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A B S T R A C T

The design process of thin-walled structural members is highly complex due to the possible occurrence of
multiple instabilities. This research therefore aimed to develop machine learning algorithms to predict the
buckling behaviour of thin-walled channel elements subjected to axial compression or bending. Feed-forward
multi-layer Artificial Neural Networks (ANNs) were trained, in which the input variables comprised the cross-
sectional dimensions and thickness, the presence/location of intermediate stiffeners, and the element length.
The output data consisted of the elastic critical buckling load or moment, while also providing an immediate
modal decomposition of the buckled shape into the traditionally defined ‘pure’ buckling mode categories (i.e.
local, distortional and global buckling). The sample output for training was prepared using a combination of the
Finite Strip Method (FSM) and the Equivalent Nodal Force Method (ENFM). The ANN models were subjected
to a K-fold cross-validation technique and the hyperparameters were tuned using a grid search technique. The
results indicated that the trained algorithms were capable of predicting the elastic critical buckling loads and
carrying out the modal decomposition of the critical buckled shapes with an average accuracy (𝑅2-value) of
98%. The influence of the various channel parameters on the output was assessed using the SHapley Additive
exPlanations (SHAP) method.

1. Introduction

Cold-formed steel (CFS) structural elements, manufactured near
room temperature from thin steel plate, possess tangible advantages,
such as high strength-to-weight and stiffness-to-weight ratios, ease of
handling and transportation, a flexible manufacturing process capa-
ble of producing a variety of cross-sectional shapes, and recyclability
without loss of quality, which in turn promotes sustainability [1,2].
However, their limited wall thickness results in a heightened suscepti-
bility to instabilities and generates a need to account for these through
a design process of increased complexity.

Traditional standard-prescribed design methods are typically based
on the effective width approach, pioneered by von Karman [3], in their
treatment of cross-sectional instability. The plate elements constituting
the cross-section are thereby treated as hinged along their adjoining
lines, and interaction between plate elements is conveniently ignored.
The Eurocode EN1993-1-3 [4] follows this approach. Additionally,
distortional buckling is dealt with using a column buckling model of a
relevant cross-sectional subassembly, with the restraint exerted by the
remainder of the cross-section represented by a Winkler foundation.
The North-American design specifications (AISI-S100) [5] also use the
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effective width concept in their fundamental approach, but specify
separate strength curves for distortional buckling. These traditional
code-specified design rules are quite prescriptive, however, and tend to
become cumbersome and tedious when applied to geometrically more
advanced cross-sections, which may contain features such as multiple
intermediate web/flange stiffeners and complex lip stiffeners. The fact
that these design rules rely on traditional distinctions between, for
instance, ‘flanges’ and ‘webs’ even pre-empts application to some cross-
sections with non-traditional, novel and innovative geometries. For
these reasons, they are sometimes seen as an impediment to further
development, optimization and innovation in the field.

To a large extent because of the above issues, the Direct Strength
Method (DSM) has enjoyed a steady rise in popularity as an alternative
design method since it was first proposed by Schafer and Peköz in
1998 [6]. The DSM relies on the determination of the individual
(elastic) local, distortional and global buckling stresses of the member,
and combines this information with the yield stress of the material to
define a slenderness value corresponding to each type of instability.
Statistically calibrated strength curves are then used to determine the
ultimate capacity. The DSM has historically been closely linked to the
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Finite Strip Method (FSM), where the latter is used as an analysis
tool to determine the elastic buckling stresses corresponding to the
various modes from the ’signature diagram’, which plots the buckling
stress against the buckle half-wavelength. This is further explained in
Section 2.1. However, a number of difficulties may arise in practical
application [7]. An ‘indistinct minimum’ may be present, meaning that
the local mode minimum in the signature curve is obscured by the
distortional buckling curve, or vice versa. The minima in the signature
curve also more often than not do not correspond to the ‘pure’ modes,
but to coupled instabilities. The distortional minimum in particular
usually includes a non-negligible contribution of the local mode. These
issues have spurred research into the ‘modal decomposition problem’
with the aim of determining the buckled shapes and buckling stresses
of the pure local, distortional and global modes, as well as their
contributions in a randomly deformed shape. To generate the capability
of a complete decomposition where all possible deformations within
the deformation space are accounted for, two more types of pure
modes are typically added: shear modes and (transverse) extension
modes. Groundbreaking work in this area was conducted by Adany
and Schafer [8], who achieved modal decomposition by importing the
mechanical descriptions of the buckling modes established in Gener-
alized Beam Theory (GBT) into the FSM. However, GBT is based on
a number of idealized assumptions (e.g. Vlasov’s assumptions), which
are fundamentally incompatible with the more generally formulated
mechanical framework of the FSM, leading to an inelegant solution
which lacks full orthogonality between the modes and needs several
‘patch-up’ solutions. More recent solutions to the modal decomposition
problem [9–11] do not suffer from these shortcomings. Among them,
the method of the equivalent nodal forces (ENFM) [11] is the most
robust and general one. It was therefore employed in this research and
a short description is provided in Section 2.2.

The main goal of this paper is to investigate whether Machine
Learning can be used to predict the buckling behaviour of CFS members
and, additionally, provide a viable and robust solution to the modal
decomposition problem. The field of Artificial Intelligence (AI), and
specifically Machine Learning and Deep Learning, have seen significant
development in recent years and are increasingly finding their way
into structural engineering applications. It has previously been demon-
strated that machine learning techniques are capable of providing
accurate predictions in highly nonlinear problems with large numbers
of parameters [12,13]. Machine learning [14] can be defined as a fam-
ily of methods that evaluate the relationship between input and output
parameters by detecting latent patterns in data, and consequently use
the uncovered relationships or patterns to predict future data (i.e. su-
pervised learning). Machine learning can be also employed to carry out
decision-making under uncertainties (e.g. by reinforcement learning to
find the optimal behaviour in an environment). Compared to the rule-
based predictive analytics on which conventional structural design is
based, machine learning algorithms can be more efficient and powerful
tools by automatically extracting relationships and patterns from large-
volume high-dimensional data without relying on data engineering and
domain knowledge. The following paragraphs aim to give an overview
of previous research where these approaches have been specifically
employed to CFS.

