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Abstract
A variety of neural networks have been presented to deal with issues in deep learning in
the last decades. Despite the prominent success achieved by the neural network, it still
lacks theoretical guidance to design an efficient neural network model, and verifying the
performance of a model needs excessive resources. Previous research studies have
demonstrated that many existing models can be regarded as different numerical dis-
cretizations of differential equations. This connection sheds light on designing an
effective recurrent neural network (RNN) by resorting to numerical analysis. Simple RNN
is regarded as a discretisation of the forward Euler scheme. Considering the limited so-
lution accuracy of the forward Euler methods, a Taylor‐type discrete scheme is presented
with lower truncation error and a Taylor‐type RNN (T‐RNN) is designed with its
guidance. Extensive experiments are conducted to evaluate its performance on statistical
language models and emotion analysis tasks. The noticeable gains obtained by T‐RNN
present its superiority and the feasibility of designing the neural network model using
numerical methods.

K E Y W O R D S
deep learning, natural language processing, neural network, text analysis

1 | INTRODUCTION

Deep learning has made rapid progress and fulfilled great
success in a wide spectrum of applications, such as natural
language processing (NLP) [1, 2], speech recognition [3], and
computer vision [4, 5]. Behind these accomplishments lies the
powerful function approximation capability of deep neural
networks. In NLP tasks, modelling sequential data is a chal-
lenging problem. Plenty of work has been presented to solve
the problem of sequential data modelling. Among them,
recurrent neural networks (RNNs) achieve satisfactory per-
formance due to their recurrent mechanism [6, 7]. Despite the

accomplishment obtained by the RNNs, the training of the
RNN is rather difficult. Back‐propagation through time
(BPTT) is needed to train the model. When the input sequence
is long, the multiplication term produced by the chain deri-
vation mechanism is numerically unstable, which makes RNN
suffer from the gradient explosion and gradient vanishing
problem [8]. In Ref. [9], linear time‐delayed connections were
added to RNNs to alleviate the gradient vanishing problem
during training. However, it is only examined for some small‐
scale tasks. The advent of the long short‐term memory
(LSTM) conspicuously enhanced the performance of the
recurrent architecture and solved the gradient vanishing
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problem from the perspective of structural design [10]. LSTM
designs a fairly elaborated structure to create a gating mecha-
nism. This kind of gating mechanism uses learnable gates to
implement a sophisticated feedback approach, which makes it
easier for gradient information to flow back. Nevertheless, due
to its structural complexity, training the LSTM is time‐
consuming and it is hard for LSTM to scale for large tasks.
Gated feedback connections were used in Ref. [11] between
layers of stacked RNNs to adaptively adjust the connection
patterns between the adjoint layers. To capture long‐term
contextual semantic information in sequential data, more
memory units were used in Ref. [12] to keep track of previous
hidden states, where the weighted connections were directly
linked to multiple preceding hidden states. With feedback paths
provided by these connections, residual signals can propagate
to the farther preceding hidden states to better model the long‐

term memory. In addition, these connections give more feed-
back paths to a model to smooth its update during training. In
Ref. [13], the authors discussed the high‐order connections in
the Markov property framework. With the reduction in pa-
rameters by projecting hidden‐state vectors to a low dimension
and weighted connections on hidden states, the model pre-
sented achieves noticeable gains both in accuracy and effi-
ciency when applied to acoustic modelling. However, its wiring
pattern does not change in essence. It aggregates historical
information by adding weighted connections. By combining
high‐ and low‐order LSTM with a pruning technique, Zhang
et al. [14] introduced a recurrent model called MO‐BILSTM,
which achieved promising results evaluated in two named en-
tity recognition datasets. A generalisation of LSTM called
multiple‐history LSTM was investigated in Ref. [15], where
different LSTM units were connected with high‐order feed-
back and maintained historical information at different time
steps.

