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ABSTRACT: The reversible addition-fragmentation chain trans-
fer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl
methacrylate (HPMA) using a poly(glycerol monomethacrylate)
(PGMA) precursor is an important prototypical example of
polymerization-induced self-assembly. 4-Hydroxybutyl acrylate
(HBA) is a structural isomer of HPMA, but the former monomer
exhibits appreciably higher aqueous solubility. For the two
corresponding homopolymers, PHBA is more weakly hydrophobic
than PHPMA. Moreover, PHBA has a significantly lower glass
transition temperature (Tg) so it exhibits much higher chain
mobility than PHPMA at around ambient temperature. In view of
these striking differences, we have examined the RAFT aqueous
dispersion polymerization of HBA using a PGMA precursor with the aim of producing a series of PGMA57−300-PHBA100−1580 diblock
copolymer nano-objects by systematic variation of the mean degree of polymerization of each block. A pseudo-phase diagram is
constructed using transmission electron microscopy to assign the copolymer morphology after employing glutaraldehyde to cross-
link the PHBA chains and hence prevent film formation during grid preparation. The thermoresponsive character of the as-
synthesized linear nano-objects is explored using dynamic light scattering and temperature-dependent rheological measurements.
Comparison with the analogous PGMAx-PHPMAy formulation is made where appropriate. In particular, we demonstrate that
replacing the structure-directing PHPMA block with PHBA leads to significantly greater thermoresponsive behavior over a much
wider range of diblock copolymer compositions. Given that PGMA-PHPMA worm gels can induce stasis in human stem cells (see
Canton et al., ACS Central Science, 2016, 2, 65−74), our findings are likely to have implications for the design of next-generation
PGMA-PHBA worm gels for cell biology applications.

■ INTRODUCTION

Polymerization-induced self-assembly (PISA) offers a highly
effective and versatile route to bespoke block copolymer nano-
objects.1−10 Typically, PISA involves growing an insoluble
block from one end of a soluble block in a suitable selective
solvent: self-assembly occurs in situ on reaching a certain
critical degree of polymerization, which eventually leads to the
production of sterically stabilized nanoparticles. When such
syntheses are conducted using reversible addition-fragmenta-
tion chain transfer (RAFT) polymerization, PISA can be used
to design a wide range of functional block copolymer
nanoparticles directly in aqueous media.11−17

Depending on the solubility of the vinyl monomer used to
produce the hydrophobic block, this can be achieved by either
RAFT aqueous emulsion polymerization (for water-immiscible
monomers)5,8,18−36 or RAFT aqueous dispersion polymer-
ization (for water-miscible monomers).15,37−59 However, only
the latter approach yields shape-shifting thermoresponsive
block copolymer nano-objects. This is because the structure-
directing block is only weakly hydrophobic in this case; hence,

subtle changes in its (partial) degree of hydration on either
heating or cooling can induce morphological transi-
tions.12,46,51,52,60−62 There are many examples of RAFT
aqueous dispersion polymerization reported in the litera-
ture.12,13,15,37,39,42,43,47,49−51,57−59,63−75 However, the proto-
typicaland certainly most widely exploredformulation is
based on the RAFT aqueous dispersion polymerization of 2-
hydroxypropyl methacrylate (HPMA). Various water-soluble
polymers have been used as a precursor block for such
formulations, including poly(glycerol monomethacrylate)
(PGMA), poly(2-(methacryloyloxy)ethyl phosphorylcholine)
(PMPC), poly(ethylene glycol) (PEG), and poly(2-hydrox-
ypropyl methacrylamide) (PHPMAC).19,46,65,67,76−80
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Blanazs et al. reported the first example of thermoresponsive
block copolymer nano-objects prepared via PISA.77 Notably,
cooling a 10% w/w aqueous dispersion of PGMA54-PHPMA140

worms from 20 to 4 °C led to the formation of spheres.
Moreover, this morphological transition proved to be
reversible and was accompanied by in situ degelation, which
enabled convenient sterilization of the initial worm gel via cold
ultrafiltration.77 With appropriate purification, such worm gels
are sufficiently biocompatible to enable cell biology studies to
be conducted with various cell lines.81−85 Similarly, PGMA58-
PHPMA250 vesicles are also thermoresponsive and can be
converted into spheres at sub-ambient temperature.86 Such
behavior can be used to trigger the release of a nanoparticle
payload within the original vesicles.86−91 More recently,
Ratcliffe et al. reported that a single PHPMAC41-PHPMA180

