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1 Model description 

HadCM3 model has been used extensively for studies of the Pliocene climate 

within the Pliocene Model Intercomparison Project [1-4]. HadCM3 consists of two 

main components: an atmospheric component (HadAM3) and an oceanic component 

(HadOM3) [5-7]. The horizontal resolution of the atmosphere model is 2.5° in latitude 

by 3.75° in longitude and consists of 19 layers in the vertical. The atmospheric model 

has a time step of 30 min and includes a radiation scheme that can represent the 

effects of major and minor trace gases [8]. The HadOM3 spatial resolution of the 

ocean is horizontal 1.25° by 1.25° and vertical 20 layers. The fact that the HadCM3 

consistently performs well in tests against other coupled atmosphere–ocean models 

[9,10] increases our confidence in its palaeoclimate simulations. 

2 Detail boundary conditions 

As abundant geological data are available and explicit boundary conditions have 

been designed for the middle part of the Piacenzian Stage of the Pliocene (3.264 to 

3.025 Ma), which is also referred to as the mid-Pliocene Warm Period (mPWP), many 

paleoclimate simulations targeting this time slice have been conducted [11-14]. For 

this study, we also focus on the mPWP time slice, for which the required 

mid-Pliocene boundary conditions were supplied by the dataset of U.S. Geological 

Survey Pliocene Research Interpretations and Synoptic Mapping Group’s (PRISM3D) 

dataset [15]. This dataset includes topography and bathymetry, coastlines, land surface 

properties (i.e., vegetation, soil type, and ice sheet coverage) and atmospheric 

composition with respect to pre-industrial conditions. The Greenland Ice Sheet and 

the West Antarctic Ice Sheet, which currently store ~13 m sea-level equivalent ice 

[10,16], are thought to have largely melted during the mid-Pliocene warm period 

[17,18]. The mid-Pliocene atmospheric CO2 concentration was set to 405 ppmv. All 

other trace gases were specified at pre-industrial concentrations [2]. The realistic 

simulation of the modern climate by HadCM3 makes it a good candidate for 

investigating the response of climate to orbital forcing. 

3 Changes of shortwave incoming solar radiation  

 



On an annual mean basis, the shift in obliquity from minimum to maximum 

values slightly decreases the insolation at the equator by about 4 W/m2; however, it 

causes a much larger increase at the poles by 16 W/m2 (Fig. S1a). The zonally 

averaged temperature changes induced by obliquity (Fig. 2b in the manuscript) is 

consistent with the insolation changes. The change in precession from aphelion to 

perihelion results in no change of the zonally averaged annual mean insolation (Fig. 

S1b), which is consistent with the smallest effect of precession changes on 

temperature. For variation in eccentricity, the simulated annual mean shortwave 

incoming solar radiation results demonstrate nearly pervasive increase over the globe 

((~13 W/m2; Fig. S1c), which is consistent with the extensive warming over the 

globe. 

The precipitation responses occur mostly in the tropical regions (Fig. 2gl in the 

manuscript), which is climatically dominated by the ITCZ. Previous studies have 

demonstrated that global temperature change may increase the interhemispheric 

temperature contrast, thus leading to a shift of ITCZ to the warmer hemisphere [19]. 

Although the obliquity has the most effect on temperature, the temperature increases 

significantly both in the northern and southern high latitudes, which essentially does 

not change the interhemispheric temperature contrast. However, for precession 

changes, the temperature decreases at northern high latitudes and increases at the 

southern high latitudes, leading to a large interhemispheric temperature contrast and 

an associated ITCZ shift. Therefore, precession change has the most effect on the 

precipitation at low latitudes. 
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Fig. S1. Zonally averaged annual mean changes of short wave (SW) incoming solar 

radiation at the TOA (W/m2) between (a) EmaxPmaxOmax and EmaxPmaxOmin, (b) 

EmaxPminOmin and EmaxPmaxOmin, and (c) EmaxPmaxOmin and EminPmaxOmin. 