From the topology of RNNs, it allows connections among
the preceding hidden units. Through these connections, RNNs
maintain a special mechanism of recurrent feedback that sum-
marises the past sequence of the inputs, enabling themselves to
capture correlations between the temporally distant events in

the data. Previous research has shown that the recurrent
mechanism of the RNNmodel has the same form as the explicit
forward Euler scheme. If unfold in time, simple RNN can be
regarded as a kind of discrete forward Euler scheme from the
perspective of numerical analysis. Inspired by the connection
between RNNs and ordinary differential equations (ODEs),
this study hammers at designing a Taylor‐type recurrent neural
network (T‐RNN) guided by a Taylor‐type discrete scheme.
Therefore, considering the shortcomings of RNN, such as the
difficulty of obtaining context information in a long distance, it
can be explained by the fact that the forward Euler scheme only
uses first‐order derivative information for estimation, which
causes a large truncation error. To improve the simple RNN
from the perspective of numerical analysis, a Taylor‐type
discrete scheme with a tiny truncation error deduced from
the Taylor expansion is presented in this paper. In addition, the
Taylor‐type discrete scheme is used as an orientation to
construct the T‐RNN to further explore the connection be-
tween neural networks and ODEs and to improve the perfor-
mance of the RNNs. As shown in Figure 1, extensive
experiments are conducted to evaluate the performance of T‐

RNN. Experimental results indicate that T‐RNN has higher
accuracy and can capture longer contextual information
compared to the existing RNN model. The main contributions
in this paper are summarised as follows:

� Relevant analysis is given to show the connection between
the numerical formulas and the neural network structure.
Detailed derivation is given to introduce the Taylor‐type
numerical formulas, and on this base, the T‐RNN is
designed.

� Sufficient experiments are conducted on benchmark data-
sets to evaluate the T‐RNN. Experimental results demon-
strate its superiority when compared to simple RNN.

� The performance gains obtained by the T‐RNN echoes the
connection between the neural networks and the numerical
discretisation schemes and indicates that it is promising to
improve the neural networks from the perspective of nu-
merical analysis.

F I GURE 1 Overview of this paper.
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2 | RELATED WORK

The performance of the neural network especially relies on its
topological structure, which is an important issue in deep
learning. The past decade has witnessed the emergence of
many neural network architectures. As for a convolution neural
network (CNN), it is typically a concatenation of many non‐

linear layers and ends with a fully connected layer. An
obvious experience of CNN architectures is that the number of
layers is rising, ranging from the AlexNet [16] with five con-
volutional layers, the VGG [17] network with 19 layers to the
GoogleNet [18] with 22 layers. Nevertheless, as the layer goes
deep, it suffers from gradient explosion, gradient vanishing
problems, and model degradation [8]. The advent of ResNet
sheds light on training very deep neural networks by intro-
ducing the mechanism of identity mapping, which can maintain
the stability and correlation of gradient during back‐

propagation [19]. From then on, the idea of introducing the
skipping connection between layers springs up. In Ref. [20], the
DenseNet was presented by connecting each layer to every
other layer in a forward fashion. For each layer, its input is the
output of all preceding layers. Similarly, the cliqueNet con-
structed the layers as a loop, where each layer was both the
input and output of any other layer in a block [21]. These kinds
of elaborate wiring patterns make full use of the feature in-
formation between layers. Analogously, authors in [12] tried to
connect preceding hidden states with weighted links to gather
more historical information. In Ref. [13], a neural network was
presented under the Markov theory framework, which
improved the neural network by introducing the skip
connection in essence. In addition to adding skipping con-
nections, Zagoruyko and Komodakis [22] increased the num-
ber of channels to explore what the width of a network
influences. In addition, authors in [23] used the LSTM to
construct a controller and introduced a neural network by
resorting to reinforcement learning. In Ref. [24], the random
graph was used to design a randomly wired neural network.
Despite the abundance of neural architecture, the design of
neural networks still lacks guidance. It is time‐consuming and
artificially involved to verify the performance of a neural
network model. In Refs. [25, 26], the connection between
neural networks and dynamic systems was revealed and authors
indicated that deep neural networks could be deemed as
different discretizations of ODEs. Chen et al. [27] provided an
original perspective of neural network and brought the neural
ODEs to view. In Ref. [28], authors indicated that several
existing networks, such as ResNet [19] and RevNet [29], were
related to correspondingly numerical discrete schemes and put
forward a neural network architecture oriented by the linear
multistep method solving ODEs, which further verified the
relationship between numerical discrete formulations and
multi‐layer neural networks. Luo et al. [30] used the Runge‐
Kutta discrete schemes as a principle to guide the stack of
layers to design a neural network and brought remarkable
performance improvement. In Ref. [31], partial differential
equations were used to design the CNNs and related numerical
techniques were also used to solve and optimise the neural

