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Abstract. The study of a receptor-ligand system generally relies on the analysis of its dose-
response (or concentration-effect) curve, which quantifies the relation between ligand concentration
and the biological effect (or cellular response) induced when binding its specific cell surface receptor.
Mathematical models of receptor-ligand systems have been developed to compute a dose-response
curve under the assumption that the biological effect is proportional to the number of ligand-bound
receptors. Given a dose-response curve, two quantities (or metrics) have been defined to characterize
the properties of the ligand-receptor system under consideration: amplitude and potency (or half-
maximal effective concentration, and denoted by EC50). Both the amplitude and the EC50 are
key quantities commonly used in pharmaco-dynamic modeling, yet a comprehensive mathematical
investigation of the behavior of these two metrics is still outstanding; for a large (and important)
family of receptors, called cytokine receptors, we still do not know how amplitude and EC50 depend
on receptor copy numbers. Here we make use of algebraic approaches (Gr\"obner basis) to study
these metrics for a large class of receptor-ligand models, with a focus on cytokine receptors. In
particular, we introduce a method, making use of two motivating examples based on the interleukin-
7 (IL-7) receptor, to compute analytic expressions for the amplitude and the EC50. We then extend
the method to a wider class of receptor-ligand systems, sequential receptor-ligand systems with
extrinsic kinase, and provide some examples. The algebraic methods developed in this paper not
only reduce computational costs and numerical errors, but allow us to explicitly identify key molecular
parameters and rates which determine the behavior of the dose-response curve. Thus, the proposed
methods provide a novel and useful approach to perform model validation, assay design and parameter
exploration of receptor-ligand systems.
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1. Introduction. The human body consists of more than 3\times 1013 cells [3], each
of them receiving, at any given time, hundreds of signals from extracellular molecules
when these bind their specific membrane receptors. These signals are integrated,
translated, and read by a small number of intracellular molecules to generate ap-
propriate cellular responses [28]. Surface receptors specifically bind to extracellular
molecules called ligands. The binding of a ligand to its receptor induces an intra-
cellular cascade of signaling events which regulate a cell's fate, such as migration,
proliferation, death, or differentiation [39, 60]. Receptor-ligand interactions are es-
sential in cell-to-cell communication, as is the case for immune cell populations [17]
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S106 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

and, thus, a large body of literature has been devoted to the experimental and theo-
retical study of cell signaling dynamics [64, 49, 23, 50, 32, 31, 46, 41, 20]. Exploiting
the controlled environment of in vitro experiments, most cell signaling studies focus
on the estimation of the affinity constant for a given receptor-ligand system, and the
quantification of biochemical on and off rates for the binding and unbinding, respec-
tively, of receptor and ligand molecules. Recent single-cell studies have shown that
cells have heterogeneous expression levels of receptor copy numbers. Not only does
the copy number depend on the cell type, but receptor copy numbers vary strongly
between isogenic cells of one cell type [20, 8, 17]. Given the heterogeneity of receptor
copy numbers across and within cell types, it is timely to understand how a cell's
response to a given ligand depends on the expression levels of its receptor. This quan-
tification will be a first step to account for the variability of receptor expression levels
when designing and studying receptor-ligand models (both from an experimental and
mathematical perspective) [17, 8, 23, 49].

The study of a receptor-ligand system generally relies on the analysis of its dose-
response (or concentration-effect) curve, which describes the relation between ligand
concentration and the biological effect (or cellular response) it generates when binding
its specific receptor [39, 30, 31]. Mathematical models of receptor-ligand systems
have been developed to compute a dose-response curve, under the assumption that a
biological effect is proportional to the number of ligand-bound receptors [41, 8, 17,
64]. Given a dose-response curve, two quantities (or metrics) have been defined to
characterize the properties of the ligand-receptor system under consideration. These
metrics are the amplitude, which is defined as the difference between the maximal
and minimal response, and the half-maximal effective concentration (or EC50), which
is the concentration of ligand required to induce an effect corresponding to 50\% of
the amplitude [39, 30, 31]. The amplitude is a measure of the efficacy of the ligand,
and the EC50 is a measure of the potency (or sensitivity) of the ligand (for a given
receptor) [39, 30, 14]. Both amplitude and EC50 are key quantities commonly used in
pharmacodynamic modeling, yet a comprehensive mathematical investigation of the
behavior of these two metrics is still outstanding for most receptor-ligand systems.
For instance, for a large (and important) family of receptors, called cytokine receptors
[48, 62, 2], we still do not know how amplitude and EC50 depend on receptor copy
numbers (for a given concentration of ligand) [20, 8]. In this paper we bridge this
gap by deriving closed-form expressions for a class of cytokine-receptor models. We
further highlight how tools from computational algebra can be used to facilitate the
calculation of both the amplitude and the EC50 for this family of models.

Previous work has shown that the estimation of the amplitude and the EC50

from experimental data is often possible, although strong inductive biases might be
introduced [30, 39]. Usually one starts with a data set where the number (or concen-
tration) of receptor-ligand signaling complexes formed (see section 2.2) is measured
for different values of the ligand concentration. Then, the estimation of the amplitude
and the EC50 is turned into a regression problem by assuming a functional relation-
ship in the data set and fitting a parametric curve. A simple first approach is to plot
experimental values (corresponding to a measurable variable which quantifies cellular
response) as a function of ligand concentration. The amplitude and the EC50 are
then read directly from a curve formed by interpolation of the data points. Since
the EC50 is likely to fall between two data points, a geometrical method [1] can be
used for an accurate determination. Nowadays many software packages can compute
the amplitude and the EC50 from the data set making use of statistical methods,
which consist in finding the ``best-fit"" equation to the dose-response curve. The most
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S107

common shape of the dose-response curve is a sigmoid and, thus, can be fitted with
the famous Hill equation [22, 24]. However, other functions are also possible, such
as a logistic equation [6, 33], a log-logistic equation [29, 58], or the Emax model [37,
59]. An asymmetrical sigmoid equation is sometimes needed for better precision [6,
58]. The amplitude and the EC50 are parameters of these equations and can, thus, be
directly inferred from the fitting process. When a data set does not follow the strictly
increasing pattern of these Hill-like functions, then more complex functions, such as
bell-shaped curves [51], or multiphasic curves [10] can be used. It is important to note
that even though these empirical regression methods allow one to quantify the two
key receptor-ligand metrics, amplitude and EC50, they do not offer any mechanistic
insights for the receptor-ligand system under consideration. To this end, mathemat-
ical models can be used to describe the receptor-ligand system at a molecular level;
that is, mathematical models consider the biochemical reactions which initiate a cel-
lular response [15, 64, 31]. The challenge in such models is finding analytical, ideally
closed-form, expressions for the amplitude and the EC50. Due to the nonlinear nature
of the biochemical reactions involved, this poses a significant and practical challenge.

