gn. By compactness of D we may pass to
subsequence and assume convergence fn → d′ ∈ D′ and gn → d ∈ D. By Lemma A.2.2 we then
have d′ ⊆ d, so d′ ∈ D↑. We have P[D � D′] = 1 upon which event D↑ ∩ D′ ⊆ D, so d′ ∈ D
which is a contradiction. Thus, almost surely, for some (random) ǫ > 0, we have Bǫ(d

′)◦∩D = ∅.
Clearly also d′ ∈ Bǫ(d

′).
Let

O =

{
Bǫ(d

′) on the event that D′ \ D 6= ∅

∅ otherwise.

From the previous paragraph have that O◦ ∩D = ∅ and with positive probability d′ ∈ O. Since
O is open, almost surely we may write O = ∪i∈IUi for some random I ⊆ N. The set I is non-
empty with positive probability, hence there is some deterministic i ∈ I such that with positive
probability d′ ∈ Ui ⊆ O. Let us write U = Ui for such an i.

On the event that d′ ∈ U ⊆ O we have that U◦ ⊆ O◦, which implies that U◦ ∩ D = ∅
(because O◦ ∩ D = ∅) and U◦ ∩ D′ 6= ∅ (because it contains d′). Hence the event {U◦ ∩ D′ 6=
∅ and U◦ ∩ D = ∅} has positive probability. We thus have

0 < P
[
U◦ ∩ D′ 6= ∅ and U◦ ∩ D = ∅

]
= P

[
U◦ ∩ D′ 6= ∅

]
− P

[
U◦ ∩ D′ 6= ∅ and U◦ ∩ D 6= ∅

]

= P [U◦ ∩ D 6= ∅]− P
[
U◦ ∩ D′ 6= ∅ and U◦ ∩ D 6= ∅

]

= P
[
U◦ ∩ D 6= ∅ and U◦ ∩ D′ = ∅

]
. (5.4)

The second line of (5.4) follows because D and D′ have the same marginal distribution, and the
other steps are elementary.
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Consider when the event {U◦ ∩D 6= ∅ and U◦ ∩D′ = ∅} occurs, which by (5.4) has positive
probability. Then we have h ∈ U◦ ∩ D, but P[D � D′] = 1 upon which event we have D ⊆ D′

↑,
hence there exists h′ ∈ D′ such that h ⊆ h′. By (5.3) we have that h′ ∈ U◦, which is a
contradiction to U◦ ∩ D′ = ∅. Hence in fact P[D′ \ D 6= ∅] = 0, as required.

Part 2. Suppose P[D \ D′ 6= ∅] > 0. The argument is similar to Case 1 but somewhat
simpler, and we will make use of Case 1 within it. Note that we should expect an asymmetric
argument due to the parity inherent in P[D � D′] = 1. To make the comparison clear we will
recycle much of our notation.

On the event D \D′ 6= ∅, take d ∈ D \D′. Suppose that Bǫ(d)∩D′ 6= ∅ for all ǫ > 0. Taking
ǫ = 1/n, there exists fn ∈ D′ ∩ B1/n(d). By compactness we may pass to a subsequence and
assume convergence fn → f ∈ D′. This implies f = d, which is a contradiction since f ∈ D′.
Hence there exists a random ǫ > 0 such that Bǫ(d) ∩ D′ = ∅.

Let O be equal to Bǫ(d) on the event {D\D′ 6= ∅} and O = ∅ otherwise. Thus O∩D′ = ∅ and
with positive probability d ∈ O. By the same argument as in Part 1, there exists deterministic
i ∈ N such that with positive probability d ∈ Ui ⊆ O. Thus, setting U = Ui, we have that with
positive probability d ∈ U ∩ (D \D′). We have P[D � D′] = 1 upon which event D ⊆ D′

↑. Thus,
when d ∈ U ∩ (D\D′) there exists d′ ∈ D′ such that d ⊆ d′, implying that both U◦∩ (D\D′) 6= ∅
and U◦∩D′ 6= ∅. From Part 1 we have that almost surelyD′ ⊆ D. Hence with positive probability
we have both U◦∩(D\D′) 6= ∅ and U◦∩(D′∩D) 6= ∅. Thus, noting that D = (D∩D′)∪(D\D′),

0 < P
[
U◦ ∩ (D ∩D′) 6= ∅

]
< P [U◦ ∩ D 6= ∅]

= P
[
U◦ ∩ D′ 6= ∅

]
.

Here, the second line follows because D and D′ have identical distribution and U is deterministic.
It follows that P[U◦ ∩ (D′ \D) 6= ∅] > 0, but from Part 1 we know that P[D′ \D = ∅] = 1, so we
have reached a contradiction. This completes the proof. �

Remark 5.2.2 The proof of Lemma 5.2.1 is technical but it has a simple idea at its heart.
Consider a toy example: take two uniform random variables X,X ′ on S = {1, 2, 3, 4, 5, 6} and
suppose that X and X ′ are coupled in a way that satisfies P[X ≤ X ′] = 1. We aim to show that
P[X = X ′] = 1. For k ∈ S,

P[X = k,X ′ 6= k] = P[X = k]− P[X = k,X ′ = k]

= P[X ′ = k]− P[X ′ = k,X = k]

= P[X ′ = k,X 6= k]. (5.5)

Note the similarity of (5.5) to (5.4). Taking k = 1 and using that P[X ≤ X ′] = 1 we obtain
P[X = 1, X ′ > 1, X ≤ X ′] = P[X ′ = 1, X > 1, X ≤ X ′] which becomes P[X = 1, X ′ > 1] = 0,
thus P[X = 1] = P[X = 1, X ′ = 1]. This is clearly a step in the right direction and is in similar
style to the more complex reasoning involving � below (5.4). The finiteness of S is also helpful
here whereas in Lemma 5.2.3 we must rely on second countability of Π↑. We leave it for the
reader to complete this toy example and deduce that P[X = X ′] = 1.

Lemma 5.2.3 The relation �d is a partial order on the space of K(Π↑) valued random variables.

Proof: We will check that �d on P(K(Π↑)) is reflexive, transitive and antisymmetric, in turn.
Lemma 3.2.2 has already shown that these properties hold in the deterministic case i.e. �d is a
partial order on Wdet.

By reflexivity of � on Wdet we have that P[A � A] = 1 for any K(Π↑) valued random
variable A, so �d is reflexive. For transitivity, let us assume that A,B, C are K(Π↑) valued
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random variables, and that we have couplings (A,B) and (B, C) such that P[A � B] = 1 and (on
a possibly different probability space) P[B � C] = 1. It follows that there exists a joint coupling
(A,B, C) on which P[A � B and B � C] = 1. On the event {A � B and B � C} transitivity of
� on Wdet implies that A � C, so we obtain P[A � C] = 1, as required.

It remains to show antisymmetry. Suppose that A,A′,B,B′ are K(Π↑) valued random vari-
ables such that P[A � B] = 1 and P[B′ � A′] = 1, where A and A′ have the same marginal
distribution and B and B′ have the same marginal distribution. We must show that there exists
a coupling under which P[A = B] = 1. Since A and A′ have the same marginal distribution, it
follows that exists a coupling (A,A′,B,B′) such that P[A = A′, A � B, B′ � A′] = 1. By transi-
tivity of � on Wdet this means that P[B′ � B] = 1. By Lemma 5.2.1 we have P[B = B′] = 1 which
means P[A � B,B � A] = 1 and by antisymmetry of � on Wdet we obtain that P[A = B] = 1,
as required. �

Lemma 5.2.4 Let A be a weave. Then A is a web if and only if P[A is a minimal element of
Wdet] = 1. Similarly, A is a flow if and only if P[A is a maximal element of Wdet] = 1.

Proof: Let us first give the argument for webs. Let A be a weave. We must show that A
is a web if and only if P[A is a minimal element of Wdet] = 1. It is trivial to see that almost
sure pervasiveness and the non-crossing property pass from either side of the ‘if and only if’
statement to the other side, so it remains only to handle minimality. To be explicit we must
show that for a random weave A the following statements are equivalent:

1. If B is a weave and there exists a coupling between A and B such that P[A � B] = 1 or
P[B � A] = 1, then P[A � B] = 1.

2. P[A is a minimal element of Wdet] = 1.

By the definition of �d from below (2.7), the first statement is precisely the claim that the law
of A is minimal in P(K(Π↑)).

Let us first show that (2) implies (1). If A is almost surely minimal in Wdet then for any
coupling of A to another weave B, {A and B are comparable} ⊆ {A � B}, where both the left
and right hand side are events. Thus (1) holds.

Conversely, let us assume (1). Let

A′ =

{
A on the event {web(A) ≺ A},

web(A) on the event {A � web(A)}.