network. As for the T‐RNN, by reconsidering the RNN from
the perspective of numerical analysis and deeming it as a
discrete form of the forward Euler scheme, the T‐RNN is
proposed based on a higher‐order Taylor‐type discrete scheme
deduced from the Taylor expansion.

At present, with its unique position encoding to capture
long‐range word‐order information, transformer has achieved
the state‐of‐art records in many fields, such as language model
tasks [32] and computer vision [33]. Despite its success in
many tasks, for data with strict timing information re-
quirements, there are still some disadvantages to using trans-
form for time series data [34]. However, RNNs have innate
advantages for time series data processing with its continuous‐
time hidden‐state mechanisms [35]. In addition, the structure
of transform contains six layers of encoder and six layers of
decoder [36]. The complicated structure makes it require a
large amount of data for training. When input sequence length
increases, the consumption of memory and computation is
massive if its parallel computation is not supported. Therefore,
in some application scenarios with limited computation or few
data samples, it is still necessary and appliable to resort to
RNNs.

3 | PRELIMINARIES

In this section, the deduction of the Taylor‐type discrete
scheme is demonstrated in detail. With the connections be-
tween RNN and the discrete forward Euler scheme explained,
the T‐RNN is constructed guided by the Taylor‐type discrete
scheme.

3.1 | Deduction

Due to its recurrent structure allowing connections among
hidden units relevant to a time delay, the RNNs have achieved
the prominent performance on a large number of tasks [37].
For a typical simple RNN, at time step t, given an input xt and
a hidden state ht−1 generated in the previous time step, the
update process of RNN is demonstrated as

ht ¼Φ Wxhxt þWhhht−1 þ bxh þ bhhð Þ; ð1Þ

The symbol Φ(⋅) represents the non‐linear activation
function usually being rectified linear (ReLU) or hyperbolic
tangent function (Tanh), which adds non‐linear factors and
improves the expressiveness of the neural network. Wxh is the
weighted matrix in the input connection, and Whh is the
weighted matrix of the hidden state. Typically, the RNN ac-
cepts the input and the hidden state of the previous time step
as the input of the activation function, and the output of the
activation function becomes the hidden state at the current
time. The corresponding interpretation is demonstrated in
Figure 2.

With the Taylor expansion, the following rules can be
obtained:
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Φ t3ð Þ ¼Φ t2 þ τð Þ

¼Φ t2ð Þ þ τ _Φ t2ð Þ þ
τ2

2!
Φð2Þ t2ð Þ þ

τ3

3!
Φð3Þ h1ð Þ;

ð2Þ

where h1 ∈ (t2, t3). Subsequently, we obtain the term

_Φ t2ð Þ ¼
Φ t3ð Þ − Φ t2ð Þ

τ
−

τ

2!
Φð2Þ t2ð Þ −

τ2

3!
Φð3Þ h1ð Þ: ð3Þ

Likewise, by applying one‐ and two‐step backward
expansion, we have

Φ t1ð Þ ¼Φ t2 − τð Þ

¼Φ t2ð Þ − τ _Φ t2ð Þ þ
τ2

2!
Φð2Þ t2ð Þ −

τ3

3!
Φð3Þ h2ð Þ;

