[bookmark: _Hlk113112901]1 Model description
HadCM3 model has been used extensively for studies of the Pliocene climate within the Pliocene Model Intercomparison Project [1-4]. HadCM3 consists of two main components: an atmospheric component (HadAM3) and an oceanic component (HadOM3) [5-7]. The horizontal resolution of the atmosphere model is 2.5° in latitude by 3.75° in longitude and consists of 19 layers in the vertical. The atmospheric model has a time step of 30 min and includes a radiation scheme that can represent the effects of major and minor trace gases [8]. The HadOM3 spatial resolution of the ocean is horizontal 1.25° by 1.25° and vertical 20 layers. The fact that the HadCM3 consistently performs well in tests against other coupled atmosphere–ocean models [9,10] increases our confidence in its palaeoclimate simulations.
2 Detail boundary conditions
As abundant geological data are available and explicit boundary conditions have been designed for the middle part of the Piacenzian Stage of the Pliocene (3.264 to 3.025 Ma), which is also referred to as the mid-Pliocene Warm Period (mPWP), many paleoclimate simulations targeting this time slice have been conducted [11-14]. For this study, we also focus on the mPWP time slice, for which the required mid-Pliocene boundary conditions were supplied by the dataset of U.S. Geological Survey Pliocene Research Interpretations and Synoptic Mapping Group’s (PRISM3D) dataset [15]. This dataset includes topography and bathymetry, coastlines, land surface properties (i.e., vegetation, soil type, and ice sheet coverage) and atmospheric composition with respect to pre-industrial conditions. The Greenland Ice Sheet and the West Antarctic Ice Sheet, which currently store ~13 m sea-level equivalent ice [10,16], are thought to have largely melted during the mid-Pliocene warm period [17,18]. The mid-Pliocene atmospheric CO2 concentration was set to 405 ppmv. All other trace gases were specified at pre-industrial concentrations [2]. The realistic simulation of the modern climate by HadCM3 makes it a good candidate for investigating the response of climate to orbital forcing.
[bookmark: _Hlk115982410]3 Changes of shortwave incoming solar radiation 

On an annual mean basis, the shift in obliquity from minimum to maximum values slightly decreases the insolation at the equator by about 4 W/m2; however, it causes a much larger increase at the poles by 16 W/m2 (Fig. S1a). The zonally averaged temperature changes induced by obliquity (Fig. 2b in the manuscript) is consistent with the insolation changes. The change in precession from aphelion to perihelion results in no change of the zonally averaged annual mean insolation (Fig. S1b), which is consistent with the smallest effect of precession changes on temperature. For variation in eccentricity, the simulated annual mean shortwave incoming solar radiation results demonstrate nearly pervasive increase over the globe ((~13 W/m2; Fig. S1c), which is consistent with the extensive warming over the globe.
The precipitation responses occur mostly in the tropical regions (Fig. 2gl in the manuscript), which is climatically dominated by the ITCZ. Previous studies have demonstrated that global temperature change may increase the interhemispheric temperature contrast, thus leading to a shift of ITCZ to the warmer hemisphere [19]. Although the obliquity has the most effect on temperature, the temperature increases significantly both in the northern and southern high latitudes, which essentially does not change the interhemispheric temperature contrast. However, for precession changes, the temperature decreases at northern high latitudes and increases at the southern high latitudes, leading to a large interhemispheric temperature contrast and an associated ITCZ shift. Therefore, precession change has the most effect on the precipitation at low latitudes.



Fig. S1. Zonally averaged annual mean changes of short wave (SW) incoming solar radiation at the TOA (W/m2) between (a) EmaxPmaxOmax and EmaxPmaxOmin, (b) EmaxPminOmin and EmaxPmaxOmin, and (c) EmaxPmaxOmin and EminPmaxOmin.


Table S1 Localities and data used in the reconstruction of the Pliocene paleoclimate 
	No.
	Site
	Location
	Proxy data
	Periodicity signal
	References

