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ABSTRACT 

Background: Using four case studies, we aim to provide practical guidance and 

recommendations for the analysis of cluster randomised controlled trials. 

Methods: Four modelling approaches (Generalized Linear Mixed Models with 

parameters/coefficients estimated by Maximum likelihood; Generalized Linear Models with 

parameters/coefficients estimated by Generalized Estimating Equations (1st order or second 

order) or Quadratic Inference Function) for the analysis of correlated individual participant 

level outcomes in cluster randomised controlled trials were identified after we reviewed the 

literature. These four methods are applied to four case studies of cluster randomised controlled 

trials with the number of clusters ranging from 10 to 100 and individual participants ranging 

from 748 to 9,207. Results are obtained for both continuous and binary outcomes using the 

statistical packages, R and SAS. 

Results: The intracluster correlation coefficient (ICC) for each of the case studies was small 

(<0.05) indicating little dependence of the outcomes related to cluster allocation. In most cases 

the four methods produced similar results. However, in a few analyses quadratic inference 

function produced different results compared to the other three methods. 

Conclusion: This paper demonstrates the analysis of cluster randomised controlled trials with 

four modelling approaches. The results obtained were similar in most cases, a plausible reason 

could be the negligible correlation (small ICCs) observed among responses in the four case 

studies. 

Due to the small ICC values obtained the generalisability of our results is limited. It is important 

to conduct simulation studies to comprehensively investigate the performance of the four 

modelling approaches. 

Keywords: Cluster Randomised controlled trial, Statistical models, SAS, Intracluster 

correlation coefficient, Statistical methods 
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BACKGROUND 

Randomisation is used in clinical trials to achieve balance between the treatment arms in 

chance variations caused by both known and unknown prognostic factors. If done properly, it 

may minimise the effect of the prognostic factors so that researchers can controllably study the 

effect of the intervention(s) of interest. Instead of randomising individuals to the treatment arms 

as often done in individually randomised controlled trials (IRCTs), groups/clusters of 

individuals are randomised in cluster randomised controlled trials (CRCTs).  

In CRCTs there are two levels; the distinctive cluster level and the individual level (with 

correlated outcomes) that are nested within the clusters. An appropriate statistical method for 

analysing CRCTs will be any method that considers this hierarchical nature of the CRCT 

design. Ignoring the correlated outcomes within a cluster and using standard statistical methods 

that treat the outcomes as being independent, might lead to underestimating the standard errors 

of the true parameters and consequently obtaining narrower confidence intervals, false small 

p-values and incorrectly over stating the effect of the intervention. 

Some of the common issues in CRCT design and analysis are (a) Ignoring clustering(1), (b) 

inadequate handling of missing data(2), (c) and poor reporting of results (1,3). Newer analytical 

methods for handling clustering have been proposed in the literature of other study designs 

with clustered data, such as longitudinal study design. Notable ones are targeted maximum 

likelihood estimation (TMLE), quadratic inference function (QIF) and alternating logistic 

regression (ALR). It is worth noting that these recent alternatives have not been 

comprehensively compared to the existing methods used in CRCTs and might account for their 

slow uptake. This study aims to contribute to the literature (in the context of CRCTs) on the 

performance of one of the newer methods compared to the existing methods with the aim of 

promoting its use in CRCTs (if necessary).  

This paper reviews and describes the selected statistical methods for analysing both continuous 

and binary outcomes in CRCTs. We focus on statistical methods for analysing individual 

participant level outcomes which are correlated within a cluster. The paper explores the 

performance of all the models given the settings of our case studies. The objectives of this 

study are to demonstrate the practical application of these selected modelling approaches for 

analysing CRCTs, to contrast and discuss their methodological differences and to make general 

comments based on our findings.  
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METHODS 

Literature Search 

We conducted a review of the literature using a systematic searching approach from 1st January 

2003 to 19th December 2020. This was a year prior to the publication of the CONSORT 

statement 2004 extension for cluster randomised controlled trials(4). A standardised pre-

piloted data collection tool was used to extract information on the study and methodological 

characteristics from the included articles. We used search terms developed with the inputs of 

an information specialist (see, Additional file 1). We searched the online bibliography 

databases of MEDLINE, EMBASE, PsycINFO (via OVID); and CINAHL (via EBSCO) and 

SCOPUS. In addition to searching published literature databases, OpenGrey, web-of-science 

and Scopus databases for conference proceedings were also searched to identify difficult-to-

locate (grey) literature. One reviewer, BO, carried out the search and extraction of the relevant 

information; two other independent reviewers, SW and RJ, supervised and validated the 

process. We discussed extensively to reach a consensus on issues presenting during the review 

process. 

Literature search results 

The literature search identified 1573 articles and after duplicates were removed 1073 articles 

were remaining. After screening the title and abstract of each of the identified articles 104 were 

shortlisted and 64 (these include 12 articles from citation tracking) were finally included in the 

list of relevant articles to review while 64 others were excluded for other reasons (Figure 1). 

These articles are methodological and application papers and are referenced throughout.  

The study selection process is presented in Figure 1. Among the included 64 papers; 49/64 

(77%) compared already existing methods (of which 31% (13/49) compared different models 

with their parameters estimated using a single method), 14% of the papers proposed new 

statistical estimators and 9% refined already existing ones. There is no clear pattern in the 

development, advancement, or comparison of statistical methods for analysing CRCTs in the 

last two decades approximately (see, Additional file 2).  
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Figure 1 Flow chart of the search and selection process of the included articles in the review  

 

The number of the times each method was studied in the 64 articles and their references are 

summarised in Table S1 (See, Additional file 3). This review identified 34 unique statistical 

methods for analysing CRCTs and the methods were studied 134 times in total. Regression 

models with parameters estimated by GEE1 was the most studied (30/134, 22%) followed by 

MLE (19%). Among the newer methods QIF was the most studied (6%). 

Four statistical regression models for the analysis of correlated individual participant level 

outcomes in cluster randomised controlled trials were selected based on the findings of the 

literature review. They are: 

1. Generalized Linear Mixed Models (GLMM) with parameters/coefficients estimated by 

Maximum likelihood (MLE).  

2. Marginal Generalized Linear Models (mGLM) with parameters/coefficients estimated by 

1st order Generalized Estimating Equations (mGLM-GEE1). 

3. Marginal Generalized Linear Models (mGLM) with parameters/coefficients estimated by 

2nd order Generalized Estimating Equations (mGLM-GEE2). 
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4. Marginal Generalized Linear Models (mGLM) with parameters/coefficients estimated by 

Quadratic Inference Function (mGLM-QIF). 

Specifically, GLMM-MLE and mGLM-GEE1 were selected based on the results of the 

literature search, which indicated that they are the two most studied regression methods while 

mGLM-GEE2 and mGLM-QIF were selected based on findings that suggested that they are 

the two most promising improvements on the mGLM-GEE1(5–8). The methodological 

properties of the four selected regression models are compared in Table 1. 

While GEE2 and QIF estimation methods are not commonly used for analysing CRCTs, QIF 

has been extensively studied and applied in the context of longitudinal studies where outcomes 

measured repeatedly over time from a particular individual are likely to be correlated/clustered. 

It is worth investigating the capabilities of the QIF in relation to other estimation methods like 

MLE, GEE1 and GEE2 in the context of CRCTs. This has recently attracted the attention of 

researchers, but these studies majorly focused on comparing GEE1 and QIF (9–14). Our study 

aims to contribute to this debate in the literature using evidence from real world example data 

from four CRCTs. 

The choice of a statistical modelling approach for analysing a CRCT is often motivated by the 

scientific question the study is investigating, the type of data of the primary outcome and the 

assumptions being made. The generalized linear mixed model (GLMM) and the marginal 

generalized linear model (mGLM) are the two most common regression models when the 

research interest is about the effect of the intervention on the individual participants and/or 

across sub populations. The maximum likelihood estimator (MLE) is often used to estimate the 

parameters of GLMM while the generalized estimating equation (GEE) is used for that of 

mGLM. An alternative to the MLE is restricted maximum likelihood (REML)(15).  

The first order GEE denoted as GEE1 considers the correlation among the outcomes in a cluster 

as a nuisance and only adjusts for its effect but does not estimate it. A “working” covariance 

matrix which is solved separately from the mean model is used to achieve this. The GEE1 

estimator is consistent even when the working correlation structure is wrongly specified but 

may suffer some loss in efficiency.  

Statistical efficiency is a desirable property of a good estimator after unbiasedness has been 

established. Among all unbiased competing estimators an efficient estimator is the one that 

produces the smallest standard error estimate, which is indicative of a lesser variability and a 
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higher degree of precision. The MLE as a parametric method does not suffer this problem. 

However, the MLE makes a strong Normality assumption about the unobserved cluster-level 

random effect. If this assumption does not hold in practice, MLE is likely to produce invalid 

results. This makes the other two semi-parametric methods (GEE2 and QIF) natural 

alternatives to the MLE and GEE1, most especially when the population averaged intervention 

effect is of interest. 