Cytokine-receptor systems are of great relevance in immunology [48, 62, 2], and
here we want to address this challenge in the context of this family of receptors [34, 2].
The advantages of having analytical (or closed-form) expressions of the amplitude and
the EC50 for a large class of receptor-ligand systems are many: (i) they allow one to
quantify their dependence on receptor copy numbers, (ii) they facilitate mathematical
model validation and parameter exploration, and (iii) they reduce computational cost.
To the best of our knowledge such expressions have been obtained in a few instances:
closed or open bimolecular receptor-ligand systems [21], monomeric receptors [38], or
ternary complexes [13]. More complicated receptor-ligand models have been studied
with chemical reaction network theory (CRNT) [18, 44, 55], but CRNT has thus far,
been focused on the analysis of the steady state of the system (i.e., existence and
number of steady states and their stability). Yet, we believe CRNT is an essential
and useful framework to start any mathematical investigation of the amplitude and
the EC50.

Another aspect which can be effectively addressed by mechanistic mathematical
modeling is the effect of internal or external perturbations to the state of a cell. For
example, in single-cell experiments or even repetitions of bulk experiments [8, 20], the
experimental conditions can never be replicated exactly. This leads to noise not only
in the measured quantities, but also in the reaction mechanisms themselves. This
variation can be captured in mathematical models which encode parameters such as
affinity constants or total copy number of constituent molecular species. An analytical
study of the dependency of pharmacologically relevant quantities, such as amplitude
and EC50, on the reaction parameters can facilitate in silico drug design [43]. While
amplitude and EC50 are widely employed to characterize biological phenomena, the
manner in which they depend on the parameters of the receptor-ligand model is not
fully understood. Thus, improved understanding of these relationships could provide
novel biological and computational insights.

Motivated by the previous challenges and making use of methods from CRNT
and algebraic geometry, such as the Gr\"obner basis, in this paper we propose a new
method to obtain analytic expressions of the amplitude and the EC50 for a large class
of receptor-ligand models, with a focus on cytokine receptors. The paper is organized
as follows. In section 2 we introduce the mathematical background and essential
notions of CRNT used in the following sections. With the IL-7 cytokine receptor as a
paradigm, in section 3 we propose a general method to calculate the amplitude and the
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S108 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

EC50 of the dose-response curve for a class of receptor-ligand systems. In section 4 we
generalize the previous results to a wider class of receptor-ligand systems, sequential
receptor-ligand systems with extrinsic kinase, and provide a few biological examples
of these systems. Finally, we discuss and summarize our results in section 5. We
have included an appendix to provide additional details of our methods (perturbation
theory) and our algebraic computations.

2. Mathematical background. In this section we briefly summarize the rele-
vant notions of CRNT and formally define amplitude, EC50, and signaling function.
A very short introduction to the use of Gr\"obner bases is also given.

2.1. A brief introduction to CRNT. In this paper we view a chemical reac-
tion network (CRN), \scrN , as a multiset \scrN = \{ \scrS ,\scrC ,\scrR \} , where \scrS is the set of species,
\scrC the set of complexes, and \scrR the set of reactions. We note that in the context of
CRN, a ``complex"" is a linear combination of species and need not be a ``biological
functional unit,"" which we refer to as a biological complex . We denote, whenever
useful, a biological complex formed by species X and Y as X : Y , where the colon
denotes the physical bond between X and Y . The order of species in the biological
complex is irrelevant, i.e., X : Y = Y :X.

Example 2.1 (heterodimeric receptor tyrosine kinase). A simple heterodimeric re-
ceptor tyrosine kinase (RTK) model has a species set \scrS = \{ X1,X2, Y1, Y2\} , a complex
set \scrC = \{ X1+X2, Y1, Y2\} , and a reaction set \scrR = \{ X1+X2 \rightarrow Y1, Y1 \rightarrow X1+X2, Y1 \rightarrow 
Y2, Y2 \rightarrow Y1\} . Ligand binding induces dimerization of these receptors resulting in au-
tophosphorylation of their cytoplasmic domains (tyrosine autophosphorylation sites)
[54]. X1 and X2 are the two components of the heterodimeric RTK. The biological
complexes Y1 =X1 :X2 and Y2 = L : Y1 are the heterodimeric receptor with intrinsic
kinase activity and the heterodimeric receptor bound to the ligand, respectively. In
this paper the ligand concentration (L) is taken to be an input parameter and, hence,
it does not feature as a separate chemical species in the species set \scrS .

We can associate a reaction graph to every CRN \scrN , by letting the vertex set be
\scrC and the (directed) edge set \scrR . There exists a class of important CRNs defined by
their network reversibility.

Definition 2.2 (network reversibility). Let \scrN be a CRN with its associated
reaction graph \scrG (\scrC ,\scrR ). An edge between Ci and Cj \in \scrC exists if Ci \rightarrow Cj \in \scrR . If for
every edge Ci \rightarrow Cj \in \scrR , the edge Cj \rightarrow Ci \in \scrR also exists, then the network is called
reversible. If for every edge, Ci \rightarrow Cj \in \scrR , a directed path exists going back from Cj

to Ci, then the network is called weakly reversible. All reversible networks are also
weakly reversible.

A general reaction from complex Ci to complex Cj can be written as

(2.1)

n\sum 
k=1

\alpha ik Xk \rightarrow 
n\sum 

k=1

\alpha jk Xk,

where the sum is over the set of species (X1,X2, . . . ,Xn), and \alpha i = (\alpha i1, . . . , \alpha in)
T

and \alpha j = (\alpha j1, . . . , \alpha jn)
T are nonnegative integer vectors. The corresponding reaction

vector is given by r= \alpha j  - \alpha i. For a CRN with n species and m reactions we can now
define the n\times m matrix of all reaction vectors, \Gamma , such that \Gamma = (r1, . . . , rm). This
matrix is called the stoichiometric matrix .
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S109

Example 2.3 (heterodimeric RTK continued). The reaction graph of the het-
erodimeric RTK model is given by

X1 +X2 \rightleftharpoons Y1 \rightleftharpoons Y2.

The model is reversible with reaction vectors r1 = ( - 1, - 1,1,0)T , r2 = (1,1, - 1,0)T ,
r3 = (0,0, - 1,1)T , and r4 = (0,0,1, - 1)T .

To derive dynamical properties from the static description so far provided, we
make use of the law of mass action kinetics [27]. First, we assign a rate constant
kj \in \BbbR >0 with j \in \{ 1, . . . ,m\} , to each reaction in the network. Second, we denote the
concentration of species Xi by xi. With this notation, we then associate a monomial
to every complex Ci =

\sum 
k \alpha ik Xk, as follows,

(2.2) x\alpha i = x\alpha i1
1 \cdot \cdot \cdot x\alpha in

n ,

where n is the number of species in the network. We define the reactant complex of
a reaction as the complex on the left-hand side of reaction (2.1). The reaction rate
of a reaction is the monomial of its reactant complex multiplied by the rate constant.
The flux vector, R(x), is the m\times 1 column vector of all reaction rates. The ordinary
differential equations (ODEs) governing the dynamics of the reaction network are
given by

(2.3)
dx

dt
=\Gamma R(x),

where \Gamma is the stoichiometric matrix (defined above). We note that the reaction rate of
the ith reaction is the ith row in R(x), and similarly, the stoichiometry of ith reaction
is given by the ith column of \Gamma .

