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Non‑invasive screening of breast 
cancer from fingertip smears—a 
proof of concept study
C. Russo 1,6, L. Wyld 2,3, M. Da Costa Aubreu 4, C. S. Bury 5, C. Heaton 1,7, L. M. Cole 1 & 
S. Francese 1*

Breast cancer is a global health issue affecting 2.3 million women per year, causing death in over 
600,000. Mammography (and biopsy) is the gold standard for screening and diagnosis. Whilst 
effective, this test exposes individuals to radiation, has limitations to its sensitivity and specificity 
and may cause moderate to severe discomfort. Some women may also find this test culturally 
unacceptable. This proof‑of‑concept study, combining bottom‑up proteomics with Matrix Assisted 
Laser Desorption Ionisation Mass Spectrometry (MALDI MS) detection, explores the potential for a 
non‑invasive technique for the early detection of breast cancer from fingertip smears. A cohort of 15 
women with either benign breast disease (n = 5), early breast cancer (n = 5) or metastatic breast cancer 
(n = 5) were recruited from a single UK breast unit. Fingertips smears were taken from each patient and 
from each of the ten digits, either at the time of diagnosis or, for metastatic patients, during active 
treatment. A number of statistical analyses and machine learning approaches were investigated and 
applied to the resulting mass spectral dataset. The highest performing predictive method, a 3‑class 
Multilayer Perceptron neural network, yielded an accuracy score of 97.8% when categorising unseen 
MALDI MS spectra as either the benign, early or metastatic cancer classes. These findings support the 
need for further research into the use of sweat deposits (in the form of fingertip smears or fingerprints) 
for non‑invasive screening of breast cancer.

Breast cancer is a global health issue. In the UK 55,920 new cases of breast cancer were diagnosed annually 
(2016–2018), making it the most common cancer in British  women1. The World Health Organisation (WHO) 
has reported that, in 2020, 2.3 million women were diagnosed with breast cancer, and approximately 30% of them 
had a fatal outcome,  globally2. Furthermore, according to the WHO, breast cancer is the world’s most prevalent 
malignant neoplasm, given that, by the end of 2020, 7.8 million living women were registered to have received a 
breast cancer diagnosis in the past 5  years2. Rates of, and mortality from breast cancer are rising globally due to 
changes in population age structure and lifestyle issues. There is significant variation in outcomes, both between 
and within nations, due in part to variation in access to mammography, the mainstay of breast cancer screening 
and  diagnosis3 and variation in access to systemic therapies.

Although mammography has facilitated earlier diagnosis and consequent improved outcomes, it is associ-
ated with exposure to radiation and physical discomfort. Mammography may be painful for many women as 
it requires breast compression between compression plates to enhance sensitivity. Additionally, some women 
find exposure of their breasts for mammography culturally unacceptable and decline screening, or delay it, even 
when they experience symptoms. In addition, about 10% of cancers are not visible on mammography due to 
high breast  density4–6 or with certain biological subtypes such as lobular  cancer7. In addition, in women under 
the age of 40, mammography has a very low sensitivity due to high breast density in this age group.

These limitations to the sensitivity of mammography may lead to delayed diagnosis which results in increased 
mortality rates and treatment morbidity (greater need for mastectomy, axillary clearance, chemotherapy, radio-
therapy). In addition, the cost and resource issues of population screening with mammography are significant. 

OPEN

1Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, 
Sheffield, UK. 2Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. 3Doncaster and 
Bassetlaw Teaching Hospitals, Doncaster, UK. 4Department of Computing, Materials Engineering Research 
Centre, Sheffield Hallam University, Sheffield, UK. 5Medicine Catapult Discovery, Manchester, UK. 6Present 
address: Department of Natural Sciences, Middlesex University, London, UK. 7Present address: Foster + Freeman, 
Evesham, UK. *email: s.francese@shu.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-29036-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1868  | https://doi.org/10.1038/s41598-023-29036-7

www.nature.com/scientificreports/

Similarly in the diagnosis and monitoring or metastatic breast cancer, where the mainstay is contrast enhanced 
computed tomography (CT Scan), resources are costly and increasingly constrained.

Breast cancer diagnosis is confirmed by core needle biopsy which, again, is an invasive and painful test, and 
may also be technically challenging in the metastatic setting. The ability to confirm the diagnosis non-invasively 
would be of great value.

For the above reasons, a test that is faster, cheaper and non-invasive (and potentially more culturally accept-
able), for the diagnosis of both early breast cancer and for the diagnosis and monitoring of metastatic breast 
cancer, would be highly desirable. It would have the potential to increase uptake of screening, reducing the stage 
at cancer diagnosis and therefore reducing the morbidity and mortality from early breast cancer and its treat-
ments. In the metastatic setting it would free up NHS CT scanner capacity. It would therefore have both patient 
and health service benefits.

Amongst potentially suitable biological samples, breath and sweat would allow for the most non-invasive test-
ing. Whilst the analysis of volatile organic compounds (VOCs) for cancer detection has been extensively reported 
in the literature, breath is rarely been the biological matrix of choice, with the first ever paper analysing VOCs in 
exhaled breath (breathomics) published by Sun et al. in  20078. To the best of the authors’ knowledge, breathomics 
for the specific detection of breast cancer has been reported in a handful of publications investigating classifi-
cation of patients into healthy versus cancer-diagnosed and summarised by Li et al. in  20209. In these studies, 
thermal desorption/gas chromatography/mass  spectrometry10–15, gas chromatography/acoustic wave  detection15 
and sensor  arrays16 were employed, showing this as a promising biological specimen to detect breast cancer.

