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Abstract
How to establish a self‐equilibrium configuration is vital for further kinematics and
dynamics analyses of tensegrity mechanism. In this study, for investigating tensegrity form‐

finding problems, a concise and efficient dynamic relaxation‐noise tolerant zeroing neural
network (DR‐NTZNN) form‐finding algorithm is established through analysing the
physical properties of tensegrity structures. In addition, the non‐linear constrained opti-
misation problem which transformed from the form‐finding problem is solved by a
sequential quadratic programming algorithm. Moreover, the noise may produce in the
form‐finding process that includes the round‐off errors which are brought by the
approximate matrix and restart point calculating course, disturbance caused by external
force and manufacturing error when constructing a tensegrity structure. Hence, for the
purpose of suppressing the noise, a noise tolerant zeroing neural network is presented to
solve the search direction, which can endow the anti‐noise capability to the form‐finding
model and enhance the calculation capability. Besides, the dynamic relaxation method is
contributed to seek the nodal coordinates rapidly when the search direction is acquired. The
numerical results show the form‐finding model has a huge capability for high‐dimensional
free form cable‐strut mechanisms with complicated topology. Eventually, comparing with
other existing form‐finding methods, the contrast simulations reveal the excellent anti‐
noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm.

KEYWORD S
dynamic relaxation, form‐finding, noise‐tolerant zeroing neural network, sequential quadratic programming,
Tensegrity

1 | INTRODUCTION

The tensegrity structures have been widely used in the fields of
large‐scale dome architecture, sculpture, and biomimetic robot
[1–3]. The tensegrity form‐finding course is a crucial step for
further analysis of tensegrity structure. Thereby, how to inves-
tigate an efficient form‐finding method is a long‐standing
challenge. In the past decades, many researchers pay their at-
tentions to the tensegrity form‐finding approaches. Many effi-
cient form‐finding methods have been developed, in these
approaches, the dynamic relaxation form‐finding algorithm
realised tensegrity form‐finding course by using a pseudo dy-
namic process [4, 5]. The dynamic relaxation method regarded
the form‐finding procedure as a process of calculating the nodal

coordinates masses and kinetic energy of nodal coordinates. The
velocity and external force have been evaluated during each
iteration step [4]. According to the numerical examples, the
form‐finding calculating process can be improved the conver-
gence speed and optimisation precision through the dynamic
relaxation (DR) method. Besides, the algorithms which trans-
formed the form‐finding problems into non‐linear and linear
optimisation problems have become a significant constituent
part of form‐finding methods [6–12]. But most of the form‐

finding approaches have not involved the noise‐suppressing
during the form‐finding process. In ref. [13], the tensegrity
form‐finding problem has been considered as a constrained
optimisation problem. This paper has proposed a modified
three‐term method combined with the damping dynamic
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relaxation method. Furthermore, in ref. [14], a modified noise
tolerant zeroing neural network (NTZNN) form‐finding model
has been applied to establish a self‐equilibrium structure
through solving the non‐linear optimisation form‐finding
problem which is under the noise polluted. However, although
the presented method can suppress the noise items during the
form‐finding procedure, whereas, when facing large‐scale
structure, the algorithm cannot manage the form finding
problems efficiently due to the structural complexity. In sum-
mary, how to establish a universal and simple model with noise
suppression functionality is important for further analyses of
tensegrity form‐finding approaches.
In this paper, the form‐finding problem is transformed into a

non‐linear constrained optimisation (NCO) problem. As for a
non‐linear optimisation problem with constraint conditions, it
can be solved by the sequential quadratic programming (SQP)
method [15]. In general, in order to reduce the calculation
complexity, the SQP algorithm utilises quasi‐Newtonmethod to
calculate approximate matrix to instead of Hessian matrix. The
round‐off error is occurred between the Hessian matrix and the
approximate matrix Bk. Hence, as a kind of recurrent neural
network (RNN), which is a powerful intelligence algorithm to
solve the non‐linear optimisation problems, the NTZNN algo-
rithm has the superiority of parallel computing and high preci-
sion [16–27]. In addition, the NTZNN algorithm has a wide
range of applications in dealing with discrete‐time non‐linear
optimisation problems [28], continuous‐time non‐linear opti-
misation problems [29], and controller design [30]. Furthermore,
compare with the RNN models, the NTZNN model has the
advantage of anti‐noise performance [18, 31, 32]. In the actual
form‐finding process, the noise includes the round‐off error
caused by approximate matrix Bk, calculating error and external
force interferences to the tensegrity mechanism. Therefore, the
NTZNN model gets the upper hand for forming a tensegrity
form‐finding approach.
In order to establish a self‐equilibrium and stable tensegrity

