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Topologically-disordered systers at the glass transition
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Abstract The thermodynamic approach to the viscoaitg fragility of amorphous oxides was used to
determine the topological characteristics of ttediered network forming systems. Instead of the
disordered system of atoms we considered theraengdisordered system of interconnecting bonds.

The Gibbs free energy of network breaking defects (configurons) was found based on available
viscosity data. Amorphous silica and germania weeel @s reference disordered systems for which we
found an excellent agreement of calculated and mnedglass transition temperatures. We revealed

that the Hausdorff dimension of the system of bonds changes from Euclidian three-dimensional below
to fractal 2.5%0.05- dimensional geometry aboWe glass transition temperature.

PACS: 61.43.-j Disordered solids; 64.70.Pf Glass transitions; 71.55.Jv Disosteuetlires;
amorphous and glassy solids.
Keywords: Amorphous materials; liquids, glasses; glaaasdition; topological disorder; percolation;

1. Introduction

The distribution of atoms and molecules in amorphous materials is irregular and is described as
topologically disordered in that an amorphous material cannot be produced by continuously distorting a
crystalline lattice. There is an enormous diversitamorphous materials, including: covalently-

bonded oxide glasses such as vitreous silica, the structure of which is modelled by a continuous random
network of bonds (network-forming materials); nikitaglasses bonded by isotropic pair potentials,

whose structure is thought of as a dense randakingpof spheres; and amorphous polymers, whose
structure is understood to be an arrangemeimt@fpenetrating random-walk-like coils strongly

entangled with each other. Amorphous materialsbeaim two forms: either as viscous liquids or

glasses. A glass is a disordered material like a viscous liquid but which behaves mechanically like an
isotropic solid. Although fundamentally important the nature of the glassy state is not well understood
neither for ordinary glasses such as vitreaxides nor for spin glasses [1, 2]. Moreover it is

recognised that the theory of ordinary glasses sodéfer from a lack of commonly accepted simplified
models analogous to that of spin glasses such as the Edwards-Anderson model [2]. A glass is most
commonly formed by cooling a viscous liquid fasiough to avoid crystallization. Practically any

liquid crystallizes if the cooling ta is sufficiently slow hence theis a critical cooling rate above

which a liquid can be vitrified. On cooling thesgbsities of liquids gradually increase and the liquid-

glass transition is often regarded as a transfopractical purposes rather than a thermodynamic

phase transition [3]: by general agreement it is censitithat a liquid on being cooled becomes a glass
when the viscosity equals ¥@as (13> poise) or where the relaxation time i€ $43, 4]. The liquid-

glass transition is accompanied by spectaculargggm physical properties (e.g. glasses are rigid
whereas supercooled liquids are soft) however no obvious changes occur at the moleculat theel an
material is topologically disordered both in liquitdaglassy states [5]. However at the glass transition
temperature, § rearrangements occur in an amorphous material so thaj tag e exactly detected
analysing for example the behaviour of derivative parameters such as the coefficient of thermal
expansion or the specific heat [6]. As a result the glass transition is considered as a second order phase
transition in which a supercooled melt yields, on cooling, a glassy structure and properties similar to
those of crystalline materials e.g. of an isotropl@swoaterial [7]. The theory of second order phase
transitions describes the temperatbehaviour of the specific heatJ@ear T by the power law

Cp(T) o ll‘T - Ty ‘a , wherea is the universal critical exponent][Fhe specific heat of either a
supercooled liquid or equilibrium me® , ;;,ia (T) is higher than that of a gla&s, 4.<(T) . the
thermal expansion coefficient of a liquithiq g (T) is higher than that of a glagsy.s(T) , and the
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isothermal compressibility of a liquittjq,q is higher than that of a glasg, . - The differences in
specific hea\‘ACp , thermal expansion coefficied@ and isothermal compressibilitkx” at second
order phase transitions obey two Ehrenfest theordfds = T(dP/dT)Aa and

Aa =Ax(dP/dT), where P is pressure [8]. Indeed a liquid-glass transition the two Ehrenfest

theorems for the pressure dependence of transition tempedi[bn/edp are approximately obeyed

[9]. Although kinetic approaches enable justifica of these theorems [9] the glass transition shows
distinctly thermodynamic phase transition feat|ie<0]. However, being a kinetically-controlled
phenomenon the liquid-glass transition exhibits a rangg which depend on the cooling rate with
maximal Ty at highest rates of cooling [6]. Thus the Idyglass transition has features both in common
with second order thermodynamic phase transitions and of kinegio (8i 8].