Lemmas 5.1.2 and 5.2.3 combine to show that A′ is a random variable. By Lemma 4.5.6 we have
P[web(A) � A′] = 1, which by (1) implies that P[A′ � web(A)] = 1, so in fact P[A � web(A)] =
1. By Lemma 4.5.6 we thus have P[A = web(A)] = 1, from which Lemma 4.5.7 gives (2).

In the case of flows we may use a similar argument, reversing the direction of the sign of �.
Lemma 4.5.6 is replaced by Lemma 4.4.2, and Lemma 4.5.7 is replaced by Lemma 4.4.5. We
leave the details to the reader. �

Remark 5.2.5 Suppose that A is a weave. Our results in Sections 5.1 and 5.2 justify that
web(A) and flow(A) are random variables, and that if B some other random weave, coupled
to A then {A � B} is an event. Moreover, �d defines a partial order on the laws of random
weaves, via the relationship A �d B if and only if there exists a coupling of A and B such that
P[A � B] = 1. We will use these results freely from now on and will not repeatedly cite them
when used within the proofs.
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5.3 Proof of Theorem 2.4.3

We are now ready to establish our main results concerning random weaves, which henceforth are
simply referred to as weaves. These results were stated in Section 2.4 and the proofs are spread
across Sections 5.3–5.7. The statements of Theorems 2.4.3-2.4.6 consist of several (numbered)
parts. We will use bold text (see e.g. the next paragraph) to track when each part is addressed.
Most of our work in Section 4 leads towards these proofs. We begin with Theorem 2.4.3, of
which we prove the four statements of the theorem in turn. Let A be a weave.

Part 1. Let us first assume (a), that A is a web. By Lemma 5.2.4 A is almost surely a
minimal element of Wdet. By Lemma 4.5.7 we have web(A) � A, from which minimality implies
that A = web(A), which gives (b). Conversely, let us assume (b), that A

a.s.
= web(A). Lemma

4.5.7 thus gives that A is almost surely a minimal element of Wdet, from which Lemma 5.2.4
gives that A is a web. Thus (a) ⇔ (b).

Part 2. Again, let A be a weave. We will show that (a) ⇒ (b) ⇒ (c) ⇒ (a). Let us first
assume (a), that A is a flow. By Lemma 5.2.4 A is almost surely a maximal element of Wdet.
By Lemma 4.4.5 we have A � flow(A), from which maximality implies that A = flow(A), giving
(b). Now let us assume (b), that A

a.s.
= flow(A). It is immediate from (2.13) that flow(A) ⊆ Πl,

so we have (c).
Lastly, let us assume (c), that A ⊆ Πl. Suppose that B is a weave with a coupling to A such

that P[A � B] = 1. To see that A is a flow we must show that this implies P[A = B] = 1. Using
that A � B almost surely, it follows from (2.7) that almost surely A↑ ∩B ⊆ A ⊆ B↑. As A ∈ Πl

we thus have that almost surely A ⊆ B. We require the reverse inclusion, so let f ∈ B. On the
almost sure event that A � B, by Lemma 3.1.7 we have that f does not cross A, so by Theorem
4.3.9 there exists f ′ ∈ flow(A) such that f ⊆ f ′. Lemma 4.2.6 gives that f ′ ∈ A, which implies
that f ∈ A↑ ∩ B. Thus A

a.s.
= B, as required.

Part 3. Lemmas 4.4.5 and 4.5.7 give that P[web(A) � A � flow(A)] = 1.
Part 4. The existence claim is established by part 3 of the present proof. It remains to

prove the uniqueness claim, which we will give in turn for webs and then flows.
Let W,W ′ be webs and suppose that W �d A and W ′ �d A. Then there exists (pairwise)

couplings such that P[W � A] = 1 and P[W ′ � A] = 1. We seek to show thatW
d
= W ′. It follows

that there exists a three-way coupling of W,W ′ and A such that P[W � A and W ′ � A] = 1.
By Lemma 3.1.7 we have that W∪A is almost surely non-crossing, and W ′ ∪A is almost surely
non-crossing. By Lemma 4.1.3 we have that W ∪W ′ is almost surely non-crossing. By Lemma
4.5.5 we thus have web(W)

a.s.
= web(W ′). By part 2 of the present proof we thus have W

a.s
= W ′,

hence in particular W and W ′ have the same marginal distribution, as required.
It remains to prove a corresponding statement for flows. Let F ,F ′ be flows and suppose that

A �d F and A �d F ′. Then, as above, there exists a three-way coupling of F ,F ′ and A such
that P[A � F and A � F ′] = 1. By the same argument as above, again using Lemmas 3.1.7
and 4.1.3, with Lemma 4.4.4 in place of Lemma 4.5.5, and using part 1 of the present proof in
place of part 2, we obtain that F

a.s.
= F ′. Hence in particular F and F ′ have the same marginal

distribution, as required. This completes the proof.

5.4 Proof of Theorem 2.4.4

We require some preparatory lemmas before giving the proof of Theorem 2.4.4.
The next lemma gives us the ability use a deterministic non-ramified dense set of space-time

points with (random) weaves. It is a straightforward consequence of Lemma 4.4.6, delayed until
now because when we stated Lemma 4.4.6 we were focused on deterministic weaves.
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Lemma 5.4.1 Let A be a weave. Then the set {z ∈ R2
c ; P[z is ramified in A] > 0} has zero

Lebesgue measure.

Proof: Let ram(A) denote the set of ramification points of a (deterministic or random) weave
A. We have shown in Lemma 4.4.6 that the map (A, z) 7→ ✶{z ∈ ram(A)} is measurable from
Wdet × R2

c → {0, 1}, and that ram(A) is Lebesgue null for all deterministic weaves. By Fubini’s
theorem, for any weave A we have

∫
R2
c
P[z ∈ ram(A)] dz = E

[ ∫
R2
c
✶{z ∈ ram(A)} dz

]
= 0 and

the result follows. �

Lemma 5.4.2 Let A ⊆ Πl be non-crossing and pervasive and let D ⊆ R2 be dense. Let f, h ∈ A
with f ⊳ h and suppose t⋆ ∈ Rs is such that f(t⋆) < h(t⋆). Then for all ǫ > 0 there exists
(x, s) ∈ D and g ∈ A((x, s)) such that f, h /∈ A((x, s)), f ⊳ g, g ⊳ h and |t− s| < ǫ. Moreover,
if ⋆ = − then we may take s < t and if ⋆ = + then we may take s > t.

Proof: By the càdlàg property of f, h and denseness of D, there exists (x, s) ∈ D such that
|s− t| < ǫ, with the desired sign for t− s and with f(s−) ∨ f(s+) < x < h(s−) ∧ h(s+). Since
A is pervasive there exists g ∈ A((x, s)). It is immediate that f, h /∈ A((x, s)), and that {f, g, h}
is non-crossing. By Lemmas 3.1.3 and 3.1.4 we have f ⊳ g and g ⊳ h. �

Lemma 5.4.2 is a technical lemma used in the proof of our next lemma. Recall that in
Lemma 4.4.6 we showed that if A ∈ Wdet then ram(A), the set of ramification points of A, is a
measurable and null subset of R2

c . The following lemma is stated as a result for deterministic
weaves, which avoids having to find a suitable state space for random null sets.

Lemma 5.4.3 Let A be a deterministic weave. Then A, flow(A) and web(A) all have the same
ramification points.

Proof: Let us write W = web(A) and F = flow(A). By Theorem 2.4.3, applied to the weave
whose law is a point-mass at A, we have W � A � F . Note that if B,B′ ∈ Wdet with B � B′ then
for any b ∈ B there exists b′ ∈ B′ such that b ⊆ b′. It follows that ram(W) ⊆ ram(A) ⊆ ram(F).
With this in hand it remains only to show that for any deterministic weave A we have

ram(F) ⊆ ram(W). (5.6)

To this end, let D ⊆ R2
c be dense and non-ramified. Suppose that (x, t) ∈ R2

c is ramified in F .
We thus have bi-infinite f, g ∈ F(z) that are not comparable under ⊆. It follows that there exists
s⋆ ∈ Rs such that f(s⋆) 6= g(s⋆), and without loss of generality we may assume f(s⋆) < g(s⋆).

• Consider first if s⋆ ≥ t+. Take a sequence zn = (xn, tn) ∈ D such that zn → z and
xn ≤ f(tn−) ∧ f(tn+), along with a sequence wn = (yn, sn) ∈ D such that wn → z and
yn ≥ g(tn−) ∨ g(tn+). It it straightforward to check that such sequences exist. Take
fn ∈ F(zn) and gn ∈ F(wn). By compactness, passing to a subsequence, we may assume
that fn → f ′ and gn → g′ where f ′, g′ ∈ F . By Lemma A.2.2 we have f ′, g′ ∈ F(z).
Recall from Lemma 3.1.6 that (F ,⊳) is totally ordered. By Lemma 4.2.4 we have f ′ ⊳

f ⊳ g ⊳ g′, which implies that f ′(s⋆) < g′(s⋆). By Lemma A.2.2 we have fn|zn → f ′|z
and gn|wn → g′|z. Note that f ′|z, g

′|z ∈ W by (2.12), and both pass though z. Since
f ′|z(s⋆) = f ′(s⋆) < g′(s⋆) = g′|z(s⋆) they cannot be comparable under ⊆. Hence, in this
case, we have that z ∈ ram(W).