structure, the objective function is constructed through ana-
lysing the target length and presented length of the strut ele-
ments. And the constraint conditions are designed based on
the physical properties of the force density vector. Hence, a
simple and effective form finding model is constructed
through above analyses. In addition, the form‐finding problem
is transformed into a quadratic programming problem which
the nodal coordinates are the variables. Hence, the NTZNN
model is utilised to deal with the search direction and the nodal
coordinates are obtained by dynamic relaxation method. In
conclusion, a dynamic relaxation‐noise tolerant zeroing neural
network (DR‐NTZNN) form‐finding algorithm with simple
construction and high‐efficiency calculated performance is
established through above strategies. Besides, the model has
excellent anti‐noise performance while the other form‐finding
algorithms do not have. Before the end of this section, the
main contributions of the paper are organised as follows:

1) The DR‐NTZNN form‐finding algorithm transforms the
form‐finding problem into NCO problem. Due to the
NTZNN model is involved in the form‐finding model
designing course, hence, the DR‐NTZNN form‐finding

algorithm has excellent anti‐noise performance. In this
sense, it is quite unique with the existing DR form‐finding
methods.

2) The stability, consistency, and convergence performances of
theNTZNNmodel are investigated through theory analyses.
By means of the theoretical evaluations, it proves the DR‐

NTZNN method with O(ι2) pattern round‐off error can
satisfy the tensegrity structure form‐finding requirements.

3) The computational efficiency and anti‐noise properties of
the DR‐NTZNN form‐finding algorithm under noise
interference are verified by two‐dimensional and three‐
dimensional tensegrity structure simulations. In addition,
the simulation results of high dimensional tensegrity
structure show the DR‐NTZNN algorithm is effective in
solving the form‐finding problems of complicated topo-
logical structure tensegrity mechanism.

2 | FORM‐FINDING MODEL
FORMULATION

2.1 | Optimisation model

During the form‐finding process, the nodal coordinates are
changed with the iteration steps. Therefore, when the presented
length of the strut is equal to the target length, it means the
tensegrity structure reaches the desired configuration. In gen-
eral, the cable force density is a positive value and the strut force
density is equal to a negative number. Thereby, in order to
further constrain the variation range of nodal coordinates during
form‐finding procedure, the force density constraint conditions
are introduced in modelling process. Hence, considering the
geometrical characteristic of tensegrity mechanism and force
density vectors, a general form‐finding model is formed as
follows

min
P

b

i¼0

1
2
lsi − cið Þ

2

s:t: qc > 0

qs < 0;

ð1Þ

where lsi is the length of presented strut, the ci is target strut
length, and b is the number of struts. The cable force density
vector is defined by qc, qs is the strut force density vector. All
variables in Equation (1) are related to nodal coordinates. The
lsi could be computed through

lsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðUxÞ2 þ ðUyÞ2 þ ðUzÞ2
q

; ð2Þ

where U is the topological matrix. The x, y, and z are nodal
coordinates. Besides, the force density could be calculate

through qij ¼
lij−l0ð ÞEA

lij
. The X = [x,y,z]⊤ is the nodal co-

ordinates vector, E, A are Young's moduli and cross‐sectional
area. Therefore, the tensegrity structure form‐finding problem
could be seen as a NCO problem which the variables are the
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nodal coordinates. In summary, a unique form‐finding model is
established, which expresses the physical properties of ten-
segrity structure during form‐finding accurately.