A first group of studies [15–18] have applied AI to the man-
ufacturing/rolling process of CFS profiles, mostly with the aim of
predicting the properties of the finished product. Furthermore, a num-
ber of research studies have investigated the design and optimization
of CFS elements for different applications, using AI methods. El-Kassas
et al. [19] presented an optimization framework using an Artificial
Neural Network (ANN) to find the optimum cross-sectional shape for
columns. The same researchers also developed neural networks which
were trained based on the predictions of the BS-5950 Part 5 [20] design
standard to predict the failure load of CFS lipped channel sections [21].
Pala [22] employed an ANN method to estimate the elastic distortional
buckling stresses of CFS C-sections under pure compression and pure

bending, and subsequently proposed ANN-based predictive equations.
These equations were then used in a follow-up study by Pala and
Caglar [23] to investigate the effects of the geometric parameters (in-
cluding the web height, flange width, flange thickness, and inclination
and length of the lips) on the distortional buckling stress. In another
study, an ANN algorithm was trained by Guzelbey et al. [24] using
an experimental dataset, with the aim of predicting the web crippling
strength of CFS trapezoidal decks. The results indicated that the ANN
could provide considerably more accurate predictions compared to
those obtained from the current design codes.

Due to the complexity of calculating distortional buckling stresses
using classical shell theories, Dias and Silvestre [25] trained an ANN on
an analytically developed dataset, and consequently presented closed-
form expressions to estimate the critical distortional buckling stress and
associated half-wavelength of elliptical hollow sections in compression.
In another relevant study, Tohidi and Sharifi [26] developed an ANN
model to predict the ultimate moment capacities of steel I-beams and
demonstrated that the proposed ANN-based formula is more accurate
than the existing design codes.

A soft-computing technique using ANN and Genetic Expression
Programming (GEP) was developed by D’Aniello et al. [27] to predict
the rotational capacity of CFS steel beams with rectangular and square
hollow sections. Subsequently, predictive models were proposed and
verified against experimental data. Degtyarev [28] trained ANN mod-
els to predict the elastic shear buckling load and the ultimate shear
strength of CFS channels with slotted webs, and proved that this led
to more accurate predictions compared to the code-prescribed design
equations. In a follow-up study, Degtyarev and Naser [29] compared
the results of five different machine learning boosting algorithms,
including gradient boosting regressor (GBR), extreme gradient boosting
(XGBoost), light gradient boosting machine learning (LightGBM), gradi-
ent boosting with categorical features support (CatBoost), and adaptive
boosting (AdaBoost), in predicting the elastic shear buckling loads and
the shear strength. It was reported that the CatBoost algorithm was
capable of providing the most accurate predictions compared to other
boosting algorithms.

Fang et al. [30,31] trained Deep Belief Network (DBN) algorithms,
using the results of experimentally validated FE models, to predict the
axial compressive capacity of CFS channel sections with and without
holes. Additionally, the predictions obtained from the DBN were used
to propose enhancement/reduction factors on the axial capacity of such
cross-sections. Zarringol et al. [13] and Xu et al. [32] employed ma-
chine learning algorithms to predict the ultimate strength of concrete-
filled CFS tubular columns and stainless steel tubular columns, respec-
tively, under various loading conditions. More recently, Couto [33]
trained an ANN model based on the results of FE simulations to
predict the critical buckling moment of tapered beams and compared
the ANN-based predictions with those given by the available design
guidelines.

Contrary to previous research, this paper focuses on developing
ANN algorithms to investigate the elastic stability of CFS structural
elements by predicting the elastic critical buckling load and decompos-
ing the associated critical buckled shape into its modal contributions.
The training datasets for the elastic critical buckling loads and mo-
ments were compiled based on FSM output, while the ANN models to
achieve modal decomposition were trained on results obtained from the
Equivalent Nodal Force Method (ENFM).

The results of this study will potentially prove useful in creating a
practical design tool for engineers and practitioners and provide them
with a largely intuition-based insight into the mechanical behaviour
of thin-walled elements, without necessarily requiring any background
knowledge of programming or complex mechanical concepts. A future
extension of the presented research could capitalize on the potential
to further train the ANN into a method of near universal versatility
by invoking the strengths of other decomposition methods (e.g. the
‘polarization method’ [10]) in areas where the ENFM lacks applicability
(e.g. for cross-sections with rounded corners).
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Fig. 1. Discretization of a thin-walled member into strips.

Fig. 2. Main nodes and sub-nodes in a lipped channel section.

2. Theoretical background

This section aims to summarize the basic principles of the FSM and
the ENFM.

2.1. The Finite Strip Method (FSM)

In the FSM [34] thin-walled elements are divided into a number
of longitudinal strips, the longitudinal boundaries of which are called
the ‘nodal lines’ (Fig. 1). In the remainder of this paper, these nodal
lines will simply be referred to as ‘nodes’. As also illustrated in Fig. 1, a
local (x, y, z) coordinate system associated with each strip was defined,
as well as a global (X, Y, Z) coordinate system. The total number of
nodes and strips are indicated by 𝑁 and 𝑁𝑃 , respectively. The nodes
of a cross-section can be categorized into three groups, as shown in
Fig. 2: (i) 𝑁𝑚𝑖 internal main nodes, which connect adjacent strips with
non-aligned local y-axes - the number of main nodes depends on the
geometry of the cross-section, (ii) 𝑁𝑚𝑒 external main nodes, which are
positioned along the free edges of a cross-section (for a lipped channel
section the number of external main nodes 𝑁𝑚𝑒 =2), and (iii) 𝑁𝑠 sub-
nodes which connect adjacent strips with aligned local y-axes. The
number of sub-nodes can be arbitrarily chosen, with a higher number
of subnodes typically resulting in more accurate results [34].

As shown in Fig. 3, each nodal line has four degrees of freedom,
namely the longitudinal x-displacements (u) measured at the ends of
the nodal line, and the in-plane y-displacement (v), the out-of-plane
z-displacement (w) and the rotation about the x-axis (𝜃), measured at

mid-length. While the degrees of freedom (ui, vi) and (uj, vj) determine
the in-plane membrane displacements of a strip located between nodal
lines i and j, the deformations caused by plate bending are determined
by (w, 𝜃i) and (wj, 𝜃j). For a strip with pinned boundary conditions,
the shape functions in the longitudinal direction are assumed to be
sinusoidal for v and w, and co-sinusoidal for u. In the transverse
direction, on the other hand, they are linear for u and v, and cubic
for w.