7 

 

Table 1 Similarities and differences in the methodological properties of the four selected statistical models for analysing CRCTs 

 

S/NO Feature GLMM-MLE mGLM-GEE1 mGLM-GEE2 mGLM-QIF 

1 

Ad-hoc adjustment for 

clustering 

Adjustment for clustering is done 

within the estimating algorithm of the 

regression parameters hence it affects 

the parameter estimates Same as GLMM-MLE Same as GLMM-MLE Same as GLMM-MLE 

2 Covariate adjustment 

Allows for both cluster and individual 

level covariates to be adjusted for via 

a link function Same as GLMM-MLE Same as GLMM-MLE Same as GLMM-MLE 

3 Adjustment for clustering 

Clustering is accounted for via a 

random effects variable(s), which is 
incorporated into a univariate mean 

model equation.  

Achieved using a working covariance matrix 
(characterised by the correlation parameter) and it is 

specified separately from the mean model. Same as mGLM-GEE1 

Avoids the direct use of the correlation 

parameter in its algorithm instead uses linear 
combination of the product of basis matrices 

and some constants. 

4 

Assumption on the 

distribution of the cluster-

level random effects 

As a full likelihood method, it 

assumes that the cluster-level random 

effects variable follows a parametric 

Normal distribution. 

As a semi-parametric method, it makes no 

assumption about the distribution of the cluster-level 

random effects variable. Same as mGLM-GEE1 Same as mGLM-GEE1 

5 

Multiple forms of 

clustering 

Allows multiple forms of correlation 

to be investigated by incorporating 

them as random effects in the mean 

model. 

Allows multiple forms of correlation but through a 

complex procedure of including higher forms of 

clustering as fixed effects in the mean model. Same as mGLM-GEE1 Same as mGLM-GEE1 

6 

Assumption of missing 

data mechanism required 

to obtain consistent 

parameter estimates 

Missing completely at random and 

missing at random. Missing completely at random  Same as mGLM-GEE1 Same as mGLM-GEE1 

7 Heterogenous correlation  

Can fit models that assume different 

correlation structures across the 

treatment arms/clusters.  

Cannot fit models that assume different correlation 

structures across the treatment arms/clusters. Same as GLMM-MLE Same as GLMM-GEE1 

8 

Improvement on 

efficiency 

Gain in efficiency compared to GLM 

by including random effects 

component in the mean model to 

account for correlation among 

outcomes from a cluster.  

Gain in efficiency compared to GLM by using a 

"working covariance matrix" which accounts for the 

effect of correlation among outcomes from a cluster 

and treat it as a nuisance/noise. 

Gain in efficiency compared to 

mGLM-GEE1 by adjusting and 

estimating the nuisance effect of the 

correlation among outcomes from a 

cluster. 

Compared to mGLM-GEE1, this method 

weights the information contributed by each 

cluster using an empirical weighting matrix, 

clusters with large variation/variance are 

given less weights and vice versa. 

9 Moment specification Not applicable 

First and second order moments need to be 

specified. 

First four order moments1, but the 

third and fourth can be specified as 
a function of the first two moments 

since a working correlation is being 

used.  Same as mGLM-GEE1 

10 Approximation technique 

Laplace/Adaptive Gauss-Hermite 

Quadrature2 Modified Fisher scoring algorithm 

Alternate between Modified Fisher 

scoring algorithm and method of 

moment. Newton-Raphson algorithm 

11 Goodness of fit  

All the model selection criteria that 

are based on maximum likelihood 

theory are applicable, such as the 

LRT, AIC and the BIC. 

Uses a modification to the AIC based on quasi-

likelihood theory known as QIC (and QICu3) for 

model and working correlation selections. Same as mGLM-GEE1 

Provides an objective function (which is 

analogue to likelihood ratio test) that follows 

a chi-square distribution. 

12 

Availability in selected 

statistical software, 

function(package) 

R = glmer(lme4) and SAS 

=glimmix(proc) R = glmgee(geepack) and SAS = genmod(proc). R = geese(geepack) only R = qif(qif) and SAS = qif(macro) 
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GLMM: Generalized linear mixed model; mGLM: marginal generalized linear model; GEE: Generalized estimating equations; QIF: Quadratic 

inference function; LRT = likelihood ratio test; AIC = Akaike information criteria; BIC = Bayesian information criteria; QIC = Quasi-

likelihood independence criterion. 
 

1. The first four order moments of the outcome of interest are the mean, variance, skewness and kurtosis. 

2. Adaptive Gauss-Hermite Quadrature equals the Laplace approximation when the quadrature point/node is 1.  Other techniques do exist. 

3. QICu is a variant of QIC (16). 

Notation 

A boldface letter denotes either a vector or a matrix or as otherwise specified. The general 

notation is established as; let 𝑦𝑖𝑗 denote an outcome variable for the 𝑗th subject in the 𝑖th cluster 

(𝑖 = 1,… ,𝑁;  𝑗 = 1,… , 𝑛𝑖); N is the number of the independent clusters in the study and 𝑛𝑖 
denotes the different number of subjects in each cluster (i.e., the 𝑖th cluster size), 𝑦𝑖𝑗  has a 

corresponding set of 𝑝-dimensional vector covariates 𝑿𝑝𝑖𝑗𝑇 = (1, 𝑥1𝑖𝑗, ⋯ , 𝑥(𝑝−1)𝑖𝑗) where 𝑥1𝑖𝑗 
denotes an indicator variable for the treatment arms which a cluster belongs to ( 𝑥1𝑖𝑗 = 0 

indicates the control group and 𝑥1𝑖𝑗 = 1 the intervention group) and  𝒀𝑖 = (𝑦𝑖1, ⋯ , 𝑦𝑖𝑛𝑖)𝑇 𝑖𝑠 a 𝑛𝑖 × 1 vector of the collection of the individual level outcomes for the 𝑖th cluster. Also, 𝜷𝑝 = (𝛽0, 𝛽1,⋯ , 𝛽𝑝−1) is an unknown 𝑝-dimensional vector of regression parameters and 𝝁𝑖 = (𝜇𝑖1, ⋯ , 𝜇𝑖𝑛𝑖)𝑇 is an 𝑛𝑖 × 1 vector of true means with 𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗 |𝑿𝑝𝑖𝑗𝑇 ) being the conditional 

expectation for the 𝑗th subject in the 𝑖th cluster with covariates 𝑿𝑝𝑖𝑗𝑇 . 

Cluster-Level Approach (CLA) 

This approach is also known as cluster-level analysis, it is akin to solving a problem by 

avoiding it. In this approach clustering is handled by reverting the originally correlated data in 

each group/cluster to independent data (where outcomes from subjects in the group are no 

longer correlated) by simply collapsing the outcomes in a cluster to a univariate data point. The 

first step is to obtain a summary measure, such as the mean outcome for all the subjects or the 

proportion of the event of interest for each cluster. The second step is to apply standard 

statistical methods that assume independence among outcomes in a cluster, such as the t-test 

or linear regression with the summary measure for each cluster as the response value. If 𝑦𝑖 is 

a continuous summary measure for the 𝑖th cluster, the cluster-level mean model is specified as 𝑦𝑖 = 𝛽0+𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜀𝑖,     𝑖 = 1,… ,𝑁; 𝑘 = 1,… , 𝑝 − 1;  𝜀𝑖~𝑁(0, 𝜎𝜀2)  

(1) 
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𝛽0 is the mean outcome for the control group; 𝛽1 is the difference in mean outcomes between 

the intervention and the control group known as the intervention effect, 𝑥1𝑖𝑗 is the treatment 

arm indicator variable, 𝑥𝑘𝑖𝑗 is a vector of other fixed cluster-level covariates with 

coefficients 𝛽𝑘 and 𝜀𝑖 is the independent Normally distributed cluster-level residuals. 

This approach is not popularly recommended for analysing CRCTs for some obvious reasons; 

it leads to loss of information contained in the original data and consequently a reduced sample 

size. This approach mainly allows only cluster level covariates to be adjusted for. In medical 

research such as clinical trials it is ideal/conventional to account for the effect of known 

prognostic factors, like age and smoking status of the individual participants. Another major 

reason for not recommending this approach is that it does not reflect the true study design of a 

CRCT. Since this current paper is aimed at illustrating the application of statistical methods 

that appropriately account for clustering, we do not carry this method further in this study. For 

examples of implementing this modelling approach see Campbell & Walters(17) and Walters 

et al., (18). 

Individual-Level Approach (ILA) 

Here, outcomes from all the participating subjects in the trial are used as response values. The 

problems posed by using an aggregate value for each cluster as done in CLA are circumvented. 

This approach is further categorised according to how the regression model adjusts for 

clustering of the response values of subjects in a cluster. The different regression models and 

statistical methods used for estimating the regression coefficients in the models are explained 

in the subsequent subsections. 

Conditional/subject-specific model 

The models classed under this category adjust for clustering by using the outcome for each 

individual subjects and conditionally relate it to a fixed effects component and a random effects 

component of the model. The parameter estimates of the fixed effects and the random effects 

components of the model are obtained simultaneously, and inferences are made regarding the 

individual subjects in the trial. The generalized linear mixed model (GLMM) is a common 

example under this approach. 
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GLMM with coefficients estimated by MLE (GLMM-MLE) 

The generalized linear mixed model is also called a random (or mixed) effects model and is the 

most used conditional/subject-specific model for analysing CRCTs (1,2). In a GLMM, a 

univariate equation is specified to assess the fixed effects of some covariates of interest and the 

random effects of the randomly selected clusters on the outcome(s) of interest in the study. The 

parameters of the two components of the GLMM are estimated simultaneously using MLE. An 

alternative likelihood-based estimation method like the restricted maximum likelihood 

estimation (REML) can be utilised. A major drawback of the GLMM-MLE method is that a 

strong Normality assumption is made about the unobserved random effects component. It is 

likely that this assumption may not hold in practice which might result in invalid inferences. 