• Next, consider if s⋆ ≤ t−. We may assume that f(u•) = g(u•) for all u• ≥ t+ (or
else, the case above applies). By Lemma 5.4.2 there exists z ∈ D and h ∈ A(z) such that
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f, g /∈ F(z), f ⊳ h ⊳ g and σz < t. We have f(u•) = g(u•) for all u• ≥ t+, and f ⊳ h ⊳ g,
which means f(u•) = h(u•) = g(u•) for all such u•. Since f(t−) ≤ h(t−) ≤ g(t−) we have
h ∈ A(z). The properties of h given in Lemma 5.4.2 guarantee that h is not equal to f or
g, so there exists some v1•1, v2•2 ≤ t− such that f(v1•1) < h(v1•1) and h(v2•2) < g(v2•2).

We apply Lemma 5.4.2 twice more, to (f, h) at v1•1 and to (h, g) at v2•2. We thus obtain
(respectively) for i = 1, 2, zi ∈ D and hi ∈ A(zi) such that f ⊳ h1 ⊳ h ⊳ h2 ⊳ g, with
f, h /∈ F(z1), h, g /∈ F(z2) and σz1 , σz2 < t. The same argument as above shows that
h1, h2 ∈ F(z). It is clear that h1|z1 and h2|z1 are both elements of W and both pass
through z. To complete the proof, we will show that they are not comparable under ⊆.

Suppose that h1|z1 ⊆ h2|z2 . Then σz2 ≤ σz1 , and the fact that h1 ⊳ h ⊳ h2 implies that
h ∈ A(z1), which is a contradiction. Similarly we cannot have h2|z2 ⊆ h1|z1 , so in this case
we also have z ∈ ram(W).

This completes the proof of Lemma 5.4.3. �

We are now ready to give the proof of Theorem 2.4.4. We prove the two parts of the theorem
in turn, with part 2 first. Let A and B be weaves.

Part 1. Suppose that A ∼ B. Theorem 2.4.3 gives that flow(A)
d
= flow(B), which implies

that there exists a coupling of A and B such that P[flow(A) = flow(B)] = 1. Let us write
F = flow(A)

a.s.
= flow(B). Suppose that z ⊆ R2

c is finite and almost surely non-ramified in both
A and B. Lemma 5.4.3 gives that, almost surely, z is non-ramified in F .

We seek to show that A|z
a.s.
= F|z. Write z = (z1, . . . , zm) and fix i ≤ m. Let f = A|zi .

By Theorem 4.3.9 there exists f ′ ∈ F with f ⊆ f ′. Therefore f ′|zi = f . As z is almost

surely non-ramified in F , and F ⊆ Πl, in fact F(zi)
a.s.
= {f ′}, which implies that almost surely

f ′|zi = F|zi = f . We thus have A|zi
a.s.
= F|zi .

A symmetric argument shows that B|zi
a.s.
= F|zi , so in fact A|zi

a.s.
= B|zi . In particular A|zi

and B|zi have the same marginal distribution, so A|zi
d
= B|zi , as required.

Part 2. Let us first show that (a) and (b) are equivalent. Assume (a), that A ∼ B.

Theorem 2.4.3 gives that flow(A)
d
= flow(B), which implies that there exists a coupling of A

and B such that P[flow(A) = flow(B)] = 1. Let us write F = flow(A)
a.s.
= flow(B). From (2.13)

we thus have P[A ∪ F is non-crossing and B ∪ F is non-crossing] = 1. Lemma 4.1.3 gives that
P[A ∪ B is non-crossing] = 1, obtaining (b).

Conversely suppose (b), that A,B are coupled weaves such that P[A∪B is non-crossing] = 1.
By Lemma 4.4.4 we have P[flow(A) = flow(B)] = 1. In particular flow(A) and flow(B) have the
same marginal distribution, so A ∼ B.

We will next show that (a) and (c) are equivalent. Assume (a), that A ∼ B. Lemma 5.4.1
implies the existence of a deterministic dense countable D ⊆ R2 such that D is almost surely
non-ramified in both A and B. If z ⊆ D is finite then it follows by part 1 of the present proof
that A|z and B|z have the same marginal distribution, which establishes (c).

Conversely suppose (c). Note that the (deterministic) operation A′ 7→ webD(A
′) depends

only on A′|D. Enumerate D = (zi)i∈N and write zm = (z1, . . . , zm). From (c) we have that
A|zm and B|zm have the same marginal distribution, so by countability of D in fact A|D and
B|D have the same marginal distribution. It follows that webD(A) and webD(B) have the same

marginal distribution. By Lemma 4.5.3 we thus have that web(A)
d
= web(B), so A ∼ B, which

establishes (a). This completes the proof.
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5.5 Proof of Theorems 2.4.5 and 2.4.6

We give the proof of Theorem 2.4.6 before that of 2.4.5, because part 2 of Theorem 2.4.5 will
be proven as a specialization of part 2 of Theorem 2.4.6. Suppose that An,A are weaves. We
prove parts 1 and 2 of Theorem 2.4.6 in turn.

Part 1. Suppose that An → A and let zn, z ∈ (R2
c)

m be non-ramified. By Skorohod’s
Representation Theorem we may (change probability space, preserving the marginal distribu-
tions of each An and A) and assume that An

a.s
→ A. Let us write zn = (zn,1, . . . , zn,m) and

z = (z1, . . . , zm). Due to non-ramification, for each i the sets An|zn,i and A|zi almost surely
contain a single bi-infinite path, which we write as fn,i and (respectively) fi. By Lemma A.1.1
the set

⋃
n∈NAn is almost surely relatively compact. Therefore we may pass to a subsequence

and assume that fn,i
a.s
→ gi ∈ Πl as n → ∞, for all i. Since An

a.s
→ A we have gi ∈ A. By

Lemma A.2.2 we have gi ∈ A(zi), which implies that gi
a.s.
= fi. Thus An|zn

a.s
→ A|z, on the

probability space generated by Skorohod’s Representation Theorem, which implies convergence
in distribution.

Part 2. Let B be a weak limit point of (An), that is An
d
→ B along a subsequence of n. Let

us pass to this subsequence, without loss of generality. Further, suppose that B is almost surely
non-crossing. By Skorohod’s Representation Theorem, noting that we are interested to prove
distributional properties of B, without loss of generality we may assume that An

a.s
→ B. Since B

is assumed to be almost surely non-crossing, to show that B is a weave we need only show that
B is almost surely pervasive. Let z ∈ Rc. Almost surely, for all n there exists fn ∈ An(zn). By
Lemma A.1.1 the set B ∪ (

⋃∞
n=1An) is compact, hence there exists f ∈ Π↑ such that fn → f .

As An
a.s
→ B we have f ∈ B. By Lemma A.2.2 we have f ∈ B(z). Thus B is pervasive, so B is a

weave.
Suppose additionally that An|z → A|z for all almost surely non-ramified z ∈ (R2)m. By

Lemma 5.4.1 the set R = {z ∈ R2 ; P [z is ramified in A,B or An] > 0} is a Lebesgue null
subset of R2. For any finite sequence z of points in D = R2 \ R we have (by assumption) that

An|z
d
→ A|z. Since R is null, D is dense in R2. From part 1 of the present theorem we have

also that An|z
a.s
→ B|z, which implies convergence in distribution. Hence A|z

d
= B|z for all finite

z ⊆ D. Theorem 2.4.4 now gives that A ∼ B. This completes the proof of Theorem 2.4.6.

We now give the proof of Theorem 2.4.5, proving each of the three parts in turn. Suppose
that Fn,F are flows.

Part 1. Note that if z ∈ Rc is non-ramified then F(z) contains only a single bi-infinite path.
With this fact in hand, the argument is essentially the same as that of part 1 of Theorem 2.4.6
(from the start of the present section) and is left to the reader.

Part 2. Suppose that F ′ is a weak limit point of (Fn). Lemma 3.3.6 gives that F ′ is almost
surely non-crossing. Hence, by part 2 of Theorem 2.4.6, F ′ is a weave. As Πl is a closed subset
of Π we have F ′ ⊆ Πl almost surely, hence by Theorem 2.4.3 F ′ is a flow.

Suppose, additionally, that (Fn) is tight and Fn|z
d
→ F|z for all non-ramified z ∈ (R2)m.