2.2 | Sequential quadratic programming
method and noise tolerant zeroing neural
network model

In this subsection, the SQP method is utilised to solve the
NCO problem (1). Hence, for the purpose of developing the
form‐finding model, the general form of the form‐finding
model which is an NCO problem (1) can be defined as

min ζðXÞ
s:t: HiðXÞ ≥ 0; i ∈ I ¼ 1;…;m;

ð3Þ

where Hi(X) are the inequality constraints. m is the amount of
the inequality constraints, which is equal to the amounts of
force density vectors, X is the nodal coordinate vector. Besides,
in order to solve the search direction, the subproblem of form‐

finding problem is formed as

min
1
2
d⊤

kWkdk þ ∇ζ Xkð Þ⊤dk

s:t: H Xkð Þ þ ∇H Xkð Þ⊤dk ≥ 0;
ð4Þ

which Wk ¼W Xk; λkð Þ ¼ ∇
2
XX Xk; λkð Þ is the Hessian matrix.

To reduce the calculating complexity, an approximate matrix Bk
that is established by quasi‐Newton method is utilised to
replace the Hessian matrix, thereby, the Equation (4) could be
reformed as

min
1
2
d⊤

k Bkdk þ ∇ζ Xkð Þ⊤dk

s:t: H Xkð Þ þ ∇H Xkð Þ⊤dk ≥ 0;
ð5Þ

where the approximation matrix Bk is introduced to replace the
Hessian matrix for the purpose of reducing calculation
complexity, and dk is the search direction, which is the variate of
form‐finding subproblem (5). However, the approximation
matrix Bk is not fully equal to the Hessian matrix, so the process
will produce round‐off error which may affect the accuracy of
form‐finding process. Thereby, the round‐off error and external
disturbance acting on the structure are regarded as noise which
may affect the form‐finding course. Therefore, the noise can not
be neglected when designing form‐finding model. Hence, as a
kind of advance RNN, the NTZNN approach with outstanding
anti‐noise performance is proposed in the paper to calculate
search direction dk. The quadratic programming subproblem (5)
is rewritten as

min
1
2
d⊤

k Bkdk þ v⊤

k dk

s:t: ϖkdk ≤ bk:
ð6Þ

Utilising the related Karush‐Kuhn‐Tucker (KKT) condi-
tion, the following equations could be defined as follows:

Bkdk þ vk þ ϖ⊤

k μk ¼ 0;
ϖkdk − bk ¼ 0:

ð7Þ

Defining Rk ¼ dk; μk; 0; 0½ �⊤, Equation (7) could be rewritten
as

f Xk; kð Þ ¼ 0: ð8Þ

Thereby, the matrix form of Equation (7) can be written as

Bk ϖ⊤

k 0 0
ϖk 0 0 0
0 0 0 0
0 0 0 0

2

6

6

6

4

3

7

7

7

5

dk
μk
0
0

2

6

6

4

3

7

7

5

¼

−vk
bk
0
0

2

6

6

4

3

7

7

5

; ð9Þ

where the Equation (9) is equivalent to NkRk = Kk. Thereby,
Mk is defined as

Mk ¼NkRk − Kk: ð10Þ

Utilising the NTZNN design formula [16], the continuous‐
time NTZNN model can be formed as [17].

_MðιÞ ¼ −γMðιÞ − λ

Z ι

0
MðτÞdτ: ð11Þ

Hence,

NðιÞ _RðιÞ þ _NðιÞRðιÞ − _KðιÞ

¼ −γðNðιÞRðιÞ − KðιÞÞ − λ

Z ι

0
ðNðτÞRðτÞ − KðτÞÞdτ:

ð12Þ

Thereby,

_RðιÞ ¼NðιÞ† − _NðιÞRðιÞ
�

þ _KðιÞ − γðNðιÞRðιÞ − KðιÞÞ

− λ

Z ι

0
ðNðτÞRðτÞ − KðτÞÞdτ

�

:

ð13Þ

As a result, the discrete form of NTZNN approach
polluted by noise is formed as

Rkþ1 ¼ Rk − N†k h1 NkRk − Kkð Þð − Kk − Kk−1ð Þ

þ Nk − Nk−1ð ÞRk þ h2
X

k

i¼1
NiRi − K ið Þ þ εkÞ;

ð14Þ
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where the step size h1 and h2 are positive constants, ɛk is the
noise item and † represents the generalised inverse.