From (2.3) we can also deduce the conserved quantities of the reaction network.
That is, if a vector exists, z \in \BbbZ n, such that d(zTx)/dt = zT\Gamma R(x) = 0, the quantity
zTx is conserved. Consequently, the left kernel of \Gamma defines a basis for the space
of conserved quantities. In this way, conservations induce linear relations between
the variables. Informally we say that a molecular species Xi is conserved if its total
number of molecules, Ni, is constant. Ni is determined by the initial conditions.

Example 2.4 (heterodimeric RTK continued). The dynamical system associated
with the heterodimeric RTK model is given by

dx

dt
=

d

dt

\left(    
x1

x2

y1
y2

\right)    =

\left(    
 - 1 1 0 0
 - 1 1 0 0
1  - 1  - 1 1
0 0 1  - 1

\right)    
\left(    
k1x1x2

q1y1
k2y1
q2y2

\right)    

=

\left(    
 - k1x1x2 + q1y1
 - k1x1x2 + q1y1

k1x1x2  - (q1 + k2)y1 + q2y2
k2y1  - q2y2

\right)    
with ki as the reaction constants of the forward chemical reactions (\rightharpoonup ) and qi the
reaction constants of the backward reactions (\leftharpoondown ). A basis for the conservation equa-
tions is given by the linear relations X1 + Y1 + Y2 = N1 and X2 + Y1 + Y2 = N2.
These imply that the total amount of the species X1 (X2) is conserved by adding
the amounts of the bound states of the molecule (Y1 and Y2) to the amount of free
molecule X1 (X2).
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We can now define the biologically relevant steady states of a CRN.

Definition 2.5. A vector x\ast is a biologically relevant steady state if \Gamma R(x\ast ) = 0
and x\ast 

i > 0 \forall i\in \{ 1, . . . , n\} .
A useful connection between the static network structure (defined earlier) and

the existence (and stability) of unique biologically relevant steady states can be made
via deficiency theory [18].

Definition 2.6 (deficiency). Let \scrN be a CRN with \ell connected components in
the reaction graph and \eta = dimspan(r1, . . . , rm) be the dimension of the span of the
reaction vectors. The deficiency of \scrN is then given by

\delta = | \scrC |  - \ell  - \eta .

The notion of network deficiency leads to one of the fundamental theorems of CRNT,
the deficiency zero theorem [18], which connects the network structure to the dynamics
of a CRN.

Theorem 2.7 (deficiency zero theorem). Let \scrN be a weakly reversible CRN with
\delta = 0. Then the network has a unique biologically relevant steady state for every set
of initial conditions, and this steady state is asymptotically stable.

With certain additional conditions on the reaction rates (see [19, 12]), biologically
relevant steady states are detailed balanced. This means that for every reaction of
the form (2.1), the steady states satisfy

Kx\alpha i = x\alpha j ,

where K = k/q, the ratio of the rate constants of the forward and backward reactions,
is called the affinity constant of the reaction.

Example 2.8 (heterodimeric RTK continued). The heterodimeric RTK model has
3 complexes, 1 connected component and the dimension of the span of the reaction
vectors is 2; hence, \delta = 3 - 1 - 2 = 0. Since the network is reversible, we know from
Theorem 2.7 that there exists exactly one stable positive steady state for each set of
initial conditions. One can show that in fact y1 = (k1/q1)x1x2 and y2 = (k2/q2)y1.

2.2. Signaling function: Amplitude and half-maximal effective concen-
tration. In this paper we want to closely investigate pharmacological properties of
receptor-ligand systems, rather than the steady state structure of the models. In
particular, we want to study the dose-response (or concentration-effect) curve of the
system, which describes the relation between ligand concentration and the biological
effect (or cellular response) it generates when binding its specific cell surface receptor.
As mentioned in section 1 a lot of effort has been devoted to exploring the steady
state structure of chemical reaction networks. In this paper we make use of algebraic
methods to explore the dose-response of receptor-ligand systems. To do so we start
with the definition of signaling complex. We note that in most biological instances the
signaling complex is formed by all the subunit chains that make up the full receptor,
intra-cellular kinases, and the specific ligand [28, 60, 23, 32, 20, 8, 14].

Definition 2.9. The signaling complex of a receptor-ligand system is the biolog-
ical complex which induces a biological response.

This leads to the following definitions of the signaling function and dose-response
curve.
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S111

Definition 2.10. We define the signaling function, \sigma : \BbbR + \rightarrow \BbbR +, L \mapsto \rightarrow \sigma (L),
as the univariate function which assigns to a given value of ligand concentration, L,
the number (or concentration) of signaling complexes formed at steady state. The
dose-response curve is the corresponding plot of the signaling function.

We note that in what follows we will not distinguish between number (or concen-
tration) of signaling complexes since one can be obtained from the other if we know
the volume of the system and Avogadro's number.

The specific choice of \sigma will depend on the receptor-ligand system under consid-
eration. In this paper we focus on the class of cytokine receptors and the signaling
function will be defined in section 3. In our examples the signaling function will be
a product of the steady state values (numbers) of subunit chains that make up the
full receptor, intracellular kinases, affinity constants of the reactions involved, and
ligand concentration. This together with (2.2) and (2.3) indicates that the signaling
function will always be algebraic. Next, we define a central object of study in this
paper, namely, the amplitude of the signaling function, often referred as efficacy in
the pharmacology literature [39].

Definition 2.11. The amplitude of the signaling function, A, is the difference
between the maximum and the minimum of \sigma , that is, A\equiv max(\sigma ) - min(\sigma ).

We note that when min(\sigma ) = 0, which is the case considered in this paper
(min(\sigma ) = \sigma (0) = 0), the amplitude is given by the maximum of the signaling function.
If, in addition, the dose-response curve attains its maximum at large concentrations
(for instance, when the dose-response curve is sigmoid), we have

(2.4) A= lim
L\rightarrow +\infty 

\sigma (L).

The amplitude provides information about the magnitude of the intracellular response
to the stimulus, L. The larger the amplitude is, the larger the response variability
will be. The amplitude is always bounded by the number of molecules available.
However, this bound is often not tight [47]. To quantify the sensitivity of the model
to the stimulus, i.e., the potency of the ligand L, we introduce the half-maximal
effective concentration, EC50.

Definition 2.12. The half-maximal effective concentration, or EC50, is the lig-
and concentration L\ast which satisfies \sigma (L\ast ) =min(\sigma ) + max(\sigma ) - min(\sigma )

2 =min(\sigma ) + A
2 .

We say that the EC50 is inversely proportional to ligand potency, namely, the
lower the EC50, the higher the potency of the ligand. Figure 1 illustrates the ampli-
tude and the EC50 of a sigmoid dose-response curve (A) when its minimum is zero:
increasing the amplitude shifts up the maximum of the curve and results in greater
efficacy (B), and decreasing the EC50 shifts the dose-response curve to the left and
increases the potency of the ligand (C). We now review some algebraic and analytic
tools which will enable us to compute the EC50 and the amplitude.

