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Abstract
Background: Age- related macular degeneration (AMD) is a leading cause of blindness in the indus-

trialised world and is projected to affect >280 million people worldwide by 2040. Aiming to identify 

causal factors and potential therapeutic targets for this common condition, we designed and under-

took a phenome- wide Mendelian randomisation (MR) study.

Methods: We evaluated the effect of 4591 exposure traits on early AMD using univariable MR. 

Statistically significant results were explored further using: validation in an advanced AMD cohort; 

MR Bayesian model averaging (MR- BMA); and multivariable MR.

Results: Overall, 44 traits were found to be putatively causal for early AMD in univariable analysis. 

Serum proteins that were found to have significant relationships with AMD included S100- A5 (odds 

ratio [OR] = 1.07, p- value = 6.80E−06), cathepsin F (OR = 1.10, p- value = 7.16E−05), and serine 

palmitoyltransferase 2 (OR = 0.86, p- value = 1.00E−03). Univariable MR analysis also supported 

roles for complement and immune cell traits. Although numerous lipid traits were found to be 

significantly related to AMD, MR- BMA suggested a driving causal role for serum sphingomyelin 

(marginal inclusion probability [MIP] = 0.76; model- averaged causal estimate [MACE] = 0.29).

Conclusions: The results of this MR study support several putative causal factors for AMD and high-

light avenues for future translational research.
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Editor's evaluation
The findings of this study as well as the strength of the provided evidence are important and 

have significance beyond a single subfield. This manuscript is of interest to readers in the fields 

of ophthalmology, epidemiology and public health. The identification of both known and previ-

ously unknown risk factors for age- related macular degeneration (AMD) using genetically informed 

approaches can be combined with traditional epidemiological approaches to develop interventions 

that reduce the risk of AMD. The key claims of the manuscript are well supported by the data, and 

the approaches used are thoughtful and rigorous.

Introduction
Age- related macular degeneration (AMD) is a common retinal condition that affects individuals who 

are ≥50 years old. It is caused by the complex interplay of multiple genetic and environmental risk 

factors, and genome- wide association studies (GWAS) have identified AMD- implicated variants in 

at least 69 loci. These include important risk alleles in the 1q32 and 10q26 genomic regions (corre-

sponding to the CFH [complement factor H] and ARMS2/HTRA1 locus, respectively) (Fritsche et al., 

2016; Winkler et al., 2020). Other key risk factors include age, smoking, alcohol consumption, and 

low dietary intake of antioxidants (carotenoids, zinc) (Chakravarthy et al., 2010).

AMD can be categorised according to severity (early, intermediate, or advanced) or based on the 

presence of neovascularisation (neovascular or non- neovascular). Advanced AMD results in loss of 

central vision, often leading to severe visual impairment (Fleckenstein et al., 2021). Notably, AMD is 

a major cause of blindness in the elderly population and represents a substantial global burden that 

is expected to continue to grow into the future as an ageing population expands worldwide (Chakra-

varthy et al., 2010).

Mendelian randomisation (MR) is a statistical approach that uses genetic variation to look for causal 

relationships between exposures (such as smoking) and outcomes (such as risk of a specific disease) 

(Julian et al., 2021). MR is increasingly being utilised as it can, to a degree, address a major limitation 

of observational studies: unmeasured confounding (Sanderson et al., 2022). To minimise issues with 

certain types of confounding and to support causal inference statements, MR uses genetic variation as 

an instrument (i.e. as a variable that is associated with the exposure but is independent of confounders 

and is not associated with the outcome, other than through the exposure). The principles of MR are 

based on Mendel’s laws of segregation and independent assortment, which state that offspring inherit 

alleles randomly from their parents and randomly with respect to other locations in the genome. A 

key concept is the use of genetic variants that are related to an exposure of interest to proxy the part 

of the exposure that is independent of possible confounding influences (e.g. from the environment or 

from other traits). It is noted that analogies have been drawn between MR and randomised controlled 

trials with these two approaches considered proximal in terms of hierarchy of evidence (Julian et al., 

2021). To date, the use of MR approaches in the context of AMD has been limited although these 

methods have been successfully implemented to explore the relationship between AMD and a small 

number of traits including lipids, thyroid function, CRP, and complement factors (Cipriani et al., 2021; 

Han et al., 2021; Han et al., 2020b; Li et al., 2022; Zuber et al., 2020).

In this study, we developed a systematic, broad (‘phenome- wide’) MR- based analytical approach 

and used it to investigate the relationship between early AMD and several thousand exposure vari-

ables. A set of traits that are robustly associated with genetic liability to AMD were identified.
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Methods
Data sources
Outcome data

Two AMD phenotypes were used as outcome measures in this study. The first one was early AMD. 