diblock copolymer can form spheres, worms, or vesicles in
aqueous solution depending solely on the temperature.46 On
the other hand, Warren and co-workers reported that
thermoresponsive behavior is no longer observed if the mean
degree of polymerization of PHPMA is too high.76 This latter
study begs the following question: is there an alternative water-
miscible monomer to HPMA that can confer greater
thermoresponsive character on block copolymer nano-objects
prepared via RAFT aqueous dispersion polymerization?
Herein, we demonstrate that 4-hydroxybutyl acrylate (HBA)

offers a very useful alternative to HPMA in this context.
Although HBA and HPMA are structural isomers, HBA is
miscible with water in all proportions, whereas the aqueous
solubility of HPMA is only 13% w/w at 20 °C.92 This
observation immediately suggests that PHBA should be more
weakly hydrophobic than PHPMA. Moreover, the much lower
glass transition temperature of the former homopolymer
should ensure significantly greater chain mobility, with such
differences likely to confer greater thermoresponsive character.
Indeed, our direct comparison of the aqueous solution
behavior exhibited by PEG-PHPMA and PEG-PHBA nano-
objects confirms this prediction.93 In this prior study, choosing
PEG as the steric stabilizer block facilitated variable temper-
ature 1H NMR spectroscopy experiments that revealed an
unexpected qualitative difference between the thermorespon-
sive behavior exhibited by these two diblock copolymers. In
the present study, we compare the thermoresponsive behavior
of a series of PGMA-PHBA diblock copolymer nano-objects
with the analogous PGMAx-PHPMAy nano-objects (see
Scheme 1) with the analogous PGMAx-PHPMAy nano-objects.
PGMA-PHBA worms are potentially interesting in the context
of cell biology applications because the hydroxyl-rich nature of
the PGMA stabilizer block can induce stasis in human stem
cell colonies immersed within PGMA55-PHPMA135 worm gels,
whereas the same cells continue to proliferate when immersed
within a PEG57-PHPMA65 worm gel of comparable soft-
ness.83,84

■ RESULTS AND DISCUSSION

Synthesis of PGMAx-PHBAy Diblock Copolymer Nano-
Objects. The diblock copolymer nano-objects described
herein were synthesized starting from a PGMA57 precursor
prepared using a non-ionic trithiocarbonate-based RAFT agent
(methyl 4-cyano-4-(2-phenylethylsulfanylthiocarbonyl)-
sulfanylpentanoate, Me-PETTC), as reported elsewhere.94

This is an important choice of RAFT agent because it avoids
the formation of anionic carboxylate end-groups at physio-
logical pH, which can induce either worm-to-sphere or vesicle-

to-worm morphological transitions.95 However, preliminary
experiments performed using PGMA57 indicated that this
precursor was too short to confer colloidal stabilization when
targeting longer PHBA blocks (see later). Moreover, Me-
PETTC is insoluble in water so solution polymerizations
performed using this RAFT agent are typically performed in
non-aqueous media.94 Thus, for the convenient preparation of
PGMA precursors with relatively high DPs in wholly aqueous
media, this PGMA57 precursor was initially chain-extended via
RAFT aqueous solution polymerization of GMA. This step was
conducted at 40% w/w solids using a well-known low-
temperature redox initiator96−98 based on potassium persulfate
(KPS) and ascorbic acid (AsAc), see Scheme 1.

1H NMR studies indicated that more than 99% GMA
conversion was achieved within 90 min at 30 °C when
targeting an overall PGMA DP of 100. This chain-extended
precursor was then used directly (i.e., without isolation or
purification) for the subsequent RAFT aqueous dispersion
polymerization of HBA at 20% w/w solids when targeting a
PHBA DP of 650 at 30 °C (see Scheme 1). A kinetic study was

Scheme 1. Reaction Scheme for the RAFT Aqueous
Solution Polymerization of GMA Using a PGMA57

Precursor to Produce a Longer PGMAx (x = 70−300)
Stabilizer Block, Followed Immediately by the RAFT
Aqueous Dispersion Polymerization of HBA at 30 °C to
Obtain a Series of PGMAx-PHBAy Diblock Copolymer
Nano-Objects
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performed for this aqueous PISA formulation by periodic
sampling of the reaction mixture (see the Experimental Section
in the Supporting Information for further details). 1H NMR
studies indicated a relatively slow rate of polymerization for the
first 4 min (see Figure 1). Thereafter, the rate of HBA

polymerization exhibited first-order kinetics with respect to the
monomer and more than 99% conversion was achieved within
60 min at 30 °C. The aliquots extracted during this kinetic
study were also used to make up 0.1% w/w copolymer
dispersions for dynamic light scattering (DLS) studies at 30 °C
(Figure 2).