2.3. Gr\"obner bases. Since we assume the law of mass action, the models stud-
ied in this paper are systems of polynomial equations and, thus, we can use the
techniques developed in the field of computational algebra and algebraic geometry
[9]. Such methods have also been successfully applied to many topics in CRNT, see
e.g., [26, 52, 11]. In particular, we make use of Gr\"obner bases. Informally speaking, a
Gr\"obner basis is a nonlinear generalization of the concept of a basis in linear algebra
and, therefore when a Gr\"obner basis for a polynomial system is calculated, many
properties of the system can be investigated, such as the number of solutions and the
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Fig. 1. Sigmoid dose-response curve: number of signaling complexes formed, \sigma (L), as a func-
tion of the concentration of ligand L (arbitrary units). (A) The maximum value defines the ampli-
tude. The EC50 is the concentration of ligand which corresponds to half the amplitude. (B) Three
dose-response curves with the same EC50 value and different amplitudes. Increasing the amplitude
shifts up the maximum of the curve and increases the efficacy. (C) Three dose-response curves with
the same amplitude and different EC50 values. Decreasing the EC50 shifts the dose-response curve
to the left and increases the potency of the ligand.

dimensionality of the space of solutions. Strictly speaking, however, a Gr\"obner basis
is not a basis as it is not unique and it depends on the monomial ordering chosen (for
instance, lexicographical (lex) order or graded reverse lex order). For more details we
refer the reader to [9].

A lex Gr\"obner basis is a triangular polynomial system; that is, for a polynomial
system (ideal) in \BbbQ [x1, . . . , xn] we obtain a polynomial system of the form

(2.5) gn(x1, . . . , xn) = gn - 1(x1, . . . , xn - 1) = \cdot \cdot \cdot = g1(x1) = 0.

Other monomial orderings may result in triangular systems, however, there is no
theoretical guarantee that this should be the case. When the solution space is positive
dimensional, then g1, . . . , gn are identically zero for an infinite number of points. For
a given Gr\"obner basis with a zero-dimensional solution space we can now iteratively,
and often numerically, solve the constituent polynomials to obtain a finite number of
solutions (in \BbbC n) for the polynomial system. We can also find all real and, further,
positive solutions, if there are any [9].

Remark 2.13. We note that computing the solution of the polynomial system
iteratively only works if partial solutions of the polynomials forming a Gr\"obner basis
are not zeros of the leading coefficients of any of the other polynomials in the Gr\"obner
basis. We assume this to be the case in this paper. Indeed, for all the examples
considered here, this is always the case.

Remark 2.14. Technically, in this paper, we consider Gr\"obner bases over a para-
metric coefficient field, e.g., frac(\BbbQ [k1, . . . , km]), where frac(\cdot ) denotes the fraction field
of the ring \BbbQ [k1 . . . , km]. If we restrict ourselves to a specific set of rate constants,
we are not guaranteed that the ``generic"" Gr\"obner basis obtained is indeed a Gr\"obner
basis for this restriction, i.e., the Gr\"obner basis may not be comprehensive [63]. One
way to construct a comprehensive Gr\"obner basis is via the Gr\"obner cover (GrobCov)
algorithm [42]. We assert, however, that for most practical cases this technicality will
not be required.

3. Methods: analytical study of receptor-ligand systems. In this section
we first outline the computation of the analytic expressions of the steady state, am-
plitude and EC50 for two IL-7 receptor (IL-7R) models. These two examples then
allow us to introduce a more general method to analytically compute the amplitude
and the EC50 of receptor-ligand systems under the following hypotheses:

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

12
/1

0/
24

 to
 8

3.
10

5.
24

5.
15

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S113

1. The system is in steady state.
2. The ligand is in excess (we consider ligand concentration, L, as a parameter

instead of a dynamic variable).
3. A unique biologically relevant solution exists for any given set of rate con-

stants and initial conditions.
The IL-7R models we have chosen are simple enough to illustrate our method and,
thus, to derive analytic expressions for the amplitude and the EC50, yet complex
enough to show its limitations.

3.1. Two motivating examples: IL-7 cytokine receptor as a paradigm.
We now consider the cytokine interleukin-7 (IL-7) and its receptor (IL-7R) [45, 50, 23,
32, 8, 46] as a motivating receptor-ligand system. IL-7 is a cytokine involved in T cell
development, survival, and homeostasis [36]. Its receptor, IL-7R, is displayed on the
surface of T cells and is composed of two transmembrane chains: the common gamma
chain (denoted by \gamma ) and the specific high affinity chain IL-7R\alpha (denoted by \alpha ) [23,
46, 36, 41]. Cytokine receptors do not contain intrinsic kinase domains and, thus,
make use of Janus family tyrosine kinases (JAKs) and signal in part by the activation
of signal transducer and activator of transcription (STAT) proteins [35]. In the case of
the gamma chain, it binds to the intracellular extrinsic Janus kinase molecule, JAK3.
Binding of IL-7 to the dimeric JAK3-bound IL-7R, defined as \alpha : \gamma : JAK3, initiates a
series of biochemical reactions from the membrane of the cell to its nucleus, which in
turn lead to a cellular response. For the IL-7R system the STAT protein preferentially
activated is STAT5 [35], so that the amount of phosphorylated STAT5 can be used as
the experimental measure of the intracellular response generated by the IL-7 stimulus.
The IL-7R receptor is illustrated in Figure 2(a), where the hatched area determines
the intracellular environment.

The first model we consider is shown in Figure 2(c). As discussed in [50], the
gamma chain is shared by other cytokine receptors. This model does not include the
competition for the gamma chain between different cytokine receptors, therefore, later
in this section we introduce a second model to account for this competition. In this
section we will provide an (algebraic) analytic treatment of both models. We consider
the formation of dummy receptors, \alpha : \gamma , which are formed of the IL-7R devoid of
JAK3 and, therefore, they cannot signal (see Figure 2(b)). We further assume no
allostery, that is, the affinity constants of the biochemical reactions involved in the
formation of the dummy complex, L : \alpha : \gamma , are the same as the affinity constants
involved in the formation of the signaling complex, L : \alpha : \gamma : JAK3.

3.1.1. The IL-7 receptor-ligand system: Two receptor chains and a
kinase. We first consider a model in which the IL-7R is formed sequentially, one
molecule at a time; the \gamma chain binds to the kinase, JAK3, then the \alpha chain binds to
the complex formed by \gamma and JAK3. Finally, the ligand, IL-7, binds to the signaling
receptor composed of \gamma , \alpha , and JAK3. The model also includes the formation of
dummy receptors, which do not involve the kinase JAK3. Figure 2(c) illustrates the
sequential formation of the signaling and dummy complexes. The reaction scheme for
this model is as follows,

(3.1)

\gamma + JAK3 \rightleftharpoons \gamma : JAK3, K1,
\alpha + \gamma : JAK3 \rightleftharpoons \alpha : \gamma : JAK3, K2,
\alpha + \gamma \rightleftharpoons \alpha : \gamma , K2,
L+ \alpha : \gamma \rightleftharpoons L : \alpha : \gamma , K3,
L+ \alpha : \gamma : JAK3 \rightleftharpoons L : \alpha : \gamma : JAK3, K3,
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α

JAK3

γ

L

pSTAT5

(a) Signalling IL-7 complex.

αγ

L

(b) Dummy IL-7 complex.