Let 𝑦𝑖𝑗 denote a continuous outcome from a 𝑗th individual in an 𝑖th cluster, a GLMM model is 

thus specified as  𝑦𝑖𝑗 = 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖 + 𝜀𝑖𝑗 ,    𝑖 = 1,… ,𝑁;  𝑗 = 1,… , 𝑛𝑖;  𝑘 = 1,… , 𝑝 − 1                   
(2)   𝜏𝑖~𝑁(0, 𝜎𝑎2); 𝜀𝑖𝑗~𝑁(0, 𝜎𝜀2) 

where 𝛽0, 𝛽1 and 𝑥1𝑖𝑗 is as defined in equation 

(1); 𝑥𝑘𝑖𝑗 is a 𝑝 × 1 vector of individual-level and/or cluster-level fixed effects covariates with 

coefficients 𝛽𝑘, 𝑛𝑖 is the 𝑖th cluster size, 𝑁 is the total number of the independent clusters, 𝜏𝑖 is 

the random effects term for the 𝑖th cluster which causes each cluster mean to vary and 𝜀𝑖𝑗 is the 

random error or residual for each individual. The model specified in equation                   
(2) is a linear mixed model for a Normally distributed outcome, when 𝑦𝑖𝑗 is a non-Gaussian 

outcome such as a binary or count outcome, equation                   
(2) can be generalized. This explains the “generalized” in GLMM and is given as follows 𝜂 (𝐸(𝑦𝑖𝑗)) = 𝜂(𝜇𝑖𝑗) = 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖      

(3) 

where 𝑦𝑖𝑗 is a non-Gaussian outcome, 𝜂(. ) is a link function that linearly relates the response 

values to the fixed effects component and the random effects component of the model. 𝛽0, 𝛽1, 𝑥1𝑖𝑗 , 𝛽𝑘, 𝑥𝑘𝑖𝑗 and 𝜏𝑖 are the same as defined in equation𝑦𝑖𝑗= 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖 + 𝜀𝑖𝑗 ,    𝑖 =1, … , 𝑁;  𝑗 = 1,… , 𝑛𝑖;  𝑘 = 1, … , 𝑝 − 1                   
(2). For example, if 𝑦𝑖𝑗~𝐵𝑖(1, 𝜇𝑖𝑗) then equation                    

(2) is specified using a logit link function as 
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𝑙𝑜𝑔𝑖𝑡 (𝜇𝑖𝑗) = 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖     
(4) 

where 𝜇𝑖𝑗 is the probability of 𝑦𝑖𝑗 = 1 and 𝑙𝑜𝑔𝑖𝑡 (𝜇𝑖𝑗) = 𝜇𝑖𝑗(1 − 𝜇𝑖𝑗), all other parameters of 

equation  𝜇฀𝑖𝑗฀฀ = 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖      
(
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(3) and  𝜇฀𝑖𝑗฀฀ = 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖     
(4) is given as  

𝑙(𝜃, 𝜏𝑖 ; 𝑦𝑖𝑗) =∏∫∏𝜓(𝜏𝑖, 𝜃)𝑔(𝜏𝑖; 𝜎𝑎2)𝜕𝜏𝑖𝑛𝑖
𝑗=1

𝑁
 𝑖=1      

(5) 

where 𝑙(.) is the full likelihood function for 𝑦𝑖𝑗, 𝜓(.) is the probability function for 𝑦𝑖𝑗, 𝑔(.) is 

the Normal probability density function for 𝜏𝑖 and 𝜃 = ( 𝛽0, 𝛽1, 𝛽𝑘 ). The maximum likelihood 

parameter estimates are obtained by taking the first derivatives of the log of 𝑙(.) with respect to 

each parameter, while the second derivatives produce the standard errors. It is difficult to obtain 

a closed form solution analytically for equation (5) due to the high dimension of the integral 

involved, a numerical likelihood approximation method is often used to circumvent this 

problem. We used the Adaptive Gauss-Hermite Quadrature (AGHQ) to perform the numerical 

approximation (20). The GLMM models were implemented using the SAS 9.4 procedure; 

PROC GLIMMIX. 

Population-Averaged/Marginal Model 

The regression models under this class are appropriate for assessing the population averaged 

intervention effect. Inferences are made across the sub populations of the treatment arms rather 

than on the individual subjects. They are formulated based on the marginal likelihoods of the 

correlated response values for the ith cluster, 𝒀𝑖, hence are considered as semi-parametric 

models. The marginal distribution of 𝒀𝑖 is modelled using a generalized linear model like 

equation 𝜂𝐸(𝑦𝑖𝑗)฀ = 𝜂(𝜇𝑖𝑗) = 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖       
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(3), but without the random effects component 𝜏𝑖, hence, the correlation among any pair of 

outcomes within a cluster are accounted for using a separate working covariance matrix. In 

general, a marginal model is given as  𝜂(𝐸(𝒀𝑖)) = 𝜂(𝝁𝑖) = 𝑿𝑝𝑖𝑗𝑇  𝜷𝑝    
(6) 

The marginal variance of a univariate response value 𝑦𝑖𝑗 is often specified as 𝜙𝜈(𝜇𝑖𝑗), where 𝜈(. ) is a known variance function and 𝜙 is a scale parameter which equals 1 for a binary 

outcome and 𝜎2 (needs to be estimated) for a continuous outcome. Equation  

(6) is similar to  

(1) but different in that corr(𝜀𝑖𝑗, 𝜀𝑖𝑗′) ≠ 0 but rather corr(𝜀𝑖𝑗, 𝜀𝑖𝑗′) =  𝜌(𝑥𝑖𝑗 , 𝑥𝑖𝑗′ ; 𝑷) ∀ 𝑗 ≠ 𝑗′, 𝑷 is the true correlation matrix to be approximated by a “working” correlation matrix, 𝑹, which 

is  characterised by the intracluster correlation coefficient (ICC), 𝛼. The formula for ICC is 

given in equation 

(7) below, obtained from Campbell and Walters (Chapter 5) (17). 

mGLM with coefficients estimated by GEE1 (mGLM-GEE1) 

The first order generalized estimating equations (GEE1) is the most common multilevel 

statistical method used for obtaining the parameter estimates of a marginal generalized linear 

model (mGLM)(i.e., a population-averaged model) specified in equation 

(6), and we denote it as the mGLM-GEE1 onward. Here, the clusters are assumed to be a 

random sample from the population of clusters of interest, hence the variations within a cluster, 

quantified by the ICC is not of much interest and it is treated as a nuisance/noise. However, the 

nuisance effect is accounted for by using a “working” covariance matrix, the ICC characterises 

the working covariance matrix.  

 

The ICC quantifies the correlation between the response values of any pair of subjects within 

a cluster, when the ICC is zero it indicates that any randomly paired outcome values from any 

randomly paired subjects in a cluster are independent giving rise to the “independence” 

working covariance matrix. However, in most CRCTs the ICC is assumed to be the same and 

nonzero across all the clusters which gives rise to the “exchangeable” working covariance 

matrix. The independence and the exchangeable working covariance matrices are the two most 

assumed in CRCTs. Since we are interested in accounting for the correlations among outcomes 
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in a particular cluster, we discussed and considered only the exchangeable working covariance 

matrix in this study (18,21). 

The ICC is given as  𝛼̂ = 𝜎̂𝑎2𝜎̂𝑎2+𝜎̂𝜀2  for continuous outcomes, or 𝛼̂ = 𝜎̂𝑎2𝜎̂𝑎2+𝜋23  for binary outcomes 

(7) 

where 𝜎̂𝑎2 is the intracluster variation, 𝜎̂𝜀2 is individual subject variation and 𝜋 = 3.141593 

(22). Let the univariate response value 𝑦𝑖𝑗 be as defined in equation                    

(2) and 𝜂𝐸(𝑦𝑖𝑗)฀ = 𝜂(𝜇𝑖𝑗) = 𝛽0 + 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝜏𝑖      
(3), if it’s marginal probability density function (or probability mass function for discrete 

distribution) can be expressed as belonging to the linear exponential family distribution, then 

the first and second moments of 𝑦𝑖𝑗 can be solved by taking the partial derivative of the log of 

the moment generating function (MGF) parameterized in the mean. It is worth noting that the 

nuisance parameter is also contained in the MGF but without itself being estimated. The 

mGLM-GEE1 draws its strength from the linear exponential family distribution (23). Liang 

and Zeger (21) proposed a class of estimating equations that uses a working covariance matrix 

to obtain the parameter estimates of equation 

(6) given as  

𝑈(𝜷) =∑(𝜕𝝁𝑖𝜕𝜷)𝑇 𝑽 𝑖−1(𝒀𝑖  − 𝝁𝑖(𝜷)) = 0   𝑁
 𝑖=1                

(8) 

where 𝑽𝑖 is the 𝑛𝑖 × 𝑛𝑖 covariance matrix for 𝒀𝑖 (i.e., 𝑽𝑖 = 𝐶𝑜𝑣(𝑌𝑖)) specified by the working 

correlation matrix 𝑹(𝛼) and defined as 𝑽𝑖 = 𝜙𝑮𝑖12 𝑹𝑖(𝛼)𝑮𝑖12                                                                     (9)  
where 𝑮𝑖 = 𝑑𝑖𝑎𝑔{𝜈(𝜇𝑖1),⋯ , 𝜈(𝜇𝑖𝑛𝑖) } is a diagonal matrix with the diagonal elements 𝜈(𝜇𝑖𝑗) 
the variance function for each response 𝑦𝑖𝑗, and 𝑹𝑖(𝛼) is an 𝑛𝑖 × 𝑛𝑖 working correlation matrix 

specified by the ICC, 𝛼. The mGLM-GEE1 estimator computes asymptotically consistent 

estimates 𝜷̂, regardless of the choice of 𝑹𝑖(𝛼) but provided that the mean structure is correct. 