Liguid-glass transition phenomena are observed wsallg in various types of liquids, including
molecular liquids, ionic liquids, metallic liquids, oxis, and chalcogenides [11-15]. There is no long
range order in amorphous materials, however at the liquid-glass transition a kind of freezing transition
occurs which is similar to that of second-order phase transitions and which it may be possible to
characterise using an order parameter [2]. Intithdbecause the ordered system (and the glass state
seems to be more ordered than the liquid one) has a higher symmetry the question of the symmetry
arises for disordered systems at the liquid-glassitian [2]. The general theoretical description of the
topologically disordered glassy state focuses sseiations [16] and isased on partitioning space

into a set of Voronoi polyhedrons filling the space of a disordered material. A Voronoi polyhedron is a
unit cell around each structural unit (atom, defect, gr@itatoms) which contains all the points closer

to this unit than to any other and is an analogue of the Wigner-Seitz cell in crystals [3]. For an
amorphous material the topological and metric characteristics of the Voronoi polyhedron of a given
unit are defined by its nearest neighbours so thatriisture may be characterised by a distribution of
Voronoi polyhedrons. Considerable progress lentachieved in investigating the structure and
distribution of Voronoi polyhedrons of amorphausterials using molecular dynamic (MD) models
[17-20]. MD simulations reveal that the differermween a liquid and glassy state of an amorphous
material is caused by the formation of percolatiarstrs in the Voronoi network: namely in the liquid
state low density atomic configurations form a p&tion cluster whereas such a percolation cluster
does not occur in the glassy state [17, 20]. The percolation cluster made of low density atomic
configurations was called a liquid-like cluster ascitwars only in a liquid and does not occur in the

glassy state. Nonetheless, a percolation cluster can be envisaged in the glassy state but formed by high
density configurations [17, 18]. Solid-like percadat clusters made of high density configurations
seems to exist in all glass phase models ofragieatoms and dense spheres [17, 18]. Thus MD
simulations demonstrate that negitfie interconnectivity of atoms (e.g. the geometry of bonds)
changes due to the formation of percolation clusters composed of coordination Voronoi polyhedrons.
While these percolation clusters made of Vorondylpedrons are more mathematical descriptors than
physical objects their formation results in changeasénderivative properties of materials near the T

[18]. The liquid-glass transition is thus charactetibg a fundamental change in the bond geometries

so that this change can be used to distinguish liquids from glasses although both have amorphous
structures [17, 21].

The purpose of this work is to analyse the disordered structure of bonds and the spatial distribution of
defects which break the net of bonds of an amorphous material with temperature. We used for
numerical analysis two binary systems: amorplsilica and germania as the simplest glass forming
materials. Thermodynamic data for broken tsnere evaluated based on recent results on the
viscosity of amorphous materialeated theoretically by use of Doremus’ defect model of viscosity
[22-24]. This model relates the viscosity of armogpmous material to the concentration of broken

bonds (defects) which are believed to be responsible for the viscous flow [22]. Given some known
thermodynamic parameters of point defects aitallyevaluation of their concentration becomes

feasible (including in high concentration areas) as does determination of temperature ranges where
dynamic percolation clusters made of broken bonds are formed [21, 25, 26].

Recognition of the role of interconnectivity of thiécroscopic elements of disordered systems and
application of percolation theory has enabled theslbgment of the statistical physics of disordered
systems [26]. Amorphous materials have no elementary cell characterised by a certain symmetry,
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which can reproduce the distribution of atoms by its infinite repetition. Instead the symmetry of a
topologically disordered system is characterisgthe Hausdorff dimension of interconnecting and
broken bonds. Two types of topological disorder abtarised by different symmetries can be revealed
in an amorphous material based on the analysiso&ebrbond concentrations: (i) 3-dimensional, 3D
(Euclidean), which occurs at low temperatusdgn no percolation clusters are formed and the
geometrical structures of bonds can be characterised as a 3-D pitbfa@ntial pathways of motion
and (ii) d=2.55+0.05-dimensional (fractal), which occurs at high temperatures when percolation
clusters made of broken bonds are formed and the geometries of the structures formed can be
characterised as fractal objects with preferential pathways for defect (broken bond) motion. Similarly to
MD results [17, 18] we revealed that the geometry of bonds changgdtas @istribution of net

defects is Euclidean below thg But becomes fractal above it due to the formation of dynamic
percolation clusters made of broken bonds. The glassy state is characterised by a Euclidean 3-
dimensional distribution of bonds and the liquid state is characterised by a fractfl.@%5
dimensional distribution. Our results are consistettt results of MD models and reflect the same
change of the geometry of atom distribution in amorphous materigjsraarely the change of the
symmetry of distribution. Thus the transition frorglassy to a supercooled liquid state can be treated
as a change in the symmetry of topological disortleis makes the liquid-glass transition similar to
second order thermodynamic phase transitionsystalline materials which are always characterised
by symmetry changes [8].