Part 2 of Theorem 2.4.6 thus gives that F ∼ F ′. By Theorem 2.4.3, in particular by the fact

that each equivalence class contains a unique maximal element, we have F
d
= F ′. We now have

that (Fn) is tight and any weak limit point of (Fn) is equal in distribution to F , so we have
that Fn → F .

Part 3. Suppose that Fn
d
→ F and that An ∼ Fn. By Theorem 2.4.4, for each n ∈ N

there exists a coupling of Fn to An such that An ∪ Fn is almost surely non-crossing. Hence
An ⊆ (Fn)↑. It follows from Proposition A.2.1 that tightness of (Fn) implies tightness of (An).

Let A′ be a weak limit point of (An). We thus have (Fn,An)
d
→ (F ,A′). We apply Skoro-

53



hod’s Representation Theorem (to the sequence of pairs (Fn,An)n∈N) and may therefore assume
without loss of generality that Fn

a.s
→ F and An

a.s
→ A′. Note that this preserves the marginal

distributions of (Fn,An), for each n. We therefore have that An ⊆ (Fn)↑ almost surely.
If f ∈ A then (almost surely) there exists fn ∈ An such that fn → f . Hence also there exists

gn ∈ Fn with fn ⊆ gn. Lemma A.1.1 gives that F ∪ (
⋃

n∈NFn) is almost surely compact, so
we may pass to a subsequence and assume that gn → g, where g ∈ F . Lemma A.2.2 gives that
f ⊆ g. Thus almost surely A′ ⊆ F↑, which implies A′ ∪ F is non-crossing. Lemma A.2.2 and
almost sure pervasiveness of An imply that A′ is almost surely pervasive. Thus A′ is a weave.
By Theorem 2.4.4 we have that A′ ∼ F , as required. This completes the proof of Theorem 2.4.5.

5.6 Proof of Theorem 2.4.8

Let A be a weave, let W = web(A) and F = flow(A). Let D be a countable, dense and almost
surely non-ramified subset of R2

c . By Theorem 2.4.3 the event

{W = webD(A), W � A � F , A ∪W ∪ F is noncrossing, D is non-ramified}

has probability one. Without loss of generality, for the remainder of Section 5.6 we condition
on this event occurring. During the course of this proof we will apply several of our previous
results in reverse time, to Π↓ values objects rather than Π↑ valued objects. To assist with this
we will use the ·� operator, defined above the statement of Theorem 2.4.8, which represents
rotation of space-time R2

c about the origin by 180 degrees. In previous sections, for f ∈ Π↑

with (x, t) ∈ H(f) we have written f |(x,t) for the restriction of f to [t−,∞+]. Here, we need to
extend this notation to allow for restriction both forwards and backwards in time. For f ∈ Π
we will write f⌋(x,t) for the restriction of f to [σf−, t+] and f⌈(x,t) for the restriction of f to

[t−, τf+]. For f ∈ Π↑ we will avoid the notation f |z within this section, writing f⌈z instead.
We begin the proof of Theorem 2.4.8 by showing that

{g ∈ Π↓ ; g does not cross A and g begins in D} = {f⌋z ∈ Π↓ ; z ∈ D and f ∈ F(z)} (5.7)

To see (5.7), first consider if g does not cross A and begins in D. By applying Theorem 4.3.9
(in reverse time) we obtain f ∈ Πl such that g ⊆ f and f does not cross A, which implies that
f ∈ flow(A) = F . We have g = f⌋z, so the left hand side of (5.7) is contained within the right
hand side. For the reverse inclusion, consider if z ∈ D and f ∈ F(z). Clearly g = f⌋z begins at
z ∈ D and does not cross F , which implies g does not cross A. We have thus established (5.7).

Let

ŴD = {g ∈ Π↓ ; g does not cross A and g begins in D}↓ (5.8)

Ŵ ′
D = {f⌋z ∈ Π↓ ; z ∈ D and f ∈ F(z)}↓

Note that (5.8) is (2.16), repeated here for convenience. By Proposition A.2.1, compactness of
F implies relative compactness of (the right hand side of) equation (5.7). With this in hand

Lemma 4.5.1, applied in reverse time, gives that ŴD = Ŵ ′
D. From (2.12) we have that

Ŵ ′
D = (webD�(F�))� (5.9)

from which Theorem 2.4.3 gives that Ŵ ′
D is both a dual web and (from Remark 4.5.4) does not

depend on the choice of dense and almost surely non-ramified subset D ⊆ R2
c . From this point

on let us write Ŵ = ŴD = Ŵ ′
D. From (5.9) we have that (Ŵ ′

D)
� = webD�(F�), which in

words says that (Ŵ ′
D)

� is the web associated to F�. Theorem 2.4.3 implies that (Ŵ ′
D)

� does
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not cross F�, thus Ŵ ′
D does not cross F , which by Lemma 4.1.3 implies it also does not cross

A. Therefore (W, Ŵ) is a double web.
The same argument that led to (5.7), but now used forwards in time, gives that {f ∈

Π↑ ; f does not cross A and f begins in D} = {f⌈z∈ D and f ∈ F(z)}. It follows from (2.12)
and Theorem 2.4.3 that

W = {f ∈ Π↑ ; f does not cross A and f begins in D}↑. (5.10)

We now turn our attention to (2.17). Let

F ′ = {g→֒f ∈ Πl ; g ∈ Ŵ ends and f ∈ W begins at the same point of D}. (5.11)

We must show that F ′ a.s
= F . Let h ∈ F ′. Then there exists zn ∈ D such that fn ∈ W begins

and gn ∈ Ŵ ends at zn, and hn → h where hn = (gn)→֒(fn). Using that zn is non-ramified, let
h′n be the unique element of F(zn). Note that fn does not cross F . Hence ((h′n)⌋zn)→֒(fn) is a
path passing through zn that does not cross F , which is therefore an element of F , and therefore
equal to hn. Thus fn = (h′n)⌈zn . By a symmetrical argument, gn = (h′n)⌋zn which implies that
h′n = (gn)→֒(fn) = hn. Hence hn ∈ F , which implies that h ∈ F .

To see the reverse inclusion, let f ∈ F . By Lemma 4.2.8 we have F = F(D), hence there
exists zn ∈ D and hn ∈ F(zn) such that hn → f . Let fn = (hn)⌈zn and gn = (hn)⌋zn . We have
that hn does not cross F , hence fn and gn do not cross A. From (5.8) and (5.10) we have that

fn ∈ W and gn ∈ Ŵ. Hence h ∈ F ′. We thus have F = F ′ which establishes (2.17).
It remains only to show the uniqueness claim. Let Û be a dual web and suppose that

(W, Û) is a double web. Then Û� is a web that almost surely does not cross F�, and the

same is true of Ŵ�. It is straightforward to check that F� is a Πl valued random variable
that inherits closedness, pervasiveness and the non-crossing property from F . Proposition A.2.1
implies that relative compactness is also inherited through ·�, so F� is a weave. Lemma 4.1.4
now implies that Û� ∪ Ŵ� is almost surely non-crossing, from which Lemma 4.5.5 implies that
web(Û�)

a.s.
= web(Ŵ�). By Theorem 2.4.3 we thus have Û� a.s.

= Ŵ�, which implies Û
a.s.
= Ŵ as

required.

5.7 Proof of Theorem 2.4.9

Recall that Π↑
c ,Π

↓
c and Π

l
c respectively denote the sets of continuous forwards half-infinite,

backwards half-infinite, and bi-infinite càdlàg paths. The proof of Theorem 2.4.9 is based on
the following lemma.

Lemma 5.7.1 The following hold.

1. Let A ⊆ Π↑
c be a deterministic weave. If h ∈ Πl does not cross A then h ∈ Π

l
c .

2. Let F ⊆ Π
l
c be a deterministic flow. If f ∈ Π↑ does not cross F then f ∈ Π↑

c .