Sweat is another interesting biological matrix which contains excreted endogenous and semi-endogenous 
substances as well as possible contaminants through direct skin contact or through passive diffusion from the 
 environment17–19. This biological matrix is especially of toxicological interest, due to its wider detection win-
dow. Whilst of lower compositional complexity, sweat can be representative of blood through possible diffusion 
from the bloodstream to sweat glands and transdermal migration. In 2015, Calderon-Santiago et al. reported a 
study exploiting the sweat metabolome for lung cancer  screening20. Monedeiro et al. recently published a study 
in which, for the first time, sweat patches were collected from healthy and diseased patients affected by differ-
ent types of cancer including lung, prostate, gastric, kidney, head and neck, pancreas and colorectal cancer and 
 lymphoma21. Using headspace GC–MS to analyse VOCs from these non-invasive specimen, patient classification 
was obtained with a 100% predictive power. To the best of the authors’ knowledge there is only one publication, 
in the form a patent, reporting on the detection of breast cancer in sweat; here Liquid Chromatography Tandem 
Mass Spectrometry (LC M/MS) was used to classify healthy versus cancer-affected patients using apocrine 
 sweat22. In the invention, sweat was collected from the patients’ axillae. The application of statistical analysis 
yielded a panel of metabolites, discriminating between the two classes of patients with a sensitivity of 97% and 
a specificity of 72%.

A different and potentially more advantageous approach started to emerge in 2010 when a (non-peer 
reviewed) report published by Belgorodsky et al.illustrated the detection of peptides and small proteins in a 
fingermark by Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Profiling (MALDI MSP)23. Sub-
sequently, in 2012, Ferguson et al.24 reported on the development of a MALDI MSP method specifically enabling 
the forensic determination of sex from fingerprints, targeting the same peptide/small protein mass range as shown 
by Belgorodsky et al.23. Ferguson et al.24 putatively identified some of the proteins present in these mass spectral 
profiles, which were detected again by Heaton et al. in  202125, discovering, in addition, that some of these species 
had been reported as breast cancer biomarkers. These species included psoriasin (m/z 11,377), Dermcidin (DCD) 
and its C-terminal derived peptides (LEK-24, (m/z 2365), SSL-25 (m/z 2414), YDP-42 (m/z 4303), LEK-45 (m/z 
4533), DCD-1 (m/z 4706) and DCD-1L (m/z 4819)). Psoriasin and dermcidin (DCD) have been previously indi-
cated as markers for breast cancer 26,27. These species have been previously detected from sweat (swabs or sweat 
patches) using Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF–MS) 
and reversed-phase high-pressure liquid chromatography (RP-HPLC). In 2015, Patel et al. endeavoured to opti-
mise the MALDI MSP detection of peptides and proteins in fingerprints through in situ bottom-up proteomics, 
confirming the presence and identity of these potential breast cancer  biomarkers28. This approach allowed the 
detection and identification of peptides/proteins of oncological interest, additional to and including dermcidin/
dermcidin-derived species and psoriasin. The human cationic antimicrobial protein hCAP was identified in the 
study by Patel et al.28 and its expression levels have been correlated to tumour  grade29. Furthermore, detection 
and identification of calmodulin-like protein, observed to be significantly down-regulated within invasive ductal 
carcinoma  specimens30, has also been possible. Finally, within the same study, zinc α2-glycoprotein (ZAG), 
indicated in the literature as a possible biomarker of breast cancer  differentiation31, has been detected.

As fingerprints are, in essence, an ordered pattern of lines made up of sweat (and any other contaminants 
that might have been picked up by the fingertip before contacting a surface and leaving an impression), it is 
hypothesised that it may be possible to detect breast cancer biomarkers from a fingertip smear (or a fingerprint 
in a forensic scenario). If this hypothesis is confirmed, sample collection would be even less cumbersome and 
most definitely less time consuming than collecting sweat patches and would indicate that, for peptide/protein 
biomarkers, the concentration of these species in a fingertip smear is sufficient for diagnostic purposes.

In the present study, enzymatic digestion and MALDI MSP preparation methods have been primarily opti-
mised in both a targeted and an untargeted approach. Within the targeted approach, mass spectral profiles were 
evaluated for the intensity of the m/z signals of those proteins and peptides previously detected in fingerprints 
as well as of those proteins additionally indicated by the literature as potential biomarkers of breast cancer. In 
the untargeted approach, sample preparation protocols were evaluated according to the intensity and the range 
of the detected peptide ion population in the corresponding MALDI MS spectra.

The optimised methods were employed for the MALDI MSP analysis of fingertip smears collected from 
patients with benign breast symptoms and those with both early stage and metastatic breast cancer. These data 
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were treated with a range of machine learning approaches to verify the hypothesis that it may be possible to 
detect breast cancer and classify patients from the protein content of their fingertip smears; the significance of this 
work lies in the perspective that if the hypothesis is verified, this method could act as a first rapid pass screening 
which would (i) relieve the pressure on a challenged health system (especially during and post-pandemic), (ii) 
contribute to saving lives due to early intervention and (iii) increase compliance due to the non-invasive nature 
of the test. These approaches yielded an accuracy of prediction between 62.2 and 97.8% with the latter figure 
being yielded by the Multi Layer Perceptron (MLP) Neural Network. These results hold the promise of a viable 
non-invasive screening and monitoring tool for breast cancer using fingertip smears and provide the justification 
for further research in a subsequent larger population study.

Materials and methods
Materials. ɑ-Cyano-4-hydroxycinnamic acid (CHCA), acetonitrile (ACN), trifluoroacetic acid (TFA), phos-
phorus red, ammonium bicarbonate, N-Octanonyl-N-methylglucamin (MEGA-8), potassium sulphate  (K2SO4) 
and ALUGRAM SIL G/UV254 pre-coated aluminium sheets were purchased from Machery Naghel (Lough-
borough, UK).  RapiGestSF was purchased from Waters (Elstree, UK). Trypsin Gold, mass spectrometry grade 
(100  μg lyophilised) was purchased from Promega (Southampton, UK). Peptide calibration standard II was 
obtained from Bruker (Bruker Daltonics GmbH, Germany).