The GWAS summary statistics for this phenotype were taken from a meta- analysis by Winkler et al., 

2020. This meta- analysis focussed on populations of European ancestries and used data from the 

ARIC, AugUR, CHS, GHS, IAMDGC, KORA S4, LIFE- Adult NICOLA, UKBB, and WHI studies (14,034 

early AMD cases and 91,214 controls overall). A full description of how these studies classified partic-

ipants as ‘early AMD’ can be found in the relevant publication Winkler et al., 2020; briefly, a number 

of approaches considering drusen size/area and the presence or absence of pigmentary abnormal-

ities were utilised including the 3 Continent Consortium (3CC) severity scale (Klein et  al., 2014), 

the Rotterdam Eye Study classification (Korb et al., 2014), the Beckman clinical classification (Ferris 

et al., 2013), and the AREDS- 9 step classification scheme (Davis et al., 2005). All relevant studies 

used colour fundus photography for grading purposes. The second phenotype that we studied was 

advanced AMD. For this trait, we drew on GWAS summary statistics from a multiple trait analysis 

of GWAS (MTAG) study by Han et al., 2020a. This meta- analysis also focussed on individuals with 

European ancestries and derived data from the IAMDGC 2013 (17,181 cases and 60,074 controls) 

(Fritsche et al., 2013) and IAMDGC 2016 (16,144 advanced AMD cases and 17,832 controls) (Frit-

sche et al., 2016) studies as well as the GERA study (4017 cases and 14,984 controls) (Kvale et al., 

2015). The relevant summary statistics are primarily reflective of advanced AMD, but the GERA cohort 

included both advanced and intermediate AMD cases. Advanced AMD was broadly defined by the 

presence of geographic atrophy or choroidal neovascularisation, although there was a degree of 

variability in the criteria used in the included studies. Notably, the MTAG approach can leverage the 

high genetic correlation between the input phenotypes to detect genetic associations relevant only 

to advanced AMD.

Exposure data
A phenome- wide screen was performed to make causal inferences on the role of a wide range of traits 

in early and advanced AMD. To achieve this, both published and unpublished GWAS data from the 

IEU open GWAS database were used; these were accessible via the TwoSampleMR programme in R 

(Hemani et al., 2018). All European GWAS within this database were included with the exception of 

imaging phenotypes and expression quantitative trait locus related data which were removed. The 

restriction to European datasets limits the generalisability of the results to other populations but is 

necessary to produce reliable findings. In the early AMD analysis, studies from the ‘ukb’ and ‘met- d’ 

batches were excluded as data for these studies were entirely from the UK Biobank resource and, as 

a result, there was extensive population overlap with the early AMD GWAS (Sudlow et al., 2015). 

In the advanced AMD analysis, the ‘ukb’ and ‘met- d’ batches were included. The early AMD analysis 

was conducted on 30/12/2021 and a total of 10,979 traits were considered for analysis. The advanced 

AMD analysis was conducted on 08/01/2022. On 26/01/2022 we added the newly published ‘finn- b’ 

(n = 2803) traits to the analysis in place of the outdated ‘finn- a’ traits (n = 1489). It was impractical 

to manually inspect the degree of population overlap for all traits prior to conducting the analysis; 

instead, the degree of overlap for all significant traits was inspected after the analysis.

Instrument selection
A statistically driven approach to instrumental variable selection was used. Typically, an arbitrary 

p- value threshold is set for the identification of appropriate single- nucleotide variants (SNVs); these 

are subsequently used as instrumental variables (referred to thereafter as instruments). A conventional 

p- value threshold for the selection of instruments is >5E−08. This approach however can, in some 

cases, be problematic. For example, when the number of instruments exceeding this threshold is 

small, the analysis can be underpowered or, in certain cases of unbiased screens, the results can be 

inflated (Boddy et al., 2022). With this in mind, the p- value for instrument selection for each trait was 

set to the level where >5 instruments were available for each analysis. More specifically, for each trait, 

the analysis would first be conducted with a p- value threshold for inclusion of 5E−8 before sequen-

tially increasing the threshold by a factor of 10 each time until >5 eligible instruments are identified. 
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A predefined maximum p- value of 5E−05 was used and the final range of pvalues for inclusion was 

5E−06 to 5E−08.

Proxies
Where an exposure instrument was not present in the outcome dataset, a suitable proxy was identi-

fied (Hartwig et al., 2016). In the early AMD analysis, this was achieved by using the TwoSampleMR 

software with a linkage disequilibrium R2 value of ≥0.9 (Purcell et al., 2007). For the advanced AMD 

phenotype, data that were not derived from the TwoSampleMR resource were used and therefore 

the Ensembl server was utilised to identify proxies (Cunningham et al., 2022; Hemani et al., 2018).

Clumping
SNVs were clumped using a linkage disequilibrium R2 value of 0.001 and a genetic distance cut- off of 

10,000 kilo- bases. A European reference panel was used for clumping.

Harmonisation
The effects of instruments on outcomes and exposures were harmonised to ensure that the beta 

values (i.e. the regression analysis estimates of effect size) were expressed per additional copy of the 

same allele (Hartwig et al., 2016). Palindromic alleles (i.e. alleles that are the same on the forward as 

on the reverse strand) with a minor allele frequency >0.42 were omitted from the analysis in order to 

reduce the risk of errors.

Removal of pleiotropic genetic variants and outliers
Pleiotropic instruments and outliers were removed from the analysis by using a statistical approach 

that removes instruments which are found to be more significant for the outcome than for the expo-

sure (Hemani et al., 2017). Radial MR, a simulation- based approach that detects outlying instruments, 

was also utilised (Bowden et al., 2018).

Causal inference
MR relies on three key assumptions with regard to the instrumental variable: (1) the instrumental SNV 

should be associated with the exposure; (2) the SNV should not be associated with confounders; (3) 

the SNV should influence the outcome only through the exposure (Julian et al., 2021).