However, it may suffer some loss in efficiency if the choice of 𝑹𝑖(𝛼) is wrong (24). The 

parameter estimates 𝜷̂ are iteratively obtained by alternating between a modified Fisher scoring 

algorithm for 𝜷 and the moment estimation of 𝛼 and 𝜙, and its residual 𝑁12(𝜷̂  − 𝜷) is 

multivariate Normally distributed with mean zero and a robust sandwich variance-covariance 
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matrix 𝝃𝑖. The mGLM-GEE1 models were fitted using the SAS 9.4 procedure, PROC 

GENMOD. 

mGLM with coefficients estimated by GEE2 (mGLM-GEE2) 

The class of regression models under mGLM-GEE2 attempt to leverage on the major drawback 

of the mGLM-GEE1 which may improve the efficiency of the parameter estimates, by 

producing parameter estimates with smaller standard errors (i.e., less variable, and more 

precise). The mGLM-GEE2 model adjust and estimate the correlation parameter (i.e., the 

nuisance parameter in mGLM-GEE1) and the mean parameter simultaneously in its model 

specification (6–8,25,26). Also, if accurate assessment of how the association among subjects 

influences the outcome (s) of interest could be of interest in a study. For example, in a family 

study to assess the impact of the genetic relatedness of the family members on their alcohol 

dependence, then mGLM-GEE2 is highly recommended (8). 

If the marginal density of 𝒀𝑖 conditioned on the mean vector 𝝁𝑖 and the covariance matrix 𝑽𝑖, 
can be expressed as belonging to the quadratic exponential family distribution, then this allows 

for the mean and the covariance of 𝒀𝑖 to be obtained simultaneously. The class of models under 

the mGLM-GEE2 draws its strength from the quadratic exponential family distribution (23). 

Several mGLM-GEE2 estimators have been proposed for estimating the mean and correlation 

parameters simultaneously(6,7,25,26), however that of Yan and Fine (8) used separate link 

functions to model the mean, the scale, and the correlation structures and generated their 

corresponding set of estimating equations to obtain the parameter estimates simultaneously and 

was shown to improve inferences. This is also known as the three-estimating equations (3EE), 

and it is applied in this paper. 

To establish the model specification, let 𝑿1𝑖 , 𝑿2𝑖 𝑎𝑛𝑑 𝑿3𝑖 be the 𝑛𝑖 × 𝑝, 𝑛𝑖 × 𝑟 and 
𝑛(𝑛+1)2 × 𝑞 

design matrices for the mean, the scale, and the correlation parameters of the vector of 

outcomes 𝒀𝑖, respectively. The specific link function for the mean, the scale and correlation 

parameters to 𝑿1𝑖  , 𝑿2𝑖  𝑎𝑛𝑑 𝑿3𝑖 is given as 𝜂1(𝝁𝑖) = 𝑿1𝑖𝜷   𝜂2(𝝓𝑖) = 𝑿2𝑖𝝅   𝜂3(𝝆𝑖) = 𝑿3𝑖𝜶  
(10) 
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where 𝝁𝑖 is a 𝑛𝑖 × 1 mean vector specified by 𝜷, 𝝓𝑖 is a 𝑛𝑖 × 1 scale vector specified by 𝝅 and 𝝆𝑖 is a 
𝑛𝑖(𝑛𝑖+1)2 × 1 pairwise correlation vector specified by 𝜶. The unified corresponding set 

of estimating equations for equation 𝜂3𝝆𝑖= 𝑿3𝑖𝜶  
(10) to be solved simultaneously are  

         ∑(𝜕𝝁𝑖𝜕𝜷)𝑇 𝑽 𝑖−1(𝒀𝑖  − 𝝁𝑖(𝜷)) = 0   𝑁
 𝑖=1  

      𝑈(𝜷,𝝅, 𝜶)  =              ∑(𝜕𝝓𝑖𝜕𝝅 )𝑇 𝑽2𝑖−1(𝒁𝑖  − 𝝓𝑖(𝝅)) = 0𝑁
𝑖=1                                            
∑(𝜕𝝆𝑖𝜕𝛂)𝑇 𝑽3𝑖−1(𝑺𝑖  − 𝝆𝑖(𝜶)) = 0𝑁
𝑖=1  

(11) 

where 𝒀𝑖 and 𝑽1𝑖 is as defined in the mean model of equations (8) and       (9), 𝒁𝑖 is the 𝑛𝑖 × 1 

vector of the scales, 𝑺𝑖 is the 
𝑛𝑖(𝑛𝑖+1)2 × 1 vector of the pairwise correlations, 𝑽1𝑖 and 𝑽2𝑖 are 

the working covariance matrices of 𝒁𝑖 and 𝑺𝑖 respectively.  

The mGLM-GEE2 estimator of equation (11) requires the specification of the first four central 

moments of the outcome vector (mean response, variance, skewness, kurtosis). Yan and Fine 

(8) suggested a way around it to avoid the problem of convergence and it is implemented using 

the geese (27) function in R package geepack (28). In general, the third and fourth moments 

can be specified as functions of the first and second moments, thereby avoiding the direct 

estimation of higher order moments (7). The mGLM-GEE2 estimator consistently estimate the 

mean parameters 𝜷 regardless of whether the scale and correlation structures are wrong, the 

estimates for scales 𝝅 are consistent regardless of whether the working correlation is mis-

specified, but provided that the mean and scale structures are correct.  

The major merit of the 3EE variant of the mGLM-GEE2 estimator is that it allows for separate 

covariates in the mean, the scale and the correlation structures to be adjusted for, this is 

important when investigating heterogeneity across the clusters or sub populations (e.g., the 

treatment arms). Where each cluster or treatment arm presents a different degree of correlation 𝛼𝑖 among subjects, possibly due to cluster sizes and covariates imbalance. Taking this into 

account may improve efficiency, instead of assuming a constant correlation value across the 
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clusters or treatment arms (5). The solutions of equation (11) are obtained interactively by 

alternating between a modified Fisher scoring algorithm and moment estimation method. The 

mGLM-GEE2 models were fitted using the R’s geese function in the geepack package. 

mGLM with coefficients estimated by QIF (mGLM-QIF) 

The quadratic inference function (QIF) was proposed to circumvent the major pitfalls of the 

mGLM-GEE1 just like the mGLM-GEE2 estimator. mGLM-QIF avoids the direct estimation 

of the correlation parameter (the ICC) that characterises the correlation matrix. Instead, it uses 

a linear combination of basis matrices and some constants to replace the inverse of the working 

correlation matrix. This strategy enables the mGLM-QIF estimator to obtain consistent and 

efficient parameter estimates compared to the mGLM-GEE1 estimator, even when the working 

covariance structure is not correct, and equal mGLM-GEE1 if it is correct (9,29). 