2.3 | Application of dynamic relaxation

In the above subsection, the search direction dk is solved
through utilising the NTZNN model (14). Therefore, how to
accurately obtain the nodal coordinates X is the next crucial
step of form‐finding method designing procedure. As a
consequence, the DR method is introduced to solve the nodal
coordinates accurately. The negative gradient direction of the
form‐finding model (1) is formated as

w¼ −
∂ζ

∂X

X

b

i¼1
lsi − cið Þ ∇ lsi: ð15Þ

In the steepest descent method (SDM), the standard search
direction is equal to negative gradient direction. As for a given
Xk, the SDM is performed as

dk ¼ ω;
Xkþ1 ¼ Xk þ dkι;

ð16Þ

which ι is a step‐size. In the DR method, instead of the
negative gradient direction, ω is defined as an external force
acting on the nodal coordinates. According to the Newton's
second law of motion‐force and acceleration F = ma, the nodal
acceleration is defined by

a¼m−1F ; ð17Þ

where m is the fictitious mass matrix, F is the external force
acting on the nodal coordinates.
Similar to SDM (16), the iterative way of dynamic relaxa-

tion method is formated as

a¼ dk
νkþ1 ¼ δνk þ aι

Xkþ1 ¼ Xk þ νι;
ð18Þ

where ν is the nodal velocity, ι is the sample interval, and δ is
the damping coefficient. From SDM (16) and DR method (18),
when δ = 0, the DR becomes an exact SDM method.
The process of the DR method is shown in Figure 1. In

order to realise the goal of finding a self‐equilibrium tensegrity
structure, the nodal coordinate Xk+1 and velocity νk+1 are
obtained from DR method which is combined with kinetic
damping (18). When the current kinetic E of the nodal coor-
dinate reaches to the local maximum, the velocity of nodal
coordinate ν is set to zero for recalculating the kinetic energy.
Hence, the iteration process is restart until it reaches next local
maximum of kinetic energy E. By means of DR method with
kinetic damping coefficient, the kinetic energy E is continued
to decrease during the iteration process. Thereby, the eventual
nodal coordinate result could be obtained when the kinetic

energy E is smaller than the convergence tolerance or equal to
zero.
The fictitious mass matrix m is set as an identity matrix for

facilitating calculation. The kinetic energy is formated as

E ¼
1
2
ν⊤mν: ð19Þ

If Ek+1 < Ek, it means that the nodal kinetic energy has
already reached the local peak, in order to calculate the real
peak, the kinetic energy Ek+1 should be fitted by previous E.
According to ref. [13], which is shown in Figure 1, the rule to
calculate restart point X* is formated as

Xt∗ ¼ X t−Δt=2 ¼ X t
− νt−Δt=2Δt=2: ð20Þ

Compared with the traditional dynamic relaxation method,
through the calculating rule (20), it does not need to calculate
unnecessary X and ν, which can reduce computational
complexity and keep iterative convergence rate. When the ki-
netic energy E is equal to zero or less than the tolerant error,
the nodal coordinate Xk is the final results. Hence, Table 1
shows the process of DR‐NTZNN method.

F I GURE 1 The process of dynamic relaxation method with kinetic
damping

TABLE 1 The process to solve form‐finding problem

Steps Details of DR‐NTZNN form‐finding algorithm

1. Input initial parameters, and i is equal to 0, ɛk is

The noise item ɛk is the noise item.

2. Calculate search direction dk utilising NTZNN model (14).

3. Search direction is set as acceleration of DR method.

Calculate nodal coordinate X (18).

Calculate nodal kinetic energy E.

4. If Ek+1 < Ek, set velocity ν to zero.

Calculate restart point x* (20).

5. Back to step 2, i = i + 1.

6. Repeat the process until the set error is satisfied.

Abbreviation: DR, dynamic relaxation.
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3 | THEORETICAL ANALYSES

3.1 | The analyses of the noise tolerant
zeroing neural network model

For the purpose of ensuring the availability of DR‐NTZNN
form‐finding algorithm, the performances of stability, consis-
tency and global convergence of the NTZNN model are
investigated in this subsection [16].

Definition 1 The 0‐stable property of a D‐step ZNN model

ADðκÞ ¼
P

D

i¼0
Dαiκ

i can be evaluated through characteristic

polynomial roots
P

D

i¼0
αiRkþi ¼ ι

P

D

i¼0
βiϕkþi, it is signifies that

AD(κ) = 0 is not locate at outside of unit circle (i.e., jκj ≤ 1).