2. Formation of network breaking defects

Binary oxide systems that form network glassesof significant scientific and technological
importance and there is a need for a detailed knowledge of their structure. However, for tieeedisord
atomic arrangement which occurs in amorphous madéea precise structure description over a wide
range of length scales is notoriously difficult to obtain. The atomic sites form a topologically-
disordered network, and the presence of two cba&ispecies adds further complexity. The identity of
the atom occupying a particular site needs tepeeified and information is also required on the
chemical ordering and hence on how the concentratiarpafticular species varies across the network.
Recent investigations show that the glassy phaseneasharacteristic length scales at distances larger
than the nearest neighbour. One is associatediétintermediateange, and the other is associated
with an extended range, which relates fir@pagation of short range ordering [27].

Consider an ideal disordered network represergtibmnary oxide system such as amorphous 8iO
GeQ.. The three-dimensional (3D) disorderedwrrk in these oxides is formed by [S]@r [GeQ)]
tetrahedra interconnected via bridging oxygeB8®OeSi=, wheree designates a bond between Si and
O, and — designates a bridging oxygen atom with two be@dsThe ideal network can also contain
some point defects in the form of broken boaB8&QOeSi=, whereo designates a broken bond between
Si and O. Each broken bond, which is typically astted with strain-release and local adjustment of
centres of atomic vibration, is treated as an elementary configurational excitation in the system of
bonds and is termed a configuron [28]. Using Abgbond lattice model we can represent condensed
phases by their bond network structures [28, 2Blis we can focus our attention on temperature
changes that occur in the system of interconnectingsoha disordered material rather than of atoms.
In this approach the initial set ofstrongly interacting cations such a*®r G€* is replaced by a
congruent set of weakly interacting bonds of the system. The number of bonds witiNié Where Z

is the coordination number of cations e.g. Z=4 for,2id GeQ@. For amorphous materials which have
no bridging atoms such as oxygen in S&0d GeQor chlorine in ZnGJ, i.e. for amorphous Fe or Ge,
Ny = NZ/2. Fig. 1 illustrates the replacement of atomic structure by the congruent bond structure being
either unbroken or broken for amorphous silica when one of fe@ Sonds in the configurational

[SiO,] tetrahedron is broken.
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Figure 1. Configurational unit of amorphous silica (tetrahedron [§iG@ts bond model and

designation. (a) Bond model shown with three unbroken bonds and one configuron. (b) Bond model
designation.

At absolute zero temperature T=0 the material nkwontains no broken bonds, however at any finite
temperature T the network contains thermally-activated defects e.g. configurons. Compared with a
crystal lattice of the same material the disordewsvork typically contains significantly more point
defects such as broken bonds or vacancies. Forgaathe relative concémation of vacancies in
crystalline metals just belothe melting point is only Td— 10*[3, 30]. The energetics of the

disordered net are weaker and point defects can be formed more easily than in crystals of the same
chemical composition. The difference appears from the thermodynamic parameters of defects in
disordered networks. Nonetheless since they are metastable the amorphous materials can be well
described by traditional thermodynamic methods [6, 11-15, 31]. The formation of defects in a network

is governed by the formation Gibbs free enetgy= H, — TS, whereH; is the enthalpy an§; is the

entropy of formation of network defects, e.g. brokestCsor GeO bonds. Recently, Doremus
suggested that diffusion of silicon and oxygenilicate melts takes place by transport of defect SiO
molecules formed in the melt [22]. Formatiortleése defects occurs via breaking of covales®Si
bonds and attachment of additional oxygen atom which leads to five-coordination of oxygen atoms
around silicon. Supporting experimental evidencévef-coordination of silion and oxygen has been
found in silicates [22].

Temperature-induced formation of network breaking defects in a disordered network can be
represented by the reaction involving the breaking oévalent bond, e.g. in amorphous silica:

=Fe0e9=—"35=900eS = Q

The higher the temperature the higher the concentration of thermally-created defects such as broken
bonds or configurons. Because the systefmoofds has two states, namely the ground state
corresponding to unbroken bonds and the excited state corresponding to broken bonds, it can be
described by the statistics of two-level systemso Brates of the equivalent system (Fig. 2) are
separated by the energy intervalgdverning the reaction (1).

Excited state, broken bonds

C, .. exp(-G,/RT)
E,"fm'ucxp(—cdmr)

(JJ

Ground state, unbroken bonds

[ 1
G, =1 Liexp(-G,/RT)

Figure 2. Two-level state equivalent to disorderedgtsyn of bonds of an amorphous material.