ð4Þ

and

Φ t0ð Þ ¼Φ t2 − 2τð Þ

¼Φ t2ð Þ − 2τ _Φ t2ð Þ þ
4τ2

2!
Φð2Þ t2ð Þ −

8τ3

3!
Φð3Þ h3ð Þ;

ð5Þ

where h2 and h3 lie between (t1, t2) and (t0, t2), respectively. The
above equations can be paraphrased as follows:

_Φ t2ð Þ ¼
Φ t2ð Þ − Φ t1ð Þ

τ
þ

τ

2!
Φð2Þ t2ð Þ −

τ2

3!
Φð3Þ h2ð Þ; ð6Þ

and

_Φ t2ð Þ ¼
Φ t2ð Þ − Φ t0ð Þ

2τ
þ τΦð2Þ t2ð Þ −

2τ2

3
Φð3Þ h3ð Þ: ð7Þ

Then, let Equation (5) add Equation (7), then minus
Equation (6), and we have

_Φ t2ð Þ ¼
2Φ t3ð Þ − 3Φ t2ð Þ þ 2Φ t1ð Þ − Φ t0ð Þ

2τ

þ τ2 −
1
3!
Φð3Þ c1ð Þ −

2
3
Φð3Þ c3ð Þ −

1
3!
Φð3Þ c2ð Þ

� �

:

ð8Þ

As the term −1
3!
Φð3Þ c1ð Þ − 2

3Φ
ð3Þ c3ð Þ − 1

3!
Φð3Þ c2ð Þ

� �

is in-
dependent to t, we can paraphrase Equation (8) as

_Φ t2ð Þ ¼
2Φ t3ð Þ − 3Φ t2ð Þ þ 2Φ t1ð Þ − Φ t0ð Þ

2τ
þO τ2

� �

: ð9Þ

With the item O(τ2) discarded, we have

_Φ t2ð Þ ≈
2Φ t3ð Þ − 3Φ t2ð Þ þ 2Φ t1ð Þ − Φ t0ð Þ

2τ
: ð10Þ

Note that Equation (10) is the Taylor‐type 1‐step‐ahead
numerical differential scheme because it has the term Φ(t3),
which is one step ahead of the Φ(t2). By setting the interval τ

to be 1 and moving item Φ(t3) to the left, we obtain

Φ t3ð Þ ≐
3
2
Φ t2ð Þ − Φ t1ð Þ þ

1
2
Φ t0ð Þ þ _Φ t2ð Þ; ð11Þ

where _¼ denotes the computational assignment operation. The
different time points, t1, t2, and t3, can be discretized into
different and adjacent layers in neural networks, and Equa-
tion (11) can be rewritten as

Φ tkþ2ð Þ ≐
3
2
Φ tkþ1ð Þ − Φ tkð Þ þ

1
2
Φ tk−1ð Þ þ _Φ tkþ1ð Þ: ð12Þ

Now, Equation (12) is the Taylor‐type discrete scheme,
which uses the information of the three historical time steps
and the gradient information of the previous moment to es-
timate the value of the current step. It is worth pointing out
that the Taylor‐type discrete scheme has longer‐term de-
pendencies upon historical data compared to the discretisation
of the forward Euler method. Mathematically, the truncation
error of the Taylor‐type discrete scheme is O(τ3), which has
higher precision.

3.2 | T‐RNN with a Taylor‐type discrete
scheme

In fact, we paraphrase Equation (1) in a general form, and
Equation (13) is obtained,

yt ¼ f yt−1; xt; tð Þ: ð13Þ

Traditionally, for an ODE _xðtÞ ¼ f ðxðtÞ; tÞ, the forward
Euler scheme is a commonly used numerical solution whose
general form is presented as

xtþh ¼ xt þ hf xt; tð Þ; ð14Þ

where h denotes the step size. It can be found that Equa-
tion (14) is in compliance with Equation (13), which indicates
the connections between the RNN and the forward Euler
scheme. The same observations are also found in the field of
CNN, where ResNet [19], RevNet [29], and LM‐ResNet [28] all