This technique indicated that relatively small, well-defined
spheres with a z-average diameter of 36 nm (DLS
polydispersity = 0.03) were formed after 7.5 min, see Figure
2. This time point corresponds to around 28% conversion (see
Figure 1), thus indicating a critical PHBA DP of approximately
180. Given that PHBA is more weakly hydrophobic than
PHPMA and a critical PHPMA DP of 80−90 has been
reported for micellar nucleation during the RAFT aqueous
dispersion polymerization of HPMA, these observations seem
to be physically reasonable.49,99 Thus, the upturn observed in
the 1H NMR-derived kinetic data after 4 min (see Figure 1)
most likely corresponds to the onset of polymerization after
mild retardation, rather than micellar nucleation. This is
because the corresponding critical PHBA DP of 47 seems to be
too low to induce microphase separation. It is also notable that

no discernible rate enhancement is observed after 7.5 min,
which suggests that there is no significant partitioning of the
unreacted HBA monomer within the nascent PHBA-core
nanoparticles. In contrast, a five-fold increase in the rate of
polymerization was observed after micellar nucleation during
the RAFT aqueous dispersion polymerization of HPMA.67

This marked difference is presumably because HPMA has
relatively limited aqueous solubility (13% w/w at 20 °C),
whereas HBA is fully miscible with water in all proportions.
After nucleation, the z-average diameter increased up to 51 nm
(DLS polydispersity = 0.02). After 14 min, there was a
significant increase in both the apparent z-average diameter
and polydispersity (87 nm and 0.14, respectively; see Figure
2). The PISA literature suggests that such changes most likely
correspond to the formation of short worms.100 After 20 min,
the apparent z-average diameter and DLS polydispersity
increased substantially to 957 and 0.32 nm, respectively,
which suggests the presence of relatively long, polydisperse
worms. Between 20 and 25 min, the z-average diameter and
DLS polydispersity vary significantly, which suggests that DLS
cannot be used to identify the nano-objects present in these
aliquots (see Figure 3 and accompanying text for further
discussion). A significant reduction in z-average diameter is
observed after 25 min, which is consistent with the onset of a
worm-to-vesicle transition. Thereafter, the DLS polydispersity

Figure 1. Conversion vs time curve (blue circles) and the
corresponding semilogarithmic plot (red squares) obtained for the
RAFT aqueous dispersion polymerization of HBA using a KPS/AsAc
redox initiator at 30 °C when targeting PGMA100-PHBA650 diblock
copolymer nano-objects at 20% w/w solids at a [PGMA100]/[KPS]
molar ratio of 10.

Figure 2. Evolution in z-average diameter and polydispersity
determined by DLS studies during the synthesis of PGMA100-
PHBA650 diblock copolymer nano-objects via RAFT aqueous
dispersion polymerization of HBA using a KPS/AsAc redox initiator
at 30 °C when targeting 20% w/w solids. Aliquots were extracted
periodically over 60 min. [N.B. C, S, W, M, and V denote chains,
spheres, worms, a mixed phase comprising worms and vesicles, and
vesicles, respectively].

Figure 3. Representative TEM images obtained for aliquots extracted
over 60 min during the synthesis of PGMA100-PHBA650 vesicles via
RAFT aqueous dispersion polymerization of HBA, illustrating the
progressive evolution in the copolymer morphology from spheres to
worms to vesicles. In each case, the nano-object morphology was
covalently stabilized at 0.1% w/w solids using excess GA cross-linker
at 30 °C (to mimic the PISA synthesis conditions).
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is reduced to around 0.25−0.35 and the z-average diameter
rises to 606 nm after 45 min (Figure 2). 1H NMR spectroscopy
studies confirm that essentially full HBA conversion is achieved
within 60 min (Figure 1).
In the PISA literature, transmission electron microscopy