The statistics of two level systems leads to thi-kvewn relationship for quilibrium concentrations
of configurons @and unbroken bonds,(B, 23, 24, 28, 29]

expG, /RT)

Ca=Col (M), G =Gl =TMI 1) =1 G, TR

&)

where @ is the total concentration of elementary bond network blocks or the concentration of unbroken
bonds at absolute zero temperatugfO¥>=Cy. These demonstrate that the concentration of configurons
gradually increases with increase in temperature and-sbRchieves its maximum possible value
C¢=0.5G when G>0. To evaluate further the equilibrium concentration of defects in amorphous
materials requires numerical lind § which can be calculated using density functional theory
methods [32]. Hcan be approximated since it should be approximately equal to half of the bond
strength which is the case for silisdere the bond strength of silicon equals 443 kJ/mol [33] and H
220 kJ/mol [24]. Due to the lower symmetry of disordered materjatarsbe expected to be higher
than in a crystal lattice. Defect entropy plays apanant role in crystalline materials due to the high
entropy values and carrier concentrations and thigh mobility in ionic conductors [34, 35]. We
evaluate both and G from experimentally measured viscosilgta of amorphous materials based on
Doremus’ model of viscosity which relates the eisity of net-forming materials to thermodynamic
parameters of network defects [22-24].

3. Thermodynamic parameters from viscosity data

It has been demonstrated recently that the vigcosiamorphous materials is directly related to the
thermodynamic parameters of network breaking defects [22-24]. The generifofdhe viscosity
equation is

n(T) = AT[L+ A, exp(%)lm Cexp(R%)] e

A =k/6aD,, A, =expS,/R), B=H,, C=exp-S,/R), D=H,, (3a)
wherek — is the Boltzmann constamR,is the molar gas constantis the radius of configuron,
D, = fal?v , fis the correlation factor is the symmetry parametérjs the configuron’s jump

distancey is the vibration frequency for a jumping configuron, apd8d H, are the entropy and
enthalpy of motion of configurons. This equation barfitted to practically all available experimental
data on viscosities of amorphous materials 23, Moreover equation (3) can be readily
approximated within a narrow temperature intebwaknown empirical and theoretical models such as
Vogel-Fulcher-Tamman, Adam-Gibbs, Kohlrausch type stretch-exponential law [22, 36, 37]. In
contrast to such approximations equation (3) canseel in wider temperature ranges and gives correct

Arrhenius-type asymptotes of viscosity at hn(T) = AA, 1+ C)TexpB/RT) and low

n(T)= AACT exp[(B+ D)/ RT] temperatures. It shows also that at extremely high temperatures
when T—oo the viscosity of melts changes to a non-activated, e.g. non-Arrhenius type, behaviour
n(T)—=2> A (L+ A))(L+ C)T which is characteristic of systems of almost free particles [8]. Five
coefficients A, A,, B, C and D in equation (3) can be texhas fitting parameters derived from the
experimentally known viscosity data. By use of tielaships (3a) from the numerical data of fitting
parameters one can evaluate the thermodynamic data of network breaking defects such as configurons.

Experiments show that in practice four fittingameters suffice [38] and the viscosity is well
described by a simplified version of equation 7(T) = AT exp(B/ RT)][1+Cexp(D/RT)]. This
equation follows from (3) assuming thA&; exp(B/ RT) >>1 and accounting for A=/\,. Hence

from known viscosity-temperature relationshigf amorphous materials we can evaluateSi and

Hy, to characterise the thermodynamics of configariarthe material’s network [23]. An example of
such evaluation is demonstrated in Fig. 3, which shows viscosity- temperature relationships for
amorphous silica and germania best fitted to the@latiorves. Experimental data for the viscosity of
silica were taken from [39, 40] drior germania from [41]. Best fit curves were calculated using
equation (3) and is usual assuming thgexpB/RT) >> 1.



—
E=]

—_
o

TN w13 1
,3 154 \\\ g & \
D? 13 \\, f, 11
=5 L =
QM " = b
LSS \b\\ E . %
ey x | \\
00 - \’\.\\ %‘0 ,M
87 T, =5 -
~] e o,
: p e
*h"’w-ﬁ_ﬁ' 3 -
3,
700 800 900 1000 1100 1200 1300 1400 1300 1600 1700 1800 1900

0 o To 10 0z zik0 2w 2
Temperature, K
@ . _® .