Let 𝒀𝑖, 𝑿𝑖, 𝝁𝑖, and 𝑽𝑖 be the same as defined in equations (8) and        (9). In mGLM-QIF 

equation the inverse of 𝑹 specified in equation        (9) of the covariance matrix 𝑽𝑖 is 

approximated using a linear combination of a set of several basis matrices 𝑹ℎ−1 ≈ 𝑘ℎ𝑰ℎ +⋯+𝑘𝑚𝑴𝑚;  (ℎ = 0,… ,𝑚); 𝑰ℎ is the identity matrix, 𝑴𝑚 are known basis matrices and 𝒌𝑚 are 

unknown constants that need to be estimated. For the exchangeable and autoregressive working 

covariance matrix, ℎ = 1 𝑎𝑛𝑑 2 would suffice, respectively (13,29). Using this new 

information, we can rewrite the estimating equations (8) of the mGLM-GEE1 as an extended 

score vector given as  

𝒈̅𝑁(𝜷) = 1𝑁∑ 𝑔𝑖(𝜷)𝑁𝑖=1 ≈ 1𝑁( 
   

∑ (𝜕𝝁𝑖𝜕𝜷)𝑇 𝑮𝑖−1(𝒀𝑖  − 𝝁𝑖(𝜷))𝑁 𝑖=1    ∑ (𝜕𝝁𝑖𝜕𝜷)𝑇 𝑮𝑖−1 2⁄ 𝑴1𝑮𝑖−1 2⁄ (𝒀𝑖  − 𝝁𝑖(𝜷))𝑁 𝑖=1     ⋮∑ (𝜕𝝁𝑖𝜕𝜷)𝑇 𝑮𝑖−1 2⁄ 𝑴𝑚𝑮𝑖−1 2⁄ (𝒀𝑖  − 𝝁𝑖(𝜷))𝑁 𝑖=1    ) 
          

 (12) 

In equation (12), the constants 𝒌𝑚 are considered as nuisance and are not included. The 

mGLM-QIF uses the generalised method of moments (GMM) (30) to optimally combine the 

multiple estimating equations in (12)  which are more than the unknown parameters. The 

estimate 𝜷̂ is obtained by minimising the weighted length of 𝒈̅𝑁 using GMM and given as 𝜷̂ = 𝑎𝑟𝑔𝒈̅𝑁𝑇𝚺𝑁−1 𝒈̅𝑁 

    (13) 
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where the true covariance matrix 𝚺𝑁 is replaced by the empirically estimated covariance 

matrix 𝑪𝑁 in equation  

    (13), and its inverse 𝑪𝑁−1 serves as a weighting function. 𝑪𝑁−1 is the main reason behind QIF’s 

efficiency advantage, because it weights the information each 𝑖th cluster contributes to the 

estimating equation, clusters with large variation are given less weight than the ones with small 

variation. The QIF estimator is thus defined as  𝑄𝑁(𝜷) = 𝒈̅𝑁𝑇𝐂𝑁−1 𝒈̅𝑁                                              (14) 

where 𝑪𝑁 = (1 𝑁2⁄ )∑ 𝑔𝑖(𝜷)𝑔𝑖𝑇(𝜷)𝑁𝑖 . The estimate 𝜷̂  is obtained iteratively using the Newton 

– Raphson algorithm (29). The mGLM-QIF models were fitted using the SAS 9.4 macro: qif. 

Main analysis 

The sample size characteristics of our case studies are summarised using frequency and 

percentage. All the models were fitted using only complete cases. Among the case studies, the 

range of the missing data was from 0% to 7% which is negligible, hence no sensitivity analysis 

was conducted. In clinical trials, it is a common strategy to fit unadjusted and adjusted 

regression models containing different numbers of covariates to efficiently assess the effect of 

the intervention administered compared to the control. The unadjusted/univariate model is a 

model containing only the indicator variable 𝑥1𝑖𝑗 for the randomised treatment arms as a 

covariate. While the adjusted/multivariate models include other known prognostic factors 𝑿𝑝𝑖𝑗𝑇  

(with the treatment arm indicator inclusive), such as baseline outcome values, age and sex. For 

each of the combined statistical methods (e.g., GLMM-MLE) we fitted both unadjusted and 

adjusted models. In each analysis we consider a P-value < 0.05 to mean that the result is 

statistically significant. 

Software 

Two statistical software packages were used for demonstrating how to analyse CRCTs using 

the four selected methods. They are SAS (version 9.4) and R (version 1.4.1717). The GLMM-

MLE and mGLM-QIF models were fitted using SAS while mGLM-GEE1 and mGLM-GEE2 

models were fitted using R. The SAS syntax and R codes for fitting all the statistical models 

applied to one case study (the PoNDER trial) is provided (see, Additional file 4). 

The initial plan was to fit all the models using a free and open software such as R, but we 

observed that the qif command in the R’s qif package (CRAN - Package qif (r-project.org)) 

https://cran.r-project.org/web/packages/qif/index.html
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could not fit the mGLM-QIF model to trials with clusters of size of 1, the PoNDER and Age 

gap trials had clusters of size 1, the error message suggests that it is a problem of the 

incompatibility of the matrices in the matrix multiplication procedure. So, we switched to using 

SAS which was able to overcome the problem. Also, lmer command for fitting linear mixed 

effects model to continuous outcomes in lme4 package in R does not have AGHQ as an option 

but glmer for generalized linear mixed modelling does. SAS procedure, GLIMMIX, has AGHQ 

as an option for mixed effects models for both continuous and binary outcomes. 

The GLMM-MLE models were fitted using the GLIMMIX procedure in SAS and we set the 

quadrature points (nodes) to 10 for the AGHQ algorithm. Higher nodes increase the complexity 

of the AGHQ procedure but produces more reliable results than lower nodes (20). The 

GLIMMIX procedure does not produce a value for ICC, so we calculated it using the estimates 

of the between cluster variation and individual variation from PROC GLIMMIX output. The 

mGLM-GEE1 models were fitted using the geeglm function of R’s geepack package with an 

exchangeable correlation structure, and so was mGLM-GEE2 using the geese function. The 

mGLM-QIF models were fitted using the qif macro in SAS. In the mGLM-GEE2 models no 

covariate was adjusted for in the working correlation and scale structures. The link function for 

the mean structure was either identity for continuous outcome or logit for binary outcome, for 

the scale structure it was the identity, and for the correlation structure it was the modified 

Fisher’s z transformation. 

 

 

Description of the four CRCT datasets 

The  PoNDER trial (31) 

The PoNDER CRCT aimed to assess the effect of two psychological informed interventions 

by health visitors on postnatal depression in postnatal women who have recently given birth. 

One-hundred and one general practices (clusters) in the Trent region of England were included 

in the trial. The general practices were randomised in a 2:1 ratio to the Intervention group (n=63 

clusters) or the control group (n=38 clusters).  Health visitors in the intervention clusters were 

trained to identify depressive symptoms at six to eight weeks postnatally using the Edinburgh 
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postnatal depression scale (EPDS) and were also trained in providing psychologically informed 

sessions based on cognitive behavioural or person-centred principles for an hour a week for 

eight weeks. Health visitors in the control group provided usual care. 

The primary outcome was the score on the EPDS at six months follow-up. The EPDS consists 

of 10 questions and generates a score on a 0 to 30 scale with higher scores indicating a great 

risk of depression. For the PoNDER trial this outcome was dichotomised into a binary outcome 

of EPDS score < 12 vs >=12 with women with a score of 12 or more classified as “at risk” of 

postnatal depression. One hundred (n=63 intervention, n= 37 control) clusters, and n=2659 new 

mothers (1745 Intervention: 913 Control) provided valid primary outcome data at 6 months. 

Also, one of the secondary outcomes in the PoNDER trial “the mean EPDS score at six months” 

was used as a continuous outcome in this study. In the original study both outcomes were 

analysed using mGLM-GEE1 and an exchangeable correlation structure with robust standard 

errors. The descriptive statistics of the trial size is presented in Table 2 below. 

The Bridging the Age Gap trial (32) 

Bridging the age gap CRCT investigated the effects of two decision support interventions 

(DESI) to support treatment choices in older women (aged >=70 years) with operable breast 

cancer (32). Forty-six breast cancer units (clusters) in England and Wales were included in the 

trial. The breast cancer units were randomised to have access to the DESI (Intervention group 

n=21 clusters) or to continue with usual care (Control group n=25 clusters). The DESI 

comprised an online algorithm, booklet, and brief decision aid to inform choices between 

surgery plus adjuvant endocrine therapy versus primary endocrine therapy, and adjuvant 

chemotherapy versus no chemotherapy. 

The primary outcome was the global health status/quality of life (QoL) score (questions 29 and 

30) on the cancer specific patient reported outcome the European Organisation for the Research 

and Treatment of Cancer (EORTC) QoL questionnaire (QLQ)-C30 at 6 months post baseline. 

The EORTC QLC-C30 global health status/QoL scale is scored on a 0 to 100 scale with a 

higher score representing a better QoL. Forty-three clusters (n=19 intervention, n= 24 control), 

and n=748 patients (359 Intervention: 389 Control) provided valid primary outcome data at 6 

months. 
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 The primary endpoint was a continuous outcome “Global health status quality of life score” 

measured 6 months after diagnosis and was analysed using mGLM-GEE1 with sandwich 

(robust) standard errors and an exchangeable working correlation matrix. The total number of 

participants included in the trial is 748 distributed across 43 clusters and the cluster size ranged 

from size 1 to 73. The complete description of the trial size is provided in Table 2. 

The Informed Choice trial (33) 

The Informed Choice (IC) study was aimed at investigating the impact of a set of 10 pairs of 

evidence-based leaflets – The Midwives’ Information and Resource Service (MIDIRS) and 

NHS Centre for Reviews and Dissemination informed choice leaflets through a survey. The 

study was designed to cover 8 of the 10 MIDIRS decision points in everyday maternity care. 

Conducted in 12 large maternity units in Wales, the maternity units were grouped into 10 

clusters. Pairs of clusters were randomly assigned to the intervention arm and control arm based 

on their annual numbers of deliveries, to achieve balance. 

The primary objective was to improve the management of women during pregnancy and 

childbirth, by assessing the effect of an intervention that promotes informed choice. The 

primary binary outcome was the change in the proportion of women who reported exercising 

informed choice (yes or no). For illustrations, one of the secondary outcomes "the average of 

the women's levels of knowledge” on the 10 topics covered in the survey was used as a 

continuous outcome in this current study. Knowledge of the topics was assessed on a 1 (poor) 

to 10 (good) scale. 