F I GURE 2 Demonstration of the unfold recurrent neural network
structure without the output layer.
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can be connected to different numerically discrete schemes.
Inspired by this connection, this paper hammers at con-
structing a recurrent network structure based on the presented
Taylor‐type discrete scheme. This part begins with demon-
strating the meaning of Equation (12) and explaining the
connections between T‐RNN and it. Actually, Equation (12)
predicts the function value of the current data point based on
the linear combination of three historical data points and the
derivative of the previous step. It has long‐term dependencies
upon historical data because it needs three pieces of infor-
mation of the past. When modelling the sequential data, it is
crucial to capture the contextual semantic information.
Inspired by this idea, the T‐RNN is constructed guided by the
Taylor‐type discrete scheme.

Specifically, three neural units are used to represent the
three historical terms of the Taylor‐type scheme. At each
moment, three neural units calculate the relationship between
the current input and three hidden states of history. We use the
activation value of the Tanh function at the previous moment
to replace the derivative term in the Taylor discrete scheme.
The output result is calculated in the form of the Taylor
discrete scheme and is the hidden state at the current moment.
More specifically, at time t + 1, if the bias term is omitted, the
update process of T‐RNN can be presented from Equa-
tions (15) to (18).

Q1 ¼Φ W t−2
xh xt þW t−2

hh ht−2
� �

; ð15Þ

Q2 ¼Φ W t−1
xh xt þW t−1

hh ht−1
� �

; ð16Þ

Q3 ¼Φ W t
xhxt þW t

hhht
� �

; ð17Þ

htþ1 ¼
3
2
Q3 − Q2 þ

1
2
Q1 þ tanh Q3ð Þ: ð18Þ

From Equations (15) to (18), the three terms Q1, Q2, and
Q3 represent three correspondingly historical data in the for-
mula and demonstrate the longer‐term context in the neural
network model. The terms W t−2

xh ;W t−1
xh ;W t

xh, W
t−2
hh ;W t−1

hh ;

W t2
hh are correspondingly weighted matrix and the new hidden

state at t + 1 is denoted as ht+1. The corresponding inter-
pretation is demonstrated in Figure 3.

4 | DATASETS AND EXPERIMENTS

In this section, different experiments are conducted to evaluate
the performance of T‐RNN. The corresponding results are
also manifested.

4.1 | Sentiment analysis

The target of sentiment analysis is to analyse subjective texts
with emotional colours to determine the views, preferences,
and emotional tendencies of the text. Our model is evaluated
on sentiment analysis tasks based on Internet Movie Database
(IMDB). The IMDB dataset contains 50,000 reviews, which
are divided into two equal parts being a training set and a test
set. For each part, positive and negative reviews each account
for half. In our experiments, we set the learning rate to 0.1 and
use the mini‐batch stochastic gradient descent (SGD) algo-
rithm to train the models. In addition, the batch size is fixed to
64 and the training epoch is set to 550. A hard clipping is set to
1.0 to avoid gradient explosion during training. The vocabulary
is composed of the top 25,000 words with the highest fre-
quency. It is worth mentioning that the text sequence length of
the IMDB dataset varies a lot, we use the zero padding tech-
nique to fill the input sequence to a fixed length. To reduce the
impact of the zero padding, we set the sequence length to 16.
Moreover, the input size is set to 100 and the hidden size is set
to 256 in each hidden layer. We use the dropout regularisation
[38] in all experiments with the dropout coefficient being 0.5.
In addition, we use the Glove representation technique to
initiate the input vector to improve the training efficiency [39].

The corresponding results are demonstrated in Figure 4,
where we can find that T‐RNN outperforms simple RNN on
test accuracy. As shown in Figures 5 and 6, we can find that T‐

RNN has a slow rate in the initial period and suffers from
oscillation in the early training process. However, the T‐RNN
reaches a higher accuracy eventually. We discuss the reasons for
this phenomenon in the discussion section. In addition, after
100 epochs, the test loss of RNN rises, which means that the
RNN occurs overfitting, but T‐RNN avoids this situation.