The elastic and geometric stiffness matrices of the member, 𝑲 and
𝑮, are assembled using the local elastic and geometric stiffness matrices
of each strip [34], which leads to the formulation of the following
stability eigenvalue problem:

(𝑲 − 𝜆𝑮) .𝝂 = 0 (1)

where 𝝂 is an eigenvector revealing the buckled shape of the ele-
ment, and 𝜆 is the eigenvalue indicating the corresponding elastic
buckling stress. The critical buckling stress (𝜎𝑐𝑟) for a given buckle
half-wavelength (L) is obtained as the lowest eigenvalue (𝜆𝑐𝑟). The plot
showing (𝜎𝑐𝑟) as a function of (𝐿) is usually called the ‘‘signature curve’’
of the member, and an example is provided in Fig. 4.

2.2. The Equivalent Nodal Force Method (ENFM)

The most straightforward and robust way to achieve modal decom-
position of buckled shapes is the ‘method of the equivalent forces’
proposed by Becque et al. [11]. In this method, the pure local, distor-
tional and global buckling modes, with the added shear and transverse
extension modes, form a full orthogonal set of basis vectors of the
complete deformation space. This implies that any deformation can
be expressed as a linear combination of these basis vectors. By en-
forcing orthogonality of the basis vectors, the decomposition becomes
mathematically unique and its interpretation therefore unambiguous.
The method hinges on the determination of sets of nodal forces which
produce the pure buckled shapes in a first-order linear elastic problem.

2.2.1. Local modes
The local buckling modes are characterized by the corners of the

cross-section (coinciding with the internal main nodes as defined in
Section 2.1) remaining in place during buckling. According to this
definition, the local buckling modes can be completely described by
a subset of degrees of freedom: (i) the rotations 𝜃 of all nodes, and
(ii) the out-of-plane displacements w of all nodes except the internal
main nodes. Therefore, a set of basis vectors of the local space 𝒗𝐿,𝑖 can
be constructed by assembling all possible 4𝑁 ×1 vectors in which all
elements are zero, except for a single element corresponding to one of
the above-mentioned degrees of freedom, which is set equal to 1. The
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Fig. 3. Degrees of freedom in the FSM.

number of the basis vectors of the local space (equal to the number of
local modes) is equal to 2𝑁−𝑁𝑚𝑖. The 𝒗𝐿,𝑖 vectors can then be arranged
as columns in a matrix 𝑯𝐿 with dimensions 4𝑁 × (2𝑁 −𝑁𝑚𝑖), and any
local mode shape (𝒅𝐿) can be expressed as a linear combination of the
basis vectors (𝒗𝐿) [8]:

𝒅𝐿 = 𝑯𝐿𝒂 (2)

In the above equation, 𝒂 is a vector of unknown coefficients, which
can be determined for a given loading by solving the following eigen-
value problem:
(
𝑯𝑇

𝐿𝑲𝑯𝐿 − 𝜆𝐿𝑯
𝑇
𝐿𝑮𝑯𝐿

)
𝒂 = 𝟎 (3)

The eigenvalues (𝜆𝐿) resulting from Eq. (3) are the local buckling
stresses corresponding to the buckled shapes determined from (2) once
the (𝒂) vectors are known.

2.2.2. Distortional modes
To uniquely define the distortional modes, four criteria are im-

posed on the cross-section [11]: (DI) the nodal forces (𝒇 ) maintain
cross-sectional equilibrium, (DII) the longitudinal forces acting on the
member are zero, (DIII) the transverse membrane stresses are zero, and
(DIV) the distortional modes are orthogonal to the local modes.

The following set of equations is used to ensure cross-sectional
equilibrium:

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑁∑
𝑖=1

𝑓 𝑖
𝑌
= 0

𝑁∑
𝑖=1

𝑓 𝑖
𝑍
= 0

𝑁∑
𝑖=1

(𝑓 𝑖
𝑌
𝑍𝑖 − 𝑓 𝑖

𝑍
𝑌𝑖) = 0

(4)

where 𝑓 𝑖
𝑌
and 𝑓 𝑖

𝑍
are the nodal force components in the global Y

and Z directions at node 𝑖, respectively, and 𝑌𝑖 and 𝑍𝑖 are the global
coordinates of node 𝑖 relative to an arbitrary origin. It is worth noting
that the final equation in Eq. (4) contains a typo in the original
formulation [25]. The matrix form of Eq. (4) is written as 𝑪1𝒇 = 𝟎,
where 𝑪1 is a 3 ×4𝑁 matrix.

Criterion (DII) can also be expressed in matrix form with the help
of a reduced 3𝑁 ×1 vector (𝒇̂ ) which contains all nodal forces except
the longitudinal end forces:

𝒇 =

[
𝑰

𝟎

]
𝒇̂ = 𝑻 𝒇̂ (5)

In Eq. (5) 𝑰 is the 3𝑁 ×3𝑁 identity matrix and 𝟎 is an 𝑁 ×3𝑁
matrix containing zeros. Consequently, 𝑻 is a matrix of size 4𝑁 ×3𝑁 .

Fig. 4. Typical signature curve.

In the FSM, criterion (DIII) can only be imposed in an averaged
form over the strip width (𝑏), which leads to the following set of
equations [25]:(
𝑉1,𝑖 − 𝑉2,𝑖

)
cos 𝛼𝑖 −

(
𝑊1,𝑖 −𝑊2,𝑖

)
sin 𝛼𝑖

𝑏𝑖
+

(
𝑈1,𝑖 + 𝑈2,𝑖

)
2

(
𝜈𝜋

𝐿

)
= 0

(𝑖 = 1,… , 𝑁𝑃 ) (6)

where 𝜈 is Poisson’s ratio and the subscripts ‘1’ and ‘2’ refer to both
nodal lines at the boundaries of the strip. Furthermore, 𝛼𝑖 is the angle
measured from the local y-axis of strip i to the global Y-axis, measured
positive in the counterclockwise direction. The coefficients in Eq. (6)
can be assembled into a matrix 𝑪𝜎 , while the degrees of freedom are
contained in a vector 𝒅, allowing Eq. (6) to be translated into:

𝑪𝜎𝒅 = 𝑪𝜎𝑲
−1𝒇 = 𝑪2𝒇 = 𝟎 (7)

Finally, the orthogonality criterion (DIV) is expressed mathemati-
cally as:

𝑯𝑇
𝐿𝑲𝒅 = 𝑯𝑇

𝐿𝒇 = 𝟎 (8)

The forces generating the distortional modes (𝑭𝐷) can thus be
determined as the null space of the matrix 𝑪𝐷:

𝑭𝐷 = 𝑛𝑢𝑙𝑙
(
𝑪𝐷

)
= 𝑛𝑢𝑙𝑙

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

𝑪1

𝑪2

𝑯𝑇
𝐿

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
(9)

where: 𝑭𝐷 = 𝑻𝑭𝐷
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The matrix 𝑪𝐷 has dimensions (2𝑁 − 𝑁𝑚𝑖 + 𝑁𝑃 + 3) × 3𝑁 . A
constrained eigenvalue problem can then be formulated using the ma-
trix 𝑯𝐷 = 𝑲−1𝑭𝐷, comprising a set of basis vectors of the distortional
space:
(
𝑯𝑇

𝐷𝑲𝑯𝐷 − 𝜆𝐷𝑯
𝑇
𝐷𝑮𝑯𝐷

)
𝒂 = 𝟎 (10)

This determines the buckling stresses of the distortional modes (𝜆𝐷)
and the associated modal shapes 𝒅𝐷 = 𝑯𝐷𝒂 under a given loading. It is
noted that for an open unbranched cross-section (e.g. a lipped channel)
the number of distortional modes is always equal to 𝑁𝑚𝑖 − 2.

2.2.3. Global modes
To define the pure global modes, similar criteria to those maintained

for the distortional modes are applied, except that cross-sectional equi-
librium of the nodal forces is no longer required: (GI) no longitudinal
forces are necessary to generate the global modes, (GII) the transverse
membrane stresses are zero, and (GIII) the global modes are orthogonal
to both local and distortional modes. Based on this, the forces generat-
ing the global modes (𝑭𝐺) can be determined as the null space of the
matrix 𝑪𝐺:

𝑭𝐺 = 𝑛𝑢𝑙𝑙
(
𝑪𝐺

)
= 𝑛𝑢𝑙𝑙

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

𝑪2

𝑯𝑇
𝐿

𝑯𝑇
𝐷

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(11)

where: 𝑭𝐺 = 𝑻𝑭𝐺

Subsequently, the matrix 𝑯𝐺 = 𝑲−1𝑭𝐺, containing a set of basis
vectors of the global space, is employed to formulate a constrained
eigenvalue problem:
(
𝑯𝑇

𝐺𝑲𝑯𝐺 − 𝜆𝐺𝑯
𝑇
𝐺𝑮𝑯𝐺

)
𝒂 = 𝟎 (12)

This yields the global mode shapes 𝒅𝐺 = 𝑯𝐺𝒂 under a given loading
and the corresponding global buckling stresses (𝜆𝐺). It is noted that the
number of global modes is always three.

2.2.4. Transverse extension modes
The transverse extension modes are determined by imposing that:

(TEI) no longitudinal nodal forces are necessary to generate the trans-
verse extension modes, and (TEII) the transverse extension modes are
orthogonal to the local, distortional and global modes. These criteria
can be mathematically expressed as:

𝑭 𝑇𝐸 = 𝑛𝑢𝑙𝑙
(
𝑪𝑇𝐸

)
= 𝑛𝑢𝑙𝑙

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

𝑯𝑇
𝐿

𝑯𝑇
𝐷

𝑯𝑇
𝐺

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(13)

where: 𝑭 𝑇𝐸 = 𝑻𝑭 𝑇𝐸

The matrix 𝑯𝑇𝐸 = 𝑲−1𝑭 𝑇𝐸 , comprising a set of basis vectors of the
transverse extension space, can then be used to formulate an eigenvalue
problem in a similar fashion to Eqs. (3), (10) and (12) to obtain the
transversely extended modal shapes (𝒅𝑇𝐸 = 𝑯𝑇𝐸𝒂) under a given
loading.

2.2.5. Shear modes
As a final category of buckling modes, the shear modes are de-

termined by their orthogonality with all previously obtained modes:

𝑭 𝑆 = 𝑛𝑢𝑙𝑙
(
𝑪𝑆

)
= 𝑛𝑢𝑙𝑙

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣

𝑯𝑇
𝐿

𝑯𝑇
𝐷

𝑯𝑇
𝐺

𝑯𝑇
𝑇𝐸

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

(14)

The shear modes (𝒅𝑆 = 𝑯𝑆𝒂) under a given loading can then be
obtained by constraining the solutions of Eq. (1) to a linear combination
of the basis vectors of the shear space, contained in 𝑯𝑆 = 𝑲−1𝑭 𝑆 . The
number of shear modes is equal to the total number of nodes N.

2.2.6. Modal contributions
Once the pure modes (𝒅𝑖) (i.e. the local (𝒅𝐿), distortional (𝒅𝐷),

global (𝒅𝐺), transverse extension (𝒅𝑇𝐸) and shear modes (𝒅𝑆 )) have
been determined, their participations in a random deformed shape
𝒗 (expressed through the local (𝑐𝐿), distortional (𝑐𝐷), global (𝑐𝐺),
transverse extension (𝑐𝑇𝐸) and shear mode (𝑐𝑆 ) participation factors)
can be calculated as:

𝑐𝑖 =
∑

(0.5𝒗𝑇𝑲𝒅𝑖) (15)

where the sum is carried out over all the basis vectors of the considered
subspace.

A particularly relevant application is the case where 𝒗 is a vector
belonging to the FSM output obtained from Eq. (1).