Definition 2 If a D‐step NTZNN model has O(ιM) pattern
residual error and can obtain an exact solution, the presented
NTZNN model is in accordance with order M.

Definition 3 A D‐step NTZNN has convergence perfor-
mance, it means R t−t0ð Þ=ι → R∗ðtÞ; ∀t ∈ t0; tf

� �

, as ι → 0,
where the neural network model is consistent and 0‐stability.

Thereby, according to the previous definitions, the char-
acters of NTZNN model (14) are demonstrated as follows.

Theorem 1 The DR‐NTZNN form‐finding algorithm has the
property of 0‐stability.

Proof On the basis of the Definition 1, the NTZNN (14) is a
one‐step model, thereby, the characteristic polynomial of
NTZNN (14) is written as

A1ðκÞ ¼ κ; ð21Þ

hence, the root is κ1 = 1.
In consequence, due to the Definition 1, the characteristic

root of NTZNN (14) is on the unit circle, as a result, the
NTZNN model (14) is 0‐stability.

Theorem 2 The NTZNN model (14) has consistency and
convergence properties with O(ι2) pattern residual error.

Proof On the grounds of Euler's forward difference rule

_Rk ¼
Rkþ1 − Rk

ι
þO ι2

� �

: ð22Þ

Combining the NTZNN design formula [16] and above
equations, the NTZNN model with O(ι2) is defined as follows:
Rkþ1 ¼ Rk − N†k h1 NkRk − Kkð Þð − Kk − Kk−1ð Þ

þ Rk − Rk−1ð ÞNk þ h2
X

k

i¼1
NiRi − K ið ÞþεkÞ þO ι2

� �

:

ð23Þ

Comparing the NTZNN with O(ι2) pattern residual error
(23) and NTZNN (14), it can be drew a conclusion that, the
NTZNN (14) is established when the O(ι2) pattern residual
error is neglected. Hence, the NTZNN (14) is consistent
with 2‐order of O(ι2) pattern residual error due to the above
definitions. Moreover, the NTZNN is converge with O(ι2)
pattern truncation error for ∀t ∈ [t0, tf] on account of the
Definition 3.

Theorem 3 The NTZNN model (14) has O(ι2) pattern residual
error limk→∞ NkRk − Kkk kF when solving the tensegrity form‐

finding problem, where :k kF expresses the Frobenius norm.

Proof The solution of NkRk − Kk is denoted by an R∗

k , thereby,
on the grounds of above definitions, the solution for
the NTZNN model (14) is represented by Rk ¼ R∗

k þO ι2ð Þ as
k → ∞. Thereby

NkRk − Kkk kF ¼ Nk R∗

k þO ι2
� �� �

− Kk
�

�

�

�

F

¼ NkR∗

k − Kk þ NkO ι2
� ��

k

�

�

�

�

F:
ð24Þ

The following equation can be obtained as NkR∗

k ¼ Kk due
to the R∗

k is the result. Thus
NkRk − Kkk kF ¼ NkO ι2

� ��

�

�

�

F ¼O ι2
� �

: ð25Þ

Eventually, the residual error of NTZNN model (14) is
written as

lim
k→∞

NkRk − Kkk kF ¼O ι2
� �

: ð26Þ

3.2 | The analyses of damping coefficient

In this subsection, the influences of damping coefficient δ to
the form‐finding course are discussed through three types
damping coefficients. In the first place, a variate can be defined
by the nodal coordinates velocity and acceleration which is
written as

θk ¼
ν⊤

k ak
νkj j akj j

; ð27Þ

where :j j represents the Euclidean norm, the damping coeffi-
cient δk at step k can be seen as a function of θk [12], it is
characterised by

δk ¼ δ θkð Þ: ð28Þ

Three types of damping coefficients are defined in this
subsection, above all, the viscous damping is defined as

δ ¼ const; ð29Þ

where const is a constant. Furthermore, the kinetic damping
can be written as
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δðθÞ ¼
1:0 ð1 ≥ θ > 0Þ
0:0 ð0 ≥ θ ≥ −1Þ:

�

ð30Þ

When nodal coordinate kinetic energy E reaches a local
peak, it means that the nodal coordinates acceleration is
orthogonal to ν, and θ is equal to 0. Moreover, before the kinetic
energy reaches the local maximum, the θ is greater than 0 due to
the increasing nodal coordinate kinetic energy E. Besides, when
θ is less than 0, it describes the process of kinetic damping. In
the existing DR form‐finding method, the kinetic damping is
the most common and efficient coefficient [5, 13]. Yet, as shown
in the Figure 2, the kinetic damping may cause the discontin-
uous characteristic curve. Thereby, for solving the discontinuity
of kinetic damping, the drift damping is defined as

δðθÞ ¼ 0:95þ
θ

20
: ð31Þ

The form‐finding process can be adapted dynamically be-
tween the nodal coordinate acceleration and deceleration, which
is similar to the kinetic damping. The damping coefficient δ is
adjusted between 1.0 and 0.9 through Equation (31), the drift
damping can transform smoothly which is opposed to kinetic
damping.
During the form‐finding course, the relationship between

total energy with the number of iterations are shown in
Figure 2. It shows the properties of the three damping co-
efficients in detail. When the viscous damping is applied in the
DR method, a small amount of nodal coordinate kinetic energy
E is continuously dissipated during the form‐finding course.
Besides, if the kinetic damping is applied in the DR method,
the nodal coordinate kinetic energy E is not decreased until the
kinetic energy E realised a local peak. Combined with dynamic
damping and viscous damping coefficients, the drift damping
has the advantages of the above two coefficients. However, in
the DR form‐finding algorithm design process, numerous DR
algorithms use dynamic damping due to the complex structure
of drift damping coefficient and the dynamic damping can
satisfy the requirements of form‐finding process [13].

4 | NUMERICAL EXAMPLES

In this section, several numerical examples and contrast sim-
ulations are proposed to verify the computational efficiency
and anti‐noise performance of the DR‐NTZNN form‐finding
method.

4.1 | Two‐dimensional and three‐

dimensional examples

In the numerical examples, the form‐finding course is polluted
by noise items, in the modelling process of DR‐NTZNN
method, the noise includes the round‐off error which is
caused by approximate matrix Bk, besides, in the dynamic
relaxation method, in order to reduce the computational
complexity of Xt*, the calculation error which is brought by the
calculating rule (20), and the external interference in the actual
form‐finding process, these circumstances should be considered
in the modelling course. Hence, an arbitrary linear noise
ɛ = ψk + σ is introduced in the paper. Where k is the iteration
step, ψ and σ are the constant coefficients. In this subsection, for
the purpose of demonstrating the effectiveness of the DR‐

NTZNN form‐finding method in two‐dimension space,
supposing there is a hexagon tensegrity mechanism, which is
consisted by three struts and six cables. The form‐finding course
is terminated within 2 s, the cutoff error is 10−2. Besides, the self‐
equilibrium configuration is shown in Figure 3. Although the
hexagon tensegrity structure is a simple structure, however, the
simulation result demonstrates the effectiveness of the DR‐

NTZNN algorithm in dealing with non‐linear optimisation
problems which is transformed from tensegrity structure form‐

finding problem. Hence, the self‐equilibrium structure is
established even though the form‐finding process is disturbed
by noise. It can prove the excellent anti‐noise performance of the
DR‐NTZNN algorithm.
In addition, a four‐prism tensegrity structure based ten-

segrity robot is widely utilised in the field of tensegrity robot [33,
34]. Hence, a tensegrity robot is presented to verify the

F I GURE 2 The relationship between total energy with the number of iterations under the viscous, kinetic, and drift damping coefficients.

F I GURE 3 The self‐equilibrium status of hexagon tensegrity structure
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efficiency and calculation performances of the DR‐NTZNN
approach. A four‐prism tensegrity system is consisted by 4
struts, 12 cables and 8 nodes. Figure 4 shows the self‐
equilibrium four‐prism structure obtained by utilising the DR‐

NTZNN algorithm, which could also be called as standing
position of tensegrity structure [33]. With the increase of iter-
ative steps, the interference of noise item to the form‐finding
process is increase gradually. In the wake of increasing itera-
tion numbers, the accuracy level of 10−2 has always been
maintained during the simulation process. However, in the
simulation, the DR‐NTZNN algorithm could cause the error
converge to 10−2 under the noise environment promptly and
the error accuracy is improved which compared with the form‐

finding algorithm using dynamic relaxation method [13].
Besides, in order to further investigate the efficiency of DR‐