 

 

Table S1 Localities and data used in the reconstruction of the Pliocene paleoclimate  

No. Site Location Proxy data 
Periodicity 

signal 
References 

1 U1338 
2.51N, 

117.97W 
Benthic δ18O Obliquity [20]  

2 ODP 982 
57.5N, 

15.87W 
Benthic δ18O; Alkenone Obliquity [20,21]  

3 ODP 659 
18.08N, 

21.03W 
Benthic δ18O Obliquity [22] 

4 U1313 
41N, 

32.57W 
Plant leaf wax Obliquity [23]  

5 ODP 607 
41N, 

33W 

Mg/Ca in fossil 

ostracodes 
Obliquity [21,24,25]  

6 ODP 609 
50N, 

24W 
Benthic δ18O Obliquity [26]  

7 AND-1B 
77.89S, 

167.09E 

Sedimentation 

succession; Diatom 
Obliquity [18,27,28]  



assemblages 

8 U1208 
36.13N, 

158.2E 
Alkenone; Benthic δ18O Obliquity [29-31]  

9 U911 
80.5N, 

8.2E 
Total organic carbon Obliquity [32]  

10 Wujiamao 
37.25N, 

110.05E 
Magnetic susceptibility Obliquity [33]  

11 U1143 
9.37N, 

113.28E 
Benthic δ18O Obliquity [25]  

12 U846 
3.095S, 

90.82W 
Benthic δ18O Obliquity [34,35]  

13 U849 
0.18N, 

110.52W 
Benthic δ18O, δ13C Obliquity [36]  

14 U610 
53N, 

19W 
Ostracode assemblages Obliquity [37]  

15 Dawson 
64.1N, 

139.2W 
IRD Obliquity [38] 

16 U1448 
10.63N, 

93E 

Benthic and planktic 

foraminiferal δ18O, δ13C 
Obliquity [39]  

17 U552 
56N, 

23W 
Discoaster abundance Obliquity [40]  

18 U798 
37.63N, 

134.8E 
Sedimentation rates Obliquity [41]  

19 El’gygytgyn 
67.5N, 

172.08E 
Rb/Sr ratio Obliquity [42]  

20 Tiburon 
23.29S, 

70.49W 

Sedimentology and 

sequence stratigraphy 
Obliquity [43]  

21 Yabuta 
3713N, 

6.35E 

Molluscs, diatoms, and 

ostracodes 
Obliquity [44]  

22 U1146 
19.45N, 

116.27E 
Benthic δ18O Obliquity [25]  

23 U548 
48.92N, 

12.16W 
Benthic δ18O Obliquity [45]  

24 U1478 
25.82S, 

34.77E 
Leaf waxes δDwax Obliquity [46]  

25 Huatugou 
38.5N, 

91.92E 
Magnetic susceptibility Precession [47]  

26 Orogen 
32N, 

82E 
lacustrine carbonate δ18O Precession [48]  

27 Spertivento 
38N, 

16E 
Organic carbon content Precession [49]  

28 ODP 964 
36.26N, 

17.75E 
Chemical composition Precession [50,51]  

29 ODP 967 34.07N, Chemical composition; Precession [50,52,53]  



32.73E Aeolian dust 

30 ODP 969 
33.84N, 

24.88E 
Chemical composition Precession [50]  

31 Ptolemais 
40.5N, 

21.65E 

Pollen; Sedimentary 

rhythmic alternations 
Precession [54-56]  

32 Punta Piccola 
37.3N, 

13.5E 

Planktonic δ18O; 

Biogenic compositions 
Precession [51,57-60]  

33 
Cape 

Spertivento 

37.95N, 

16E 

Planktonic δ18O; 

Biogenic compositions 
Precession [57,59]  

34 Maar Lake 
41.83N, 

2.8E 
Pollen Precession [61]  

35 Fiumana 
44.15N, 

11.99E 
Paleoproductivity Precession [62]  

36 Omo Group 
3.5N, 

36.5E 

δ18O of pedogenic 

carbonate 
Precession [63]  

37 BTB13 
0.55N, 

35.93E 
Leaf wax δ13Cwax Precession [64]  

38 Monte Singa 
38.5N, 

17E 
Mineralogical content Precession [51]  

39 Vrica 
39N, 

17.45E 
Mineralogical content Precession [51]  

40 ODP 231 
11.89N, 

48.25E 
Biomarker Precession [65]  

41 Capo Rossello 
37.47N, 

13.72E 

Planktonic foraminiferal 

assemblages 
Precession [57,66,67]  

42 ODP 653 
40.18N, 

12.19E 

Planktonic foraminiferal 

assemblages 
Precession [57] 

43 ODP 661 
9.45N, 

19.39W 
Eolian dust Precession [68,69]   

44 ODP 662/663 
1.39S, 

11.74W 
Eolian dust Precession [68,69]  