JAK3

γ α

L

signalling complex

c5

kinase JAK3

z

JAK3

gamma chain

γ

x

JAK3

γ

c1

alpha chain

α

y

γ α

c3

JAK3

γ α

c2

dummy complex

γ α

L

c4

L

L

ligand

(c) IL-7R model: sequential chemical reaction scheme.

Fig. 2. First IL-7R model: (a) The IL-7 receptor is composed of the transmembrane \gamma and \alpha 
chains. The \gamma chain can bind the intracellular downstream kinase JAK3. When the ligand, IL-7,
binds the full receptor, it phosphorylates STAT5. (b) The IL-7R model allows the formation of
``dummy"" complexes: IL-7 bound IL-7R complexes, devoid of JAK3, which are unable to induce
intracellular signaling. (c) IL-7 bound IL-7R complexes with JAK3 are able to induce intracellular
signaling and, thus, are called ``signaling"" complexes. IL-7R dummy and signaling complexes are
formed sequentially. The mathematical notation used in this paper is shown below each molecule or
complex.
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S115

where for i = 1,2,3, Ki is the affinity constant of the appropriate reaction. One
can show that this system has deficiency zero and is reversible (see section 2.1).
Therefore, for every set of rate constants and initial conditions, there exists exactly
one positive steady state. Moreover, this positive steady state is in detailed balance.
We remind the reader that in this paper we assume mass action kinetics to determine
reaction rates. We denote the concentration of \gamma , \alpha , JAK3, and IL-7 by x, y, z,
and L, respectively. The reaction rate for the forward/backward reaction (\rightharpoonup /\leftharpoondown )
is given by ki and qi, respectively, for i = 1,2,3. We note that Ki = ki/qi. The
concentrations of the product complexes of the forward reactions are denoted by ci in
order of appearance (see Figure 2(c)). We can now write down the ODEs associated
with the system of reactions (3.1):

(3.2)

dx

dt
= - k1xz + q1c1  - k2xy+ q2c3,

dy

dt
= - k2yc1 + q2c2  - k2xy+ q2c3,

dz

dt
= - k1xz + q1c1,

dc1
dt

= k1xz  - q1c1  - k2yc1 + q2c2,

dc2
dt

= k2yc1  - q2c2  - k3c2L+ q3c5,

dc3
dt

= k2xy - q2c3  - k3c3L+ q3c4,

dc4
dt

= k3c3L - q3c4,

dc5
dt

= k3c2L - q3c5.

A suitable basis for the conservation equations is

(3.3)

Nx = x+ c1 + c2 + c3 + c4 + c5,

Ny = y+ c2 + c3 + c4 + c5,

Nz = z + c1 + c2 + c5,

that is, single chain molecules are conserved since we do not consider the generation
or degradation of molecules. The constants Nx, Ny, and Nz represent the total copy
number of \gamma , \alpha , and JAK3 molecules per cell, respectively. Detailed balance [19] leads
to the following steady state equations:

(3.4)

c1 =K1xz,

c2 =K2yc1,

c3 =K2xy,

c4 =K3Lc3,

c5 =K3Lc2.

Substituting the steady state equations into the conservation equations, we obtain a
system of polynomials:

(3.5)

0 = - Nx + x+K1xz +K2K1xyz +K2xy+K3K2Lxy+K3K2K1Lxyz,

0 = - Ny + y+K2K1xyz +K2xy+K3K2Lxy+K3K2K1Lxyz,

0 = - Nz + z +K1xz +K2K1xyz +K3K2K1Lxyz.
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S116 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

Analytic computation of the steady state. The polynomial system (3.5) can be
solved numerically for a particular set of parameter values. However, an analytic
solution will provide greater insight and will allow us to derive expressions for the
amplitude and the EC50. We make use of Macaulay2 [25] to compute a lex Gr\"obner
basis for this model, which will lead to a triangular set of polynomials,1 as follows:

0 = z2 +
[1 +K1(Nx  - Nz)]

K1
z  - Nz

K1
,(3.6a)

0 = y2 +
[1 +K2(K3L+ 1)(Nx  - Ny)]

K2(K3L+ 1)
y - Ny

K2(K3L+ 1)
,(3.6b)

0 = x - 1

Nx
yz  - (Nx  - Nz)

Nx
y - (Nx  - Ny)

Nx
z  - Nx(Nx  - Ny  - Nz) +NyNz

Nx
.(3.6c)

We make use of the GrobCov algorithm to assert that (3.6) is a Gr\"obner basis for all
positive parameter configurations. Equation (3.6c) gives

x=
(Nx  - Ny + y)(Nx  - Nz + z)

Nx
=

Nx  - Ny + y

1 +K1z
,

where the last equality follows from (3.6a). Solving the system (3.6) and selecting the
biologically relevant solution, we obtain an analytic expression for the number of free
(unbound) JAK3, \alpha , and \gamma molecules at steady state,

z =
 - 1 +K1(Nz  - Nx) +

\surd 
\Delta 1

2K1
,(3.7a)

y=
 - 1 +K2(Ny  - Nx)(K3L+ 1) +

\surd 
\Delta 2

2K2(K3L+ 1)
,(3.7b)

x=
Nx  - Ny + y

1 +K1z
,(3.7c)

where we have introduced

\Delta 1 = 4K1Nz + [K1(Nx  - Nz) + 1]
2
,

and

\Delta 2 = 4K2Ny (K3L+ 1) + [K2(Nx  - Ny)(K3L+ 1) + 1]
2
.

We study the dose-response curve of this model given by the number of signaling
complexes, L : \gamma : \alpha : JAK, per cell at steady state and as a function of L. The
signaling function, \sigma (L), is given by

(3.8) \sigma (L)\equiv c5 =K3K2K1Lxyz.

Analytic computation of the amplitude. A simple inspection of the behavior of
(3.7) shows that the dose-response curve is a sigmoid, such that \sigma (0) = 0. Therefore
the amplitude A is given by the asymptotic behavior of the signaling function as
follows:

(3.9) A\equiv lim
L\rightarrow +\infty 

\sigma (L).

1Example code is provided in Appendix C.
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S117

We will prove this result rigorously for a more general class of models in section 4.
We first notice that z is independent of L. We now compute the product xy (at

steady state) as follows:

xy=
(Nx  - Ny)y+ y2

1 +K1z
.

From (3.6b) we can replace the polynomial in y of degree two by an expression linear
in y:

(Nx  - Ny)y+ y2 =
Ny  - y

K2(K3L+ 1)
.

Thus, we obtain the following analytic expression for the signaling function:

(3.10) \sigma (L) =K3K2K1Lxyz =
K1z

(1 +K1z)

K3L

(K3L+ 1)
(Ny  - y).

Since K3L
1+K3L

\rightarrow 1 when L\rightarrow +\infty , we need to study the expression Ny - y in this limit.
We have

(3.11) Ny  - y=
(Ny +Nx)K2(K3L+ 1) + 1 - 

\surd 
\Delta 2

2K2(K3L+ 1)
,

where

\Delta 2 =K2
2 (K3L+ 1)2(Nx  - Ny)

2 + 2K2(K3L+ 1)(Nx +Ny) + 1.