Methods. Patient recruitment and sampling. All methods were carried out in accordance with relevant 
guidelines and regulations. Patients’ fingertip smears were collected following full Ethics and research govern-
ance approval (IRAS ID 253281, REC reference 18/LO/1792) at a single UK breast unit. The ethics board was 
London—West London & GTAC Research Ethics Committee. Women were eligible for the study if they had 
recently been diagnosed with early breast cancer, attended breast clinic with benign pathology (breast pain, 
fibrocystic change, fibroadenoma etc.) or were undergoing active follow up for locally advanced (inoperable) or 
metastatic breast cancer. In this study, the fingertip smears of 15 patients, 5 from each category were analysed. 
Written informed consent was obtained from all the study participants. Details of the patients’ disease stage were 
recorded. Women were asked to wash their hands in a 100% ethanol solution (to remove external contaminants), 
dry them and wait for 15 min for new secretions to form. Each of the 3 fingertips from "sampling fingers" were 
then smeared across a silica-removed aluminium slide twice in the same area to obtain 3 "built up" fingertip 
smears. The three fingers were chosen randomly by the patient. Slides were subsequently stored in a −80 °C 
freezer until analysis.

In situ fingermarks enzymatic digestion for MALDI MS Profiling (MALDI MSP): method optimisation. For 
method optimisation, ungrooomed  fingermarks32 were deposited onto aluminium slides in which the silica 
was removed as previously  described32. Different digestion conditions and detergents were trialled to achieve 
the highest peptide ion population and the highest signal intensity. In particular: (i) trypsin concentration was 
either 20 or 25 μg/mL (ii)  RapiGestSF, Mega-8 and glycerol were selected as detergents at different concentra-
tions and individually or in mixture:  RapiGestSF was trialled at 0.1 or 0.2% (w/v) or in a mixture of 0.1% (w/v) 
with MEGA-8 2% (w/v). MEGA-8 and glycerol were used on their own as detergents only in a 2% (w/v) and 
0.01% (v/v) concentration respectively (iii) enzymatic digestion time and temperature were either 2 h at 50 °C 
or 3 h at 37 °C; (iv) the humidity conditions during proteolysis (incubation) were explored by using either (a) a 
Tupperware box containing saturated  K2SO4 solution (when the digestion occurred at 50 °C for 2 h), (b) a wet 
paper positioned at the bottom of the Tupperware box (when the digestion occurred at 37 °C for 3 h) and (c) a 
Tupperware box containing 50:50  H2O:Methanol (when the digestion occurred at 37 °C for 3 h). Table S1 sum-
marises the digestion conditions trialled. Blank slides (controls—no fingermarks) were also digested using the 
same sets of conditions.

In situ patients’ fingertip smear enzymatic digestion for MALDI MSP. Prior to proteolysis, the aluminium slides 
containing patients’ fingertip smears were vacuum dried in order to remove the moisture generated upon remov-
ing the slides from the −80 °C temperature freezer. Three spots across the fingertip smears of 0.5 µL droplets 
of trypsin at concentration of 20 µg/mL in 50 mM  NH4HCO3 buffer containing 0.1% (w/v)  RapiGestSF were 
deposited onto each patient’s fingertip smear and incubated in a Tupperware box containing saturated  K2SO4 
solution at 50 °C for 2 h.

Matrix deposition. After digestion a matrix solution of 10 mg/mL α-CHCA dissolved in acetonitrile (ACN)/0.5% 
trifluoroacetic acid (TFA) (70:30) was manually spotted (in 0.5 µL droplets) onto the localised digest areas.

Instrument and instrumental conditions. MALDI MS spectra were acquired using a Waters Synapt G2 HDMS 
mass spectrometer (Waters Corporation, Manchester, UK) equipped with a neodymium: yttrium aluminium 
garnet (Nd:YAG) laser operated at 1 kHz using a power adjusted to 280 arbitrary units. The instrument calibra-
tion was performed using phosphorous red. For method optimisation, MS spectra of ungroomed fingermarks 
were acquired, preceded by and alternated with the analysis of "blanks" in positive mode within a mass range 
of 600–3000 Da. All acquisitions were performed in triplicate. For the analysis of patients’ fingertip smears, the 
instrument was calibrated using the Bruker peptide calibration standard II in positive mode over the mass range 
600–2800 Da. Three spectra per fingertip smear were acquired (three technical replicates) from 3 fingertips per 
patient (biological replicates).
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In silico digestion strategy for proteolysis conditions optimisation. For proteolysis conditions method optimisa-
tion, MALDI MS spectra of digested fingermarks were opened in MassLynx (Waters Corp. Manchester), con-
verted into.txt files and imported into mMass, an open-source multiplatform mass spectrometry  software33. 
Peak labelling was performed by setting the S/N threshold to 3 and deisotoping was applied. The sample peak 
lists were simplified by removing the matrix, matrix cluster/adducts and trypsin peaks. For putative peptide 
assignment, either the protein sequences of Dermcidin (P81605), Psoriasin (P31151), Calmodulin like protein 5 
(Q9NZT1), Zinc α glycoprotein (P25311), Cathelicidin antimicrobial peptide (P49913), Calmodulin like protein 
3 (P27482) were considered (Table S2), or a number of proteins being identified in the literature as present in 
fingermarks (Table S3). These sequences were preliminarily pulled out from UniProt Knowledgebase (https:// 
www. unipr ot. org/ unipr ot/) and linked together in silico by inserting an arbitrary sequence of 22 amino acids, 
RQQQQQQQQQQQQQQQQQQQQR, in between each protein and subunits, thereby generating a "master" 
protein sequence (Table S4). The master protein sequence was inserted into mMass and used for in silico diges-
tion with trypsin and peptide mass fingerprinting applied to fingermarks digested with every trialled proteolysis 
protocol in order to determine the digestion conditions yielding the most peptides, with the highest intensity 
(and lowest standard deviation). For the in silico digestion, “trypsin” was selected as the enzyme; “2 missed 
cleavages”, “methionine oxidation”, “monoisotopic mass”, and “max charge + 1” were also selected as digestion 
parameters (Table S5-S7). Identifications with a relative error > 30 ppm were dismissed. Peptide identifications 
were verified by checking the mass accuracy of the corresponding peaks after centroiding the data. The centroid 
spectra were obtained by selecting the option for post-acquisition transformation to centroid data via automatic 
peak detection. Identifications were eventually only accepted if the corresponding centroid peaks had a mass 
accuracy within 10 ppm with respect to theoretical m/z values. These putatively identified peptide peaks were 
submitted to one final screening by checking their presence in the controls (no fingermarks) to which the same 
digestion protocol, acquisition and processing conditions were applied; putatively identified peaks matching 
"blank" peaks within 10 ppm were finally excluded from the list of putative identifications.