Proof: We will prove each claim in turn, starting with the first. We argue by contradiction.
Let A ⊆ Πc. Suppose that that h ∈ Πl does not cross f and that h is discontinuous at t ∈ R.
Without loss of generality (or consider space reflected about the origin) we may assume that
h(t−) < h(t+). By Lemma 4.1.1 there exists f ∈ A such that f(t−) ≤ h(t−) and h ⊳ f . Hence
h(t+) ≤ f(t+). We thus have f(t−) ≤ h(t−) < h(t+) ≤ f(t+), which means that f ∈ A is
discontinuous at t. This is a contradiction, which completes the proof.
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It remains to establish the second claim. If f ∈ Π↑ does not cross F then by Theorem 4.3.9
there exists f ′ ∈ Πl such that f ⊆ f ′ and f ′ does not cross F . From what we have already
proved we have f ′ ∈ F , thus f ′ ∈ Πc which implies f ∈ Πc. �

We now give the proof of Theorem 2.4.9. Note that it suffices to prove the results for
deterministic weaves. We will prove the two claims in turn, starting with the first. Let A,B be
deterministic weaves such that A ∼ B. We seek to show that if A ⊆ Π↑

c then B ⊆ Π↑
c . It then

follows by symmetry that A ⊆ Π↑
c if and only if B ⊆ Π↑

c .
By Theorem 2.4.4, without loss of generality we may assume that A are B coupled such that

A∪ B is almost surely non-crossing. On that event, by Lemma 4.1.4, a path f ∈ Π crosses A if
and only if it crosses B. From (2.13) we thus obtain flow(A)

a.s.
= flow(B), which we henceforth

refer to as F . By part 1 of Lemma 5.7.1, as A ⊆ Π↑
c we have also that F ⊆ Π

l
c . Since B � F we

have B ⊆ F↑, thus B ⊆ Πc. The same applies by symmetry with the roles of A and B swapped.
This proves the first claim of Theorem 2.4.9.

It remains to prove the second claim. Let A be a deterministic weave. Let W,F denote the
corresponding web and flow. It remains to show that Ŵ ⊆ Π↑

c if and only if W ⊆ Π↓
c , where Ŵ

is given by (2.16) in Theorem 2.4.8. By symmetry (or consider reversing the direction of time)

it suffices to prove that if W ⊆ Π↑
c then Ŵ ⊆ Π↓

c . To this end, suppose that W ⊆ Πc.
From what we have already proved, F ⊆ Πc. From (2.16) we have

Ŵ = {g ∈ Π↓ ; g does not cross F and (g(τg), τg) ∈ D}↓. (5.12)

Let f̂ ∈ Ŵ. Then there exists f̂n ∈ Π↓ such that f̂n does not cross F and f̂n → f̂ . By Theorem
4.3.9 (applied in reverse time) there exists hn ∈ F such that f̂n ⊆ hn. By compactness of F we
may pass to a convergent subsequence hn → h ∈ F . By Lemma A.2.2 we have f̂ ⊆ h. Since h
does not cross F , also f̂ does not cross F . By part 2 of Lemma 5.7.1 (applied in reverse time)

we thus have f̂ ∈ Π↓
c . Thus W ⊆ Π↓

c .

A Appendices

A.1 On the Hausdorff metric

Let (M,dM ) be a metric space and let K(M) denote the set of compact subsets of M , including
the empty set. We write distM (x,A) = infa∈A dM (x, a) for the infimum distance from the point
x ∈ M to A ⊆ M . We now state some well known facts relating to K(M). The function

dK(M)(A1, A2) := sup
x1∈A1

distM (x1, A2) ∨ sup
x2∈A2

distM (x2, A1), (A.1)

defines a metric on K(M) known as the Hausdorff metric, or more precisely the Hausdorff metric
with respect to dM . If d and d′ are two metrics generating the same topology on M , then their
corresponding Hausdorff metrics generate the same topology on M . This topology is known
as the Hausdorff topology. Note the subtle difference between ‘the Hausdorff topology’, which
refers to this particular topology, and ‘a Hausdorff topology’, which refers to any topology having
the Hausdorff property i.e. that distinct points possess disjoint neighbourhoods. (All topological
spaces mentioned within the present article have the Hausdorff property.)

Completeness ofM implies completeness of K(M). The same extension fromM to K(M) also
holds for separability, and for compactness. We now establish some more detailed connections.

Lemma A.1.1 Let (M,dM ) be a complete metric space.
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1. Let X ⊆ K(M). Then X is relatively compact if and only if ∪X∈XX is a relatively compact
subset of M .

2. Let X ⊆ M . Then X is relatively compact if and only if {A ∈ K(M) ; A ⊆ X} is a
relatively compact subset of K(M).

Proof: The two claims are readily seen to be equivalent: take X = {A ∈ K(M) ; A ⊆ X} to
see that the (1)⇒(2) and take X = ∪A∈XA to see that (2)⇒(1). We will give proof of (1). As
completeness of M implies completeness of K(M), in both M and K(M) we have that relative
compactness is equivalent to total boundedness.

Suppose that X ⊆ K(M) is totally bounded. Then, for each ǫ > 0 there is a finite
set X1, . . . , Xn of elements of K(M) such that, for any X ∈ X there is some Xi such that
dK(M)(X,Xi) < ǫ. Let Y =

⋃n
i=1Xi and note that

⋃
X∈X X ⊆ Y (ǫ). Since each Xi is compact

in M , Y is also compact in M , and in particular Y is totally bounded. Hence also
⋃

X∈X X is
totally bounded.

Conversely, suppose that X ⊆ K(M) is such that
⋃

X∈X X ⊆ M is totally bounded. Let
ǫ > 0. There exists a finite set {x1, . . . , xn} ⊆ M and a map f :

⋃
X∈X X → {x1, . . . , xn}, such

that for any x ∈
⋃

X∈X X we have dM (x, f(x)) < ǫ. For any X ∈ X , the set f(X) = {f(x) ; x ∈
X} is finite and therefore compact, meaning that f(X) ∈ K(M). By construction we have
dK(M)(X, f(X)) < ǫ. Let X be the set of subsets of {x1, . . . , xn}, hence X is a finite subset of
K(M). We have shown that for any X ∈ X there is some X ′ ∈ X such that dK(M)(X,X ′) < ǫ.
Thus X is totally bounded. �

The next Lemma is a key ingredient of the proof of Lemma A.3.1. It provides a supply of
closed (and consequently measurable) subsets of K(M). We define

A(ǫ) = {x ∈ M ; distM (x,A) < ǫ} for ǫ > 0,

A[ǫ] = {x ∈ M ; distM (x,A) ≤ ǫ} for ǫ ≥ 0,

as the (respectively) open and closed ǫ-expansions of A ⊆ M . Note that A[0] = A.

Lemma A.1.2 Let X,Y ⊆ M , ǫ ≥ 0 and C ⊆ K(M). Then:

1. the set {A ∈ K(M) ; X ⊆ A[ǫ]} is closed;

2. the set {A ∈ K(M) ; A ∩ (Y \X) = ∅} is closed if X is closed and Y is open;

3. the set {A ∈ K(M) ; A ∩ (X \ Y ) 6= ∅} is closed if X is closed and Y is open;

4. the set {A ∈ K(M) ; ∃C ∈ C , C ⊆ A} is closed if C is closed.

Proof: We prove the claims independently. For the first claim, assume that An → A in K(M)

and X ⊆ A
[ǫ]
n for all n, where ǫ ≥ 0. Let f ∈ X, so dK(M)({f}, An) ≤ ǫ. Letting n → ∞ we

obtain dK(M)({f}, A) ≤ ǫ. Since f ∈ X was arbitrary X ⊆ A[ǫ], as required.
For the second claim, assume that An → A in K(M) and An ∩ (Y \ X) = ∅ for all n,

where Y is open and X is closed. We must show that A ∩ (Y \X) is empty. We will argue by
contradiction. Suppose there exists f ∈ A ∩ (Y \X), which means that f ∈ A ∩ Y and f /∈ X.
Since An → A there exists fn ∈ An such that fn → f . For each n, noting that An ∩ (Y \X) is
empty we have (a) fn /∈ Y or (b) fn ∈ X; thus one of these two alternatives must hold for an
infinite subsequence of n ∈ N. If (a) holds for infinitely many n then along that subsequence we
have fn → f with fn /∈ Y and f ∈ Y , which contradicts the fact that Y is open. If (b) holds for
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infinitely many n then along that subsequence we have fn → f with fn ∈ X and f /∈ X, which
contradicts the fact that X is closed. We thus reach the desired contradiction.

For the third claim, suppose that An → A in K(M) and An ∩ (X \ Y ) 6= ∅ for all n, where
X ⊆ M is closed and Y ⊆ M is open. Take fn ∈ An ∩ (X \Y ), so fn ∈ An ∩X and fn ∈ M \Y .
By Lemma A.1.1 the set ∪nAn is a relatively compact M and contains the sequence (fn), so we
may pass to a convergence subsequence fn → f . Since An → A we have f ∈ A. We have fn ∈ X
and fn ∈ M \ Y , and since both X and M \ Y are closed we thus have f ∈ X and f ∈ M \ Y .
Thus f ∈ A ∩ (X \ Y ), which completes the proof.

For the final claim, suppose that An → A in K(M) and that Cn ∈ C with Cn ⊆ An. Using
Lemma A.1.1 the set A∪ (∪nAn) is compact, which implies that ∪nCn is relatively compact, so
we may pass to a subsequence and assume Cn → C ∈ K(M). As Cn ⊆ An we have C ⊆ A and
since C is closed we have C ∈ C . �

Lemma A.1.3 If F : M → M is continuous then the map from K(M) to itself given by
A 7→ {F (f) ; f ∈ A} is continuous.