Two samples of different women were surveyed, the antenatal and postnatal samples. The 

antenatal sample is made up of all women who reached 28 weeks’ gestation period during a 

six-week period and were receiving antenatal care in any setting. The questionnaire used for 

the cohort covered three decision points that the women may have encountered. The postnatal 

sample was made up of all women who delivered live babies during a six-week period. A 

questionnaire that covered the remaining five decision points was used to survey the women 

postnatally. The postnatal sample had a total of 3,288 women, who were cross sectionally 

surveyed before (n = 1,741) and after the intervention was administered (n = 1,547). However, 

to demonstrate the fitting of the statistical methods in this study only the follow-up (i.e., after 

the intervention) postnatal sample was used and reported. Only women who delivered in all 

settings and above the age of 16 years were included. Random effects models (i.e., GLMM) 
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were used to analyse the outcomes in the original study. Table 2 presents the descriptive 

summary of the trial size. 

The Nourishing Start for Health (NOSH) trial (34) 

The NOSH CRCT assessed the effect of an area-level financial incentive (shopping vouchers) 

on breastfeeding in new mothers and babies in areas with low breastfeeding prevalence (34). 

Ninety-two electoral ward areas (clusters) in England were included in the trial with baseline 

breastfeeding prevalence at 6 to 8 weeks postnatally of less than 40%. The areas were 

randomised to the financial incentive plus usual care (n = 46 clusters) or to usual care alone (n 

= 46 clusters). All 92 clusters provided breastfeeding outcome data on 9,207 mother-infant 

pairs (4,973 in the NOSH group, 4324 in the control group) (Table 2). 

The primary outcome was the electoral ward area-level 6 to 8 weeks breastfeeding prevalence, 

as assessed by clinicians at the routine 6 to 8 weeks postnatal check. This was derived from the 

number of new mothers who were breastfeeding or not at 6 weeks in each local authority 

area/cluster. A cluster level approach was used to analyse the primary outcome after obtaining 

a summary measure for each cluster. Specifically, a weighted multiple linear regression model 

was used in the original study. 

Table 2 Summary of the trial size of the four CRCT data sets used in the study 

Trial 

No. of 

clusters 

No. of 

participants 

Average 

cluster size 

(Min, Max) 

cluster size 

Median 

cluster size 

Missing n 

(%) 

PoNDER 101 2659 27 (1, 101) 21 35 (1) 

Informed 

Choice 10 1547 155 (74, 308) 145 108 (7) 

Age Gap 43 748 18 (1, 73) 16 36 (5) 

NOSH 92 9207 100 (12, 333) 75 0 (0) 

 

 

RESULTS 

Description of results for each case study 

 

The PoNDER trial 

The mean age of all the women in the control and intervention groups were the same (32±5yrs, 

respectively), the maximum age across all the women was 46yrs. The proportion of women 

with EPDS score  ≥ 12 at 6 months was 16% (150/914) in the control arm and 12% (205/1745) 
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in the intervention arm. For the other outcome “the mean EPDS score at six months”, it was 

6.4(SD = 5.0) vs 5.5(SD = 4.9) for the control vs the intervention arms respectively. It is worth 

noting that for both outcomes, smaller is better.  

The results for the unadjusted intervention effect from the analysis of the continuous primary 

outcome are slightly different among the models except for mGLM-GEE1 and mGLM-GEE2 

which were the same. After adjustments were made for the baseline EPDS 6 weeks score, living 

alone, previous history of major life events and previous history of postnatal depression, the 

intervention effect became approximately the same across the models (mean difference, -0.78) 

except for mGLM-QIF (-0.84). The standard errors of the intervention effect estimates are 

approximately the same across the models, ranging from 0.25 to 0.28 for the unadjusted models 

and 0.20 to 0.21 for the adjusted models. The intervention effect estimates across all the models 

were significant as evident by the small P-values (<0.05) and the confidence intervals which 

excluded zero. Similar results were obtained from the binary primary outcome analysis, the 

odds ratio was 0.67 in all the unadjusted models and adjusted models, except for mGLM-QIF 

(0.66 and 0.62 respectively), and all were significant as well, suggested by the small P-values 

and confidence intervals excluding one (Table 3).  

These results are graphically compared using forest plots and shown in  Figure a (& Figure 

b) and Figure Error! Reference source not found.a (& Figure Error! Reference source not 

found.b), in the plots all the point estimates for the intervention effect and the associated 95% 

confidence intervals (CIs) are to the left-hand side of zero favouring the intervention arm. The 

distance between the left and right whiskers that indicate the 95% CIs are approximately the 

same for all the models.  

 

 

The Age – Gap trial 

The mean global health status/quality of life (QoL) score at 6-months follow-up was 68.9 (SD 

19.6) for the control arm against 69.0 (SD 19.5) for the intervention arm. The results from the 

analysis of the primary continuous outcome in the Age – Gap  trial is summarised in Table 4 

and graphically shown in Figure e & Figure f. The Age – Gap trial had a moderate number of 
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clusters (43 clusters) with 748 patients in total. The unadjusted models appear to produce 

differing intervention effect values ranging from mean difference of -0.28 to 0.12 but became 

stable after the baseline QoL values (ql scale) was adjusted for; the mean difference became 

1.71 for all the models except for mGLM-QIF (1.46). However, all the estimates of the 

intervention effect across the models were not significant (i.e., P > 0.05). The SEs are 

approximately the same for the adjusted models (1.40) except for mGLM-QIF (1.20). 

Informed Choice trial 

The Informed choice trial had a small number of clusters (10) with large number of subjects 

(1547).  In the intervention arm 59% (477/816) of the women reported to have exercised 

informed choice while using the maternity service compared to 57% (346/612) in the control 

arm. And the mean knowledge of the 10 topics covered in the survey for those in the 

intervention arm was 3.6 (SD = 1.62) compared to the 3.3 (SD = 1.60) of the control arms. The 

covariates in the adjusted models were the age of the mother, age the mother left education, 

parity and the delivering style.  

The results of the unadjusted and adjusted models from the analysis of the primary continuous 

and binary outcomes are presented in Table 5 and visualised in Figure c (&Figure d) and 

Figure c(& Figure d), respectively. For the continuous outcome the unadjusted intervention 

effect was the same for the three models (mean difference = 0.20, SE = 0.11) but different for 

mGLM-QIF (0.03, SE = 0.05). Similarly, the adjusted intervention effects are the same 0.22 

(SE = 0.1) for all the models except mGLM-QIF 0.05 (SE = 0.02). The parameter estimates of 

the intervention effect for the mGLM-QIF models are far more inconsistent with the observed 

data (difference in mean score = 0.3). The unadjusted models were not significant (i.e., P > 

0.05) for all the models. The adjusted models were somewhat significant (i.e., P< 0.05) for all 

the models except for GLMM-MLE. 

Similarly, for the primary binary outcome, the unadjusted odds ratio of women who reported 

exercising informed choice in the intervention arm compared to the control arm was the same 

for all the models (odds ratio = 1.12, SE = 0.10 to 0.11) except for mGLM-QIF (1.17, SE = 

0.04). The adjusted odds ratio for all the models were the same (odds ratio = 1.1, SE = 0.10 to 

0.11). The odds ratios for the unadjusted and adjusted intervention effect were not significant 

for all the models except mGLM-QIF which was highly significant (P < 0.0001) (see, Table 

5). 
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The NOSH trial 

Overall, 36% (1869/4973) mothers in the 46 clusters of the NOSH group were breastfeeding 

at 6 weeks compared to 30% (1299/4324) in the 46 clusters of the control group. The statistical 

analysis adjusted for cluster level baseline prevalence and local government area as covariates.   