3. Dataset and parameter space

A dataset was compiled pertaining to 4608 CFS elements with
lipped channel sections. The data cover various lengths, cross-sectional
dimensions and thicknesses, and account for the possible presence of
intermediate stiffeners in the web and/or flanges. More specifically,
four cross-sectional shapes were considered, namely an unstiffened
lipped channel, a lipped channel with intermediately stiffened flanges,
a lipped channel with a stiffened web, and a lipped channel with
stiffened flanges and web, as shown in Table 1. For each cross-sectional
shape an identical number of 1170 data points were generated. The
input data consisted of seven independent parameters, including six
cross-sectional parameters (see Table 1): the web height (ℎ), the flange
width (𝑏), the lip length (𝑐), the plate thickness (𝑡), and the locations
of the intermediate stiffeners in the flanges (𝑟1) and the web (𝑟2). The
remaining parameter was the element length (𝐿). It is noted that the
intermediate stiffeners always consisted of two 10 mm legs with an
intersecting angle of 60◦. The ranges of the selected parameters are
given in Table 1. The output data was generated by performing FSM
and ENFM analyses on the selected CFS elements, and comprised: (i)
the elastic critical buckling load (𝑃𝑐𝑟), (ii) the modal contributions to
the critical buckling shape associated with (𝑃𝑐𝑟), expressed through the
local (𝑐𝐿,𝐶 ), distortional (𝑐𝐷,𝐶 ) and global (𝑐𝐺,𝐶 ) participation factors,
(iii) the elastic critical moment (𝑀𝑐𝑟), and (iv) the modal contributions
to the critical buckling shapes associated with (𝑀𝑐𝑟), expressed through
the local (𝑐𝐿,𝐹 ), distortional (𝑐𝐷,𝐹 ) and global (𝑐𝐺,𝐹 ) participation fac-
tors. It should be noted that the modal decomposition results across the
dataset showed negligible contributions from the transverse extension
and shear modes (less than 1%). Therefore, only the local, distortional
and global instabilities were taken into account in this study.

Fig. 5 shows the histograms of the input and output parameters of
the dataset. For illustrative purposes, the distributions of the compres-
sive (𝜆𝑐𝑟,𝐶 ) and flexural (𝜆𝑐𝑟,𝐹 ) cross-sectional slenderness parameters
are also shown in Fig. 5. These slenderness parameters are defined as:

𝜆𝑐𝑟,𝐶 =

√
𝑃𝑦

𝑃𝑐𝑟

(16)

𝜆𝑐𝑟,𝐹 =

√
𝑀𝑦

𝑀𝑐𝑟

(17)

where 𝑃𝑦 and𝑀𝑦 are the compressive yield load and the yield moment,
respectively. The yield stress of material was assumed to be 350 MPa.
It is noted that the ranges of the input parameters were selected to
be representative of commercially available channel sections. Addi-
tional advice in this respect was sought from the industrial project
partner [35]. For instance, the member lengths in the dataset were kept
within the practically encountered span lengths for CFS (500 mm ≤

𝐿 ≤ 3000 mm), which in turn led to lower modal contributions
from the global instabilities. This is illustrated by the typical modal
decomposition for a compressed lipped channel element shown in
Fig. 6.
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Table 1
Cross-sectional shapes and dimensions considered in the dataset (in mm).

Fig. 7 present the correlations between the input parameters and
(i) the elastic critical buckling loads (𝑃𝑐𝑟), and (ii) the corresponding
modal contributions (𝑐𝐿,𝐶 , 𝑐𝐷,𝐶 , 𝑐𝐺,𝐶 ). Fig. 8 explores this correlation
for the elastic critical buckling moments (𝑀𝑐𝑟) and their corresponding
modal contributions (𝑐𝐿,𝐹 , 𝑐𝐷,𝐹 , 𝑐𝐺,𝐹 ). Based on the coefficients of
determination (𝑅2) generally poor correlations are observed between
the input and output parameters, especially when it comes to the
participation factors. An exception can be found for the plate thickness
(𝑡) where considerably higher correlations exist with 𝑃𝑐𝑟 (𝑅

2 = 0.853)
and 𝑀𝑐𝑟 (𝑅

2 = 0.749). This poor correlation points to machine learning
as a potentially more viable avenue to obtain reliable predictions.

4. Machine learning methods

4.1. Overview of Artificial Neural Networks (ANN)

A particular kind of machine learning, the feedforward multilayer
ANN, was employed in this study. The main advantage of the ANN
approach is that the training process is carried out on a collection
of representative examples without requiring a well-defined process
to algorithmically convert the input to the output data. The ANN
is inspired by the biological structure of the human brain and has
a parallel-distributed architecture with a number of interconnected
nodes, commonly referred to as neurons. The neurons are arranged in
input, hidden and output layers, and each neuron is connected to all of
the neurons in the next layer via weighted connections. In the ANN
computational process, the data is first fed into the neural network
through the input layer which communicates with the hidden layers.
Nodes in the hidden layer combine data from various neurons in the
input layer with appropriate weights. In the next stage, these weighted
inputs are summed up for each neuron of the hidden layer and then
passed to the next layer through an activation function, along with a
bias. This process is continued until the last hidden layer is reached,
which is linked to the output layer where the outputs are retrieved. It
should be noted that the connections between the nodes do not form
closed loops and information flows unidirectionally within the network.
The calculation process of an ANN is schematically represented in
Fig. 9.

The ANN procedure can mathematically be expressed as follows:

𝑎
𝑗
𝑖 = 𝑓 𝑗

(∑
𝑘

𝑤
𝑗
𝑖𝑘
𝑎
𝑗−1
𝑘

+ 𝑏
𝑗
𝑖

)
(18)

In the above equation, the 𝑎 values are called the activations, and
𝑓 is the activation function which decides whether a neuron should
be activated or not within the network (see Section 4.4). The 𝑤 and
𝑏 parameters represent the weights and biases of the ANN model,
respectively. The subscripts 𝑗 and 𝑖 denote the 𝑗𝑡ℎ layer and 𝑖𝑡ℎ node,
while 𝑘 represents the number of nodes in the (𝑗 − 1)𝑡ℎ layer which
are connected to the 𝑖𝑡ℎ node in the 𝑗𝑡ℎ layer. In the input layer, each
𝑎1𝑖 value is essentially equal to the 𝑖𝑡ℎ input parameter (𝑥𝑖). In the
output layer, where 𝑗 = 𝑛 (𝑛 is the total number of layers in the
network), the calculated activation values (𝑎𝑗𝑖 ) constitute the predicted
output values (𝑦′). The weights and biases are initially assumed at the
beginning of the training process and then learned by the network using
an algorithm based on the ‘‘backward propagation of errors’’ [36].