Proof: Note that if F is uniformly continuous then the conclusion is clear from the definition
of the Hausdorff metric, see (A.1). For general continuous F , note by Lemma A.1.1 that if
An → A in K(M) then the set (∪nAn) ∪ A is compact and thus the restriction of F to this set
is uniformly continuous. The result follows. �

Lemma A.1.4 Let An, Bn, A,B ∈ K(M) with An ⊆ Bn for all n. If An → A and Bn → B
then A ⊆ B.

Proof: Let a ∈ A. Since An → A there exists an ∈ An such that an → a. Thus an ∈ Bn.
Since Bn → B we thus have a ∈ B. �

A.2 On the M1 topology of Π and K(Π)

The book of Whitt (2002) details relative compactness and weak convergence for real valued
stochastic processes (i.e. single càdlàg paths) in all four Skorohod topologies. In Freeman and
Swart (2023) we introduce a unified framework for these four topologies, suitable for random
sets of càdlàg paths. We recall some properties of the M1 version of this framework here.

Compact subsets of Π play a key role in our main results and, for this reason, we require
corresponding criteria for relative compactness (of subsets of Π) and tightness (relating to con-
vergence in law of K(Π) valued random variables). Fix a metric dR generating the topology
on R and for A ⊆ R let us write distR(x,A) = inf{dR(x, y) ; y ∈ A}. Relative compactness for
sets of continuous paths is often characterised using the modulus of continuity, see for example
Theorem 7.2 of Billingsley (1995). The analogous object for the M1 topology is

wT,δ(f) = sup
{
distR

(
f(t2⋆2), [f(t1⋆1), f(t3⋆3)]

)
; t1⋆1, t2⋆2, t3⋆3 ∈ I(f)s,

− T ≤ t1 < t2 < t3 ≤ T, t3 − t1 < δ
}
,

(A.2)

with the conventions that the supremum over the empty set is zero, and [a, b] = [a ∧ b, a ∨ b].

Proposition A.2.1 The following hold:
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1. A subset A ⊆ Π is relatively compact if and only if for all 0 < T < ∞

lim
δ→0

sup
f∈A

wT,δ(f) = 0.

2. A subset A ⊆ K(Π) is relatively compact if and only if for all 0 < T < ∞

lim
δ→0

sup
A∈A

sup
f∈A

wT,δ(f) = 0.

3. A sequence of Π valued random variables (fn) is tight, in the sense that their laws comprise
a relatively compact sequence of probability measures on Π, if and only if for all 0 < T < ∞
and ǫ > 0 we have

lim
δ→0

lim sup
n→∞

P [wT,δ(fn) ≥ ǫ] = 0.

4. A sequence of K(Π) valued random variables (An) is tight, in the sense that their laws
comprise a relatively compact sequence of probability measures on K(Π), if and only if for
all 0 < T < ∞ and ǫ > 0 we have

lim
δ→0

lim sup
n→∞

P

[
sup
f∈An

wT,δ(f) ≥ ǫ

]
= 0. (A.3)

Proof: Part 1 follows from the relative compactness criteria given in Theorem 3.7 of Freeman
and Swart (2023). In the language of that theorem, compact containment is automatic as R is
compact, and the Skorohod-equiconinuity requirement thus becomes part 1 above. Note that,
by Lemma A.1.1, parts 1 and 2 of Proposition A.2.1 are in fact equivalent to each other. Note
also that part 3 follows from part 4 by taking An = {fn}. Therefore, to complete the proof
of Proposition A.2.1 it suffices to deduce part 4 as a consequence of part 2. (In fact, a similar
argument deduces part 3 from part 1.)

Suppose first that (An) is tight. That is, for each κ > 0 there exists a compact set B ⊆
K(Π) such that lim infn→∞ P[An ∈ B] ≥ 1 − κ. By part 2, for any ǫ > 0 and T ∈ (0,∞)
there exists δ0 > 0 such that for all δ ∈ (0, δ0) we have supB∈B supf∈B wT,δ(f) ≤ ǫ. Thus
lim infn→∞ P[supf∈An

wT,δ(f) ≤ ǫ] ≥ 1− κ.
It remains to show the reverse implication. Let (An) satisfy (A.3) and let κ > 0. Note that

wT,δ(f) is an increasing function of both δ and T . By (A.3), for each k ∈ N set ǫ = 1/k and
choose δk > 0 and Tk ∈ (0,∞) such that

lim sup
n→∞

P[An \Bk 6= ∅] ≤ ǫ2−k (A.4)

where Bk = {f ∈ Π ; wT,δ(f) ≤ k−1}. Note that Bk+1 ⊆ Bk and let B = ∩kBk. Then
limδ↓0 supf∈B wT,δ(f) = 0, so part 2 gives that B = {X ∈ K(Π) ; X ⊆ B} is a compact subset
of K(Π). We have that

lim supn P[An \B 6= ∅] = lim supn P[∪k(An \Bk) 6= ∅]

≤ lim supn
∑

k P[An \Bk 6= ∅]

≤
∑

k lim supn P[An \Bk 6= ∅]

≤ ǫ.

In the above, the third line uses the reverse Fatou lemma and the final line uses (A.4). Noting
that {An \B = ∅} = {An ⊆ B} = {An ∈ B} we thus obtain lim supn P[An ∈ B] ≥ 1− ǫ. Thus
(An) is tight, which completes the proof. �
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The following three lemmas are consequences of Propositions 2.2.1 and (part 1 of) A.2.1.
They cover most of our interaction with the M1 topology within the present article. Recall from
Section 2.2 that for f ∈ Π there is a natural total order ⊑ on the interpolated graph H(f). We
write the associated strict order relation as ⊏. We slightly extend the terminology introduced
in (2.8): if w, z ∈ H(f) with w ⊑ z in the total order on H(f), we write f |[w,z] for the unique
g ⊆ f such that g ∈ Π begins at w and ends at z.

Lemma A.2.2 Let fn, f ∈ Π. Suppose that fn → f , and that wn, zn ∈ H(fn) with zn → z and
wn → w, and suppose that wn ⊑ zn in the induced order from H(fn). Then w, z ∈ H(f), with
w ⊑ z in the induced order from H(f), and fn|[wn,zn] → f |[w,z].

In particular, if zn ∈ H(fn) with fn → f and zn → z then z ∈ H(f).

Proof: The second claim follows immediately from the first, so we will prove the first. Let
gn = fn|[wn,zn] and g = f[w,z]. From the hypothesis of the lemma (fn) is a relatively compact
sequence in K(Π). Since gn ⊆ fn it follows from part 1 of Proposition A.2.1 that (gn) is also
relatively compact. To establish the present lemma it therefore suffices to show that any limit
point of (gn) is equal to g.

Let g′ be a limit point of (gn) and, with slight abuse of notation, let us pass to a subse-
quence and assume that gn → g′, in the M1 topology. From Proposition 2.2.1 we thus have
dK((R2

c)
2)(H

(2)(gn), H
(2)(g′)) → 0. As we noted in comments above Proposition 2.2.1, it is triv-

ial to see that this implies dK(R2
c)
(H(gn), H(g′)) → 0. Moreover (h, h′) 7→ dK(R2

c)
(H(h), H(h′))

is the Hausdorff metric on Π, generating a coarser topology than the M1 topology; as dis-
cussed in Section 3.4 of Freeman and Swart (2023) the topology generated is Skorohod’s M2
topology. It follows immediately by uniqueness of limits that if dK(R2

c)
(H(gn), H(g)) → 0 then

dK((R2
c)

2)(H
(2)(gn), H

(2)(g)) → 0. Therefore, to establish the present lemma we need only show
that H(g′) = H(g).

Consider v ∈ H(g′). As H(gn) → H(g′) there exists vn ∈ H(gn) such that vn → v. Since
gn ⊆ fn we thus have vn ∈ H(fn) with wn ⊑ vn ⊑ zn. Thus (wn, vn), (vn, zn) ∈ H(2)(fn). Since
H(2)(fn) → H(2)(f) we thus obtain (w, v), (v, z) ∈ H(2)(f), which implies that v ∈ H(f) with
w ⊑ v ⊑ z. Hence v ∈ H(g). We thus obtain H(g′) ⊆ H(g).

It remains to show the reverse inclusion. Consider v ∈ H(g). Thus v ∈ H(f) with w ⊑ v ⊑ z,
which means that (w, v), (v, z) ∈ H(2)(f). Hence there exists (w′

n, vn), (vn, z
′
n) ∈ H(2)(fn) such

that (w′
n, vn) → (w, v) and (vn, z

′
n) → (v, z). If v = w then wn → v and as wn ∈ H(gn) we

obtain v ∈ H(g′). Similarly, if v = z then z ∈ H ′(g). Without loss of generality we may therefore
assume that w ⊏ v ⊏ z.