NTZNNmethod in three‐dimensional space, a hexagonal prism
tensegrity structure simulation is proposed in this subsection.
The self‐equilibrium mechanism of the tensegrity structure is
seen in Figure 5 and the cut‐off error is 10−1. The proposed
tensegrity mechanism is consisted by 12 nodes, 6 struts and 18
cables. The simulation result shows that the hexagonal prism
tensegrity structure could establish its self‐equilibrium config-
uration though the DR‐NTZNN method under the noise
environment. Although the form‐finding course of hexagonal

prism tensegrity structure spends more time to form the self‐
equilibrium than the four‐prism tensegrity structure, this is
due to the six‐prism tensegrity structure has higher structural
complexity. However, the DR‐NTZNN form‐finding algorithm
can still find the self‐equilibrium configuration of the structure,
which is demonstrated the effectiveness of DR‐NTZNN algo-
rithm in dealingwith the form‐finding problems of sophisticated
three dimensional tensegrity structure.
Furthermore, a truncated tetrahedron tensegrity is pro-

posed to verify the efficient of the DR‐NTZNN algorithm. The
truncated tetrahedron tensegrity mechanism is constructed by 6
struts, 18 cables and 12 nodes. With respect to the proposed
high‐dimensional tensegrity structure, although the dimension
of constraint conditions are 24 � 36, the form‐finding course
takes 13 steps to find the self‐equilibrium mechanism which can
be seen in Figure 6 and the cut‐off error is 10−2. In the simu-
lation example, through adjusting the NTZNN parameters h1
and h2 can enhance the error precision. However, arbitrarily
changing h1 and h2 may not applicable for the actual form‐

finding process. As for the NTZNN model, the values of h1
and h2 have an upper bound. Therefore, arbitrarily increasing
the values of h1 and h2 will spend more computation time and
may cause a failure to the tensegrity form‐finding procedure.
Additionally, tensegrity structures are widely used in the field

of robots, such as tensegrity bows and spherical tensegrity ro-
bots [1, 35, 36]. Consequently, a fusiform tensegrity robot [1] is
selected to find its self‐equilibrium configuration for purpose of
verifying the applicability of DR‐NTZNN form‐finding algo-
rithm. Figure 7 shows the geometric construction of fusiform
tensegrity robot. The fusiform tensegrity robot is consisted by
four struts, four cables, two springs and a actuator. Besides, the
springs can be seen as cables. Thereby, the tensegrity robot
contains four struts and six cables, and the actuator can be
neglected during the form‐finding process. Under the 10−1

pattern cutoff error, the presented structure find its self‐
equilibrium configuration with noise polluted. In order to
investigate the nature of fusiform tensegrity robot, the form‐

finding usually analyses the tensegrity structure that without
external forces. This is the reason why the actuator is neglected
in the form‐finding process. The DR‐NTZNN method is uti-
lised to find self‐equilibrium configuration of tensegrity robot,
which is facilitated the statics and kinematic properties analysesF I GURE 4 The self‐equilibrium status of four‐prism tensegrity

structure

F I GURE 5 The self‐equilibrium status of hexagonal prism tensegrity
structure

F I GURE 6 The self‐equilibrium status of truncated tetrahedron
tensegrity
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of tensegrity structure. As can be seen in the Figure 8, the DR‐

NTZNN form‐finding algorithm successfully finds the self‐
equilibrium structure of fusiform tensegrity robot, hence, the
self‐equilibrium structure is used for subsequent investigations.
Therefore, the DR‐NTZNN form‐finding approach has prac-
ticability in the field of tensegrity robots.

4.2 | The contrast simulations

For the sake of revealing the computational efficiency of
the DR‐NTZNN algorithm and the superiority in the face of
noise interference, two classical form‐finding algorithms are
proposed as comparative simulations in this subsection. First, in
order to reflect the computational efficiency of the DR‐

NTZNN algorithm, a contrast simulation between the DR‐

NTZNN form‐finding method and modified Broyden‐
Fletcher‐Goldfarb‐Shanno noise‐tolerant zeroing neural
network (MBFGS‐NTZNN) form‐finding approach [14] is
proposed in this subsection. In the contrast simulation, the
form‐finding process are under the arbitrary linear noise