Figure 3. Viscosity-temperature relationships for amorphous (a) silica and (b) germania.
Fig. 3 demonstrates excellent agreement of thedatyaxperiment with less that 0.5% deviation of
calculated from measured dataindgrelationships (3a) from the numerical data of fitting parameters
A, B, C and D of equation (3) which provide the best fit of theoretical viscosity-temperature
relationship (3) to experimental data [39-41] eem evaluate the thermodynamic data of network
breaking defects in amorphous germania and silica (Table 1).

Table 1. Thermodynamic parameters of configas in amorphous silica and germania.

Temperature, K

Amorphous oxide Hg, kJ/mol Hum, kJ/mol Si R
Sio, 220 525 16.13
Ge(Q 129 272 17.84

Thermodynamic parameters from Table 1 can be tssedlculate viscosity-temperature relationships
of amorphous silica and germania.

4. Geometry of disordered bonds network

Amorphous materials have internal structure mafoee more or less developed 3-D network of
interconnected structural blocks. Amorphous silicd garmania are represented by 3-D topologically-
disordered networks formed via N interconnected J5i®©[GeQy] tetrahedra through bridging oxygen
atoms (Fig. 1). This disordered network is replaced by an equivalent disordered network made of 4N
weakly interacting bonds which can be in two statégser ground (unbroken) or excited (broken) (Fig.

2). The higher the temperature the higher the concentration of excited bonds however at absolute zero
temperature all bonds are in the ground state. At temperatures close to absolute zef¢When0

the concentration of excited bonds is very small so that these are homogeneously distributed in the
form of single configurons in the disordered bond network. Configurons motion in the bondknetwor
occurs in the form of thermally-activated jumps freite to site and in this case all jump sites are
equivalent in the network. The network thus cartracterised as an ideal 3-D disordered structure
which is described by a Euclidean 3-D geomets/gkometry remains 3-D until the concentration of
breaking defects is so low that we can negdey clustering of configurons. However as the
temperature increases due to reaction (1) theezduration of configurons gradually increases as
follows from equation (2). The higher the temperature the higher the concentration of configdrons a
hence some of them inevitably will be in the viciniiyothers. Two and momgearby configurons form
clusters of configurons and the higher the conegiotn of configurons the higher the probability of

their clustering. The higher the temperature the larger are clusters made of configurons in the
disordered bond network. Finally, as is known from percolation theory when the concentration of
configurons exceeds the threshold level they fammacroscopic so-calledngelation cluster, which
penetrates the whole volume of the disordered network [26, 42]. As configurons are moving in the
disordered network the percolation cluster made of broken bonds is a dynamic structure which changes
its configuration remaining however an infinite peatmn cluster [24]. The percolation cluster is made
entirely of broken bonds and hence is readily available for a more percolative than a site-to-site
diffusive motion of configurons. Hence above the percolation level the motion of configurons in the
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bond network occurs via preferred pathways through the percolation cluster. The percolation cluster is
also called an infinite cluster as it penetrates theleviiolume of material which as a result is expected

to drastically change its physiqatoperties from solid-like below tituid-like above the percolation
threshold [18, 21]. The geometry of a percolatuster is fractal with the Hausdorff dimension

d, =d - f/v,wheregandvare critical exponents (indexes) and d=3 is the dimension of the space

occupied by the initial disordered network, so ttat= 2.55+ 0.05 [26, 42]. Above the percolation

threshold the disordered bond network can kaaztterised for moving configurons as a fractal
disordered structure which is described by a fradtaldimensional geometry. Hence when

considering configurons’ motion in the disorderedwork its geometry is Euclidean three-dimensional

at low temperatures and low defect concentrations, whereas at high temperature when the broken bond
concentration is above the percolation threshold it changes to a fractal one with Hausdorff dimension
di=2.55t0.05. The formation of percolation cluster ngas the topology of bonds network from the 3-

D Euclidean below to the fractal, -dimensional above the percolation threshold.

An amorphous material is represented by a diseddbond network at all temperatures, however it has
a uniform 3-D distribution of network breaking defeat low concentrations in a glassy state and a

fractal d, -dimensional distribution at high enough temperatures when their concentration exceeds the

percolation threshold in the liquid state. Changesdbaiir in the geometries of amorphous material at
T, affect their mechanical properties. Abovgdb the geometry is fractal as in liquids [20] the
mechanical properties are similar to those of liquldege network of material remains disordered at all
temperatures although the space distribution of cordigs as seen above is different below and above
the percolation threshold changing the geometry from the Euclidean to fractal. Although to a certain
extent being disordered at all temperatures timal Imetwork above the percolation threshold becomes
more ordered as a significant fraction of brnok®nds belong to the percolation cluster.