MR estimation was primarily performed using a multiplicative random effects (MRE) inverse vari-

ance weighted (IVW) method. MRE IVW was selected over a fixed effects (FE) approach as it allows 

inclusion of heterogeneous instruments (this was certain to occur within the breadth of this screen) 

(Burgess et al., 2019). A range of ‘robust measures’ were used to increase the accuracy of the results 

and to account for violations of the above key MR assumptions (Burgess et al., 2019); these measures 

included weighted median (Bowden et al., 2016a), Egger (Burgess and Thompson, 2017), weighted 

mode (Hartwig et al., 2017), and radial MR with modified second- order weights (Bowden et al., 

2018).

Further quality control
The instrument strength was determined using the F- statistic (which tests the association between the 

instruments and the exposure) (Burgess and Thompson, 2011). F- Statistics were calculated against 

the final set of instruments that were included. A mean F- statistic >10 was considered sufficiently 

strong.

The Cochran’s Q test was performed for each analysis. Cochran’s Q is a measure of heterogeneity 

among causal estimates and serves as an indicator of the presence of horizontal pleiotropy (which 

occurs when an instrument exhibits effects on the outcome through pathways other than the expo-

sure) (Bowden and Holmes, 2019). It is noted that a heterogeneous instrument is not necessarily 

invalid, but rather calls for a primary assessment with an MRE IVW rather than an FE approach; this 

has been conducted as standard throughout our analysis.

The MR- Egger intercept test was used to detect horizontal pleiotropy. When this occurs, the Egger 

regression is robust to horizontal pleiotropy (under the assumption that that pleiotropy is uncor-

related with the association between the SNV and the exposure) (Burgess and Thompson, 2017). 

Unless otherwise indicated by the Egger intercept, the assumption that no demonstrable horizontal 
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pleiotropy is present was made and Egger regression was not utilised to determine causal effects 

(given the low power of this approach in the context of a small number of SNVs) (Bowden et al., 

2015).

The I2 statistic was calculated as a measure of heterogeneity between variant- specific causal esti-

mates. An I2 < 0.9 indicates that Egger is more likely to be biased towards the null through violation 

of the ‘NO Measurement Error’ (NOME) assumption (Bowden et al., 2016b).

Leave- one- out cross- validation was performed for every analysis to determine if any particular SNV 

was driving the significance of the causal estimates.

Management of duplicate traits
As the GWAS database that was used contained multiple different GWAS for certain traits, some 

exposures were analysed on multiple occasions. Where this occurred, the largest sample size study 

was considered to be the primary analysis. Where there were duplicate studies in the same popula-

tion, the study with the largest F- statistic was used.

Identification of significant results
Before considering an MR result to be significant, the results of a range of causal inference and quality 

control tests should be taken into account. Notably, it is not necessary for a study to find significance 

in all measures to determine a true causal relationship. MR is a low power study type and, as such, an 

overly conservative approach to multiple testing can be excessive (Burgess et al., 2019). However, in 

the context of the present study the results of the early AMD phenome- wide screen were considered 

significant only if they remained: significant after false discovery rate (FDR) correction in the MRE IVW; 

nominally significant in weighted mode and weighted median; and nominally significant throughout 

the leave- one- out analysis (MRE IVW) (Benjamini and Hochberg, 1995). This conservative approach 

was selected as a large number of phenotypes was studied and because we wanted to focus on high 

confidence signals.

Where causal traits for early AMD were identified, the relationship between these traits and 

advanced AMD was studied. These two AMD classifications are phenotypically distinct but are gener-

ally part of the same disease spectrum. When traits failed to replicate as causal factors in the advanced 

AMD dataset, it could not be inferred that these traits are not truly causal for early AMD. However, 

significance in both AMD phenotypes provided support for the detected causal links and evidence 

that a factor plays a role across the disease spectrum.

Multivariable MR
Multivariable MR was performed in circumstances where it was important to estimate the effect of >1 

closely related (and/or potentially confounding) exposure trait (Sanderson et al., 2019). P- values for 

the inclusion of instruments for the exposures of interest were optimised to obtain sufficiently high 

(>10) conditional F- statistics for reliable analysis (Sanderson et al., 2021). With this in mind, selection 

for exposures began at a p- value threshold of >5E−08. Where trait’s instruments had a conditional 

F- statistic <10, the p- value for selection was reduced in an automated manner by factor of 10 until 

an F- statistic >10 was obtained. The same clumping procedure as in the univariable MR analysis was 

used. Adjusted Cochran’s Q- statistics were calculated, with a p- value of <0.05 indicating significant 

heterogeneity. Where the Cochran’s Q- statistic indicated heterogeneity, a Q- statistic minimisation 

procedure was used to evaluate the causal relationship; testing assumed both high (0.9) and low (0.1) 

levels of phenotypic correlation (Sanderson et al., 2021).

Two-sample multivariable Mendelian randomisation approach based on 
Bayesian model averaging (MR-BMA)
Multivariable MR can be used to obtain effect estimates for a few (potentially related) traits. However, 

it cannot be directly applied when many traits need to be considered. In contrast, Mendelian rando-

misation Bayesian model averaging (MR- BMA), a Bayesian approach first described by Zuber et al., 

2020, can search over large sets of potential risk factors to determine which are most likely to be 

causal.