For the NOSH case study, only a binary primary outcome was measured. The results from the 

unadjusted and adjusted models are presented in Table 6 and are graphically presented in 

Figure e and Figure f. The odds ratios that the mothers were breastfeeding at the end of trial 

were approximately the same for all the unadjusted (1.40) and adjusted (1.30) models and were 

statistically significant. This was similar for the SEs = 0.08 for all the univariate/unadjusted 

models and 0.07 for all the multivariate/adjusted models except for mGLM-GEE2 (0.05). The 

ICCs from the unadjusted and adjusted mGLM-GEE2 models were quite different from the 

other models. The ICC ranged from 0.02 to 0.04 for the unadjusted models and 0.004 to 0.02 

for the adjusted models (see, Table 6).
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Table 3  Summary of the results obtained from fitting the different statistical models to the PoNDER trial data (N = 2659) 

 Continuous outcome1 Binary outcome2 

Parameter Type of modelling GLMM-MLE      mGLM-GEE1 

mGLM-

GEE2 mGLM-QIF 

GLMM-

MLE     

mGLM-

GEE1 

mGLM-

GEE2 

mGLM-

QIF 

Intervention 

effect3 

Unadjusted 

-0.97 -0.98 -0.98 -0.94 0.67 0.67 0.67 0.66 

Adjusted* -0.78 -0.78 -0.78 -0.84 0.67 0.67 0.67 0.62 

SE 
Unadjusted 

0.25 0.28 0.28 0.28 0.13 0.14 0.14 0.14 

Adjusted* 
0.20 0.21 0.21 0.20 0.13 0.13 0.13 0.13 

P-value 
Unadjusted 0.0002 0.0005 0.0005 0.0009 0.0025 0.0032 0.0032 0.0019 

Adjusted* 0.0001 0.0001 0.0001 <0.0001 0.0019 0.0019 0.0019 0.0001 

95% CI 
Unadjusted -1.47 to -0.47 -1.53 to -0.43 -1.53 to -0.43 -1.50 to -0.39 0.51 to 0.86 0.51 to 0.87 0.51 to 0.87 0.51 to 0.86 

Adjusted* -1.17 to -0.39 -1.18 to -0.38 -1.18 to -0.38 -1.24 to -0.44 0.52 to 0.86 0.52 to 0.86 0.52 to 0.86 0.48 to 0.79 

ICC 
Unadjusted 

0.0167 0.0191 0.0382 0.0191 0.0167 0.0063 0.0126 0.0063 

Adjusted* 
0.0077 0.0081 0.0162 0.0081 <0.0001 -0.0018 -0.0036 -0.0018 

Number of 

subjects 

Unadjusted 
2659 2659 2659 2659 2659 2659 2659 2659 

Adjusted* 
2624 2624 2624 2624 2624 2624 2624 2624 

Number of 

clusters 

Unadjusted 
100 100 100 100 100 100 100 100 

Adjusted* 
100 100 100 100 100 100 100 100 

* Model adjusted for EPDS score at 6 weeks, living alone (no or yes), previous history of major life events (no or yes) and any previous history of postnatal depression (no or yes). SE = Standard error; CI: Confidence 

interval; ICC: Intracluster correlation coefficient. GLMM: Generalized linear mixed model; mGLM: marginal generalized linear model; GEE: Generalized estimating equations; QIF: Quadratic inference function 

1.      EPDS score at 6 months postnatally. The EPDS is scored on a 0 to 30 scale with higher scores indicating a greater risk of PND. 

2.      Dichotomised EPDS score at 6 months postnatally of < 12 or >=12. 

3.      The intervention effect for the continuous outcome is the difference in the mean 6-month EPDS scores between the intervention and control groups; with a negative mean difference favouring lower 

scores (better outcomes) in the intervention group. The intervention effect for the binary outcome is the odds ratio for an EPDS score of 12 or more in the intervention group compared to the control group 

with an odd ratio <1 favouring better outcomes (lower odds of PND) in the intervention group. 
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Table 4 Summary of the results from fitting the different models to the Age Gap trial data with a continuous primary outcome1 (N = 748) 
 Unadjusted model Adjusted model** 

Parameters GLMM-MLE      mGLM-GEE1 mGLM-GEE2 mGLM-QIF GLMM-MLE    mGLM-GEE1 

mGLM-

GEE2 mGLM-QIF 

Intervention 

effect2 
        

0.12 -0.19 -0.19 -0.28 1.71 1.71 1.71 1.46 

SE 
        

1.43 1.26 1.26 1.23 1.40 1.37 1.37 1.20 

P-value 
        

0.9343 0.8818 0.8810 0.8175 0.2294 0.2127 0.2127 0.2230 

95% CI 
        

-2.77 to 3.00 -2.65 to 2.28 -2.65 to 2.28 -2.69 to 2.12 -1.12 to 4.53 -0.98 to 4.39 -0.98 to 4.39 -0.89 to 3.80 

ICC 
        

<0.0001 -0.0068 -0.0135 -0.0068 0.0042 0.0028 0.0056 0.0028 

Number of 

subjects 

        

748 748 748 748 712 712 712 712 

Number of 

clusters 

        

43 43 43 43 43 43 43 43 

 
** Model adjusted of global QoL baseline values. SE = Standard error; CI: Confidence interval; ICC: Intracluster correlation coefficient; GLMM: Generalized linear mixed model; mGLM: marginal generalized linear 

model; GEE: Generalized estimating equations; QIF: Quadratic inference function 

1. Global QoL score on the EORTC-C30 at 6 months post-baseline. The EORTC-C30 Global scale is scored on a 0 (poor) to 100 (good health) scale. 

2. The intervention effect for the continuous outcome is the difference in the mean 6-month Global QoL scores between the intervention groups; with a positive mean difference favouring higher scores (better 

outcomes) in the intervention group.  
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Table 5 Summary of the results obtained from fitting the different statistical models to the Informed Choice postnatal data (N = 1547) 
 

 Continuous outcome1 Binary outcome2 

Parameters 

Type of 

modelling GLMM-MLE      mGLM-GEE1 mGLM-GEE2 mGLM-QIF GLMM-MLE     mGLM-GEE1 mGLM-GEE2 mGLM-QIF 

Intervention effect3 
Unadjusted 

0.20 0.20 0.20 0.03 1.12 1.12 1.12 1.17 

Adjusted*** 0.22 0.22 0.22 0.05 1.08 1.06 1.06 1.12 

SE 

Unadjusted 
0.11 0.11 0.11 0.05 0.11 0.06 0.06 0.04 

Adjusted*** 
0.10 0.10 0.10 0.02 0.11 0.05 0.05 0.07 

P-value 

Unadjusted 
0.1030 0.0730 0.0731 0.5306 0.3178 0.0647 0.0647 <0.0001 

Adjusted*** 
0.0676 0.0324 0.0324 0.0158 0.5206 0.2175 0.2175 <0.0001 

95% CI 

Unadjusted 
-0.05 to 0.46 -0.02 to 0.41 -0.02 to 0.41 -0.07 to 0.13 0.88 to 1.43  0.99 to 1.27 0.99 to 1.27 1.10 to 1.26 

Adjusted*** 
-0.02 to 0.46 0.02 to 0.42 0.02 to 0.42 0.01 to 0.09 0.84 to 1.38 0.97 to 1.16 0.97 to 1.16 1.08 to 1.15 

ICC 

Unadjusted 
0.0042 0.0027 0.0055 0.0027 0.0000 -0.0029 -0.0058 -0.0029 

Adjusted*** 
0.0029 0.0018 0.0036 0.0018 0.0000 -0.0036 -0.0072 -0.0032 

Number of subjects 

Unadjusted 
1534 1534 1534 1534 1485 1485 1485 1485 

Adjusted*** 
1474 1474 1474 1474 1439 1439 1439 1439 

Number of clusters 

Unadjusted 
10 10 10 10 10 10 10 10 

Adjusted*** 
10 10 10 10 10 10 10 10 

 
***Model adjusted for mother’s age, age mother left education, parity and delivering style. SE = Standard error; CI: Confidence interval; ICC: Intracluster correlation coefficient; GLMM: Generalized linear mixed 

model; mGLM: marginal generalized linear model; GEE: Generalized estimating equations; QIF: Quadratic inference function 

 

1.      Knowledge of informed choice leaflets score at 8 weeks postnatally. Knowledge is scored on a 0 to 10 scale with higher scores indicating a greater knowledge of the leaflets. 

2.      Proportion of women who answered “yes” to the question “Have you had enough information and discussion with midwives or doctors to make a choice together about all the things that happened during     

maternity care?” with the options “yes,” “partly,” “no,” “there was no choice,” and “did not apply.”  
3.      The intervention effect for the continuous outcome is the difference in the mean 6 week knowledge scores between the intervention and control groups; with a positive mean difference favouring (better 

outcomes) in the intervention group. The intervention effect for the binary outcome informed choice (yes or no) is the odds ratio for yes to overall informed choice   in the intervention group compared to the 

control group with an odd ratio >1 favouring better outcomes (higher odds of an informed choice) in the intervention group. 
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Table 6 Summary of the results obtained from fitting the different statistical models to the NOSH data with binary outcome1 

 Unadjusted model 𝐀𝐝𝐣𝐮𝐬𝐭𝐞𝐝 𝐦𝐨𝐝𝐞𝐥† 

Parameters GLMM-MLE      mGLM-GEE1 mGLM-GEE2 mGLM-QIF GLMM-MLE     mGLM-GEE1 mGLM-GEE2 mGLM-QIF 

Intervention 

effect2 

        

1.37 1.36 1.36 1.36 1.31 1.31 1.27 1.28 

SE 

        

0.08 0.08 0.08 0.08 0.07 0.07 0.05 0.07 

P-value 

        

0.0002 <0.0001 <0.0001 0.0009 0.0002 <0.0001 <0.0001 0.0002 

95% CI 

        

1.16 to 1.60 1.17 to 1.58 1.17 to 1.58 1.17 to 1.59 1.14 to 1.51 1.14 to 1.49 1.15 to 1.41 1.12 to 1.46 

 

ICC 

        

0.0262 0.0192 0.0383 0.0192 0.0162 0.0098 0.0042 0.0098 

Number of 

subjects 

        

9207 9207 9207 9207 9207 9207 9207 9207 

Number of 

clusters 

        

92 92 92 92 92 92 92 92    †The statistical models were adjusted for the cluster level baseline breast-feeding rate and local government area. SE = Standard error; CI: Confidence interval; ICC: Intracluster correlation coefficient; GLMM: 

Generalized linear mixed model; mGLM: marginal generalized linear model; GEE: Generalized estimating equations; QIF: Quadratic inference function 

1. The binary outcome was if the mother was breastfeeding her baby at 6 weeks postnatally (response value = 1) or not (response value = 0). 