4.2 | Statistic language model

Traditionally, a statistical language model is used to describe the
probability distribution over different grammatical units of
words, sentences, and even the entire document in natural
languages. In language modelling tasks, it is quite important to
take advantage of the long‐term dependency of natural lan-
guage. We evaluate the proposed architecture on the Penn
Treebank (PTB) and Text8. It is worth mentioning that
considering the limitation of computing resources, we have
tailored the Text8 corpus and the corresponding details are
shown in Table 1. In our experiments, all neural networks are
trained by the SGD algorithm. In order to circumvent the
gradient explosion during the BPTT, a simple strategy that sets
a hard‐clipping to 1.0 is adopted during training. When training

F I GURE 3 Illustration of Taylor‐type recurrent neural network
structure without the output layer.
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the model, we set the initial learning rate to 0.5 and halve the
learning rate every 100 epochs. The vocabulary size of PTB is
limited to 10k and that of Text8 is set to 50k. To improve the
generalisation of the model, the dropout regularisation is

adopted and the dropout coefficient is set to 0.5 [38]. We use
500 nodes in each hidden layer and the input size to 300 for the
PTB and Text8 data set. To improve the training efficiency, we
use Glove representation technique [39]. In our experiment, we
set different input sequence lengths ranging from 64, 128 to
256 on PTB. Similarly, we set sequence lengths ranging from
128, 200 to 256 on Text8.

The corresponding experimental results on different
datasets are demonstrated in Table 2, where we can find that
the T‐RNN can achieve lower test perplexity compared to the
RNN on two datasets, which means the superiority of T‐RNN
compared to RNN.

4.3 | Text classification

Text classification is an important part in text process, which
has abundant applications, such as Garbage Filtering, News
classification, and Part‐Of‐Speech Tagging. In this part, we
evaluate the proposed T‐RNN and RNNs models on text
classification tasks. R8 and R52 datasets are chosen to train the
models, which are all the subset of Reuters‐21578 datasets.
Their details are shown in Table 3. As for the experimental
setting, we set the hard‐clipping to 1.0, the learning rate to 0.1,
and the back‐propagation step to 64 for two datasets. When
training on the R8 dataset, the input size is 100, the hidden size
is fixed to 256 and the batch size is 64, and the training epoch
is 800. As for the R52 dataset, the input size is 300, the hidden
size is fixed to 500, and the batch size is 32, and the training
epoch is 1000. In addition, we use the hidden state of the last
step as the result of model to predict the final result. We
choose the highest test accuracy as the final result and the
complete results are presented in Table 4. We choose accuracy,

F I GURE 5 Demonstration of accuracy change when training the T‐

RNN andRNN. RNN, recurrent neural network; T‐RNN, Taylor‐type RNN.

F I GURE 6 Demonstration of loss change when training the T‐RNN
and RNN. RNN, recurrent neural network; T‐RNN, Taylor‐type RNN.

F I GURE 4 Result about different RNNs models on the IMDB dataset. Left: percent of test accuracy, right: test loss. IMDB, Internet Movie database;
RNNs, recurrent neural networks.

TABLE 1 Details about PTB and Text8 datsets

Corpus Train size Test size

PTB 4.9M 0.44M

Text8 20M 1.2M

Abbreviation: PTB, Penn Treebank.
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loss value, and F1 score as the criterion to demonstrate the
degree of performance gains, Different RNN models, such as
bi‐directional recurrent neural network (BIRNN) and bi‐
directional gated recurrent unit (BIGRU), are used as com-
parisons to evaluate the performance of T‐RNN.