Notably, Zuber et al., 2020 previously performed an in- depth analysis which considered the role 

of lipids against an older AMD GWAS. The relevant study served as proof- of- concept for the MR- BMA 
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method and demonstrated that several lipid traits have causal roles in AMD. However, the analysis had 

two potential limitations. First, it downweighed fatty acid traits through limiting composite traits for 

SNV identification to HDL, LDL, and triglycerides. Second, numerous lipid traits with a potential role 

in AMD were not included in the analysis. For these reasons, we chose to conduct a more compre-

hensive analysis with a slightly altered approach. The following study design modifications were made 

compared to the study by Zuber et al., 2020:

1. Fatty acids were included as a composite trait (utilising GWAS data for serum fatty acids derived 
from the Nightingale Health 2020 resource as listed in TwoSampleMR package [Hemani et al., 
2018]).

2. All lipid and fatty acid measures included in a GWAS by Kettunen et al., 2016 were considered 
as potential causal traits (n = 102 traits).

3. A more recent AMD GWAS was used (Winkler et al., 2020).
4. In general, multivariable MR (of any sort) cannot produce reliable results where the studied traits 

are ≥0.99 correlated with respect to the included instruments. For this reason, where two traits 
were highly correlated, one was removed at random rather than by manually selecting traits in 
a manner which risks selection bias.

MR- BMA for immune cell and complement phenotypes was additionally performed. In this anal-

ysis, instruments were obtained at genome- wide significance (p- value >5E−08) for every included 

exposure in the model (given that composite traits were not available/applicable). For the immune cell 

MR- BMA, all immune traits that were studied in a GWAS by Orrù et al., 2020 and were present in the 

TwoSampleMR package were used as exposures. In the complement analysis, all complement traits 

available in relevant studies by Sun et al., 2018 and Suhre et al., 2017 were used, with the exception 

of complement subfractions.

For the MR- BMA analysis, the prior probability was set to 0.1 and the prior variance was set to 

0.25. A stochastic search with 10,000 iterations was undertaken and empirical pvalues with 100,000 

permutations were calculated.

Presentation of effect sizes
Effect sizes are presented to enable appraisal of the impact of putative risk factors. For the univari-

able MR analysis, these are presented as OR per 1 standard deviation of change in the exposure for 

continuous traits, and as beta values for binary exposure traits. This approach was selected because 

ORs are uninformative for binary exposure traits (Burgess and Labrecque, 2018). Furthermore, beta 

values are not presented by all MR authorities where an exposure variable is binary and it is often 

highlighted that these values are only indicative. Multivariable MR effect sizes are presented as beta 

value estimates irrespective of the nature of the exposure variable (given that the role of multivariable 

MR within this study was purely to identify confounders).

MR- BMA effect sizes are presented in the form of a model- averaged causal estimate (MACE). The 

MACE is a conservative estimate of the direct causal effect of an exposure on an outcome averaged 

across models. It is noted that the primary function of MR- BMA is to highlight the probable causal 

trait among a number of candidate causal risk factors. Although the MR- BMA findings can be used 

to interpret the direction of effect, they should not be necessarily viewed as an absolute guide to 

magnitude (Zuber et al., 2020).

Software

R version 4.1.0.

TwoSampleMR version 0.5.6.

RadialMR version 1.0.

MVMR version 0.3.

MR- BMA code was sourced from https://github.com/verena-zuber/demo_AMD (Zuber, 2021; 

Zuber et al., 2020).
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Results
Overview
Focussing on early AMD, univariable MR analysis was applied to a broad range of traits. Following 

quality control, significant results were replicated in an advanced AMD dataset and further analyses 

were conducted using multivariable MR and MR- BMA (Zuber et al., 2020).

Overall, 4591 traits were eligible for analysis. Among these, 44 were found to be putatively causal 

for early AMD (Table 1, Source data 1). Most of these causal traits were serum lipoprotein concen-

tration and compositional measures (n = 29). Other significant traits identified included immune cell 

phenotypes (n = 5), serum proteins (n = 6), and disease phenotypes (n = 4).

Lipoprotein metabolism is linked to AMD risk
Univariable MR demonstrated significant causal relationships for 28 serum lipoprotein measures and 

1 serum fatty acid concentration (18:2 linoleic acid) in early AMD (Table 1). These relationships were 

also strongly supported by the results of our advanced AMD analysis (Source data 1).

Serum metabolites are highly correlated traits, and the instruments for serum lipoprotein and fatty 

acid measures in the present study were demonstrably correlated (Figure 1). MR- BMA was used in 

order to discern which traits were driving the causal relationships. In our initial analysis, two genetic 

variants (rs11065987 [BRAP] and rs10455872 [LPAL2]) were found to be outliers in terms of Q- statistic 

(Q- statistic 13.84–15.71 and 6.79–10.46, respectively, across models) (Figure 2). These SNVs were 

therefore omitted and the analysis was re- run. In subsequent analyses, no outlier SNVs were identi-

fied. The top 10 models in terms of posterior probability are presented in the Source data 1; the top 

10 individual risk factors in terms of marginal inclusion probability (MIP; defined as the sum of the 

posterior probabilities over all the models where the risk factor is present) are shown in Table 2. The 

MIPs of all the traits included this analysis are plotted in Figure 3. The top 4 traits with respect to their 

MIP were serum sphingomyelins (MIP = 0.76, MACE = 0.29), triglycerides in IDL (MIP = 0.32, MACE 

= −0.16), free cholesterol (MIP = 0.20, MACE = 0.07), and phospholipids in very small VLDL (MIP = 

0.63, MACE = −0.31). It is noted that whilst MR- BMA is designed to select the likely causal risk factor 

among a set of candidate causal traits, it is often not possible to achieve this with certainty. As such, 

a definitive statement of causality for individual lipid traits cannot be obtained within the utilised MR 

causal inference framework.