MALDI MS data processing for machine learning (ML) patient classification. Three spectra for each of the three 
fingertips per patients were generated totalling 135 across 15 patients. Data pre-processing of MALDI MS spec-
tra generated from patient’s fingertip smears was carried out in MassLynx (Waters, UK). A retention time of 
0.21 min was selected within the chromatogram from the start of the sample acquisition for consistency. In the 
resulting spectrum, Savitsky-Golay smoothing was applied with a smoothing window of ± 3, and 2 smoothing 
cycles. For peak annotation, the option "intensity" was selected and set to 700 a.u. as the most suitable thresh-
old to exclude labelling of peaks with a S/N < 3. Peak centering was performed using the TOF spectrum centre 
function, with the minimum peak width at half height of 5, selecting the centroid top % at 80. Deisotoping was 
applied using the TOF transform function, using a minimum molecular mass of 700 Da, a maximum molecular 
mass of 2000 Da and a charge state of 1. The resulting labelled spectrum was then exported as a text file, contain-
ing two columns of data namely mass-to-charge ratio and intensity. If the intensity was below the threshold set, 
a value of 0 was recorded.

The remainder of the peaks were screened, and ion signals removed from the list if matching the matrix or 
matrix clusters/adduct and trypsin peaks within 10 ppm.

Due to the presence of cross-sample variations in m/z positions reported to 3 decimal places, pooling of 
spectra across donors initially led to a highly sparse matrix of 30,764 m/z peak positions across the 135 samples. 
However, a consistent (i.e. non-sparse) set of m/z values was required across all samples as the input to each 
supervised learning algorithm. Consequently, all m/z peak positions per sample were rounded to 1 decimal 
place, leading to a set of 5940 distinct m/z positions across the 135 samples. In cases where, for an individual 
donors’ spectrum, rounding to 1 dp led to multiple intensity values at the same rounded m/z peak position, the 
maximum intensity value was taken. Any missing m/z positions per sample were padded with zero intensity 
values, leading to a dense matrix of 135 samples against 5940 m/z intensity values for all subsequent machine 
learning. A full breakdown of the processing logic steps have been made available via the supplied codebase/
python Jupyter notebook deposited in the Sheffield Hallam University Research Data Archive at the link https:// 
shurda. shu. ac. uk/ id/ eprint/ 166/ and is also illustrated graphically in Fig S1.

Machine learning approaches. A series of 3-class categorical supervised learning approaches have been assessed 
in terms of their ability to correctly predict the breast cancer status (“benign”, “early breast cancer” and “meta-
static”) over the set of 135 individual m/z spectra associated with 15 distinct individuals (9 spectra per distinct 
individual, with 5 individuals per diagnosis category). The predictive performance of four distinct supervised 
learning algorithms has been investigated in the current study: (i) KNN (K-nearest neighbour), (ii) a decision 
tree, (iii) a support vector machine (SVM), and (iv) a MLP (Multilayer Perceptron). These methods were selected 
to represent a broad range of classical supervised learning approaches that differ in terms of complexity.

In the current study, all model algorithms were implemented in C, following the procedures defined in Russell 
and  Norvig34. In the current implementations, the following hyper-parameter selections per model have been 
enforced throughout: (i) KNN: k = 3, linear search, Euclidean distance; (ii) decision tree: confidence factor = 0.25, 
number of objects per node = 2, attribute gain = top rank, entropy = classical equation; (iii) SVM: polynomial ker-
nel function with simple logistic, c = 3.5; and (iv) MLP: learning rate = 0.001, momentum = 0.9, weights randomly 
initiated, single hidden layer with 150 neurons. Due to the limited available dataset size, further hyperparameter 
tuning was not deemed to be appropriate.

A strategy of stratified tenfold cross-validation (CV) has been applied to the dataset, where samples per diag-
nosis have been stratified evenly across each train and test fold such that each fold contained approximately the 
same percentage of samples from each diagnosis class. Furthermore, since the dataset comprises of 15 distinct 
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individuals that each correspond to multiple distinct m/z spectra (3 repeats of 3 fingertip smears), each individual 
m/z spectra used for machine learning could not be assumed to be equally independent of one another. Care 
was therefore taken via the implemented cross validation procedure to explicitly ensure that all 9 spectra per 
individual were explicitly restricted to either the train or test folds (but not both) throughout. The resulting CV 
test folds correspond to fully unseen donors, as opposed to additional unseen spectra corresponding to donors 
represented in each concomitant train fold.

Due to the limited dataset size, as opposed to computing test set performance scores individually for each CV 
test fold and then computing the mean accuracy score across test folds, here a single out-of-sample confusion 
matrix per model has been derived by pooling the model inference results across each of the 10 disjoint test folds. 
The resulting confusion matrices comprise all 135 available samples in the dataset, however these only include 
predictions corresponding to unseen test folds. A categorical accuracy score has then been calculated from each 
out-of-sample confusion matrix, as the overall fraction of unseen samples in the dataset for which the correct 
diagnosis category was predicted.

Unsupervised dimensionality reduction approaches were also applied using the same prepared cross-sample 
matrix of 135 samples against 5940 m/z intensity values. 2D Principle Component Analysis (PCA) and Uniform 
Manifold Approximation and Projection (UMAP) algorithms have been applied, using the openly available 
implementations accessible via the scikit-learn47 and umap-learn48 PyPI python packages. Default algorithm 
parameters per package have been deemed acceptable for the purpose of the current investigation. In the case 
of PCA, only the first 2 principle components have been considered in order to reduce spectra to 2D. Three 
distinct m/z peak value scaling strategies have been applied prior to dimensionality reduction: (a) no scaling, 
(b) standardisation of each m/z peak position to mean = 0, standard deviation = 1 across the n = 135 dataset, and 
(c) min–max scaling where each m/z peak position is scaled to a fixed [0,1] domain.