(TEM) is routinely used to determine the copolymer
morphology.4,49,78 However, the Tg of the PHBA block is
below −30 °C,62,93 which invariably leads to film formation
during TEM grid preparation and thus prevents morphological
assignment. Byard et al. addressed this technical problem by
statistically copolymerizing HBA with diacetone acrylamide
(DAAM) to enable the resulting ketone-functionalized nano-
objects to be cross-linked with adipic acid dihydrazide (ADH)
prior to TEM studies.51 This approach enabled high-quality
TEM images to be obtained, but introducing the DAAM
comonomer reduced the thermoresponsive character of the
nano-objects.101 To avoid this undesirable limitation, we
recently reported the covalent stabilization of PHBA-based
nano-objects using glutaraldehyde (GA).62 In principle, one
GA molecule can react with four hydroxy groups on the PHBA
chains to form two stable acetal linkages.102 This implies that a
GA/HBA molar ratio of 0.25 should be sufficient to avoid film
formation during TEM grid preparation. Empirically, we found
that excess GA was required to ensure high-quality TEM
images.62 More specifically, a GA/HBA molar ratio of 1.0 was
used to cross-link the various nano-objects produced when
targeting PGMA100-PHBA650 vesicles in the present study (see
the Supporting Information for further details). The resulting
TEM images shown in Figure 3 are in reasonably good
agreement with the DLS data reported in Figure 2. Initially,
there is no TEM evidence for the presence of any nano-
objects. After 7.5 min, spherical nano-objects with a number-
average diameter of 34 ± 5 nm (z-average diameter = 36 nm)
are observed. At around 12.5 min, these nascent spheres began
to undergo fusion to form dimers and trimers, with a pure
phase of longer worms being observed after 14 min (TEM
mean worm contour length = 406 ± 258 nm, whereas DLS
reports a “sphere-equivalent” z-average diameter of 87 nm).
Toroidal nano-objects, which are rarely reported in the PISA
literature, can be identified after 16 min. Interestingly, there
was no evidence for the presence of “jellyfish”-type
intermediates during this aqueous PISA synthesis. Vesicles
were first observed after 20 min, albeit as a mixed phase co-
existing with worms. A pure phase comprising oligolamellar
vesicles was obtained after 25 min.
For other PISA formulations, vesicles reach a certain limiting

diameter and further polymerization merely results in thicker
vesicle membranes according to an “inward growth”
mechanism.103,104 In contrast, the current PISA formulation
does not appear to follow such a vesicle growth mechanism
because DLS studies suggest that the overall vesicle diameter
increases monotonically during the final stages of the HBA
polymerization (see Figure 2). However, the oligolamellar
morphology may well be a complicating factor and this
intriguing aspect clearly warrants further investigation in the
future using time-resolved small-angle X-ray scattering
(SAXS).49

DMF gel permeation chromatography (GPC) studies
indicate a reasonably linear evolution in copolymer Mp with
HBA monomer conversion (Figure 4). The non-zero y-
intercept corresponds to an apparent Mp of 20.3 kg mol−1 for
the PGMA100 precursor (as expressed relative to PMMA
calibration standards). Moreover, comparison of GPC curves

recorded for the diblock copolymers with that obtained for the
precursor indicates that relatively efficient chain extension
(>90%) is achieved, see Figure S1. However, MWDs become
significantly broader (Mw/Mn > 1.30) above 50% HBA
conversion. Inspection of the corresponding GPC curves
(Figure S1) confirms the progressive development of a high
molecular weight shoulder, which results in a relatively high
final dispersity (Mw/Mn = 2.19). Notably, GPC curves
recorded using a UV detector tuned to the wavelength of
the organosulfur RAFT agent (λ = 302 nm) overlay with those
obtained using the refractive index detector (e.g., see Figure
S2). This suggests that significant chain transfer to polymer
occurs during these syntheses rather than premature hydrolysis
of trithiocarbonate end-groups, which would inevitably result
in loss of RAFT control.105,106 This side-reaction is well known
for acrylic monomers such as HBA, especially when targeting
relatively high DPs and even at reaction temperatures as low as
30 °C.107

Overall, these data are typical for a pseudo-living radical
polymerization when targeting a relatively high DP for an
acrylic block.62,93,106,108 Fortunately, the PISA literature
suggests that even relatively polydisperse diblock copolymer
chains can self-assemble to form relatively well-defined nano-
objects.67,107,109−112

Construction of a Pseudo-Phase Diagram for PGMAx-
PHBAy Nano-Objects. Blanazs et al. were the first to
demonstrate the critical role of the steric stabilizer DP for
PISA formulations.65 Three pseudo-phase diagrams were
constructed for PGMAx-PHPMAy nano-objects by systemati-
cally varying the PHPMA DP and copolymer concentration
using PGMA precursors with mean DPs (x) of 47, 78, or 112.
According to the PISA literature, spheres undergo stochastic
1D sphere−sphere fusion to form worms.113 However, Blanazs
et al. found that pure worms or vesicles could not be accessed
when using the PGMA112 precursorinstead, the phase
diagram was dominated by kinetically-trapped spheres.65

This is because the relatively long hydrophilic block confers
highly effective steric stabilization and hence prevents sphere−
sphere fusion, which is the critical first step in the evolution of
the copolymer morphology.68 In contrast, the PGMA78-
PHPMAy formulation provided access to spheres, worms or
vesicles depending on the copolymer concentration.65 Further
reduction in the stabilizer block DP (i.e., PGMA47) eliminated
this concentration dependence while still providing access to