Serine palmitoyltransferase 2, an enzyme which catalyses the first committed step in sphingo-

lipid biosynthesis, was robustly associated with early AMD. The detected effect size highlighted that 

genetic liability to increasing serum enzyme levels is protective of AMD (Table 1,Source data 1; OR 

0.86, p- value = 1.00E−03). It is of interest that increasing serum levels of the related enzyme serine 

palmitoyltransferase 1 also appeared to be protective of early AMD in most measures (OR 0.94, IVW 

p- value = 2.00E−03, FDR- adjusted IVW p- value = 0.05, weighted median p- value = 0.05; significant 

throughout leave- one- out analysis). Serine palmitoyltransferase enzymes were not significantly related 

to the risk of advanced AMD (Source data 1).

Reinforcing a causal role for complement
Increasing serum levels of the complement proteins CD59 glycoprotein (OR 1.10, IVW p- value = 

2.04E−05) and complement factor H- related protein 5 (OR 1.10, IVW p- value = 7.70E−07) were found 

to be associated with genetic liability to early AMD and passed multiple testing correction. Whilst 

complement C4, complement factor B and complement factor I were also related to early AMD risk 

at nominal level of significance, they did not exceed the conservative criteria for causal inference 

imposed in this study with respect to robust measures (Source data 1). In subsequent advanced AMD 

analyses (Source data 1), CD59 glycoprotein remained related to disease risk (OR 1.07, IVW p- value = 

0.04, weighted median p- value = 9.00E−04, MR- Egger p- value = 2.00E−03, weighted mode p- value = 

7.00E−03). Complement factor I reached a nominal level of significance in the IVW measure (OR 0.95, 

p- value = 0.05) but did not remain significant in other tests. No other complement measures that were 

nominally significant for early AMD were found to be significantly related to advanced AMD.

Complement traits are correlated with one another, and as such MR- BMA analysis was performed. 

In the initial analysis, the relationship between complement proteins was strongly suggested to be 

driven by complement factor H (posterior probability = 0.83, MIP = 1.00, MACE = −0.68). However, 

rs2274700 (CFHR3, Cook’s distance 26.26–55.24 and Cochran’s Q 0.87–2.12 across models) and 
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Table 1. Significant results detected in a phenome- wide univariable Mendelian randomisation (MR) 

analysis of early age- related macular degeneration (AMD).

Only traits passing the conservative quality control criteria described in the methods are listed.

Trait name Odds ratio
FDR- adjusted IVW p 
value MRE IVW beta

Rheumatoid arthritis NA 1.51E−06 0.08

Unswitched memory B cell % B cell 1.11 5.40E−05 0.10

CD62L− dendritic cell % dendritic cell 0.95 3.32E−02 −0.05

Effector memory CD8+ T cell absolute count 1.08 1.79E−04 0.07

CD25 on IgD+CD38− naive B cell 0.93 1.25E−04 −0.07

CD80 on plasmacytoid dendritic cell 0.96 1.63E−02 −0.04

Total cholesterol in IDL* 0.80 6.48E−08 −0.22

Free cholesterol in IDL* 0.80 5.51E−08 −0.22

Total lipids in IDL* 0.79 3.35E−09 −0.23

Concentration of IDL particles* 0.80 9.83E−09 −0.23

Phospholipids in IDL* 0.79 1.86E−09 −0.23

Triglycerides in IDL* 0.84 2.40E−07 −0.18

Total cholesterol in large LDL* 0.83 9.85E−08 −0.19

Cholesterol esters in large VLDL* 0.83 1.41E−07 −0.19

Free cholesterol in large LDL* 0.83 7.07E−07 −0.18

Total lipids in large LDL* 0.83 1.04E−07 −0.19

Concentration of large LDL particles* 0.83 2.40E−07 −0.19

Phospholipids in large LDL* 0.83 1.33E−06 −0.18

Cholesterol esters in large VLDL* 0.82 6.55E−03 −0.20

18:2 linoleic acid (LA)* 0.80 2.93E−07 −0.23

Total cholesterol in LDL* 0.82 4.46E−08 −0.19

Total cholesterol in medium LDL* 0.82 3.64E−09 −0.20

Cholesterol esters in medium LDL* 0.82 5.93E−09 −0.20

Total lipids in medium LDL* 0.81 3.35E−09 −0.21

Concentration of medium LDL particles* 0.81 3.64E−09 −0.21

Phospholipids in medium LDL* 0.81 1.86E−09 −0.21

Total cholesterol in small LDL* 0.81 9.85E−08 −0.21

Total lipids in small LDL* 0.81 2.65E−07 −0.21

Total cholesterol in small VLDL* 0.85 2.54E−02 −0.16

Serum total cholesterol* 0.77 3.67E−08 −0.26

Total phosphoglycerides* 0.81 3.93E−03 −0.21

Triglycerides in very large HDL* 0.87 4.37E−04 −0.14

Total lipids in very small VLDL* 0.84 1.97E−03 −0.18

Concentration of very small VLDL particles* 0.84 9.04E−04 −0.18

Phospholipids in very small VLDL* 0.83 3.63E−03 −0.19

Interferon alpha- 10 1.14 1.83E−02 0.13

Protein S100- A5 1.07 6.94E−04 0.07

Table 1 continued on next page
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rs10824796 (MBL2, Cook’s distance 0.13–9.93 and Cochran’s Q 0.87–22.12 across models) were iden-

tified as outlier instruments and therefore warranted removal from subsequent analyses. Rs2274700, 

a genetic variant known to be associated with AMD risk (Liao et al., 2016), represented the only 

instrument strongly associated with complement factor H in the MR- BMA analysis and, as such, its 

removal precluded an informative high- throughput analysis of the complement cascade. Whilst it is 

clear that there is a causal relationship between complement and AMD, it is not possible to comment 

with precision about the specific complement- related molecule driving this.