Results and discussion
In this proof-of-concept study, three categories of patients were considered, specifically those receiving a diagno-
sis of either "benign", early breast cancer" or "metastatic". Upon consenting to participation to the study, 3 built up 
fingertip smears were collected from each patient to undergo enzymatic digestion, Matrix Assisted Laser Desorp-
tion Ionisation Mass Spectrometry (MALDI MS) analysis and data treatment using ML supervised approaches.

Patel et al.28 had previously investigated different detergents within the enzymatic trypsin solution in order 
to identify that yielding the highest peptide ion population and with the highest signal intensity overall when 
digesting fingermarks; fingertip smears are "smudged" marks and are used in this study as its clinical nature does 
not require the biometric information. The conclusions of the study by Patel et al.28 indicated that the MEGA-8 
detergent was the most highly performing when included in the enzymatic solution which was then spotted (in 
a 0.5% or 2% MEGA-8 concentration) or sprayed (in a 2% MEGA-8 concentration) onto the fingermark, respec-
tively.  RapiGestSF however also showed promise. In their work, Patel et al.28, putatively identified the presence 
in fingermarks of proteins that have been previously indicated by the literature as biomarkers of breast cancer 
(depending on their up/down regulation), namely Dermcidin (P81605)35, Psoriasin (P31151)36, Zinc α glycopro-
tein (P25311)37, cathelicidin antimicrobial peptide (cAMP) (P49913)38, Calmodulin like protein 3 (P27482)28,39, 
additionally to other proteins only identified elsewhere such as Calmodulin like protein 5 (Q9NZT1)40. Using a 
different mass spectrometric approach and for a different purpose, Oonk et al.41 also identified a number of fin-
germarks proteins which have been taken in consideration to assess the performance of the different proteolytic 
conditions employed in this study. The comprehensive list of the proteins considered for the optimisation of the 
proteolytic conditions is reported in Table S2 and S3.

The design of experiments for this study required optimisation of the sample preparation as well as of the 
processing strategy. While an overview of the workflow is shown in Fig S2, below the authors systematically 
present and discuss the results of the experimental strategy.

Incubation conditions have considerable impact on proteolysis efficiency as optimal humidity must be reached 
and maintained throughout proteolysis. Work by Ly et al.42 investigated this aspect of proteolysis in depth and 
determined that the use of  K2SO4 was optimal to maintain 97% humidity at 50 °C whilst avoiding condensation, 
also detrimental to enzymatic digestions. In their work, in addition to the use of  K2SO4, the best combination 
of proteolytic conditions encompassed the use of trypsin at 25 μg/mL, glycerol 0.01% v/v as detergent, and 
an incubation time of 2 h at 50 °C (set (i)). The starting aim was to identify the best set of conditions yielding 
the highest number of literature suggested breast cancer biomarkers, in addition to any other detectable and 
potential protein biomarker, and with the highest sensitivity. For this reason, Set (i) was trialled on fingermarks 
and compared to other three sets of conditions in which the detergent (mixture of surfactants) was  RapiGestSF 
in 0.1% w/v concentration, as this detergent was found to be promising in the study by Patel et al.28. However, 
within these  RapiGestSF-based conditions, set (ii) maintained all conditions as set (i) except for the concentration 
of trypsin trialled at 20 μg/mL as per Patel et al.28. Set (iii) maintained both the concentration of trypsin and 
 RapiGestSF as for set (ii) but increased the duration of the incubation to 3 h, decreasing the temperature to 37 °C 
whilst using a wet tissue to maintain humidity instead of  K2SO4. Finally, set (iv) kept the same concentration of 
trypsin and  RapiGestSF and the same proteolysis duration and temperature as set (iii) but replaced the wet tissue 
with a 50/50 MeOH/water solution. These conditions are summarised in Table 1.

Figure 1 shows the MALDI MS spectra of fingermarks digested with the four sets of proteolytic conditions. 
Panels (a)–(d) illustrate the MALDI MS spectra corresponding to sets (i)–(iv), whereas panels (e)–(h) display 
the corresponding zoom in the m/z regions 900–1400.

Table 2 reports putative peptide identifications obtained for all the four sets of proteolytic conditions trialled.
The highest number of putative identifications, considering the proteins selected for this study as potential 

breast cancer biomarkers, were obtained when using  K2SO4 to maintain humidity during proteolysis. Keratin 
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signals were detected under all sets of conditions used; whilst expected given the biological matrix investigated, it 
is important to acknowledge their potential role in the ion suppression of the peptide population and subsequent 
impact on relevant peptide identification.

It is interesting to note that dermcidin, the antimicrobial peptide at nominal m/z 1128, was observed in all 
spectra (Fig. 1 and Table 1). Dermcidin was previously putatively detected in fingermarks by using an intact 
proteomic  approach24 and its detection is particularly relevant as it has been suggested as a potential biomarker 
for breast cancer 43,44.

A more in-depth analysis of the performance of the four sets of conditions was undertaken by considering 
either the total number of peptides generated from all the proteins present in fingermarks (instance a) or the total 
number of peptides deriving from the proteins being reported as potential breast cancer biomarkers (instance 
b) (Fig. 2).

In particular, Fig. 2a–c shows the four sets of conditions (i)–(v) plotted against the total number of peptides 
generated (a), the sum of the peptides’ absolute intensity (b) and the sum of the peptides’ relative intensity (c). 
Figure 2 d-f follows the same schematics albeit referring to the peptides deriving from potential breast cancer 
protein biomarkers.