Following the calculation of the activations (𝑎𝑗𝑖 ) for all layers of the
network, a cost function 𝐽 (𝑦, 𝑦′) is determined for the model based on
the original output data (𝑦) and the predicted output values (𝑦′) of all
training samples. This cost function can take on various forms, such as
the Mean Absolute Error (MAE), the Mean Absolute Percentage Error
(MAPE) and the Mean Squared Error (MSE). The training process of an
ANN is aimed at searching for those values of the weights and biases
which minimize the cost function. In this study the Gradient Descent
method [37] was used for this purpose, where the following gradients
are numerically calculated:

𝐺𝑤 =
𝜕𝐽 (𝑤, 𝑏)

𝜕𝑤
(19)

𝐺𝑏 =
𝜕𝐽 (𝑤, 𝑏)

𝜕𝑏
(20)

The weights and biases are then updated in each iteration (t) using
the following equations:

𝑤𝑡 = 𝑤𝑡−1 − 𝛼𝐺𝑤,𝑡−1 (21)

𝑏𝑡 = 𝑏𝑡−1 − 𝛼𝐺𝑏,𝑡−1 (22)

where 𝛼 is the chosen learning rate, most often in the range between
0.0 and 1.0. The influence of 𝛼 on the performance of the model
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Fig. 5. Histograms of: (a–g) input parameters, (h–i) cross-sectional slenderness and (j–q) output parameters.

was investigated in Section 5.1. It is noted that this ANN process has
previously been successfully implemented in several AI-related studies
with deep-learning frameworks [30,38,39].

4.2. K-fold cross-validation

K-fold cross-validation is mainly employed in applied machine
learning to estimate the accuracy of the model for unseen data. While
implementing K-fold cross-validation into the network can be com-
putationally expensive, it can provide significantly more information
about the performance of the model and consequently help to increase
its accuracy. In addition, the K-fold cross-validation technique can be
especially beneficial when the network is required to predict multiple
outputs (as is here the case when predicting the modal contributions in
the buckled shapes).

In traditional ANN methods the available dataset is divided into
training, validation and test sets to avoid instances of overfitting. How-
ever, this can noticeably reduce the number of data points available
for training and make the model greatly dependent on the selection
of the samples into training, validation and test sets. In the K-fold
cross-validation approach, on the other hand, the dataset is randomly
shuffled and then divided into K folds. K−1 folds are used to train
the model and the remaining fold (the test set) is employed for the
evaluation. In a permutative approach, each of the K folds is then
used, in turn, as the test set, as illustrated in Fig. 10. This implies
that each sample is given an opportunity to be used in the test set
once and is used to train the model K−1 times. In each iteration, an
evaluation score is calculated and retained. The performance of the
model is then taken as the average of the evaluation scores. In this
study, the network was subjected to 5-fold cross-validation, as shown

7



S.M. Mojtabaei, J. Becque, I. Hajirasouliha et al. Thin-Walled Structures 184 (2023) 110518

Fig. 6. Typical modal decomposition of FSM output for a compressed lipped channel
element.

in Fig. 10. In each iteration the dataset was divided into training and
test sets in an 80%–20% proportion.

4.3. Data preparation

4.3.1. Feature standardization and output transformation
As previously discussed in Section 3, the input parameters (𝑥)

in this study consisted of the seven geometric features of the CFS
element (ℎ, 𝑏, 𝑐, 𝑡, 𝑟1, 𝑟2, 𝐿), while the output parameters (𝑦) consisted

of (i) a single value representing the elastic critical buckling load
(𝑃𝑐𝑟) or bending moment (𝑀𝑐𝑟), and (ii) a vector containing the three
participation factors of the critical compressive (𝑐𝐿,𝐶 , 𝑐𝐷,𝐶 , 𝑐𝐺,𝐶 ) or
flexural (𝑐𝐿,𝐹 , 𝑐𝐷,𝐹 , 𝑐𝐺,𝐹 ) buckled shapes. To improve the performance
of the machine learning algorithms, the dataset was preprocessed. In
particular, the input parameters of the dataset were standardized using
the following equation:

𝑥̂ =
𝑥 − 𝜇

𝜎
(23)

where 𝑥̂ and 𝑥 are the standardized and original values of the input
parameter, and 𝜇 and 𝜎 denote the mean and the standard deviation
of 𝑥. In addition, it was observed that the histograms of the output
data exhibited skewed distributions. This was especially evident for the
modal contributions. Therefore, the logarithmic values of the output
data were used to provide a more uniform distribution:

𝑦̂ = log(1 + 𝑦) (24)

where 𝑦̂ and 𝑦 are the logarithmic and original values of the output
data, respectively.

4.3.2. Performance metrics
Machine learning algorithms can be evaluated using various perfor-

mance metrics. In this study, the ANNs were evaluated based on the
values of the MSE (mean squared error), the MAPE (mean absolute
percentage error) and 𝑅2 (coefficient of determination), defined as:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑
𝑖=1

(𝑦 − 𝑦′)2 (25)

𝑀𝐴𝑃𝐸 =
100

𝑛

𝑛∑
𝑖=1

||||
𝑦 − 𝑦′

𝑦

|||| (%) (26)

Fig. 7. Correlations between the input parameters and (i) the elastic critical buckling load (𝑃𝑐𝑟), and (ii) the modal contributions for compressive elements (L: Local, D: Distortional
and G: Global).
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Fig. 8. Correlations between the input parameters and (i) the elastic critical buckling moment (𝑀𝑐𝑟) and (ii) the modal contributions in flexure (L: Local, D: Distortional and G:
Global).

Fig. 9. Calculation process of ANN.

9



S.M. Mojtabaei, J. Becque, I. Hajirasouliha et al. Thin-Walled Structures 184 (2023) 110518

Fig. 10. 5-fold cross-validation.

Fig. 11. Architecture of the ANNs with one, two and three hidden layers for the predictions of (a) elastic buckling resistances and (b) modal contributions.

𝑅2 = 1 −

∑𝑛
𝑖=1(𝑦 − 𝑦′)2∑𝑛
𝑖=1(𝑦 − 𝑦)2

(27)

where 𝑛 is the number of samples and 𝑦 is the mean value of the
𝑦-values.