Keeping to lowest order in \scrO ( 1
L ) we obtain

Ny  - y=
1+ (Nx +Ny)K2(K3L+ 1) - K2(K3L+ 1)| Nx  - Ny| (1 +\scrO ( 1

L ))

2K2(K3L+ 1)
(3.12)

=
Nx +Ny  - | Nx  - Ny| 

2
+\scrO 

\biggl( 
1

L

\biggr) 
.

Finally, noticing that

Nx +Ny  - | Nx  - Ny| 
2

=min(Nx,Ny),

we obtain the amplitude

(3.13) A=min(Nx,Ny)
K1z

1 +K1z
,

where z is the analytic expression obtained in (3.7). This result indicates that the
amplitude of this model is the total number of the limiting transmembrane chain
modulated by a factor, valued in the interval [0,1], which only depends on K1, Nx,
and Nz.

Analytic computation of the EC50. We now determine the EC50 by finding the
value of L50 such that

(3.14) \sigma (L50) =
A

2
=K1K2K3L50x50y50z50,

where x50, y50, and z50 are the steady state expressions found in (3.7) evaluated at
L = L50. Two expressions satisfy this equation but only one provides a relevant
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S118 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

biological solution with L,x, y, z > 0. The relevant analytic expression of the EC50 is
given by
(3.15)

EC50 =M
1 +K2(Nx +Ny  - M) +

\sqrt{} 
1 +K2

2 (Ny  - Nx)2 + 2K2(Nx +Ny  - M)

K2K3(M  - 2Nx)(M  - 2Ny)
,

with M =min(Nx,Ny). The details of the computation can be found in Appendix B.
This result shows that the EC50 value for this system is independent of the kinase,
since the parameters K1 and Nz are absent in the previous expression.

Alternatively, we now propose a more algebraic method to derive the analytic
expression of the EC50. We compute a lex Gr\"obner basis for the augmented system
of polynomials consisting of the steady state equations (3.5) and

(3.16) K1K2K3Lxyz (1 +K1z) - 
MK1z

2
= 0,

where this time x, y, z, and L are variables. The resulting triangular system describes
directly the EC50 and x, y, z at L=EC50:

0 =L2 +
2M [ - 1 +K2(M  - Nx  - Ny)]

K2K3(M  - 2Nx)(M  - 2Ny)
L+

M2

K2
3 (M  - 2Nx)(M  - 2Ny)

,(3.17a)

0 = z2 +
1+K1(Nx  - Nz)

K1
z  - Nz

K1
,(3.17b)

0 = y - K3(M  - 2Nx)(M  - 2Ny)

2M
L+

K2(2Nx  - M) + 2

2K2
,(3.17c)

0 = x - K3(M  - 2Nx)(M  - 2Ny)(Nx  - Nz + z)

2MNx
L(3.17d)

+
[2 +K2(2Ny  - M)](Nx  - Nz + z)

2K2Nx
.

This set of polynomials is a Gr\"obner basis for all positive parameter configura-
tions. Solving (3.17a) and selecting the solution for which y and x, given by (3.17c)
and (3.17d), respectively, are positive yields the final result, in agreement with (3.15).

3.1.2. The IL-7 receptor-ligand system: An additional subunit receptor
chain. The previous model described the IL-7 receptor system without any consid-
eration for the fact that the \gamma chain is shared with other cytokine receptors [50]. We
now account for this competition by including in the previous model an additional
receptor chain, R, which can bind to the \gamma chain, or the complex \gamma : JAK3, to form
decoy receptor complexes (see Figures 3(a) and 3(b), where the hatched area indicates
the cytoplasmic region). The resulting reaction scheme (summarized in Figure 3(c))
is given by

JAK3 + \gamma \rightleftharpoons JAK3 : \gamma , K1,
\alpha + JAK3 : \gamma \rightleftharpoons \alpha : \gamma : JAK3, K2,
\alpha + \gamma \rightleftharpoons \alpha : \gamma , K2,
L+ \alpha : \gamma \rightleftharpoons L : \alpha : \gamma , K3,
L+ \alpha : \gamma : JAK3 \rightleftharpoons L : \alpha : \gamma : JAK3, K3,
R+ \gamma \rightleftharpoons R : \gamma , K4,
R+ JAK3 : \gamma \rightleftharpoons R : \gamma : JAK3, K4.

We use w to describe the concentration of the additional chain R. Similarly to the
previous model, we write the system of ODEs describing the time evolution for each
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JAK3

γ R

(a) Decoy complex with ki-
nase.

γ R

(b) Decoy complex without
kinase.

JAK3

γ α

L

signalling complex

c5

kinase JAK3

z

JAK3

gamma chain

γ

x

JAK3

γ

c1

alpha chain

α

y

γ α

c3

JAK3

γ α
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dummy complex

γ α

L

c4

L

L

ligand

decoy subunit

R

w

decoy complex

JAK3

γ R

decoy complex

γ R

(c) Second IL-7R model: sequential chemical reaction scheme.

Fig. 3. IL-7R model with an additional receptor subunit. The signaling and dummy complexes
are the same as in the first IL-7R model. This second model allows the formation of decoy complexes:
(a) with the kinase JAK3 or (b) without the kinase. (c) The IL-7R dummy and signaling complexes
are formed sequentially. Decoy complexes can be formed to prevent the formation of signaling or
dummy complexes. The mathematical notation used is annotated below each molecule or complex.

complex and then derive (a basis for) the conservation and steady state equations.
Combining them, we obtain the following polynomial system,

(3.18)

0 = - Nx + x+K2xy+K1xz +K2K1xyz +K3K2Lxy

+K3K2K1Lxyz +K4xw+K1K4xwz,

0 = - Ny + y+K2xy+K2K1xyz +K3K2Lxy+K3K2K1Lxyz,

0 = - Nz + z +K1xz +K2K1xyz +K3K2K1Lxyz +K1K4xwz,

0 = - Nw +w+K4xw+K4K1xwz,

where Nw is the additional conserved quantity. Again, we compute a lex Gr\"obner
basis for this set of polynomials to obtain the following triangular system,
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0 =K1z
2 + z[1 +K1(Nx  - Nz)] - Nz,(3.19a)

0 =Ay3 +By2 +Cy+D,(3.19b)

0 = [K2K4(1 +K3L)NxNy]x+ (Ay2 +By+C +K4Ny)(Nx  - Nz + z),(3.19c)

0 = [K2K4(1 +K3L)Ny]w+Ay2 +By+ [K2(1 +K3L) - K4]Ny,(3.19d)

where

A= - K2(1 +K3L)[K2(1 +K3L) - K4],

B =K4  - K2(1 +K3L)[1 +K4(Nw  - Nx + 2Ny) +K2(1 +K3L)(Nx  - Ny)],

C =Ny[ - 2K4 +K2(1 +K3L)(1 +K4(Nw  - Nx +Ny))],

D=K4N
2
y .