Different digestion conditions affect mass spectral quality, impacting on mass resolution, intensity and sig-
nal- to-noise (S/N). In relation to the performance of the various proteolytic conditions, (specifically referring 
to the means used to achieve optimal humidity and no condensation), the highest number of peptides, sum of 
peptides’ intensity and relative intensity ratio (peptides to trypsin peaks) were achieved for both instances a and 
b using a saturated solution of  K2SO4, with the best compromise being overall offered by the use of  RapiGestSF 
with regards to the highest number of peptides/lowest standard deviation. The same trend was observed when 
evaluating performance against the sum of the peptides’ absolute intensity and the sum of the peptides’ relative 
intensity for both instances a and b. The instances in which high standard deviation was observed are likely 
due to the manual spotting technique. A higher homogeneity of crystal distribution could be achieved using 
automatic spotters or possibly by combining two matrices such as alpha-cyano-4 hydroxycinnamic acid and 
di-hydroxybenzoic acid (CHCA-DHB).

In light of the above considerations,  K2SO4 was carried forward into the next step of the method optimisation 
where trypsin concentration, the incubation duration and temperature were kept at 20 μg/mL, 2 h and 50 °C 
respectively; in these conditions, the performance of  RapiGestSF was compared with that of MEGA-8 2% (w/v) 
detergent, indicated by Patel et al.26 as the most effective surfactant for fingermark digestion.

In this second and last step of proteolysis digestion, the detergents were used as follows: set (i)—Rapi-
GestSF 0.1% (w/v); set (ii)—RapiGestSF 0.2% (w/v); set (iii)—MEGA-8 2% (w/v); set (iv)—a mixture of 2% (w/v) 
MEGA-8 and 0.1% (w/v)  RapiGestSF. Figure 3 shows the MALDI MS spectra for each of the further sets of con-
ditions trialled and immediately conveys the superior performance of  RapiGestSF, in any of the concentrations 
trialled over MEGA-8 or a mixture of MEGA-8 and  RapiGestSF.

The same in-depth performance analysis undertaken to identify the best means for optimal humidity condi-
tions was undertaken to evaluate the most performing detergent and it is shown in Fig. 4.

With reference to the total number of peptides detected, whilst this was higher using the MEGA-8 2% (w/v) 
detergent versus  RapiGestSF, the presence of several signals which were also found in blank analyses, may have 
contributed to relevant peptides’ ion suppression (by lowering both their absolute and relative intensity). Addi-
tionally, the total absolute intensity was highest using  RapiGestSF 0.2% (w/v). However the relative intensity 
drastically dropped when the peptide ion peaks were normalised against the trypsin ion signal at m/z 842.509. 
The assessment of the proteolysis efficiency under the different conditions tested led to the conclusion that the 
use of Rapigest 0.1% (w/v) as detergent offered the best compromise between the abundance and intensity of 
peptide ions, which is very important in the context of biomarker discovery/patients classification. In terms of the 
total number of potential breast cancer biomarker—deriving peptides (Dermcidin (P81605), Psoriasin (P31151), 
Calmodulin like protein 5 (Q9NZT1), Zinc α glycoprotein (P25311 Cathelicidin antimicrobial peptide (P49913), 
Calmodulin like protein 3 (P27482)), a similar trend was observed, in that the highest number of peptides was 
again observed using MEGA-8 2% (w/v) but the sum of the peptides’ absolute and relative intensity was higher 
for  RapiGestSF 0.1%(w/v).

Considering the data obtained by this 2-step method optimisation study, all patients’ fingertip smears were 
digested by spotting a 20 μg/mL trypsin solution in 50 mM  NH4HCO3 buffer containing  RapiGestSF 0.1% (w/v) 

Table 1.  Summary of the sets of proteolytic conditions trialled for the optimisation of the detection of protein 
biomarkers of breast cancer.

Sets of conditions Trypsin concentration Detergent Incubation time Temperature
Means to maintain 
humidity

1 25 μg/mL Glycerol 0.01% v/v 2 h 50 °C K2SO4

2 20 μg/mL RapiGestSF 0.1% w/v 2 h 50 °C K2SO4

3 20 μg/mL RapiGestSF 0.1% w/v 3 h 37 °C Wet tissue

4 20 μg/mL RapiGestSF 0.1% w/v 3 h 37 °C 50/50 MeOH/water solution
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Figure 1.  MALDI MS peptide spectra from in situ digests of ungroomed fingermarks trialled using four sets 
of different conditions. Panel (a)—set (i): fingermark spotted with 25 µg/mL trypsin containing 0.01% v/v 
glycerol and incubated in a Tupperware box containing saturated  K2SO4 solution at 50 °C for 2 h; panel (b)—set 
(ii): fingermark spotted using set (i) conditions except for trypsin used at a concentration of 20 μg/mL and 
 RapiGestSF at 0.1% replacing glycerol; panel (c)—set (iii) fingermark spotted using 20 μg/mL trypsin containing 
0.1%  RapiGestSF and incubated at 37 °C for 3 h in a Tupperware box containing water-wet paper; panel (d)—set 
(iv): fingermark spotted using same conditions as set (iii) but replacing the wet paper with 50:50  H2O:MeOH 
solution. Panels (e–h) show a zoom in the m/z region between 900–1400 for the spectra in the panels (a–d) 
respectively.
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and were subsequently incubated for 2 h at 50 °C in a silicon sealed Tupperware containing a saturated solution 
of  K2SO4.

Application of supervised ML approaches to MALDI MS spectra of patients’ fingertip 
smears. MALDI MS spectra were subjected to the application of traditional supervised learning models; 
this approach is considered appropriate because (i) these models generate results with higher explainability than 
more recent state-of-the-art methods (e.g. deep learning), (ii) can easily operate on small datasets, such as the 
one collected in this proof-of-concept study, with less susceptibility to overfitting and (iii) their computational 
cost is relatively  low45. Moreover, previous  studies46 have demonstrated that such supervised learning methods 
can be successfully applied to high dimensional MS spectral data inputs, as is the case for the current dataset.