Note that wn ∨ w′
n and zn ∧ z′n, where ∧ and ∨ respectively denote min and max under ⊑,

are elements of H(fn). Moreover wn ∨ w′
n → w and zn ∧ z′n → z. If vn ⊑ wn ∨ w′

n for infinitely
many n ∈ N then (vn, wn ∨ w′

n) ∈ H(2)(fn) for such n and we would have (v, w) ∈ H(2)(fn),
meaning that v ⊑ w, which is a contradiction. Hence wn ∨ w′

n ⊑ vn for all but finitely many
n. Similarly vn ⊑ zn ∧ z′n. Thus wn ⊑ vn ⊑ zn for all but finitely many n. For such n we
have vn ∈ H(gn), which implies that v ∈ H(g). We therefore obtain H(g′) ⊆ H(g), so in fact
H(g′) = H(g), which completes the proof. �

Lemma A.2.3 Let fn, f ∈ Π. Suppose that fn → f and tn ∈ I(fn) with tn → t ∈ R. For each
n let ⋆n ∈ {−,+}. Then f ∈ I(f) and f(t−) ∧ f(t+) ≤ lim infn fn(tn⋆n) ≤ lim supn fn(tn⋆n) ≤
f(t−) ∨ f(t+).

Proof: Let x be any subsequential limit point of (fn(tn⋆n))n∈N, which means that (x, t) is a
subsequential limit point of (fn(tn⋆n), tn). Note that (fn(tn⋆n), tn) ∈ H(fn). By Lemma A.2.2

60



we thus have (x, t) ∈ H(f), which implies that x ∈ [f(t−) ∧ f(t+), f(t−) ∨ f(t+)]. The result
follows. �

Lemma A.2.4 Let fn, f ∈ Π, with fn → f and t⋆ ∈ I(f)s. There exists tn ∈ R such that
tn → t and fn(tn⋆) → f(t⋆).

Proof: Noting that H(fn) → H(f), take (xn, tn) ∈ H(fn) such that (xn, tn) → (f(t⋆), t).
Then (fn(tn−), tn) ⊑ (xn, tn) ⊑ (fn(tn+), tn). By compactness of R we may, without loss of
generality, pass to a subsequence along which both fn(tn−) and fn(tn+) converge, say fn(tn−) →
a and fn(tn+) → b. Hence, by Lemma A.2.2 we have (a, t) ∈ H(f) and (b, t) ∈ H(f) with
(f(t−), t) ⊑ (a, t) ⊑ (f(t⋆), t) ⊑ (b, t) ⊑ (f(t+), t). If ⋆ = − then (a, t) = (f(t⋆), t) and
fn(tn−) → f(t−). If ⋆ = + then (b, t) = (f(t⋆), t) and fn(tn+) → f(t+). �

A.3 On measurability in K(Π)

In this section we establish that various basic maps involving K(Π) are measurable. Such things
are required to work with K(Π) valued random variables in Section 5. The vast majority of the
work involved in this section is Lemma A.3.1, which is also used in the proof of Lemma 4.2.5.

Recall that we use the Borel σ-fields on R2
c , Π and K(Π). These σ-fields are generated in

each case by the closed (or equivalently, open) subsets. Due to our focus on compactness it is
helpful to work with closed sets whenever possible. Recall that dΠ, generating the M1 topology
on Π, is defined via Proposition 2.2.1 and the corresponding Hausdorff metric on K(Π) is defined
via (A.1).

Lemma A.3.1 The map (A, z) 7→ A(z) from K(Π)× R2
c → K(Π) is measurable.

Proof: The proof is rather technical. Recall that A(z) = {f ∈ A ; z ∈ H(f)}. Note that
Proposition 2.2.1 gives that A(z) is a closed subset of Π, which implies compactness since A(z)
is a subset of the compact set A. As both K(Π) and R2

c are separable, in order to establish
measurability of (A, z) 7→ A(z) it suffices to show that the marginal maps A 7→ A(z) and
z 7→ A(z) are both measurable. We split the proof into these two parts, which will be proved
independently. In each part we will show that the pre-image of a closed subset of K(Π) is
measurable; we will represent this pre-image explicitly using countably many set operations on
measurable subsets. Lemma A.1.2 provides a supply of measurable (in fact, closed) subsets of
K(Π). The fact that a closed graph H(f) is measurable (in fact, compact) provides a supply of
measurable subsets of R2

c .
Measurability of A 7→ A(z): Fix z ∈ R2

c and denote this map by Mz : K(Π) → K(Π), so
Mz(A) = A(z). For z ∈ R2

c let us write Πz = {f ∈ Π ; z ∈ H(f)} and K(Πz) for the set of
compact subsets of Πz. Proposition 2.2.1 implies that Πz is a closed subset of Π, from which part
1 of Lemma A.1.2 gives that K(Πz) a closed subset of K(Π). Note that Mz maps into K(Πz). It
therefore suffices to show that the pre-image of a closed subset of K(Πz) is measurable. To this
end, let C ⊆ K(Πz) be closed and let C ′ be a dense countable subset of C . We will show that
the following are equivalent:

1. A(z) ∈ C ;

2. for all ǫ > 0 there exists δ > 0 and C ∈ C ′ such that
(
A ∩Π

(δ)
z

)
\ C [ǫ] = ∅ and C ⊆ A[ǫ].

We first give the forwards implication (1)⇒(2). Let us assume A(z) ∈ C and suppose that (2)
fails, in preparation for an argument by contradiction. Then there exists ǫ > 0 such that for all
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C ∈ C ′ and all δ > 0 it holds that
(
A ∩ Π

(δ)
z

)
\ C [ǫ] 6= ∅ or C * A[ǫ]. We have A(z) ∈ C so we

may choose C ∈ C ′ such that
dK(Π)(C,A(z)) ≤

ǫ
2 . (A.5)

Hence C ⊆ A(z)[ǫ], which implies C ⊆ A[ǫ]. Taking δ = 1
n we thus have that there exists

an infinite subsequence of n ∈ N for which
(
A ∩ Π

(1/n)
z

)
\ C [ǫ] 6= ∅. For such n, take fn ∈(

A ∩Π
(1/n)
z

)
\C [ǫ]. We thus have fn /∈ C [ǫ], which by (A.5) implies that fn /∈ A(z)[ǫ/2]. We also

have that fn ∈ A ∩ Π
(1/n)
z which, by compactness of A implies that (fn) has a subsequential

limit f ∈ A(z). However, this contradicts the conclusion reached in the previous sentence. Thus
(1)⇒(2).

Let us now establish the reverse implication (2)⇒(1). Take ǫ = 1
n and take δ = δn > 0 and

C = Cn ∈ C ′ as given from (2). That is, we have

Cn ⊆ A[1/n] and A ∩Π(δn)
z ⊆ C [1/n]

n . (A.6)

From the first statement in (A.6), since Cn ∈ K(Πz) we have Cn ⊆ A[1/n] ∩Πz ⊆ A(z)[1/n]. It is

automatic that A(z) ⊆ A∩Π
(δn)
z so from the second statement in (A.6) we obtain A(z) ⊆ C

[1/n]
n .

Putting these together, we obtain dK(Π)(A(z), Cn) ≤
1
n . Thus Cn → A(z) as n → ∞. Since C

is closed we thus obtain A(z) ∈ C . Thus (2)⇒(1).
We now have that (1)⇔(2). It follows that

M−1
z (C ) =

⋂

ǫ>0

⋃

δ>0

⋃

C∈C ′

{
B ∈ K(Π) ;

(
B ∩Π(δ)

z

)
\ C [ǫ] = ∅

}
∩
{
B ∈ K(Π) ; C ⊆ B[ǫ]

}

=
⋂

n∈N

⋃

m∈N

⋃

C∈C ′

{
B ∈ K(Π) ; B ∩

(
Π(1/m)

z \ C [1/n]
)
= ∅
}
∩
{
B ∈ K(Π) ; C ⊆ B[1/n]

}

Note that we have used the set algebraic identity X ∩ (Y \Z) = (X ∩Y )\Z. By parts 1 and 2 of
Lemma A.1.2 the last line of the above consists of countable unions and intersections of closed
subsets of K(Π). Thus Mz is measurable.