ɛ = ψk + σ polluted. The MBFGS‐NTZNN form‐finding
approach takes 49.376 s to find the self‐equilibrium configura-
tion of four‐prism tensegrity structure. As a contrast, the form‐

finding process which utilising DR‐NTZNN algorithm takes
2.399 s. The results are shown in Table 2.
For the MBFGS‐NTZNN algorithm, in spite of the algo-

rithm establishes an efficient objective function, and the form‐

finding model can effectively express the physical properties
of the tensegrity structure, which means stiffness matrix of the
structure is positive definite during the form‐finding procedure,
hence, the tensegrity structure is in a stable state. However, the
Jacobian matrix of the objective function is considered in the
modelling process. Although the dimensions of the Jacobian
matrix may not affect the computational efficiency for two‐
dimensional structures. Nonetheless, as the structures get
more complex, the dimensions of the Jacobian matrix will
become extremely large, which may affect the computational
efficiency seriously.
Furthermore, an extra comparison is proposed between

the DR‐NTZNN method and the modified DR form‐finding
approach to demonstrate the importance of anti‐noise func-
tionality [13]. As for a two‐dimension hexagon tensegrity
structure, the modified DR method take 3.4346 s to establish
the self‐equilibrium configuration under the noise environ-
ment. In the previous simulation result, the DR‐NTZNN
form‐finding approach spends less than 2 s to establish the
same self‐equilibrium structure and the DR‐NTZNN method
takes 2.399 s to find a more complicated structure under the
same noise interfered. The results are shown in Table 3. It can
draw a conclusion that, the modified DR method has powerful
computational efficiency, yet, the efficiency of modified DR
algorithm will be weakened when encounter the noise inter-
ference. By means of the proposed contrast simulation, it can
prove the importance of noise tolerant functionality of DR‐

NTZNN method during the form‐finding course.
In summary, through two groups contrast simulations, the

DR‐NTZNN algorithm shows the calculation and anti‐noise
performances which compared with the existing classical
form‐finding algorithm. As a kind of advanced RNN, the
NTZNN model has high efficiency in handling the non‐linear
optimisation problems. Through two‐dimensional and three‐
dimensional tensegrity structures, and high‐dimensional

F I GURE 7 The mechanism structure of fusiform tensegrity robot

F I GURE 8 The self‐equilibrium status of fusiform tensegrity robot

TABLE 2 The form‐finding results of different form‐finding
methods

Form‐finding
method

DR‐NTZNN
method

MBFGS‐NTZNN
method

Time 2.399 s 49.376 s

Abbreviation: DR, dynamic relaxation.

TABLE 3 The form‐finding results of different form‐finding
methods

Form‐finding method DR‐NTZNN method Modified DR method

Time 2 s 3.4346 s

Abbreviation: DR, dynamic relaxation.
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tensegrity structure simulation results, it demonstrates the DR‐

NTZNN form‐finding algorithm is effective when dealing
with the tensegrity form‐finding problems. In addition, the DR‐

NTZNN algorithm can still find the self‐equilibrium tensegrity
structure under the noise interference, which can prove the
NTZNN algorithm has excellent anti‐noise performance during
the form‐finding course. Furthermore, the fusiform tensegrity
robot application illustration example verifies the effectiveness
of DR‐NTZNN algorithm in the application field, which greatly
expands the application scope of DR‐NTZNN algorithm.
Eventually, two groups of contrast simulations prove the
computational efficiency of the DR‐NTZNN algorithm and
the excellent anti‐noise performancewhich is comparedwith the
traditional DR form‐finding algorithms.

5 | CONCLUSION

In this paper, a high efficiency DR‐NTZNN method has been
proposed for solving form‐finding problem which is based on
determining NCO problem. An efficient and general model is
constructed to deal with the NCO problem combined the SQP
method and NTZNN algorithm which gives the anti‐noise
performance to the DR‐NTZNN method. Moreover, the DR
method with kinetic damping could solve the nodal coordinates
vector with high iteration speed and accuracy. Eventually, several
tensegrity simulations and contrast examples have been pro-
posed to show the practicability and precision of the presented
DR‐NTZNN form‐finding method which is compared with the
classical form‐findingmethods. In the future, how to construct a
general dynamics relaxation form‐findingmodel for engineering
applications is the main concern.
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