The four supervised learning techniques employed in this study (KNN, decision tree, SVM and MLP) were 
selected to cover the main supervised learning families, and as such, this strategy is meant to provide a good 
indication of the appropriate approach to take into a further study with a larger cohort of donors. KNN (K-nearest 
neighbour) is one of the simplest supervised learning algorithms and operates on the assumption that any unseen 
MALDI MS spectra of one cancer diagnosis class will be most similar (here via Euclidean distance) to at least 
one of the previously-seen training set MALDI MS spectra of the same cancer diagnosis class, than to any seen 
samples of other classes. The Decision tree encapsulates a mapping of input spectra to cancer diagnosis based on 
a learnt hierarchy of simple decision rules. It starts with a single node, which breaks down into possible outcomes. 
Each of these results leads to additional nodes, which branch off into other possibilities. The SVM (Support 

Table 2.  Putative protein identification from in situ digests of ungroomed fingermarks spotted with set (i): 
25 µg/mL trypsin containing 0.01% v/v glycerol and incubated in a Tupperware box containing saturated 
 K2SO4 solution at 50 °C for 2 h; set (ii): set (i) conditions except for trypsin used at a concentration of 20 μg/mL 
and  RapiGestSF at 0.1% replacing glycerol; set (iii) 20 μg/mL trypsin containing 0.1%  RapiGestSF and incubated 
at 37 °C for 3 h in Tupperware box containing water-wet paper; set (iv): same conditions as set (iii) but 
replacing the wet paper with 50:50  H2O:MeOH solution. The asterisk indicates the proteins that are reported as 
breast cancer biomarkers in the literature.

Proteolytic conditions Protein Peptide m/z Sequence Mass accuracy (ppm)

Set (i) (use of  K2S04) *Dermcidin 1128.523 ENAGEDPGLAR −4.7

Keratin, type I cytoskeletal 9
1065.509
1157.588
1791.724

STMQELNSR
QGVDADINGLR
GGSGGSYGGGGSGGG YGG 
GSGSR

9.1
−2.1
−1.8

Filaggrin 1421.638 SESASRNHYGSAR −9.4

Sortilin-related receptor 1232.595 IEVANPDGDFR 3.6

*Calmodulin like protein 3 1874.849 EAFSLFDKDGDGCITTR −5.2

Set (ii) (use of  K2S04) *Dermcidin
725.392
1128.524

GAVHDVK
ENAGEDPGLAR

−2.6
−3.3

Keratin, type II cytoskeletal 1
1033.511
1277.708

TLLEGEESR
LALDLEIATYR 

−4.7
−1.6

Keratin, type I cytoskeletal 9
1157.590
1066.506

QGVDADINGLR
FEMEQNLR

−0.5
7.1

Filaggrin
1493.731
1513.728

QGSHHKQARDSSR
QGSRHEQARDSSR

−0.5
4.3

Desmoplakin 1107.536 AEFQEEAKR −5.9

Protein Shroom 3 1201.604 SLADILDPDSR −1.9

*Zinc a2 glycoprotein 1475.757 WEAEPVYVQRAK −4.8

Set (iii) (use of wet paper) *Dermcidin 1128.522 ENAGEDPGLAR −5.0

Filaggrin 1513.728 QGSRHEQARDSSR 4.4

Keratin, type II cytoskeletal 1 1308.655 NKYEDEINKR 0.8

Desmoplakin
1254.594
1818.990

AITGFDDPFSGK
IDKQIDFRLWDLEK

−5.2
8.2

Filamin B 1373.651 WCNEHLKCVNK 4.1

Keratin, type I cytoskeletal10 1996.969 ELTTEIDNNIEQISSYK −0.9

Myosin-6 718.398 KGFPNR −1.5

Set (iv) (use of 50:50  H20/
MeOH)

*Dermcidin 1128.530 ENAGEDPGLAR 2.0

Keratin, type I cytoskeletal 9
1791.737
982.436

GGSGGSYGGGGSGGG YGG 
GSGSR
FSSSGGG GGG GR

5.5
2.7

Desmoplakin 1254.593 AITGFDDPFSGK −5.6

Keratin, type II cytoskeletal 1
1006.431
832.492

GGSGGG GGG SSGGR 
SISISVAR

1.5
3.5
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Vector Machine) is an algorithm that uses a defined kernel function to transform the input m/z values-containing 
MALDI MS spectra data into a higher dimensional space such that a hyperplane can be constructed to separate 
each cancer diagnosis class. MLP (Multilayer Perceptron) neural networks are loosely analogous to biological 
nervous systems, and comprise of multiple layers of fully connected nodes with learnable weights and bias terms, 
which, when coupled with non-linear activation functions between layers, enable complex relationships between 
input MALDI MS spectra and output cancer diagnosis classes to be learnt during training.

Stratified tenfold cross validation was performed to assess the ability of each model architecture to suitably 
generalise to correct cancer diagnosis state for unseen samples. Figure 5 illustrates the resulting out-of-sample 
confusion matrices of correctly and wrongly classified samples per model, derived by aggregating the results 
across the 10 disjoint test folds during cross validation.

All investigated model types displayed above random performance for the cancer diagnosis task, and the 
qualitative ranking of reported categorical accuracy scores correlated with algorithm complexity. As expected, 
KNN being the simplest model exhibited the lowest categorical accuracy across cancer classes (~ 62.2%), most 
notably with a high rate of metastatic and benign cancer samples being misclassified as early cancer. Such a high 
false classification rate is unacceptable for viable usage in a clinical setting, but provides a baseline for evaluating 
other predictive methods. In contrast to KNN, the other methods attained consistently higher overall accuracy 
scores, and appeared to be more robust to the high rate of misclassification of the early cancer pathology affecting 
the KNN model. Overall this is indicative of the expected superior learning ability of these methods compared to 
KNN. Across methods, the best categorical accuracy score was attained by the trialled MLP approach (~ 97.8%), 
with this method leading to no early or metastatic cancer samples being misclassified under the current k-fold 
cross validation regime. Besides MLP, all other model types resulted in multiple metastatic samples in the dataset 
being falsely classified as benign; such cases of cancer samples being incorrectly classified as benign are highly 
undesirable for clinical usage. In the case of MLP, an unsupervised dimensionality reduction analysis of spectra 
across the n = 135 dataset (Fig. 6) did not provide a clear explanation for the 3 misclassified spectra; namely 
the misclassified samples did not consistently appear to be constituents of well-defined other-class clusters (or 
nearest neighbours to other-class spectra) across the trialled reduction algorithms (PCA, UMAP) and spectra 
pre-processing strategies. In conclusion, the current investigation has presented initial findings on the potential 
viability of a series of classical supervised machine learning methods for the clinical application of breast can-
cer diagnosis prediction via usage of MALDI MS collected by non-invasive methods. Despite low availability 