From Table 4, we find that the accuracy of T‐RNN on the
R8 dataset is 81.6% and 5.1% higher than that of RNN, and
the accuracy on the R52 dataset is 1.8% higher. There are also
corresponding improvements in test loss and F1 score.
Although the performance of T‐RNN is lower than that of
LSTM or GRU, it is worth pointing out that the performance
improvement of T‐RNN compared to RNN demonstrates the
promising feasibility to improve the simple RNN model from a
numerical method perspective, which provides a reference for
improving the performance of neural network models.

5 | DISCUSSION

When conducting experiments on deep learning tasks, we
observe some consistent experimental phenomena on three
experimental tasks, which are shown in Figures 5–10. In the

experiment of sentiment analysis, we conclude from Figures 5
and 6 that, at the beginning of the training, the test accuracy of
T‐RNN fluctuates and its convergence rate is slow, but even-
tually T‐RNN reaches a higher accuracy in the end. Similarly,
when evaluated on statistical language model tasks, as shown in
Figures 9 and 10, for the same input sequence length, T‐RNN
reaches the test perplexity that lags behind RNN in the early
stage of training. However, after a certain epoch, the perfor-
mance of T‐RNN exceeds RNN. For the fixed epoch, as the
input sequence increases, the performance gap between models
becomes larger, which is demonstrated by the increasing margin
between two curves in Figure 7. The results on Text8 also have
the same tendency and the corresponding difference values
are 18, 21, 23 ranging from (a), (b) to (c) in Figure 8. We explain
this phenomenon by resorting to numerical experiments.

5.1 | Numerical experiment

Nonlinear function optimisation problem is fairly common in
many scientific problems. Numerical methods are widely used
to solve them. For example, a non‐linear function optimisation
problem is presented as

min
f ζið Þ∈R4

ϝ f ζið Þ; ζiÞð Þ

¼ f1 ζið Þ þ sin ζið Þð Þf3 ζið Þ

þ 0:1 ζi − 1ð Þf3 ζið Þf4 ζið Þ

− f1 ζið Þ þ log 0:1ζi þ 1ð Þð Þ f2 ζið Þ þ sin ζið Þð Þ

þ f3 ζið Þ − exp −ζið Þð Þ2 þ f4 ζið Þ þ exp −ζið Þð Þ2

þ f1 ζið Þ þ ζið Þ
2
þ f2 ζið Þ þ ζið Þ

2
:

ð19Þ

We use the forward Euler scheme and the Taylor‐type
discrete scheme to solve this non‐linear optimisation prob-
lem. In our experiments, f(ζi) = [ f1(ζi), f2(ζi), f3(ζi), f4(ζi)]. We
use the L2‐norm of δ(ζi) = ∂ϝ( f(ζi), ζi)/∂f(ζt) as the residual
error and fix calculation interval to [0, 10]. Different sampling
intervals h are set to analyse the convergence performance of

TABLE 2 Results about different RNNs models on PTB and Text8
datasets

Models

PTB Text8

Criteria64 128 256 64 200 256

LSTM 94.9 101.5 115.9 195.9 215.7 226.1 Test PPL

GRU 96.4 96.4 107.5 195.9 204.0 211.5 Test PPL

RNN 110.0 110.1 117.4 256.3 251.8 255.6 Test PPL

T‐RNN 108.4 106.2 110.5 238.3 230.3 232.3 Test PPL

Abbreviations: GRU, gate recurrent unit; LSTM, long short term memory; PPL,
perplexity; PTB, Penn Treebank; RNN, recurrent neural network.

TABLE 3 Details about R8 and R52 datasets

Corpus Total size Train item Test item Class

R8 4.5M 5485 2189 8

R52 5.5M 6097 3003 52

TABLE 4 Comparison of different RNNs models for three evaluation metrics under two datasets (Acc: accuracy; loss: test loss; F1: F1 score)