Other immune traits have mixed protective and causal effects in AMD
Our screen identified other serum immune traits with potential causal roles in early AMD, with several 

of these related to dendritic cell populations. These traits were: Unswitched memory B cell as a propor-

tion of B cells (OR = 1.11, p- value = 4E−07); CD62L− dendritic cell as a proportion of dendritic cells 

(OR = 0.95, p- value = 1.22E−03); Effector memory CD8+ T cell absolute count (OR = 0.95, p- value 

= 1.56E−06); CD80 on plasmacytoid dendritic cell (OR = 0.96, p- value = 4.20E−04); and Interferon 

alpha 10 (OR = 1.14, p- value = 5.38E−04). Notably, numerous immune cell traits were also found to 

be significantly associated with advanced AMD (Source data 1 ). As with lipids, these traits are highly 

correlated and it is not possible to confidently pinpoint which immune cell trait is truly causal in a 

univariable analysis due to potential overlap in terms of genetic instruments. MR- BMA (using data 

from a GWAS by Orrù et al., 2020) for the above immune traits was not possible due to the presence 

of too few genetic variants strongly instrumenting across the exposure variables which, in turn, led to 

a failure to construct a meaningful model. For this reason, it was not possible to determine which of 

these specific factors are driving the casual relationship between immune cell traits and AMD (though 

dendritic cell traits dominate the univariable analysis).

Disease phenotypes are related to AMD risk
There are four disease phenotypes/groups which were found to be significant at a level which satisfy 

the criteria for causal inference defined in this study. These traits are rheumatoid arthritis (beta = 

0.08, IVW p- value = 9.86E−09), psychiatric diseases (beta = −0.43, IVW p- value = 6.88E−07), ‘benign 

neoplasm: skin, unspecified’ (beta = 0.07, IVW p- value = 1.76E−04), and myotonic disorders (beta = 

−0.003, IVW p- value = 7.49E−04). None of these disorders were significant in advanced AMD. The 

very broad and non- specific definitions encapsulated in the GWAS of benign skin neoplasms, psychi-

atric disease, and myotonic disorder make it challenging to apply further analyses within the scope of 

this study, but these may be interesting phenotypes for exploration in future studies.

In univariable MR, rheumatoid arthritis was identified to be causally related to AMD as detailed 

above. Multivariable MR with effector memory CD8+ T cell absolute count as a second exposure 

Trait name Odds ratio
FDR- adjusted IVW p 
value MRE IVW beta

Serine palmitoyltransferase 2 0.86 3.17E−02 −0.15

CD59 glycoprotein 1.10 1.77E−03 0.09

Complement factor H- related protein 5 1.09 9.30E−05 0.09

Cathepsin F 1.10 4.44E−03 0.10

Benign neoplasm: skin, unspecified NA 8.23E−03 0.07

Psychiatric diseases NA 8.54E−05 −0.43

Myotonic disorders NA 2.32E−02 0.00

FDR, false discovery rate; IVW, inverse variance weighted; MRE, multiplicative random effects; %, as a proportion 
of; NA, not applicable (as exposure traits of binary nature do not produce accurate odds ratios; beta values can 
be used instead to infer direction of effect but not necessarily magnitude).

*These traits (trait ID group ‘met- c’ in Source data 1) had 1.9% sample overlap with the early AMD dataset, a 
minor degree of overlap which is unlikely to bias results; the remaining causal traits had no sample overlap with 
early AMD.

Table 1 continued
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variable (utilising a Q- statistic minimisation procedure) demonstrated that the causal effect of rheuma-

toid arthritis was either mediated by immune cells or underpinned by correlated pleiotropy (rheuma-

toid arthritis effect size: 0.03, 95% CI: −0.007 to 0.055; effector memory CD8+ T cell absolute count 

effect size 0.07, 95% CI: 0.001 to 0.19). This finding persists in models assuming both very high (0.9) 

and low (0.1) phenotypic correlation.

With respect to the relationship between AMD and psychiatric disease, no reverse causation was 

identified (p = 0.31). More specific psychiatric traits which could be analysed were not significantly 

related to genetic liability to early AMD (Source data 1). An extensive range of psychiatric disor-

ders were also explored in the advanced AMD dataset but no significant relationships were detected 
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Figure 1. Plot illustrating the correlations between the beta values for the metabolites considered in our Mendelian randomisation Bayesian model 

averaging (MR- BMA) analysis for early age- related macular degeneration (AMD). This plot visually represents the correlation matrix between the genetic 

associations of the exposure variables with respect to their instruments. The traits are labelled according to their ‘Trait ID’; further information can be 

found in the Source data 1.
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Model 1: Free cholesterol and phospholipids in very small VLDL

Model 2: Sphingomyelins and phospholipids in very small VLDL
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Figure 2. Plots outlining the top- ranking models with respect to their posterior probability in the first run of Mendelian randomisation Bayesian model 

averaging (MR- BMA) of lipid- related traits in early age- related macular degeneration (AMD). Plots (A) and (C) present Cook’s distance while plots (B) and 

(D) present Cochran’s Q. Outlier instruments are annotated. The Cochran’s Q is a measure which serves to identify outlier variants with respect to the 

fit of the linear model. The Q- statistic is used to identify heterogeneity in a meta- analysis, and to pinpoint specific variants as outliers. The contribution 

Figure 2 continued on next page
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(Source data 1). Due to the broad nature of this trait, and the negative results for all disorders 

explored, it was not possible to discern the driving signal behind the significant result for psychiatric 

disease. It appears probable that psychiatric disease is a false- positive result given that it lacks: the 

supporting evidence of biological plausibility; validation in an advanced AMD dataset; or supportive 

evidence through significance of other similar traits in the early AMD analysis.