45 ODP 664 
0.11N, 

23.22W 
Eolian dust Precession [68,69]  

46 ODP 721/722 
16.62N, 

59.8E 
Eolian dust Precession [68,69]  

47 Shilou 
36.92N, 

110.93E 

Al/Na, Rb/Sr, and 

lightness 
Eccentricity [70]  

48 Liulin 
37.35N, 

110.75E 
Magnetic susceptibility Eccentricity [71]  

49 Lupoaia 
45.57N, 

26.92E 
Lithological cycles Eccentricity [72]  

50 Huatugou 
38.3N, 

91.26E 
Evaporite minerals Eccentricity [73]  

51 U594 45.52S, Benthic δ18O, δ13C Eccentricity [74]  



174.95E 

52 U1125 
42.55S, 

178.17W 
Benthic δ18O, δ13C Eccentricity [74]  

53 Changgoucun  
34.3N, 

109.5E 
Grain size 

Precession and 

Eccentricity 
[75]  

54 Lupoaia 
44.8N, 

22.97E 
Pollen 

Precession and 

Eccentricity 
[76]  

55 PL02 
38.92N, 

106.6E 

Pollen; Magnetic 

susceptibility; Mean 

grains size 

Precession and 

Obliquity 
[77]  

56 Dongwan 
34.97N, 

105.78E 
Snail 

Precession and 

Obliquity 
[78] 

57 U1359 
64.9S, 

143.96E 
Mass accumulation rate 

Precession and 

Obliquity 
[79]  

58 
Makapansgat 

Valley 

24.13S, 

29.18E 

Stable δ18O and δ13C of 

speleothems 

Precession and 

Obliquity 
[80]  

59 U659 
18.08N, 

21.03W 
Benthic δ18O; Dust flux 

Precession and 

Obliquity 
[22,68,69]  

60 U925 
4.2N, 

43.48W 
Magnetic susceptibility 

Precession and 

Obliquity 
[81]  

61 U926 
3.7N, 

42.9W 
Magnetic susceptibility 

Precession and 

Obliquity 
[81]  

62 U927 
5.5N, 

44.5W 
Magnetic susceptibility 

Precession and 

Obliquity 
[81]  

63 U928 
5.5N, 

44.8W 
Magnetic susceptibility 

Precession and 

Obliquity 
[81]  

64 U929 
5.98N, 

43.74W 
Magnetic susceptibility 

Precession and 

Obliquity 
[81]  

65 U806 
0.319N, 

159.36E 

Foraminiferal Mg/Ca and 

planktonic δ18O 

Precession and 

Obliquity 
[82,83]  

66 VA 
40.62N, 

0.98W 
Magnetic parameters 

Precession and 

Obliquity 
[84]  

67 Wanganui 
39.93S, 

175.05E 

Benthic δ18O; Relative 

sea-level 

Precession and 

Obliquity 
[85-87]  

68 SG-1B 
38.35N, 

92.27E 
Rb/Sr ratio; Grain size 

Precession and 

Obliquity 
[88]  

69 XK-1 
16.35N, 

120.35E 

Biogenic reef and 

carbonate deposition 

Precession, 

Eccentricity, 

and Obliquity 

[89] 

70 Lingtai 
35.07N, 

107.65E 

Grain size; Magnetic 

susceptibility 

Precession, 

Eccentricity, 

and Obliquity 

[90]  

71 Zhaojiachun 
35.75N, 

107.82E 

Grain size; Magnetic 

susceptibility 

Precession, 

Eccentricity, 
[90]  



and Obliquity 

72 Bojizhuang 
34.53N, 

107.11E 

Grain size; Magnetic 

susceptibility; Carbonate 

content 

Precession, 

Eccentricity, 

and Obliquity 

[91]  

73 Xiaoshuizi 
35.81N, 

103.86E 

Grain size; Magnetic 

susceptibility; Carbonate 

content 

Precession, 

Eccentricity, 

and Obliquity 

[92]  

74 U1361 
64.41S, 

143.89E 

Iceberg-rafted debris 

mass accumulation rates 

Precession, 

Eccentricity, 

and Obliquity 

[93]  

75 Xifeng 
42.73N, 

124.72E 

Grain size; Magnetic 

susceptibility 

Precession, 

Eccentricity, 

and Obliquity 

[94]  

76 642B 
67.22N, 

2.93E 
Pollen 

Precession, 

Eccentricity, 

and Obliquity 

[95] 
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