4.4. Tuning of hyperparameters

The performance and accuracy of the ANN model highly depends
on the network parameters (the so-called ‘hyperparameters’) which are

set before training, and include the learning rate, the number of neu-
rons, the number of layers, the activation functions and the optimizer.
In this study, the optimal hyperparameters were determined using a
well-known hyperparameter tuning method called ‘grid search’ [40],
which is based on a trial-and-error process. The following ranges of
hyperparameters were studied:

• One, two and three hidden layers were examined, as shown in
Fig. 11.
• The number of neurons was varied from 10 to 100 in intervals of
11.

10
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Fig. 12. Activation functions.

• The learning rate was set to 0.1, 0.2 and 0.3.
• A wide variety of activation functions are available for imple-
mentation into the ANN. In this study, four different activation
functions were examined, including linear (Lin), rectified linear
(Rel), log-sigmoid (Sig) and hyperbolic tangent-sigmoid (Tan).
These functions are illustrated in Fig. 12. While all four activation
functions were examined for the hidden layers, only the Sig and
the Tan activation functions were studied in the nodes of the
output layer. Using the Sig function can be an appropriate option
in terms of computational costs and accuracy where output values
should always be positive (Fig. 12). The Tan function, on the
other hand, has a steeper slope compared to the other activation
functions and therefore results in higher updates in the weights
and a potential for faster learning.
• As discussed in Section 4.1, a cost function can be used to repre-
sent the performance of the machine learning algorithm. In this
study, the MSE and the MAPE cost functions were employed to
assess the accuracy of the ANN models.

Following a sensitivity analysis, the number of epochs was set to
1000 in all ANN models. This represents the number of passes of the
entire training dataset that the machine learning algorithm completes
in order to update the biases and weights. In addition, the default
weight and bias initializers were implemented in all ANN models using
the ‘‘Glorot’’ and ‘‘Zeros’’ functions, respectively [41].

5. Results and discussions

In this study, the ANN models were developed and tuned in the
MATLAB software package [42]. In total, 1440 different ANN models
were evaluated for each prediction target in order to tune the hy-
perparameters. Based on these results the most efficient models with
the highest performance were identified. The relative importance of
the various input parameters on the predicted output values was also
assessed using the Shapley (SHAP) method [43].

5.1. Effects of hyperparameters

In a first step, an ANN model with one hidden layer, using the
Sig and Tan activation functions for the hidden and output layers,

respectively, was considered, and the number of neurons and the
learning rates were varied in order to study their influence. As shown
in Fig. 13, the cost function converged at approximately 40 neurons
when the elastic critical buckling load (𝑃𝑐𝑟) or bending moment (𝑀𝑐𝑟)
was predicted, while convergence was achieved at about 50 neurons
when modal decomposition was the target of the ANN model. A further
increase in the number of neurons resulted in negligible changes in
the cost functions. It can also be seen from Fig. 13 that the value of
the learning rate generally had a negligible effect on the performance
of the network. Using either MAPE or MSE as the performance metric
for the models also did not result in any substantial difference in the
convergence rate or model performance.

Fig. 14 illustrates the influence of the activation functions and the
number of hidden layers on the overall performance of ANN models
with 40 neurons and a learning rate of 0.3. The labels in Fig. 14
(e.g. ‘Lin-Sig’) indicate the type of activation function used in the
hidden layers, followed by the type of activation function in the output
layer. It can be seen that the types of activation function significantly
affected the performance of the models, as measured by the MSE and
MAPE. Using the Sig activation function in the output layer always
resulted in ANN models with significant remaining errors. It was also
concluded that the ANN models with the Lin activation function within
the input layers were incapable of providing accurate solutions. On the
other hand, the best performance was achieved when the Tan activation
function was utilized in both the hidden and the output layers. The
results also demonstrate that training the ANN models with one hidden
layer may lead to relatively high error levels compared to those with
two and three hidden layers. However, using a larger number of hidden
layers considerably increases the computational cost of the training
process.

5.2. Selected networks

Following the tuning of the hyperparameters, the ANN model with
the best performance was selected for each prediction target. A sum-
mary of the selected ANN models is provided in Table 2, including
the features of the hyperparameters and the model performance in
terms of MSE and MAPE. While the number of hidden layers was set
to two for the predictions of the elastic critical buckling loads (𝑃𝑐𝑟)

11
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Fig. 13. Influence of number of neurons and learning rate on cost functions.

and bending moments (𝑀𝑐𝑟), the selected ANN models for the modal
decomposition of the compressive (𝑐𝐿,𝐶 , 𝑐𝐷,𝐶 , 𝑐𝐺,𝐶 ) and flexural (𝑐𝐿,𝐹 ,
𝑐𝐷,𝐹 , 𝑐𝐺,𝐹 ) buckled shapes contained three hidden layers. The optimum
number of neurons was found to be 40 and 50 for the ANN models
predicting the elastic buckling resistance and the modal decomposition,
respectively. For all selected ANN models the learning rate was 0.3, and
the Tan activation function was implemented for both the hidden and
the output layers. The MAPE was used as the cost function during the
training process.

In general, the elastic critical buckling loads and bending moments
were more accurately predicted by the ANN models (with MAPEs of
2.75% and 2.98%) than the modal decompositions of the compressive
and flexural buckled shapes (with MAPEs of 19.93% and 28.05%,

respectively). Figs. 15 to 18 explore the relationship between the
network predictions and the actual responses obtained from the FSM
and ENFM by means of a linear regression analysis. The statistical
indicators for the ratios of the ANN predictions to the actual responses
are also presented in these figures, including the coefficient of deter-
mination (𝑅2), the coefficient of variation (COV) and the mean. For
a perfect fit, all data should fall along a 45◦ line, as the network
outputs would be equal to the actual responses. It should be noted
that for each prediction problem the model was independently re-
trained about 5 times to obtain the most accurate results. This was
done because each training starts from different initial weights and
biases and this randomized aspect can produce networks of slightly
different performance. The best performing model was retained. An
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Fig. 14. Influence of activation functions and number of hidden layers on cost functions.