Figure 2.  Column graph showing the number, the absolute and relative intensities of either all peptides peaks 
(a–c, respectively) or potential breast cancer biomarkers (d–f, respectively) present in fingermarks spotted 
with several digestion conditions (n = 3): (i) 25 µg/mL trypsin containing 0.01% v/v glycerol and incubated in 
Tupperware box containing saturated  K2SO4 solution at 50 ◦ C for 2 h; panel (ii): fingermark spotted using set 
(i) conditions except for trypsin used at a concentration of 20 μg/mL and  RapiGestSF at 0.1% replacing glycerol; 
(iii) fingermark spotted using 20 μg/mL trypsin containing 0.1%  RapiGestSF and incubated at 37 ◦ C for 3 h in 
a Tupperware box containing water wet paper; (iv): fingermark spotted using same conditions as set (iii) but 
replacing the wet paper with 50:50  H2O:MeOH solution. For relative intensities, these were normalised with the 
autolysis peptide peak of trypsin at m/z 842.5094.
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to model training data in current study, with an overall dataset size of 135 MALDI MS spectra collected from 
15 individual donors, a cross validation strategy has been implemented which explicitly accounts for replicate 
spectra per donor and enables the evaluation of each machine learning method’s ability to generalise to unseen 
patient samples; its application only yielded three samples incorrectly classified.

Conclusions
This proof-of-concept study has shown the significant potential for a novel, rapid, non-invasive and sensitive 
screening methodology to detect the molecular signatures of breast cancer from a simple swipe of a fingertip. 
The combined proteomics-MALDI MS approach to the detection of protein biomarkers and the use of classical 

Figure 3.  MALDI MS peptide spectra from in situ digests of ungroomed fingermarks incubated at 50 °C for 2 h 
in a Tupperware box containing saturated  K2SO4 solution after being spotted with a 20 μg/mL trypsin solution 
in 50 mM  NH4HCO3 buffer containing: set (i)—0.1% (w/v)  RapiGestSF (a), set (ii) 0.2% (w/v)  RapiGestSF (b), 
set (iii) 2% (w/v) MEGA-8 (c) or set (iv) a mixture of 2% (w/v) MEGA-8 and 0.1% (w/v)  RapiGestSF (d). Panels 
(e–h) show a zoom into the m/z region between 900–1400 for the spectra in the panels (a-d), respectively.
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supervised machine learning methods for data treatment hold the promise for a novel screening method of this 
type of pathology, especially for women with metastatic breast cancer for whom a tissue diagnosis may be chal-
lenging and imaging may be equivocal.

Out of the trialled methods, the MLP neural network architecture exhibited the highest ability to appro-
priately classify unseen breast cancer samples (test accuracy score ~ 97.8% under k-fold cross validation), and 
importantly, for the current dataset, led to no life-threatening metastatic cancer samples being falsely flagged 
as benign. Such model behaviour is close to ideal for clinical usage, however, is likely to be strongly dependent 
on the limited dataset size available in the current study (135 MALDI MS spectra collected from 15 individual 
donors). Nonetheless, clear evidence has been presented that such supervised machine learning methods could 
be leveraged to infer breast cancer diagnosis for unseen patients when provided with input MALDI MS data.

This method may also be important in monitoring disease progression for women on chemotherapy for 
metastatic or locally advanced disease and in whom serial CT scans or MRI are presently required. Therefore, 
having a non-invasive, non-imaging based test as an adjunct to current diagnostic modalities would reduce 
rates of mis-diagnosis and improve early diagnosis and cure rates. The pain-free nature of the test would likely 
increase screening and survival rates; for a negative response, it also eliminates the risk of un-necessary radia-
tion exposure.

Both these benefits and these initial findings motivate the need for an upscaled data collection over a larger 
breast cancer donor cohort, in order to robustly assess model generalisation across a patient set of increased 
diversity.

Figure 4.  Column graph showing the number, the absolute and relative intensities of either all detected 
peptides peaks (a,b, c, respectively), or of potential breast cancer biomarkers (d,e,f, respectively) in fingermarks 
incubated for 2 h at 50 °C in Tupperware box, containing a saturated solution of  K2SO4, after spotting them with 
a 20 μg/mL trypsin solution in 50 mM  NH4HCO3 buffer containing either Set (vi) -RapiGestSF 0.1% (w/v); Set 
(ii)—RapiGestSF 0.2% (w/v); Set (iii)—MEGA-8 2% (w/v); Set (iv)—a mixture of 2% (w/v) MEGA-8 and 0.1% 
(w/v)  RapiGestSF. For relative intensities calculation, peptides intensities were normalised against the autolysis 
fragment of trypsin at m/z 842.509.
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Figure 5.  Out-of-sample confusion matrices for (i) KNN, (ii) decision tree, (iii) SVM and (iv) MLP model 
types. For each trialled model type, a single confusion matrix was derived from tenfold cross validation by 
aggregating the results for the 10 disjoint test folds. Since each individual sample features only once in a test fold, 
the confusion matrix features each sample exactly once, and the values per matrix sum to the total number of 
available samples in the full dataset. The corresponding categorical accuracy scores are reported, summarising 
the confusion matrix content for each model type.



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1868  | https://doi.org/10.1038/s41598-023-29036-7

www.nature.com/scientificreports/

Data availability
Data and supporting information are openly available from the Sheffield Hallam University Research Data 
Archive at the link https:// shurda. shu. ac. uk/ id/ eprint/ 166/. Mass Spectra data have been supplied in three for-
mats: raw spectra (in the proprietary Waters Corp Synapt G2 HDMS format), exported as text files (.txt) and as 
the associated processed dataset that has been used for downsteam ML (.csv). In addition, a Jupyter notebook 
containing all the data pre-processing steps, and also the subsequent undersupervised learning analysis.
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