Using the GrobCov algorithm we show that this set of polynomials is a Gr\"obner basis
for all positive rate constants except when LK2K3+K2 - K4 = 0. Since this relation
defines a measure zero set in parameter space, we ignore it for now. Solving (3.19a)
gives the number of free JAK3 molecules per cell at steady state, z; solving (3.19b)
gives the number of free (unbound) \alpha chains per cell, y; and substituting y and z
into (3.19c) and (3.19d) gives the remaining steady states. We obtain the following
implicit steady state expressions for the number of free (unbound) chains:

(3.20)

z =
 - 1 +K1(Nz  - Nx) +

\sqrt{} 
[1 +K1(Nx  - Nz)]2 + 4NzK1

2K1
,

x= - (Ay2 +By+C +K4Ny)(Nx  - Nz + z)

K2K4(1 +K3L)NxNy
,

w= - Ay2 +By+ [K2(1 +K3L) - K4]Ny

K2K4(1 +K3L)Ny
.

The problem now reduces to finding the positive real roots of (3.19b). As (3.19b) is
a polynomial of degree three, we could, in principle, find an exact analytic solution.
However, such a solution might not be very informative. Instead, we show how per-
turbation theory can be used to obtain the amplitude of the dose response. In this
model, the signaling complex is still L : \alpha : \gamma : JAK3. The signaling function is given
by

(3.21) \sigma (L)\equiv K3K2K1Lxyz.

In section 4.3 we will show that, for this model, the maximum of \sigma is attained in the
limit L\rightarrow +\infty . Hence, we have

(3.22) A\equiv lim
L\rightarrow +\infty 

\sigma (L).

Combining (3.19a), written as Nx - Nz+z = Nx

1+K1z
, and (3.19b), we obtain a reduced

expression for the product xy

(3.23) xy=
Ny  - y

K2(1 +K3L)(1 +K1z)
,

which allows us to rewrite the amplitude as

(3.24) A= lim
L\rightarrow +\infty 

K1z

(1 +K1z)

K3L

(K3L+ 1)
(Ny  - y).

We note that z is independent of L and, therefore, to compute the amplitude we only
need to find the behavior of y as L\rightarrow +\infty .
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S121

Perturbation theory to determine y as L \rightarrow +\infty . We now apply the method
described in [56] and summarized in Appendix A. Let \epsilon = 1

L and define the polynomial
P\epsilon as follows,

P\epsilon (y)\equiv P2(y)\epsilon 
2,

where P2 is the polynomial (3.19b). We added a factor of \epsilon 2 to remove any negative
powers of \epsilon in P2. We obtain the polynomial

(3.25) P\epsilon (y) =A\epsilon y
3 +B\epsilon y

2 +C\epsilon y+D\epsilon ,

where

A\epsilon = - K2(\epsilon +K3)[K2(\epsilon +K3) - \epsilon K4],

B\epsilon =K2
2K

2
3 (Ny  - Nx) - \epsilon K2K3[1 + 2K2Nx  - 2K2Ny +K4(Nw  - Nx + 2Ny)]

+ \epsilon 2(K4  - K2(1 +K2Nx  - K2Ny +K4(Nw  - Nx + 2Ny))),

C\epsilon = \epsilon Ny(K2K3(1 +K4(Nw  - Nx +Ny)) + \epsilon (K2  - 2K4 +K2K4(Nw  - Nx +Ny))),

D\epsilon =K4N
2
y \epsilon 

2.

We now replace y by \epsilon p\omega (\epsilon ) with \omega (0) \not = 0 according to theorem A.3. We obtain

(3.26) P\epsilon (\epsilon 
p\omega (\epsilon )) =Ap,\epsilon \omega 

3 +Bp,\epsilon \omega 
2 +Cp,\epsilon \omega +Dp,\epsilon ,

where

Ap,\epsilon = - \epsilon 3pK2(\epsilon +K3)(K2(\epsilon +K3) - \epsilon K4),

Bp,\epsilon = \epsilon 2p(K2
2K

2
3 (Ny  - Nx) - \epsilon K2K3(1 + 2K2(Nx  - Ny) +K4(Nw  - Nx + 2Ny))

+ \epsilon 2(K4  - K2(1 +K2Nx  - K2Ny +K4(Nw  - Nx + 2Ny)))),

Cp,\epsilon = \epsilon 1+pNy(K2K3(1 +K4(Nw  - Nx +Ny))

+ \epsilon (K2  - 2K4 +K2K4(Nw  - Nx +Ny))),

Dp,\epsilon =K4N
2
y \epsilon 

2.

The smallest exponents in the previous equation are

E = \{ 2,1 + p,2p,3p\} .

We note that 0 is not in E because we multiplied P2 by \epsilon 2. Applying the graphical
algorithm detailed in Appendix A, we find the proper values (0,0) and (1,2) (see
Figure 4). We investigate these two branches.

Branch (0,0). We make use of the notation in Appendix A to define

T (1)
\epsilon (\omega )\equiv \epsilon 0P\epsilon (\omega \epsilon 

0).

The least common denominator of \{ 2,1,0,0\} is q1 = 1. Therefore in accordance with
the notation of Appendix A

\epsilon = \beta ,

and the polynomial R
(1)
\beta defined as

R
(1)
\beta (\omega )\equiv T (1)

\epsilon (\omega ),
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1.0 0.5 0.0 0.5 1.0 1.5 2.0
p

2

0

2

4

6

q

q=2
q=p+1
q=2p
q=3p

Fig. 4. The lines defined in set E and the proper values (black dots) computed following the
graphical algorithm described in Appendix A.

is the polynomial P\epsilon . It means that we have y = \omega and we can directly carry out a
regular perturbation expansion.

Let us write the asymptotic expansion y = y0 + y1\epsilon + y2\epsilon 
2 + \cdot \cdot \cdot and substitute

it into P\epsilon (y). Since P\epsilon (y) = 0, by the fundamental theorem of perturbation theory
(Theorem A.2) we obtain a system of equations in y0, y1, . . ., which can be solved.
The first equation of the system is given by

(3.27)  - K2
2K

2
3y

2
0(Nx  - Ny + y0) = 0.

We are are only interested in nonnegative values of y0, since we want y to be biologi-
cally relevant. We also require \omega (0) = y(0) = y0 \not = 0 from Theorem A.3. Thus, solving
(3.27), we obtain y0 = Ny  - Nx if Ny > Nx and y0 = 0 otherwise. Assuming y0 = 0
(i.e., Nx \geq Ny), we solve the next order equation

(3.28) K4N
2
y +K2K3Ny(1 +K4(Nw  - Nx +Ny))y1 +K2

2K
2
3 (Ny  - Nx)y

2
1 = 0.

We select the positive root of this polynomial and obtain an expression for y1 when
y0 = 0. Thus, we have

(3.29) y1 =Ny

1 +K4(Nw  - Nx +Ny) +
\sqrt{} 
\Delta y1

2K2K3(Nx  - Ny)
,

where \Delta y1 = 1+2K4(Nw+Nx - Ny)+K2
4 (Nw - Nx+Ny)

2. Equation (3.29) shows that
y1 > 0 when Nx \geq Ny. Hence, y \approx \epsilon y1 converges to zero from above and, therefore,
represents a biologically relevant solution. We can conclude that

(3.30) lim
\epsilon \rightarrow 0

(Ny  - y) =

\biggl\{ 
Nx, if Ny >Nx,
Ny, otherwise

\biggr\} 
=min(Nx,Ny).

Branch (1, 2). On this branch, and again following the notation of Appendix A,
we define

T (2)
\epsilon (\omega )\equiv \epsilon  - 2P\epsilon (\epsilon 

1\omega ).