	1
	U1338
	2.51N, 117.97W
	Benthic δ18O
	Obliquity
	[20] 

	2
	ODP 982
	57.5N, 15.87W
	Benthic δ18O; Alkenone
	Obliquity
	[20,21] 

	3
	ODP 659
	18.08N, 21.03W
	Benthic δ18O
	Obliquity
	[22]

	4
	U1313
	41N, 32.57W
	Plant leaf wax
	Obliquity
	[23] 

	5
	ODP 607
	41N, 33W
	Mg/Ca in fossil ostracodes
	Obliquity
	[21,24,25] 

	6
	ODP 609
	50N, 24W
	Benthic δ18O
	Obliquity
	[26] 

	7
	AND-1B
	77.89S, 167.09E
	Sedimentation succession; Diatom assemblages
	Obliquity
	[18,27,28] 

	8
	U1208
	36.13N, 158.2E
	Alkenone; Benthic δ18O
	Obliquity
	[29-31] 

	9
	U911
	80.5N, 8.2E
	Total organic carbon
	Obliquity
	[32] 

	10
	Wujiamao
	37.25N, 110.05E
	Magnetic susceptibility
	Obliquity
	[33] 

	11
	U1143
	9.37N, 113.28E
	Benthic δ18O
	Obliquity
	[25] 

	12
	U846
	3.095S, 90.82W
	Benthic δ18O
	Obliquity
	[34,35] 

	13
	U849
	0.18N, 110.52W
	Benthic δ18O, δ13C
	Obliquity
	[36] 

	14
	U610
	53N, 19W
	Ostracode assemblages
	Obliquity
	[37] 

	15
	Dawson
	64.1N, 139.2W
	IRD
	Obliquity
	[38]

	16
	U1448
	10.63N, 93E
	Benthic and planktic foraminiferal δ18O, δ13C
	Obliquity
	[39] 

	17
	U552
	56N, 23W
	Discoaster abundance
	Obliquity
	[40] 

	18
	U798
	37.63N, 134.8E
	Sedimentation rates
	Obliquity
	[41] 

	19
	El’gygytgyn
	67.5N, 172.08E
	Rb/Sr ratio
	Obliquity
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	20
	Tiburon
	23.29S, 70.49W
	Sedimentology and sequence stratigraphy
	Obliquity
	[43] 