Serum cathepsin F and S100 proteins have a causal role in AMD
In addition to the four previously mentioned molecules (Table 1: Interferon alpha- 10, CD59 glyco-

protein, complement factor H- related protein and serine palmitoyltransferase 2) a further two serum 

proteins were identified to have likely causal effects. These are S100- A5 (OR 1.07, IVW p- value = 

6.80E−06) and cathepsin F (OR = 1.10, IVW p- value = 7.16E−05).

Serum cathepsin F was shown to be causally related to early AMD. However, no other molecules 

from the serum cathepsin group produced significant results for early AMD and no cathepsin group 

protein was robustly significant for advanced AMD (although cathepsins S and G have significant IVW 

p- values of 1.71E−05 and 0.001, respectively; Source data 1).

Serum protein S100- A5 was demonstrated to be causal for AMD (OR 1.07, IVW p- value = 6.80E−06). 

Additionally, protein S100- A13 was significantly related to early AMD risk in both IVW (OR = 1.07, 

p- value = 1.22E−05) and other measures (weighted median p- value = 3.31E−05, weighted mode 

p- value = 9.00E−04, Egger p- value = 1.00E−03) but did not remain significant throughout the leave- 

one- out analysis, suggesting that the relationship for this particular protein could be driven by a small 

number of influential variants. Whilst protein S100- A2 was nominally significant in the IVW analysis (p 

= 0.04), it was not found to be significant in other measures. No S100 group proteins were significantly 

related to advanced AMD risk (Source data 1).

Discussion
In this study, we used MR to advance understanding of AMD pathogenesis. Our findings indicate 

protective effects for serum VLDL and IDL compositional and concentration traits in AMD. Causal 

of variants to the overall Q- statistic is measured (defined as the weighted squared difference between the observed and predicted association with the 

outcome) in order to identify outliers. Cook’s distance on the other hand is utilised to identify influential observations (i.e. those variants which have a 

strong association with the outcome). Such variants are removed from the analysis because they may have an undue influence over variable selection, 

leading to models which fit that variant well but others poorly.

Figure 2 continued

Table 2. Lead causal traits identified by Mendelian randomisation Bayesian model averaging 

(MR- BMA) of lipid- related phenotypes in early age- related macular degeneration (AMD) ranked 

according to their marginal inclusion probability (MIP).

Rank Risk factor (trait ID) MIP
Average 
effect

Nominal 
p- value

FDR- adjusted 
p- value

1 Sphingomyelins (met- c- 935) 0.76 0.30 2.40E−04 5.76E−03

2 Phospholipids in very small VLDL (met- c- 955) 0.63 −0.31 1.00E−05 7.20E−04

3 Triglycerides in IDL (met- c- 872) 0.32 −0.16 2.10E−04 5.76E−03

4 Free cholesterol (met- c- 858) 0.20 0.07 2.83E−03 5.09E−02

5 Omega- 3 fatty acids (met- c- 855) 0.07 0.01 3.70E−02 2.34E−01

6 Free cholesterol in very large HDL (met- c- 944) 0.07 0.01 2.74E−02 2.34E−01

7 Total lipids in very small VLDL (met- c- 953) 0.06 −0.02 2.08E−02 2.34E−01

8 Cholesterol esters in medium VLDL (met- c- 910) 0.05 0.01 3.66E−02 2.34E−01

9 Cholesterol esters in very large HDL (met- c- 943) 0.05 0.01 4.87E−02 2.34E−01

10
Ratio of bisallylic groups to double bonds (met- 
c- 844) 0.05 0.01 4.41E−02 2.34E−01
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effects for serum- free cholesterol and sphingolipid metabolism were also highlighted. Notably, our 

results suggest that increasing serum levels of sphingomyelins are causally linked to AMD, and we 

report protective relationships for specific enzymes implicated in sphingolipid biosynthesis. It is known 

that sphingolipids play key roles in retinal physiology, and there is emerging evidence that some 

sphingolipids may play a role in AMD pathogenesis (Simon et al., 2021). Further, our findings are 

in keeping with those of a meta- analysis of metabolomic studies in which pathway enrichment anal-

ysis suggested a role for sphingolipid metabolism in AMD (Hou et al., 2020). Whilst sphingomyelin 

itself has not previously been described as a causative factor for AMD, other substances involved 

in sphingolipid metabolism (including ceramide, which can serve as both a substrate for sphingo-

myelin synthesis or a product of sphingomyelin metabolism) have been suggested as causal factors 

through regulation of retinal cell death, inflammation, and neovascularisation (Simon et al., 2021). It 

is known that the balance of sphingolipids has crucial roles in determining cell fates, and, therefore, 

the contrasting effects of serine palmitoyltransferase and sphingomyelin observed in this study are 

noteworthy (Taniguchi and Okazaki, 2020). Our study therefore adds weight to the assertion that 

sphingolipids play a key role in AMD pathophysiology. Further study of sphingolipid metabolism in 

individuals with AMD is expected to provide important insights and to highlight potential treatment 

targets.