Models

R8 dataset R52 dataset

Acc Loss F1 Acc Loss F1

BIRNN 0.875 � 0.002 0.016 � 0.001 0.870 � 0.002 0.862 � 0.003 0.034 � 0.002 0.852 � 0.003

BILSTM 0.920 � 0.006 0.006 � 0.001 0.931 � 0.006 0.899 � 0.005 0.020 � 0.001 0.899 � 0.005

BIGRU 0.927 � 0.006 0.006 � 0.001 0.927 � 0.006 0.891 � 0.004 0.025 � 0.003 0.886 � 0.004

LSTM 0.913 � 0.007 0.011 � 0.003 0.915 � 0.007 0.859 � 0.007 0.036 � 0.003 0.857 � 0.008

GRU 0.911 � 0.009 0.012 � 0.000 0.912 � 0.010 0.842 � 0.004 0.044 � 0.002 0.836 � 0.005

RNN 0.765 � 0.005 0.019 � 0.001 0.750 � 0.004 0.664 � 0.004 0.059 � 0.010 0.633 � 0.010

T‐RNN 0.816 � 0.013 0.015 � 0.003 0.809 � 0.012 0.682 � 0.009 0.049 � 0.004 0.660 � 0.007

Abbreviations: BIGRU, bi‐directional gate recurrent unit; BIRNN, bi‐directional recurrent neural network; GRU, gate recurrent unit; LSTM, long short term memory; RNN, recurrent
neural network.
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the two discrete schemes. The corresponding results are
demonstrated in Figure 11, we conclude that compared with
the forward Euler scheme, the Taylor‐type discrete scheme
achieves higher accuracy in the end, which shows its superi-
ority. In addition, at the initial stage of the iteration, the Taylor‐
type discrete scheme suffers from fluctuations. The historical
term can be understood as the time delay that affects the
stability of the dynamic system. The Taylor‐type discrete
scheme needs three previous pieces of information to estimate
the value of the next step, so it is more prone to instability at
the beginning of the iteration. Therefore, the Taylor‐type

scheme requires more iterations to be stable and achieve
higher accuracy. This explains the experimental phenomenon
in Figures 5 and 6. Similarly, in the statistical language model
tasks, the perplexity of T‐RNN lags behind the RNN, but it
eventually performs better. When the number of the epoch is
fixed, the long input sequence means a large number of iter-
ations, which makes the performance gap between T‐RNN
and RNN wider. Our results in the numerical experiment are
consistent with the results of T‐RNN in different tasks. The
Taylor‐type scheme suffers from vibration in the beginning but
reaches stable and results in less error at the end of iteration.

F I GURE 7 Test perplexity of two models with different sequence lengths on Penn Treebank.

F I GURE 8 Test perplexity of two models with different sequence lengths on Text8.

F I GURE 9 Test perplexity of two models with a sequence length fixed
to 128 at early epoch on Penn Treebank.

F I GURE 1 0 Test perplexity of two models with a sequence length
fixed to 128 at early epoch on Text8.
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Taking the time cost and accuracy into consideration, we
can conclude from Figure 12 that training of T‐RNN is more
time‐consuming than RNN, which attributes to the three his-
tory items of T‐RNN. The three items need more time to learn
the long‐distance contextual information, which can be used to
memorise longer contextual information. It is worth pointing

out that T‐RNN is suitable for processing sequence datasets
with small quantity such as text or voice data as RNN.
Compared with RNN, T‐RNN can utilise longer‐distance
context information, which results in its superiority.

6 | CONCLUSION

In this paper, spurred by the connection between neural net-
works and discretizations of ODEs, we have proposed the T‐

RNN guided by a Taylor‐type discrete scheme deduced from
the Taylor expansion. Systematic experiments have been con-
ducted to testify the performance of the proposed model. The
noticeable performance gains upon many tasks have indicated
that it is feasible to design effective and powerful neural net-
works by following certain discrete schemes. The relations
between neural networks and the discrete numerical scheme
also manifest that plenty of mathematical tools from optimal
control and dynamic systems can be used to design optimisa-
tion algorithms to train the neural network. In addition, the
research about robustness and generalisation of the corre-
sponding neural networks is also worthy of diving into from
the perspective of the numerical analysis in the future.
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