	21
	Yabuta
	3713N, 6.35E
	Molluscs, diatoms, and ostracodes
	Obliquity
	[44] 

	22
	U1146
	19.45N, 116.27E
	Benthic δ18O
	Obliquity
	[25] 

	23
	U548
	48.92N, 12.16W
	Benthic δ18O
	Obliquity
	[45] 

	24
	U1478
	25.82S, 34.77E
	Leaf waxes δDwax
	Obliquity
	[46] 

	25
	Huatugou
	38.5N, 91.92E
	Magnetic susceptibility
	Precession
	[47] 

	26
	Orogen
	32N, 82E
	lacustrine carbonate δ18O
	Precession
	[48] 

	27
	Spertivento
	38N, 16E
	[bookmark: _Hlk110235209]Organic carbon content
	Precession
	[49] 

	28
	ODP 964
	36.26N, 17.75E
	Chemical composition
	Precession
	[50,51] 

	29
	ODP 967
	34.07N, 32.73E
	Chemical composition; Aeolian dust
	Precession
	[50,52,53] 

	30
	ODP 969
	33.84N, 24.88E
	Chemical composition
	Precession
	[50] 

	31
	Ptolemais
	40.5N, 21.65E
	Pollen; Sedimentary rhythmic alternations
	Precession
	[54-56] 

	32
	Punta Piccola
	37.3N, 13.5E
	[bookmark: _Hlk110235266]Planktonic δ18O; Biogenic compositions
	Precession
	[51,57-60] 

	33
	Cape Spertivento
	37.95N, 16E
	Planktonic δ18O; Biogenic compositions
	Precession
	[57,59] 

	34
	Maar Lake
	41.83N, 2.8E
	Pollen
	Precession
	[61] 

	35
	Fiumana
	44.15N, 11.99E
	Paleoproductivity
	Precession
	[62] 

	36
	Omo Group
	3.5N, 36.5E
	δ18O of pedogenic carbonate
	Precession
	[63] 

	37
	BTB13
	0.55N, 35.93E
	Leaf wax δ13Cwax
	Precession
	[64] 

	38
	Monte Singa
	38.5N, 17E
	Mineralogical content
	Precession
	[51] 

	39
	Vrica
	39N, 17.45E
	Mineralogical content
	Precession
	[51] 

	40
	ODP 231
	11.89N, 48.25E
	Biomarker
	Precession
	[65] 

	41
	Capo Rossello
	37.47N, 13.72E
	Planktonic foraminiferal assemblages
	Precession
	[57,66,67] 

	42
	ODP 653
	40.18N, 12.19E
	Planktonic foraminiferal assemblages
	Precession
	[57]

	43
	ODP 661
	9.45N, 19.39W
	Eolian dust
	Precession
	[68,69]  

	44
	ODP 662/663
	1.39S, 11.74W
	Eolian dust
	Precession
	[68,69] 

	45
	ODP 664
	0.11N, 23.22W
	Eolian dust
	Precession
	[68,69] 

	46
	ODP 721/722
	16.62N, 59.8E
	Eolian dust
	Precession
	[68,69] 

	47
	Shilou
	36.92N, 110.93E
	Al/Na, Rb/Sr, and lightness
	Eccentricity
	[70] 

	48
	Liulin
	37.35N, 110.75E
	Magnetic susceptibility
	Eccentricity
	[71] 

	49
	Lupoaia
	45.57N, 26.92E
	Lithological cycles
	Eccentricity
	[72] 

	50
	Huatugou
	38.3N, 91.26E
	Evaporite minerals
	Eccentricity
	[73] 

	51
	U594
	45.52S, 174.95E
	Benthic δ18O, δ13C
	Eccentricity
	[74] 

	52
	U1125
	42.55S, 178.17W
	Benthic δ18O, δ13C
	Eccentricity
	[74] 

	53
	Changgoucun 
	34.3N, 109.5E
	Grain size
	Precession and Eccentricity
	[75] 

	54
	Lupoaia
	44.8N, 22.97E
	Pollen
	Precession and Eccentricity
	[76] 

	55
	PL02
	38.92N, 106.6E
	Pollen; Magnetic susceptibility; Mean grains size
	Precession and Obliquity
	[77] 

	56
	Dongwan
	34.97N, 105.78E
	Snail
	Precession and Obliquity
	[78]

	57
	U1359
	64.9S, 143.96E
	Mass accumulation rate
	Precession and Obliquity
	[79] 

	58
	Makapansgat Valley
	24.13S, 29.18E
	Stable δ18O and δ13C of speleothems
	Precession and Obliquity
	[80] 

	59
	U659
	18.08N, 21.03W
	Benthic δ18O; Dust flux
	Precession and Obliquity
	[22,68,69] 

	60
	U925
	4.2N, 43.48W
	Magnetic susceptibility
	Precession and Obliquity
	[81] 

	61
	U926
	3.7N, 42.9W
	Magnetic susceptibility
	Precession and Obliquity
	[81] 

	62
	U927
	5.5N, 44.5W
	Magnetic susceptibility
	Precession and Obliquity
	[81] 

	63
	U928
	5.5N, 44.8W
	Magnetic susceptibility
	Precession and Obliquity
	[81] 

	64
	U929
	5.98N, 43.74W
	Magnetic susceptibility
	Precession and Obliquity
	[81] 

	65
	U806
	0.319N, 159.36E
	Foraminiferal Mg/Ca and planktonic δ18O
	Precession and Obliquity
	[82,83] 

	66
	VA
	40.62N, 0.98W
	Magnetic parameters
	Precession and Obliquity
	[84] 

	67
	Wanganui
	39.93S, 175.05E
	Benthic δ18O; Relative sea-level
	Precession and Obliquity
	[85-87] 

	68
	SG-1B
	38.35N, 92.27E
	Rb/Sr ratio; Grain size
	Precession and Obliquity
	[88] 

	69
	XK-1
	16.35N, 120.35E
	Biogenic reef and carbonate deposition
	Precession, Eccentricity, and Obliquity
	[89]

	70
	Lingtai
	35.07N, 107.65E
	Grain size; Magnetic susceptibility
	Precession, Eccentricity, and Obliquity
	[90] 

	71
	Zhaojiachun
	35.75N, 107.82E
	Grain size; Magnetic susceptibility
	Precession, Eccentricity, and Obliquity
	[90] 

	72
	Bojizhuang
	34.53N, 107.11E
	Grain size; Magnetic susceptibility; Carbonate content
	Precession, Eccentricity, and Obliquity
	[91] 

	73
	Xiaoshuizi
	35.81N, 103.86E
	Grain size; Magnetic susceptibility; Carbonate content
	Precession, Eccentricity, and Obliquity
	[92] 

	74
	U1361
	64.41S, 143.89E
	Iceberg-rafted debris mass accumulation rates
	Precession, Eccentricity, and Obliquity
	[93] 

	75
	Xifeng
	42.73N, 124.72E
	Grain size; Magnetic susceptibility
	Precession, Eccentricity, and Obliquity
	[94] 

	76
	642B
	67.22N, 2.93E
	Pollen
	Precession, Eccentricity, and Obliquity
	[95]
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