Crystalline materials are characterised by 3-BlHean geometries below their melting poigt T

Hence glasses below Tg and crystals belgvaie characterised by the same 3-D geometry. Glasses
behave like isotropic sals and are brittle. Because of th® ®ond geometry glasses are brittle
materials which break abruptly and the fracture surfatgtasses typically appear flat in the “mirror”
zone. It is known however, when analyzed at the nanometre scale with an atomic force microscope,
they reveal a roughness which is similar to the extiebited by metallic fractarsurfaces [43]. Glasses
change their bond geometry gt When melting occurs the geometry of crystalline materials also
changes, as revealed by MD experiments to fractal structure wil6d20]. Table 2 summarises the
changes in the geometry of bond structures of both amorphous and crystalline structures.

Table 2. Hausdorff dimensions of bond structures.

Temperature 0<T<Ty To<T<Th T>Th
Amorphous material state Solid Liguid
Hausdorff dimension of bond structure d=3 di=2.55t0.05
Crystalline material state Solid Liquid
Hausdorff dimension of bond structure d=3 0~2.6

5. Glass-liquid transition

As the bond network of an amorphous material isrdes@d the concentration of configurons at which
the percolation threshold is achieved can bedausing the universal critical percolation densiy,

which remains the same for both ordered and diseddettices [26, 42, 44]. The relative concentration
of defects is given byf (T) = C, / C, which shows that the higher the temperature the higher is
f(T). Assuming that a€, / C, =1 the space is completely filled by configurons we can designate

f(T) as the volume fraction of space occupied by randomly distributed configurons. Thus the critical

temperature Jat which the percolation level is achieved can be found assuming that the configurons
achieve the universal critical density given by the percolation theory



f(Ty) =6, (4

For SiQ and Ge@we suppose thai, = 9. where 9. is the Scher-Zallen critical density in the 3-D
spaced, = 015+ 001 [26, 42, 44]. Note that for real percolating systems the valék ain be
significantly lower [26]. At temperatures abovgtfie space is filled by configurons at concentrations
which exceed the critical densit), therefore they form the percolation cluster with fractal geometry
changing the state of material from sgelike (glass) to liquid-like (Fig. 4).

= —
g -

08

0.6

AT

04

Liguid

2 |

]
)

o=~
]

Glass
e

i T.K

SO0 SO0 1300 1766) 2100 2500

Figure 4. Relative concentration of configuromsamorphous silica and germania.
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Accounting for (2) from (4) we find thatyTs directly related to the configuron thermodynamic
parameters via:

T, = at
9 S, +RIn[(1-6.)/6.]
d c c

()

Below Tg the configurons are uniformly distributed iresp and formation of clusters is improbable.

The geometry of network defects in this area can be characterised as Euclidean. With increase of
temperature at T=J the concentration of defects achieves the critical concentration for formation of a
percolation cluster. Abovegh percolation cluster made of network defects is formed and the geometry
of the network becomes fractal. Hence at Tamorphous materials can be considered as supercooled
liquids. We expect thatglobtained from (5) will have values close to those experimentally observed.
Table 3 gives Jcalculated using equation (5) and experiralynimeasured data on transition from the
glassy to the supercooled liquid state (e.g. tempeamtuhen the supercooled liquid state is reached)
from [45, 46].

Table 3. Glass transition temperatures, €] in amorphous Sigand GeQ.

Amorphous oxide SiQ GeO,
T,, calculated from (5), K 1482 792
T4, experiment [45, 46], K 1475 786

The agreement between calculated and experimentaiysured data on transition from the glassy to
the supercooled liquid state isoedent: calculated values of,Twhich are entirely based on processing
of continuous viscosity-temperature relationshipetafrom earlier works [18, 19], nearly coincide
(within 0.5- 0.7%) with recently-measured calorimetrid4, 46].

Although the formation of glass is a kineticallgatrolled process equation (5) demonstrates thist T
a thermodynamic parameter of an amorphou naseaind its network-breaking defects (configurons)

rather than a kinetic or dynamic one. It is worth noting that taking into ac&ust R we can
simplify equation (5) to an approximation similarfamm with the well-knowrDienes ratio [35, 47]
T, ~Hy /'S, . In addition equation (5) conforms well to Hunt's equation fpofTionic glasses

T,=zE, 118k , whereE,, is the peak hopping energy barrier [48]. This can be seen by accounting that

the hopping barrier can be assessefgs= H, / N, where N is Avogadro’s number, e.g. for



amorphous silica equation (5) givég = H, /18R which is almost the same as given by Hunt's
equation.
6. Role of kinetics