Our MR findings support the well- documented assertion that complement plays a key role in AMD 

pathogenesis (Clark and Bishop, 2018; Jha et  al., 2007; Sivaprasad and Chong, 2006). Whilst 

MR- BMA was not feasible for this set of traits, univariable analysis supported roles for complement 

M
IP

Sphingomyelins

Phospholipids in very small VLDL

Triglycerides in IDL

Free cholesterol

Metabolite

Figure 3. Graph detailing the results of a Mendelian randomisation Bayesian model averaging (MR- BMA) analysis that aims to identify causal lipid- 

related risk factors for early age- related macular degeneration (AMD). The studied phenotypes are ranked according to their marginal inclusion 

probability (MIP); four likely causal traits are highlighted.
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factor H- related protein 5 and CD59 glycoprotein. A causal signal was obtained for complement 

factor H- related protein 5, a finding in keeping with recent studies highlighting the role of this and 

other factor H- related proteins (FHR- 1 to FHR4; all involved in the regulation of complement factor 

C3b turnover) in AMD (Cipriani et al., 2021). An intriguing observation was the apparently causal role 

of increasing serum levels of the complement- related CD59 glycoprotein (an inhibitor of membrane 

attack complex formation) in both early and advanced AMD. This finding appears to be at odds 

with previous studies that investigated the impact of high levels of CD59 in a model of AMD and 

found a potential therapeutic benefit (Cashman et  al., 2011). The relationship between systemic 

and local complement activation is poorly understood and studies have produced conflicting results 

with respect to the roles of each complement molecule in AMD (Clark and Bishop, 2018; Jha et al., 

2007). It can therefore be speculated that the superficially inconsistent results between our study 

and previous reports on CD59 reflect the complicated relationship between serum and retinal CD59 

expression.

Notably, a connection between complement and lipid accumulation has been proposed in AMD. 

This is due to the observation that dysregulation of the complement system results in lipid deposi-

tion both systemically and in the retina. There is also metabolomic evidence that decreased VLDL 

and increased HDL levels are associated with increased complement activation independent of AMD 

status (Armento et al., 2021). Given our results, the relationship between VLDL and complement is 

an area warranting further study.

Cathepsins are a diverse family of lysosomal proteases which play an important part in cellular 

homeostasis by participating in antigen processing and by degrading chemokines and proteases 

(Yadati et al., 2020). Cathepsins are susceptible to age- related alterations and have been linked to 

modulation of pro- inflammatory signalling pathways. Additionally, cathepsins D and S play a direct 

role in the retina as they help with the degradation of photoreceptor outer segments. It has also 

been shown that homozygosity for variant B cystatin C (an inhibitor of cysteine proteases) causes 

reduced secretion of mature cystatin C and is associated with increased susceptibility to neovascular 

AMD (Turk et al., 2012; Zurdel et al., 2002). For these reasons, it has been suggested that dysregu-

lation of cathepsin activity may be a factor in AMD pathophysiology. Here, we show data suggesting 

that serum cathepsin F, a ubiquitously expressed cysteine cathepsin, has a causal relationship with 

early AMD. The role of specific cathepsins in AMD is an area that has not yet been mechanistically 

explored.

S100 proteins act as intracellular regulators and extracellular signalling proteins. Intracellularly, 

S100 proteins have a wide range of roles including regulating proliferation, differentiation, apoptosis, 

calcium homeostasis, metabolism, and inflammation (Donato et al., 2013). Extracellular S100 proteins 

have important roles in immunity and inflammation. Of the S100 protein family, serum S100- A5 was 

the only protein to be robustly identified as a causal factor for AMD in our study. Whilst S100 proteins 

have received little study in AMD thus far, the binding of S100B to RAGE (Receptor for Advanced 

Glycation End products) and the subsequent increase in VEGF have previously been shown to be 

linked to the development of AMD (Ma et al., 2007; Xia et al., 2017). S100- A5 is a protein which 

has received little study and, as such, its biological functions are mostly uncharacterised (although is 

known to be involved in inflammation via the activation of RAGE) (Wheeler and Harms, 2017). Whilst 

it is outside the scope of this study to assert a mechanistic hypothesis for this finding, it seems likely 

that S100- A5 could be linked to inflammatory processes.

To a large extent, the present study has captured known AMD risk factors. A notable omission 

however is smoking, an accepted AMD contributor. In this study, cigarettes smoked per day was asso-

ciated with early AMD at a nominal level of significance (IVW p- value = 0.009) but was not significant 

with FDR adjustment or in other measures. This finding is most probably reflective of the underpow-

ered nature of MR. Given the hypothesis- free design of this study and the low power of MR, it would 

be inappropriate to conclude that non- significant results provide evidence of no relationship between 

certain environmental exposures and AMD.

In summary, this study has identified previously undescribed causal factors for AMD in addition to 

reinforcing several established AMD contributors. Future research will: explore how the interaction 

between causal traits affects AMD risk; investigate how the causal and protective factors described 

here alter the progression of established disease; follow- up these causal factors from a mechanistic 

perspective in order to open up avenues for therapeutic interventions.
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