2. The intervention effect for the binary outcome is the odds for breastfeeding at 6 weeks postnatally in the NOSH intervention group compared to the odds of breastfeeding in the control group with an odds 

ratio >1 favouring better outcomes (higher odds of breastfeeding) in the intervention group. 
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Figure 2 Forest plots showing the intervention effect estimate and its associated 95% CI for the four statistical methods fitted using the continuous primary outcomes of three trial 

datasets where plot (a) & (b) are the unadjusted and the adjusted models fitted on the PoNDER trial respectively, (c) and (d) is that of the Informed choice and (e) & (f) is of the 

Age-Gap trial. 
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Figure 3 Forest plots showing the intervention effect estimate and its associated 95% CI for each of the statistical model fitted on the binary primary outcomes of three cluster 

trials datasets where plots (a) & (b) are the unadjusted and the adjusted models fitted on the PoNDER trial respectively, (c) and (d) is that of the Informed Choice trial and (e) & 

(f) is of the NOSH trial. 
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DISCUSSION 

In this paper, four different approaches for analysing CRCTs with clustering in the treatment 

arms have been described. All selected four approaches have been applied to the four case 

studies with different settings to demonstrate their implementation and evaluate their use in 

practice. The case studies considered have small estimates for the ICC. All had an ICC less 

than 0.05 and three studies had an ICC less than 0.02. This indicates there was little clustering 

of outcomes. It is possible that conventional statistical methods that ignore clustering would 

also have performed well, considering the observed small ICCs and the performance of the 

four multilevel methods.  

Three studies had negative parameter estimates for the ICC, theoretically the ICC is assumed 

to be bounded between 0 and 1. But in practice negative ICCs can be observed from a real-

world trial data. The theoretical set-up of the GLMM-MLE estimator prevents a negative ICC 

but that is not the same for the marginal models (35), which was the case in this study. Only 

the marginal models produced negative ICCs. The GLMM-MLE is known to truncate the ICC 

to zero rather than produce negative ICCs, effectively fitting a generalized linear model (GLM) 

(36). Sampling error due to limited number of subjects to sample from (sample cluster size) 

compared to the population cluster size which is unlimited could be the cause for a negative 

ICC (35). This would cause the sampled clusters not to be good representative of the population 

clusters. When a negative ICC is obtained, it is recommended to use conventional statistical 

methods (which ignore clustering), as they are more likely to produce reliable results (35). 

Another reason this could happen is when there are large discrepancies in the allotment of trial 

resources within the clusters (17), this would cause large variations in the observed outcomes.  

Our results showed that parameter estimates for the intervention effect, SEs, P-values and 95% 

CI were the same for mGLM-GEE1 and mGLM-GEE2 models in almost all cases, they only 

differ in their estimates for the ICC.  This could possibly be the effect of the observed small 

ICCs in the case studies. Indicating that both methods are fitting the same models regardless 

of whether the correlation parameter is estimated or not within the method algorithm. If the 

observed ICCs happens to be large, it is recommended that models with heterogenous 

correlation that also allows for covariates adjustments for the corelation structure should be 

considered, it is likely to improve inferences (5). This happens to be the major merit of Yan & 

Fine 3EE GEE2 model (8). Obtaining accurate estimates for the correlation parameters was not 
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a major interest in this study. It would be worth investigating to know which of the two methods 

is producing the more accurate estimate of the corelation parameter using simulation studies. 

Our initial intention was to use a free and open-source software package to analyse the datasets 

such as R, but we resorted to using R to fit mGLM-GEE1 and mGLM-GEE2 only. We used 

the SAS macro “QIF” because its R sister version could not fit the mGLM-QIF models to 

datasets of trials with cluster size of 1(i.e., only one outcome was observed in the cluster). The 

PoNDER and Age Gap trials had clusters with one observed outcome only. We did reach out 

to one of the authors of both software packages, Peter X.K. Song, through email 

correspondence and Song promised to investigate this problem with the QIF algorithm in R.  

The four case studies have different features which cover most of the different settings of 

cluster randomised controlled trials in practice. The impact of these features on the estimates 

of the four statistical models are evident in the results obtained. The PoNDER trial had a large 

sample size (both in the number of clusters and cluster sizes, 100 clusters with an average 

cluster size of 26), had small ICCs, both cluster level and individual level covariates were 

adjusted for in the multivariate models. Hence, the results showed that the intervention effect 

estimates were apparently equivalent for the four different methods for both the continuous and 

binary primary outcomes analysed. This was the same for the associated standard errors and 

95% CIs. On the aspect of hypothesis testing, the inferences were the same using any of the 

four statistical models and it was consistent with that of the original analysis by Morrell et al., 

(31); a significant benefit of training health visitors to adequately manage women with 

postnatal depressive symptoms (i.e., favouring the intervention arm).  

The Age - Gap trial had a moderate sample size (43 clusters with an average cluster size of 18). 

Among the four statistical methods, estimates for the intervention effect from the 

univariate/unadjusted models were unstable ranging from -0.28 to 0.12 but became stable and 

the same (mean difference = 1.78) after adjustment for the individual level baseline values of 

the primary outcome (baseline Global QoL), except for mGLM-QIF (1.46) which had the 

smallest SE estimates. This elucidates the importance of accounting for known prognostic 

factors in clinical trials. This was similar for the SEs and the 95% CIs. All the four statistical 

models resulted in the same inference and is consistent with that of the original analysis  which 

was “no significant difference in the Global QoL between the control and the intervention 

arms” (32). 
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For the Informed Choice trial, continuous and binary outcomes were measured, and the study 

had small number of clusters (10 clusters) but with large cluster sizes (median cluster size = 

145). The original study was a cross-sectional repeated measurement, so the estimate for the 

intervention effect was the interaction effect term between the treatment group (group) and 

time of measurement (time). But for the purpose of demonstration, we used only the “after 

intervention” postnatal sample. Both cluster and individual level covariates were adjusted for 

in the multivariate models. All the three methods produced approximately the same parameter 

estimates which differs from the estimates produced by mGLM-QIF, for both the continuous 

and binary outcomes.  

The impact of the interplay between small number of clusters, covariate and cluster size 

imbalance on the mGLM-QIF and mGLM-GEE1 has been studied. It was found that the 

mGLM-QIF is severely affected compared to the mGLM-GEE1(12). A correction was 

proposed to improve the empirical estimated covariance matrix that causes the mGLM-QIF to 

be poorly behaved (13). In this study it is more likely that the differing performance of the 

mGLM-QIF estimator is due to the small number of clusters.  

It is of interest to us to carry out simulation studies to comprehensively learn the finite small 

sample size performance of the mGLM-QIF in relation to the three other statistical models in 

this study in the context of CRCTs in the future (since the true parameter values would be 

known). Lastly, for the NOSH trial with only binary primary outcome measured and large 

sample sizes (92 clusters with an average cluster size of 100). The parameter estimates from 

the four statistical approaches were approximately the same, hence, their performance was 

equivalent.  

 Limitations 

This study employed a formal search of relevant literature to capture most of the related work 

conducted. However, this was not an exhaustive review of all work in this area. 

We have used four case studies that have arisen from our work as applied medical statisticians 

in clinical trials research. The results and inferences made are applicable to data with similar 

properties to these studies. For example, our results focus only on binary and continuous 

endpoints and as discussed relate to trials with small ICCs and relatively small clusters. Our 

analysis of these case studies was on complete cases only, we have ignored any data collected 
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on patients for whom the outcome of interest was not recorded. It is likely that this data 

limitation (i.e., missing data) might not result to adverse consequences since the proportion of 

missing data is small. Although, the other data limitations (i.e., small sample size and small 

ICC) might.  

While small number of clusters (and cluster sizes), small ICCs and incomplete data are issues 

in many real-world data sets, to increase the generalisability of these results to trials with 

different characteristics to the case studies we hope to conduct a simulation study. This study 

will explore how our findings might change for varying cluster sizes, varying ICCs, varying 

number of clusters and differential variance in the control and intervention arms. 

CONCLUSION 

In summary, we used four cluster randomised controlled trials (CRCTs) as case studies to 

demonstrate the applications of four statistical methods for analysing CRCTs. The 

characteristics of the four case studies covered a range of settings in CRCTs in practice; 

however, the generalizability of our findings should be limited to studies with similar 

characteristics as our case studies. In most cases the modelling approaches produced similar 

results which are consistent with the original primary analyses. A plausible reason for this could 

be the negligible correlation (small ICCs) among responses observed in each of the cases 

studied. 

 However, the mGLM-QIF produced differing parameter estimates compared to the other three 

statistical models in some cases, but they most times reached the same conclusion. These 

differences are noticeable for studies with small to moderate number of clusters (i.e., less than 

46). Although the four statistical methods were compared among each other, we cannot 

determine a superior method using only this example data analysis. We recommend further 

research based on simulation studies to comprehensively evaluate the performance of the 

methods.  
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