excellent fit was obtained for the elastic critical buckling loads (𝑃𝑐𝑟)
and bending moments (𝑀𝑐𝑟), with 𝑅2 > 0.99. On the other hand, the
predictions for the modal decomposition of the compressive (𝑐𝐿,𝐶 , 𝑐𝐷,𝐶 ,
𝑐𝐺,𝐶 ) and flexural (𝑐𝐿,𝐹 , 𝑐𝐷,𝐹 , 𝑐𝐺,𝐹 ) buckled shapes showed a slightly
lower level of accuracy, with 𝑅2 > 0.95. This is attributed to the fact
that predicting the modal decomposition is a multi-output regression
problem, while only a single-output ANN model is required for the
elastic buckling resistances. In addition, as shown in the histograms of
the output data (Fig. 5), the distributions of the modal contribution
results were sometimes skewed, which in turn resulted in less accurate
predictions. This was especially evident for the contributions of the
global (i.e. lateral–torsional) buckling mode in the critical buckled
shapes of the flexural elements, which were less than 10% across
the whole training dataset (Fig. 5q). This was consciously accepted,
since CFS beam elements are typically used in applications where they
are laterally supported by floor/roof diaphragms and consequently
restrained against lateral–torsional buckling. However, it did result in

slightly inaccurate predictions of the global participation factors in
bending (Fig. 18). Finally, it should be noted that ANN models are
generally expected to be less accurate for data outside the ranges of
the selected training dataset.

5.3. Impact of input parameters on critical buckling resistance and modal
decomposition

The Shapley value is based on a solution concept in game theory,
which is used to determine the contribution of each player in a coalition
or a cooperative game [44]. The Shapley value represents the relative
importance or influence of a specific feature (i.e. an input parameter)
on the model predictions (𝐹 ). To compute the Shapley value associated
with the 𝑖𝑡ℎ feature, this feature is first excluded from the feature set
(𝑥), and predictions are obtained for all possible subsets S of features
that can be formed: 𝑆 ⊆ 𝑥∖ {𝑖}. If we indicate the prediction of a model
with a subset S of features by 𝐹𝑆 , and the prediction of another model
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Table 2
Summary of the selected ANN models for buckling behaviour of CFS elements.

Element type Target Hyperparameter features Performance metrics

No. hidden layers No. neurons Activation function Learning rate Cost function MSE MAPE (%)

Compressive 𝑃𝑐𝑟 2 40 Tan 0.3 MAPE 1.19 (kN)2 2.75
𝐶𝐿,𝑐 , 𝐶𝐷,𝑐 , 𝐶𝐺,𝑐 3 50 Tan 0.3 MAPE 23.77 19.93

Flexural 𝑀𝑐𝑟 2 40 Tan 0.3 MAPE 10.15 (kN m)2 2.98
𝐶𝐿,𝑓 , 𝐶𝐷,𝑓 , 𝐶𝐺,𝑓 3 50 Tan 0.3 MAPE 42.54 28.05

Fig. 15. Performance of the selected ANN model for the prediction of the elastic critical
buckling load (𝑃𝑐𝑟).

Fig. 16. Performance of the selected ANN model for the prediction of the modal
contributions in the critical buckled shape of thin-walled compressive members (𝑐𝐿,𝐶 ,
𝑐𝐷,𝐶 , 𝑐𝐺,𝐶 ).

with the 𝑖𝑡ℎ feature added to this subset as 𝐹𝑆
⋃
{𝑖}, then the marginal

contribution of the 𝑖𝑡ℎ feature can be quantified as: [𝐹𝑆
⋃
{𝑖}

(
𝑥𝑆

⋃
{𝑖}

)
−

𝐹𝑆

(
𝑥𝑆

)
] (where 𝑥𝑆 represents the input features in the subset 𝑆, where

the 𝑖𝑡ℎ feature is absent). The Shapley value is then computed using a
weighted average over all possibilities:

𝜙𝑖 =
∑

𝑆⊆𝑥∖{𝑖}

|𝑆|! (|𝑥| − |𝑆| − 1)!

|𝑥|! [𝐹𝑆
⋃
{𝑖}

(
𝑥𝑆

⋃
{𝑖}

)
− 𝐹𝑆

(
𝑥𝑆

)
] (28)

In the above equation, |𝑆| and |𝑥| represent the number of elements
in the subset 𝑆 and the total number of features, respectively. The
procedure is supported in MATLAB by the ‘shapley’ function.

Fig. 19 shows the mean absolute Shapley values calculated over the
whole data set. It can be seen that the element thickness (𝑡) always has
the highest influence on the buckling behaviour of the CFS members
compared to other input parameters. Other influential input parameters
were the cross-sectional dimensions (ℎ, 𝑏, 𝑐), which had an important
effect on the elastic critical buckling load/moment and the local and
distortional modal contributions, while the length of the element (𝐿)
logically had the second-highest impact on the contributions of the
global modes.

Fig. 17. Performance of the selected ANN model for the prediction of the elastic critical
buckling moment (𝑀𝑐𝑟).

Fig. 18. Performance of the selected ANN model for the prediction of the modal
contributions in the critical buckled shape of thin-walled flexural members (𝑐𝐿,𝐹 , 𝑐𝐷,𝐹 ,
𝑐𝐺,𝐹 ).

6. Summary and conclusions

Machine learning algorithms were developed using Artificial Neu-
ral Networks (ANN) to predict the elastic critical buckling loads and
bending moments of thin-walled structural elements, as well as the con-
tributions of the various ‘pure’ buckling modes in the critical buckled
shape. The selected dataset consisted of 4608 samples of thin-walled
channels, considering various cross-sectional geometries, locations of
intermediate stiffeners and element lengths as the input data. The
output data for training, i.e. the elastic critical buckling loads and
the modal contributions in the buckled shapes, were prepared based
on the results of the Finite Strip Method (FSM) and the Equivalent
Nodal Force Method (ENFM). The study showed that the tuning of
the hyperparameters significantly affects the performance of the ANN
models. However, properly tuned ANN models for the prediction of the
elastic buckling loads and the modal decomposition demonstrated a
high level of accuracy with coefficients of determination of over 0.99
and 0.95, respectively, revealing machine learning as a viable solu-
tion technique for this highly non-linear problem. The slightly lower
accuracy of the ANN models in predicting modal decompositions was
partially attributed to the skewed distribution of the global buckling
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Fig. 19. Importance of the input parameters in the prediction of output values.

mode participations within the dataset, which itself was a consequence
of only considering practical lengths. In addition, it was shown that
the prediction of modal contributions, which is a multi-regression
problem, is more sensitive to the size and quality of the training dataset
compared to single-regression problems. The above stated accuracies
can be expected within the practical ranges of geometric parameters
listed in Table 1.
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