Figure 4. Evolution in diblock copolymer Mp and Mw/Mn with HBA
conversion determined by DMF GPC (expressed against a series of
poly(methyl methacrylate) calibration standards) during the RAFT
aqueous dispersion polymerization of HBA using a KPS/AsAc redox
initiator at 30 °C when targeting PGMA100-PHBA650 vesicles at 20%
w/w solids using a [PGMA100]/[KPS] molar ratio of 10. The dashed
black line corresponds to the theoretical molecular weight for the
PGMA100-PHBAx diblock copolymer chains.
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all three copolymer morphologies.65 Given that HBA is a
structural isomer of HPMA, similar behavior was anticipated
for the PGMAx-PHBAy system reported herein.
Accordingly, a series of PGMAx-PHBAy nano-objects were

prepared at 20% w/w solids using the KPS/AsAc redox
initiator at 30 °C (Scheme 1) to identify the maximum PGMA
DP that still provided access to the full range of copolymer
morphologies. Initially, a series of nine PGMA precursors with
target DPs of 57, 60, 70, 80, 100, 115, 120, 125, and 130 were
prepared. DMF GPC analysis indicated that relatively narrow
MWDs were obtained in each case and confirmed a linear
increase in Mn with target PGMA DP (Mn = 14.3−32.6 kg
mol−1 and Mw/Mn = 1.21−1.32; Table S1). These precursors
were then chain-extended in turn via RAFT aqueous dispersion
polymerization of HBA while targeting PHBA DPs ranging
from 100 to 625. DLS and TEM studies were used to assign
the various copolymer morphologies and hence construct the
pseudo-phase diagram shown in Figure 5.

When using PGMA57 or PGMA60, only spherical nano-
objects could be obtained if PHBA DPs below 150 were
targeted (see Figure 5a). Increasing the target PHBA DP using
either of these two relatively short precursors initially resulted
in mixed phases (PHBA DP = 150−225; see Figure 5a) but
ultimately only led to macroscopic precipitation (PHBA DP >
250). Clearly, neither PGMA57 nor PGMA60 confers sufficient
steric stabilization when targeting higher PHBA DPs.
In contrast, a PGMA70 precursor enabled the synthesis of

colloidally stable spheres (PHBA DP = 100), worms (PHBA
DP = 150 or 200), or vesicles (PHBA DP > 275). Presumably,
this is close to the minimum PGMA DP required to ensure
colloidal stability. Moreover, as discussed above, the PGMA100

precursor enabled the synthesis of pure spheres (for PHBA
DPs of between 100 and 200), worms (PHBA DPs = 250−

300), and vesicles (PHBA DPs = 350−600), which is in
striking contrast to the observations made by Blanazs et al. for
PGMA112-PHPMAx formulations.65 This suggests that the
much greater chain mobility of the weakly hydrophobic PHBA
block (relative to that of the PHPMA block) makes a decisive
difference in determining the behavior of their respective
aqueous PISA formulations.
In principle, pseudo-phase diagrams such as that shown in

Figure 5 can be used to predict copolymer morphologies.
Hence the same PHBA/PGMA molar ratios corresponding to
pure worms (PHBA/PGMA = 2.50−3.25) and pure vesicles
(PHBA/PGMA = 5.0) were targeted when employing longer
PGMA precursors.76 Gratifyingly, this rational approach
enabled rapid identification of the diblock compositions
required to produce pure worms and vesicles when chain-
extending the PGMA115−130 precursors (see Figure 5 for the
corresponding TEM images and the pseudo-phase diagram
shown in Figure S3).
As the upper limit PGMA DP for kinetically-trapped spheres

had not yet been identified for the RAFT aqueous dispersion
polymerization of HBA, a PGMA140 precursor was prepared
and subsequently chain-extended while targeting a PHBA DP
of 420. According to Figure 5a, this HBA/GMA molar ratio of
3.0 should result in the formation of worms. However, DLS
studies indicated that only kinetically-trapped spheres (z-
average diameter = 92 nm; DLS polydispersity = 0.04) were
obtained and this morphological assignment was subsequently
confirmed by TEM studies (see Figures S3 and S4). Similarly,
only kinetically trapped spheres were obtained when using
either PGMA250 or PGMA300 precursors for the RAFT aqueous
dispersion polymerization of HBA. As expected, increasing the
PHBA DP simply resulted in a monotonic increase in z-average
diameter for such aqueous PISA formulations (see Figure 6

and Figure S4). Finally, targeting PGMA150-PHBA700 and
PGMA200-PHBA700 nano-objects led to the formation of a
mixed phase comprising spheres and worms (see Figure S4).
In summary, the upper limit PGMA DP that still provides
access to pure worms and vesicles appears to lie between 130
and 140. Clearly, this is significantly greater than that observed
for the RAFT aqueous dispersion polymerization of HPMA.65