We obtained the temperature of transition from a glassy to a supercooled liquid state (5) without
considering for the formation of crystalline phagésanges at the glass transition are kinetically-
controlled and occur when the cooling rate isigh that crystallisation is negligible. A liquid is
always in a metastable state below its melting poip} {fius whether it becomes a glass or a crystal
depends critically on cooling rate. When the coolirig i slow any liquid crytallizes, except atactic
polymers that hardly crystallize due to stereoirregylfl]. A liquid always tends to crystallize into
the equilibrium crystal. The tendency to crystallsevell expressed by the fragility of melts which
Angell suggesteds used to describe the deviation afoasity from Arrhenius-type behaviour [49].
This deviation is caused by chasgder the activation energies of viscosity and enables numerical

characterisation of the fragility vidoremus’ criterion of fragilityR, =1+ H,/H,,, where H, is the

enthalpy of motion of configurons [23, 24trong network liquids such as Siehd GeQare well
polymerised, mostly covalently-bonded, and dertrates nearly-Arrhenius temperature dependence of
viscosity. These have small values ¢f RiO,, has R=1.42 and Gedhas R=1.33 [22, 24]. In

contrast the activation energies of fragile liquitienge significantly with temperature so their

viscosity deviates significantly from the Arrhenhshaviour. Typical fragile glass-forming liquids are
chalcogenides or iron phosphates, whose networks are mostly ionic. These are characterised by large
values of B>>1, diopside has §x7.26 [50].Fragility of amorphous materials is reflected by a high
sensitivity of the melt viscosity to temperature and Byrang tendency to crystallize. It is known that
when a fragile material is heated or cooled at a normal rate, say 20 K/min, the exothermic peaks due to
crystallization processes can be easily detectied) asdifferential scanning calorimeter. Moreover
experiments with fragile basalt systems reveal redistructures even above the liquidus temperature
[51]. Large-scale density fluctuations, known as késcclusters, commonly exist in fragile liquids and

are revealed in one component glass-forming liquids and polymers [52]. Bakai [53] showed that the
observed fluctuations appears as result of aggozgat liquid domains and developed the idea that a
glass-forming liquid has heterophase mesoscopic structure consisting of solid-like and fluid-like
species. In contrast strong liquids are mofecdit to crystallise thariragile ones below gsince their
kinetics are almost controlled layrelaxation [1]. Hence equation (5) is readily applicable to

calculating of T for strong liquids and at relatively fast cooling rates.

A certain amount of crystalline phase inevitable fowhgn a glass is formed via cooling a liquid. The
lower the cooling rate, q, the higher the volume faagtk, occupied by crystalline phases. Finally, at
very low cooling rates when q is below the critical cooling rgte.)Jgformation of glass is impeded by
crystallisation. The critical coolingteis defined as the lowest cooling rate at which the final degree of
crystallinity of amorphous material doaet exceed a given critical valug which can be close to

unity when the glass crystallises. For good glass-forming liqyigsnormally assumed to be within
10° — 10% [54, 55]. The volume fraction of crystallised material can be found in the framework of
Kolmogorov-Avrami theory of phase transformations. It can be expressed in the simplest case of a
constant nucleation rate per unit volumeak an integral function atmstant cooling rate q [55-57]:

x=1-expla ut*/3) where tis time and u is the ratiegrowth of crystalline phase. Note that
nucleation rates are at a maximum negi5¥] which emphasises the role of crystallisation at liquid-
glass transition [1]. The fraction of crystalline phase is proportionaf tw ¢: x = 7 Vu3t4 /3 when

x<<1. Generally, the higher the cooling rate g thal®nis x. The actual volume of vitreous phase

hence depends on cooling rate and can be expressgahs XAt finite cooling rates the actual

volume of amorphous material available for the formation of percolation clusters made of configurons
is lower. This reduction can be accounted for emehuation for critical tengature of percolation

including a renormalization term in (4)(T;) = 6.x, = 6,(1— X) . Thus when taking into account the
formation of crystalline phases we obtain a renormalized equatio:for T
T, = H,
¢ S, +RIn[A+x-6.)/6.]

(6)



This shows that when x<<JgThcreases logarithmically with q:
T, =H, /[S, +RIn[[L-6, + (T, - T,)*u*139*1/6,]

and achieves its maximum value given by (5] atco when the volume fraction of crystalline material

is negligibly low sax—0. Ty diminishes with the diminution of g although its reduction is limited by
formation of crystalline phases as whem() the fraction of crystalline material>1. Thus at very

low cooling rates the vitreous phase is hardhyied as the only phase formed is crystalline. The

interval of temperatures where the glass transition occurs can be assessed from (6) accounting that there
is a minimum possible cooling ratg;gor correspondingly a maximum cooling timgwhen a glass

can be obtained via cooling. The minimum possible cooling rgt@uad corresponding maximum

cooling time }ax are found considering the crystallisationddics [54, 55]. This gives for the glass

transition intervalAT, ~ T, (R/ S,) In(566+ 0397 LPtT ) which reproduces the experimentally

max
known logarithmic behaviour of;with cooling rate [658]. Although the glass transition temperature
is a thermodynamic parameter it depends on the cooling rate of a supercooled liquid as the formation of
glass is a kinetically-controlled process. Thes Bf amorphous materials achieve their maximum
thermodynamic values at infinitely high cooling rates.