Measurability of z 7→ A(z): We will recycle some parts of our notation, to preserve the
symmetry between this argument the above. Fix A ∈ K(Π) and let us denote the map in
question by MA : R2

c → K(Π), so MA(z) = A(z). For any z ∈ R2
c we have that MA(z) ∈ K(A),

where K(A) denotes the set of all compact subsets of A. Part 1 of Lemma A.1.2 gives that K(A)
is a closed subset of K(Π). It is straightforward to check that if B ∈ K(A) then

M−1
A (B) =


⋂

f∈B

H(f)


 \


 ⋃

f∈A\B

H(f)


 . (A.7)

In words, equation (A.7) says that MA(z) = B if and only if B is precisely the set of f ∈ A such
that z ∈ H(f). In order to establish measurability of MA it suffices to fix a closed subset C of
K(A) and show that M−1

A (C ) is a measurable subset of R2
c . Let C ′ be a dense countable subset

of C . We will show that the following are equivalent:

3. A(z) ∈ C ;

4. for all ǫ > 0 there exists C ∈ C ′ such that z ∈
(⋂

f∈C H(f)[ǫ]
)
\
(⋃

f∈A\C[ǫ] H(f)
)
.

We first give the forwards implication (3)⇒(4). Suppose that A(z) ∈ C , that is MA(z) ∈ C .
Then there exists B ∈ C such that z ∈ M−1

A (B). Choose C ∈ C ′ such that dK(Π)(B,C) ≤ ǫ.
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From (A.7) we have that z ∈
⋂

f∈B H(f). It is straightforward to check that
⋂

f∈B H(f) ⊆⋂
f∈B[ǫ] H(f)[ǫ] and as C ⊆ B[ǫ] we obtain that z ∈

⋂
f∈C H(f)[ǫ]. Similarly, we have B ⊆ C [ǫ],

so A \ C [ǫ] ⊆ A \B and from (A.7) we have z /∈
⋃

f∈A\B H(f) ⊇
⋃

f∈A\C[ǫ] H(f). We have thus
obtained that (3)⇒(4).

Let us now establish the reverse implication (4)⇒(3). Take ǫ = 1
n and let C = Cn be as

given from (4). Noting that Cn ⊆ A for all n ∈ N, Proposition A.2.1 gives that the sequence
(Cn)n∈N is relatively compact (as sequence of elements of K(Π)), and thus has a convergence
subsequence. With slight abuse of notation let us pass to this convergent subsequence and set
B = limnCn. It follows immediately that B ∈ C .

From (4) we have z ∈
⋂

f∈Cn
H(f)[ǫn]. For each g ∈ B there exists gn ∈ Cn such that

gn → g. As gn ∈ Cn we have z ∈ H(gn)
[ǫn]. Proposition 2.2.1 gives that H(gn) → H(g) in

K(R2
c), which implies that H(gn)

[ǫn] → H(g). It follows immediately that z ∈ H(g), and as
g ∈ B was arbitrary we have z ∈

⋂
g∈B H(g).

Similarly, from (4) we have z /∈
⋃

f∈A\C
[ǫn]
n

H(f) for all n. Take g ∈ A \ B and note that

because B ⊆ Π is closed we have dK(Π)({g}, B) > 0. As Cn → B we have also that C
[ǫn]
n → B,

so for sufficiently large n we have g /∈ C
[ǫn]
n . Hence z /∈ H(g). As g ∈ B was arbitrary we thus

have g /∈
⋃

g∈A\B H(g). Putting this together with the conclusion of the previous paragraph and

(A.7) we obtain that z ∈ M−1
A (B). Thus (4)⇒(3).

We now have that (3)⇔(4). It follows that

M−1
A (C ) =

⋂

ǫ>0

⋃

C∈C ′




⋂

f∈C

H(f)[ǫ]


 \


 ⋃

f∈A\C[ǫ]

H(f)






=
⋂

n∈N

⋃

C∈C ′




⋂

f∈C

H(f)[1/n]


 \


 ⋃

f∈A\C[1/n]

H(f)




 (A.8)

We now examine the two terms in brackets on the right hand side of (A.8). The set
⋂

f∈C H(f)[1/n]

is an intersection of closed sets, and is therefore closed. Note also that

⋃

f∈A\C[1/n]

H(f) =
⋃

m∈N


 ⋃

f∈A\C(1/n+1/m)

H(f)


 . (A.9)

We claim that
⋃

f∈E H(f) is closed whenever E ⊆ Π is compact; to see this take xn ∈ H(fn)

where fn ∈ E and xn → x ∈ R2
c , pass to a convergence subsequence fn → f ∈ E and then by

Proposition 2.2.1 we have H(fn) → H(f) so x ∈ H(f). In particular, as C(δ) is open for all
δ > 0 we have that A \ C(δ) is compact, so the right hand side of (A.9) is a countable union
of closed sets. We have now shown that (A.8) represents M−1

A (C ) using countably many set
operations of measurable subsets of R2

c . Thus MA is measurable. �

Lemma A.3.2 Let z ∈ R2
c. The map (A, z) 7→ A|z is a measurable map from K(Π) × R2

c →
K(Π).

Proof: Recall that A|z = {f |z ; f ∈ A(z)}. As both K(Π) and R2
c are separable, in order to

establish measurability of (A, z) 7→ A|z it suffices to show that the marginal maps A 7→ A|z and
z 7→ A|z are both measurable. Recall Πz = {f ∈ Π ; z ∈ H(f)} from the proof of Lemma A.3.1,
in which we showed that Πz ⊆ Π and K(Πz) ⊆ K(Π) were both closed. By Lemma A.3.1 the
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map (A, z) 7→ A(z) is measurable, and it clear that it maps into K(Πz). Recall that for f ∈ Πz,
f |z is the unique g ⊆ f such that (g(σg−), σg) = z, and A|z = {f |z ; f ∈ A ∩ Πz}. By Lemma
A.2.2 the map f 7→ f |z defined from Πz to itself is continuous. It follows from Lemma A.1.3
that A 7→ A|z is continuous on K(Πz). Since A|z = (A(z))|z, this completes the proof. �

Lemma A.3.3 The map A 7→ A↑ is a continuous map from K(Π) to itself.

Proof: Let An, A ∈ K(Π) with An → A. Then (An) is relatively compact and, noting
that g ⊆ f ⇒ wT,δ(f) ≤ wT, δ(f), part 2 of Proposition A.2.1 gives that ((An)↑) is relatively
compact. Let B ∈ K(Π) be a limit point of ((An)↑). We must show that B = A↑. Without loss
of generality let us pass to a subsequence and assume that (An)↑ → B.

Let g ∈ B. Then there exists fn ∈ An with gn ⊆ fn and gn → g. By Lemma A.1.1 the set
∪nAn is relatively compact, so we may pass to a further subsequence and assume that fn → f .
Thus f ∈ A. Lemma A.2.2 gives that g ⊆ f , so g ∈ A↑. Hence B ⊆ A↑.

It remains to show the reverse inclusion. Let g ∈ A↑. Then there exists f ∈ A with
g ⊆ f . As An → A there exists fn ∈ An such that fn → f . From Proposition 2.2.1 (and the
remarks just above it) we have H(fn) → H(f). In particular, there exists zn ∈ H(fn) such that
zn → (g(σg−), σg) ∈ H(f). Let gn = fn|zn . Lemma A.2.2 gives that gn → g, so g ∈ B. Hence
A↑ ⊆ B. Thus A↑ = B and the proof is complete. �

A.4 Proof of Lemma 2.5.1

We must show that the Brownian web Wb satisfies our definition of a web, in Definition 2.4.1.
The argument rests on well known properties of the Brownian web. We noted in Section 2.2
that (Π↑

c , dΠ) is the state space that is in common usage for the Brownian web. As Wb is a

K(Π↑
c) valued random variable, it is also a K(Π↑) valued random variable. We will now refer to

points (a)-(c) of Theorem 2.3 of Schertzer et al. (2017), which defines Wb.
We first show that Wb is a weave. Let D ⊆ R2

c be dense and countable. Point (a) of this
definition gives that almost surely, Wb(z) is non-empty at all z ∈ D, which by Lemma A.2.2
implies that Wb is almost surely pervasive. Moreover since Wb(z) is almost surely a singleton,
D is almost surely non-ramified. It is well known in the literature that Wb is almost surely
non-crossing; strictly this follows because point (b) of the definition gives that Wb(D) is non-
crossing, point (c) gives Wb

a.s.
= Wb(D), and the non-crossing property is preserved by taking

limits of continuous paths (this last implication uses Lemma 3.3.7). We have now shown that
Wb is a weave.

Point (c) of the definition gives that Wb
a.s.
= Wb(D), for any deterministic dense countable

D ⊆ R2. Noting our remarks immediately above the present lemma regardingWb(D) andWb|D,
we have Wb

a.s.
= (Wb|D). Lemma A.2.2 implies that if An → A in K(Π) then (An)↑ → A↑. It is

straightforward to combine this fact with the usual system of random walk approximations to
the Brownian web (e.g. Figure 9 of Schertzer et al. (2017)) to show that Wb

a.s.
= (Wb)↑. Hence

in particular Wb|D
a.s.
= (Wb|D)↑, from which (2.12) gives Wb

a.s.
= web(Wb). Theorem 2.4.3 thus

gives that Wb is a web.
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