Thermoresponsive Behavior of PGMAx-PHBAy Nano-
Objects. Recently, we reported the remarkable thermorever-
sible behavior of PHBA-based nano-objects that undergo an
evolution in copolymer morphology from spheres to worms to
vesicles to lamellae when increasing the dispersion temperature

Figure 5. (a) Master pseudo-phase diagram constructed for a series of
PGMAx-PHBAy nano-objects after covalent stabilization at 20 °C
using GA as a cross-linker. All syntheses involved the RAFT aqueous
dispersion polymerization of HBA at 20% w/w solids at 30 °C. Each
point represents the copolymer morphology assigned on the basis of
DLS and TEM studies. Green circles indicate spheres, red triangles
indicate worms, blue squares indicate vesicles, black filled diamonds
indicate mixed sphere/worms, and gray circles indicate macroscopic
precipitation. Representative TEM images obtained for (b) GA-cross-
linked PGMA100-PHBA175 spheres, (c) GA-cross-linked PGMA100-
PHBA300 worms, and (d) GA-cross-linked PGMA125-PHBA625

vesicles.

Figure 6. Variation in z-average diameter and polydispersity
determined via DLS studies of a series of kinetically-trapped
PGMA300-PHBAx spheres prepared at 30 °C when targeting a
PHBA DP (x) ranging from 660 to 1580 at 20% w/w solids. [N.B.
Targeting even higher PHBA DPs merely resulted in substantially
incomplete HBA conversions (<90%) under the same conditions].
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from 1 to 70 °C.62 Variable temperature 1H NMR studies
indicated that the PHBA block became more hydrated on
heating, indicating a uniform plasticization mechanism.93 In
these two prior reports, the steric stabilizer blocks comprised
either poly(2-(N-acryloyloxy)ethyl pyrrolidone)62 or poly-
(ethylene glycol).93 In principle, the PGMAx-PHBAy nano-
objects discussed above should exhibit comparable thermor-
esponsive behavior. To explore this hypothesis, temperature-
dependent rheological studies were conducted on a 10% w/w
aqueous dispersion of linear PGMA100-PHBA325 nano-objects
between 2 and 60 °C (Figure 7). At 2 °C, the storage modulus

(G′) is significantly lower than the loss modulus (G″), which
indicates a free-flowing fluid (as confirmed by visual inspection
of the dispersion). On warming to 10 °C, G′ just exceeds G″,
indicating the formation of a physical gel owing to the
generation of highly anisotropic interacting worms, which form
a 3D network via multiple inter-worm contacts.61 This
temperature is designated as the critical gelation temperature
(CGT). At 30 °C, G″ exceeds G′ and the concomitant
degelation corresponds to a worm-to-vesicle transition. This is
consistent with the copolymer morphology assignment made
based on the variable temperature DLS data and visual
inspection, which confirmed a transition from a free-standing
gel (which forms above 10 °C) to a free-flowing turbid
dispersion above 30 °C, see Figure S5.
Thermoreversibility was then examined by determining the

complex viscosity (|η*|) of this 10% w/w aqueous copolymer
dispersion during the same thermal cycle (Figure 7b). Clearly,
the sphere-to-worm and worm-to-sphere transitions are more
or less reversible, although some hysteresis was observed for
the vesicle-to-worm transition during the cooling run. In
contrast, the other HBA-based diblock copolymer systems
previously reported by our group exhibited essentially no

hysteresis during their sphere-to-worm and worm-to-vesicle
transitions.51,62 In principle, the hysteresis observed in the
present study may be related to the stronger hydrogen bonding
interactions afforded by the cis-diol groups on the PGMA
chains compared to the non-hydroxyl-functional stabilizer
blocks that have been previously reported.51,62,93 However,
further studies are required to corroborate this hypothesis.
Prior PHBA-based worm formulations exhibited G′ values

ranging between 20 and 100 Pa, with higher G′ values being
reported for more concentrated aqueous dispersions [e.g., G′
∼30 Pa for a 10% w/w PNAEP85-PHBA295 worm gel and G′
∼100 Pa for a 20% w/w PDMAC56-P(0.80 HBA-stat-0.20
DAAM)264 worm gel].51,62 The ability to systematically tune
the storage modulus of a worm gel for a given diblock
copolymer system is likely to be useful for potential biomedical
applications. For example, relatively soft worm gels with G′
values of 10−50 Pa can induce stasis in human pluripotent
stem cells (and possibly also human embryos).84