7. Derivative discontinuities

The concentration of configurons changes continlyough temperature therefore no discontinuities
are expected to occur a§ fbr integral properties of amorphous teréals. MD simulations show that
derivative characteristics such as spedibat demonstrate discontinuities g{17, 18]. The
discontinuities are explained accounting for the fornmatibpercolation clusters and the change in the
geometry of distribution of configurons. The characteristic linear scale which describes thestmasich
of clusters formed by configurons is the correlation led@t). It gives the linear dimension above
which the material is homogeneous and can be clesisexdd as a material with uniformly distributed
configurons. Because of formation of percolation clusters at lengths smallé(Thdhe material has

a fractal geometry [42]. At temperatures approachihd correlation lengtg diverges:

E(M)=¢, /| f(T)- 90|V , Where the critical exponent0.88 [26, 42]. Accouting for this we can

describe finite size effects in the glass siian where a drift to higher values of i observed when
sample sizes L diminish:4{o)-T¢(L) ~ 1/L [59, 60]. Indeed assuming that the glass-liquid transition is
achieved when the correlation length is equal to the size of saffip)e= L we obtain

T, () =T, (L) = 0.12751 (RT, / H,)(&, / L)*** which conforms well to Hunt's conclusions [59,
60].

Following approaches developedAdngell’s bond lattice model [28, 29]e can find the heat capacity
per mole of configurons involved in the percolation cluster ngar T

H 2 Tll—ﬁ
Coont = R(R_'Id'j f(MA-f(M)] 1+ pR(AH /H d)w 7

where T, = Rng 16.(1-6.)H,, pyis a numerical coefficient close to unity (for strong liquids

P,=1.0695) and\H<<Hjy is the enthalpy of bonding of configurons in the percolation clustécan

be found accounting for the fact that the enthalpfpormation of one mole of configurons which
belong to a percolation clustet 14 higher than § e.g.AH=H.-Hq. Thus the configurons in a
percolation cluster are not condensed in a condensed excited state, which makes it different from

Holmlid’s clusters wheraH<O0 [61, 62]. From (7) one can see that the heat capacity shows divergence
059
near T, proportional tooc 1/‘T —Tg‘ . Because T<< Ty with further increase of temperature the

divergence observed af hecomes negligible and the contribution of (7) to the heat capacity of an
amorphous material is insignificant which is consistent with experimental observations [63, 64]. Fig. 5
illustrates this type of behaviour for the specific heat-tdrphenil near the glass transition.
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Figure 5. Specific heat of amorphousterphenil. (a) experimental data from [61, 62]. (b) calculated
curves accounting for contribution (7).

Thus the glass transition shows typical features of second order phase transformations including
universal behaviour near the phase transition temperature [8]. From (7) we can find that the universal
critical exponent at the glass transition0.59.

8. Conclusions

We analysed the disordered structure of bamdkthe geometry of the spatial distribution of
configurons (thermal equilibrium network-breakidgfects in a network of bonds) of an amorphous
material. Amorphous Siand GeQ@were used as simple glass-forming materials for this purpose.
Thermodynamic data of broken bonds were evatlb#ssed on viscosity-temperature relationships and
Doremus’ defect model of viscosity. Evaluationcofhfigurons concentration revealed temperature
ranges where dynamic percolation clusters made of broken bonds are formed. We defsdte T
temperature where a percolation cluster madmofigurons is formed and found an excellent
agreement between calculated and experimentally measured calorirgeitie Gharacterised the
symmetry of topologically-disordered systems by the Hausdorff dimensiohbdnds. Our analysis
revealed two types of topological disorder chtgased by different symmetries below and above the
T4 (i) d=3- dimensional (Euclidean), which occurs in the glassy state gtiilk@h no percolation
clusters are formed and (iij=®2.55+0.05- dimensional (fractal), which occurs in the liquid state at
T>T, when percolation clusters made of brokend=are formed. Our results hence are consistent
with previous work and reflect the same changgeometry of the atondistribution in amorphous
materials at §. Thus the transition from a glassy to a supercooled liquid state can be treated as a
change in the symmetry of topological disorder.
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