In the present study, three 20% w/w aqueous dispersions of
PGMAx-PHBAy nano-objects (where x = 70, 100, or 130 and y
= 150, 210, or 270) were prepared such that the HBA/GMA
molar ratio remained approximately 2.1. Visual inspection
indicated that each dispersion was viscous but free-flowing.
DLS studies indicated relatively high polydispersities in each
case (DLS polydispersity > 0.15). These observations are
consistent with a mixed phase comprising spheres and worms,
which is consistent with the copolymer morphology predicted
by the pseudo-phase diagram shown in Figure 5. Rheological
studies were performed during a 38−15−38 °C thermal cycle.
Initial cooling to 15 °C was required to thermally “reset” the
dispersion and hence ensure reproducible data.114 It is perhaps
worth noting that this precaution was not required when
conducting rheology studies on PHBA-based nano-objects
prepared with alternative stabilizer blocks, which suggests that
the PGMA stabilizer chains may contribute to this thermal
history problem. The G′ (red circles) and G″ (blue squares)
data recorded during the subsequent heating run are shown in
Figure 8a−c.
These studies indicate that physical gelation (G′ > G″)

occurred at a CGT of approximately 30−32 °C for each of the
three aqueous dispersions. Moreover, increasing the PHBA DP
(while maintaining an approximately constant HBA/GMA
molar ratio of 2.1) resulted in progressively stronger worm gels
being formed at 37 °C (Figures 8a−c). The G′ values at 37 °C
were 220, 2250, and 3790 Pa for the PGMA70-PHBA150,
PGMA100-PHBA210, and PGMA130-PHBA270 worm gels,
respectively (see Figure S6 for the corresponding TEM
images). Importantly, these studies were performed at 20%
w/w solids, which enabled relatively high storage moduli to be
achieved compared to experiments performed at 10% w/w
solids (see Figure 7).
Inspecting the TEM images obtained during construction of

the pseudo-phase diagram shown in Figure 5, the mean worm
cross-sectional thickness clearly increases when targeting
higher PHBA DPs (see Figure 5 and Figure S3). In principle,
thicker worms should be less flexible and hence exhibit longer
persistence lengths than relatively thin worms. If so, this should
lead to a greater number of inter-worm contacts within the 3D
percolating network, which should enhance the gel strength
and reduce the critical gelation concentration (CGC).
Tube inversion experiments performed at 20 °C for

PGMA70-PHBA175, PGMA100-PHBA250, and PGMA130-
PHBA325 (GMA/HBA molar ratio = 2.5) worm dispersions

Figure 7. Temperature-dependent rheology studies of a 10% w/w
aqueous dispersion of linear PGMA100-PHBA325 nano-objects
recorded at an applied strain of 1.0% and an angular frequency of
1.0 rad s−1: (a) storage (G′; green diamonds) and loss (G″; purple
triangles) moduli; (b) complex viscosity (heating ramp = red data;
cooling ramp = blue data). For each measurement, 2.0 min was
allowed for thermal equilibration.
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suggest that the CGC is indeed lowered (from 16 to 14 to 12%
w/w, respectively; see Figure S7) with increasing PHBA DP
and hence worm cross-sectional diameters (which are 32, 36,
and 57 nm for GA-cross-linked PGMA70-PHBA150, PGMA100-
PHBA210, and PGMA130-PHBA270 worms prepared at 37 °C,
respectively; see Figure S6). These data are consistent with
observations made by Lovett et al. for a PGMA56-PHPMA155

block copolymer worm gel.61

Finally, rheological studies of a 20% aqueous dispersion of
PGMA130-PHBA270 nano-objects during a thermal cycle
suggested a sphere-to-worm-to-sphere transition (Figure 8d).
However, the storage modulus obtained at 23 °C is almost an
order of magnitude higher during the cooling run compared to
that observed during the initial heating run, which suggests
significant hysteresis for this relatively concentrated dispersion
(Figure 8d).

■ CONCLUSIONS

HBA is evaluated as an alternative monomer to HPMA in the
context of aqueous PISA syntheses. A kinetic study of the
RAFT aqueous dispersion polymerization of HBA at 30 °C
using a PGMA100 precursor was conducted while targeting a
PHBA DP of 650. The reaction mixture was periodically
sampled for analysis by 1H NMR spectroscopy, DMF GPC,
and DLS. The 1H NMR data indicated that essentially full
monomer conversion was achieved within 60 min. DMF GPC
studies confirmed the linear evolution of Mn with monomer
conversion. However, MWDs became significantly broader
(Mw/Mn > 1.40) above 65% conversion owing to the
development of a high molecular weight shoulder arising
from chain transfer to the acrylic backbone of the weakly
hydrophobic PHBA chains. DLS studies indicated the
formation of relatively small, well-defined nascent spheres
after 7.5 min, which corresponds to the onset of micellar
nucleation. Subsequently, the copolymer morphology evolved
to produce worms and subsequently vesicles. To corroborate
these tentative morphology assignments, GA was employed to
cross-link the PHBA chains and hence enable TEM analysis.
TEM images recorded for GA-cross-linked PGMA100-
PHBA215-650 nano-objects extracted during DLS studies nano-
objects confirmed the progressive evolution from spheres to
worms to vesicles during the HBA polymerization.
A series of PGMAx-PHBAy diblock copolymers were

prepared for x = 57−300 and y = 100−1580, and the
morphology of the resulting nano-objects was assigned by
visual inspection, DLS, and TEM studies. This systematic
approach allowed the construction of a pseudo-phase diagram
that enabled the reproducible synthesis of pure spheres,
worms, or vesicles. Interestingly, the upper limit PGMA
stabilizer DP for which pure worms and vesicles could be
accessed proved to be significantly higher for the RAFT
aqueous dispersion polymerization of HBA compared to that
of HPMA. This was attributed to the highly mobile nature of
the more weakly hydrophobic PHBA block. The synthesis of
copolymer spheres, worms, and vesicles with higher overall
DPs is desirable because the relative amount of the RAFT
agent is correspondingly reduced, which enables the
production of cheaper, less malodorous copolymers with
minimal color. Moreover, it also provides access to thicker
worms and vesicles with thicker membranes. The former
should be useful for the further examination of percolation
theory to account for the formation of 3D worm gel
networks,61 while the latter is expected to provide a more
effective barrier against the diffusion of small molecules.115

Finally, temperature-dependent rheological studies con-
ducted on a 10% w/w aqueous dispersion of linear
PGMA100-PHBA325 nano-objects between 2 and 60 °C
indicated thermoreversible behavior, despite the relatively
long PHBA block. However, significant hysteresis was
unexpectedly observed during the cooling cycle. Rheological
studies of 20% w/w aqueous dispersions comprising PGMA70-

Figure 8. Temperature-dependent rheology studies of 20% w/w
aqueous dispersions recorded at an applied strain of 1.0% and an
angular frequency of 1.0 rad s−1. Storage (G′ = green circles) and loss
(G″ = purple squares) moduli observed during a heating ramp from
20 to 37 °C for the following linear nano-objects: (a) PGMA70-
PHBA150, (b) PGMA100-PHBA210, and (c) PGMA130-PHBA270. (d) G′
values observed for PGMA130-PHBA270 nano-objects during heating
(red diamonds) and cooling (blue triangles) cycles between 20 and
37 °C. For each measurement, 2 min was allowed for thermal
equilibration.
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PHBA150, PGMA100-PHBA210, and PGMA130-PHBA270 indi-
cated that a reversible sphere-to-worm transition occurred at
essentially the same CGT of 30−32 °C. Moreover, increasing
the PHBA content of the worms formed at 37 °C provides a
convenient means of tuning the gel strength. In principle, such
thermoreversible worm gels should be useful as next-
generation cell storage media for biomedical applications. In
this context, their significantly higher CGT (compared to that
observed for the prototypical thermoresponsive PGMA-
PHPMA worm gels reported earlier60,82) should ensure that
cells experience minimal thermal shock when inducing
degelation, which is an essential step for cell harvesting.
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(29) Khan, M.; Guimaraẽs, T. R.; Choong, K.; Moad, G.; Perrier, S.;
Zetterlund, P. B. RAFT Emulsion Polymerization for (Multi)Block
Copolymer Synthesis: Overcoming the Constraints of Monomer
Order. Macromolecules 2021, 54, 736−746.
(30) Ferguson, C. J.; Hughes, R. J.; Pham, B. T. T.; Hawkett, B. S.;
Gilbert, R. G.; Serelis, A. K.; Such, C. H. Effective Ab Initio Emulsion
Polymerization under RAFT Control. Macromolecules 2002, 35,
9243−9245.
(31) Prescott, S. W.; Ballard, M. J.; Rizzardo, E.; Gilbert, R. G.
Successful Use of RAFT Techniques in Seeded Emulsion Polymer-
ization of Styrene: Living Character, RAFT Agent Transport, and
Rate of Polymerization. Macromolecules 2002, 35, 5417−5425.
(32) Ganeva, D. E.; Sprong, E.; de Bruyn, H.; Warr, G. G.; Such, C.
H.; Hawkett, B. S. Particle Formation in Ab Initio RAFT Mediated
Emulsion Polymerization Systems. Macromolecules 2007, 40, 6181−
6189.
(33) Rieger, J.; Stoffelbach, F.; Bui, C.; Alaimo, D.; Jérôme, C.;
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