The least common denominator of \{ 2,1+1,0+1,0+1\} is q2 = 1, so R
(2)
\beta is the same

polynomial as T
(2)
\epsilon . Since y= \omega \epsilon , we haveNy - y \sim 

\epsilon \rightarrow 0
Ny. Furthermore, when replacing

\omega by an asymptotic expansion \omega 0 + \omega 1\epsilon + \cdot \cdot \cdot in T
(2)
\epsilon and applying the fundamental
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S123

theorem of perturbation theory (Theorem A.2), we obtain the same equation for w0

as for y1 in the previous branch (see (3.28)):

(3.31) K4N
2
y +K2K3Ny(1 +K4(Nw  - Nx +Ny))\omega 0 +K2

2K
2
3 (Ny  - Nx)\omega 

2
0 = 0 .

We have y1 = \omega 0. In other words, at large, but finite L= 1/\epsilon , the convergence behavior
of the two branches is identical. This agrees with Theorem 2.7 which states that there
is only one positive solution for each set of reaction constants and initial conditions.
In conclusion, we find that Ny - y=min(Nx,Ny), which gives the following expression
for the amplitude,

(3.32) A\equiv K1z

1 +K1z
min(Nx,Ny),

with z defined in (3.21). As the steady state concentration of JAK3, z, is the same
in the IL-7R model with or without the extra chain R, the amplitude of both models
has the exact same expression.

Computation of the EC50. Since we did not compute analytic expressions for each
steady state concentration, the EC50 expression has to be obtained by computing a
Gr\"obner basis of the polynomial system (3.19) augmented by the polynomial

(3.33) K3K2K1Lxyz(1 +K1z) - 
K1zM

2
= 0,

considering x, y, z, and L as variables with M =min(Nx,Ny). The lex Gr\"obner basis
obtained for this system is

0 =K1z
2 + (1+K1(Nx  - Nz))z  - Nz,(3.34a)

0 =K3aL
3 +ALL

2 +BLL+CL,(3.34b)

0 = y+
 - aL2 +ByL+Cy

2K2(K2  - K4)M2
,(3.34c)

0 =w+
aL2 +BwL+Cw

2K4(K2  - K4)M2
,(3.34d)

0 = x+
aL2 +BxL+Cx

2K2K4M2(1 +K1z)
,(3.34e)

where we wrote

a=K2
2K

2
3 (M  - 2Nx)(M  - 2Ny)

2,

AL =K2K
2
3M(M  - 2Ny)( - 2 + 3K2M  - K4(M + 2Nw  - 2Nx) - 2K2(2Nx +Ny)),

BL =K3M
2(2K4

+K2( - 2 + 3K2M + 2K4( - M  - Nw +Nx +Ny) - 2K2(Nx + 2Ny))),

CL =K2(K2  - K4)M
3,

By = - AL

K3
,

Cy =M2( - 2K4 +K2(2 +K4(M + 2Nw  - 2Nx) - 2K2(M  - Nx  - Ny))),

Bw = - 2K2K3M(M  - 2Ny)(1 +K4Nw +K2(Nx +Ny  - M)),

Cw =K2M
2(K2(M  - 2Ny) - 2K4Nw),

Bx = - K2K3M(M  - 2Ny)(2 +K4(M + 2Nw  - 2Nx) - 2K2(M  - Nx  - Ny)),

Cx =M2(2K4 +K2(K2  - K4)(M  - 2Ny)).

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

12
/1

0/
24

 to
 8

3.
10

5.
24

5.
15

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



S124 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

Again, this polynomial system forms a Gr\"obner basis for most parameter choices.
One obvious exception is the case K2 =K4. The polynomial (3.33a) is expected to be
independent of the ligand concentration, L. The EC50 expression is the real positive
root of polynomial (3.34b) at which x, y, and w (obtained via polynomials (3.34e),
(3.34c), and (3.34d), respectively) are positive. The polynomial (3.34b) reflects the
parameter dependency of the EC50: since the parameters K1 and Nz are not present
in its coefficients, we can affirm that the EC50 is, once again, independent of the
kinase. Thus, we reduced the problem of computing the EC50 to solving a univariate
polynomial (3.34b). In comparison, before any algebraic manipulation was possible,
the polynomial system (3.19) had to be solved multiple times to obtain the dose-
response curve (a sigmoid), which was then fitted with a Hill equation. Finally, the
EC50 was computed from the fitted parameters of the Hill curve. Alternatively, if one
wanted to apply the Gr\"obner basis-free method of section 3.1.1, one would have to
solve the polynomial (3.19b) in y (which is possible in theory), find its positive real
solution (which is potentially hard), substitute the expression of y into \sigma (L), and then
solve for the EC50.

3.2. Summary of proposed algebraic method to study the signaling
function. From the two previous examples, we devise a general algorithm to compute
analytic expressions of the steady state, the amplitude and the EC50 for some receptor-
ligand systems when ligand is in excess.

Key steps:
1. Write the mass action kinetics set of ODEs for the system under consid-

eration.
2. Obtain the polynomial system by combining the steady state and con-

servation equations.
3. Compute a lex Gr\"obner basis of the polynomial system obtained in step

2. (Assert that this is indeed a Gr\"obner basis for the desired choice of
parameters.)

4. Define the signaling function \sigma (L).
5. Compute the amplitude expression by finding the extreme values of \sigma :

Amplitude =max(\sigma ) - min(\sigma ).

6. Compute a lex Gr\"obner basis of the polynomial system obtained in step
2 augmented by the equation

\sigma (L) - 
\biggl[ 
Amplitude

2
+min(\sigma )

\biggr] 
= 0,

with the ligand concentration, L, considered as an additional variable.
This additional equation corresponds to Definition 2.12 of the EC50.

7. Find the positive roots of the univariate polynomial in L of the Gr\"obner
basis obtained in step 6. The root which allows the other variables to be
positive is the EC50.

Remark 3.1. Computing a Gr\"obner basis is, in general, an expensive computa-
tion and the run time and memory requirements of the proposed method may vary
seemingly erratically when different models are considered.
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S125

One of the crucial parts of the proposed algebraic algorithm is the amplitude
computation. Usually, we have the simplification that min(\sigma ) = \sigma (0) = 0, however,
finding max(\sigma ) can be challenging. For certain classes of models we have

lim
L\rightarrow +\infty 

\sigma (L) =max(\sigma ),

which greatly reduces the calculation. We can now either solve the Gr\"obner basis
from step 3 directly, to obtain analytic expressions of the steady state concentrations
of the single chains components, or use perturbation theory as outlined in section
3.1.2. In the final step, if an exact expression for the EC50 cannot be computed, i.e.,
the univariate polynomial in L has a large degree, one already reduces the cost of the
EC50 computation compared to the naive approach. In summary, in this section we
compute the lex Gr\"obner bases with the computer algebra package Macaulay2 [25]
and provide a Macaulay2 code example in Appendix C.

4. Analytical study of general sequential receptor-ligand systems. In
spite of the general applicability of the method outlined in the previous section, we
still have to make the assumption that the computed limit of the signaling function
coincides with its amplitude. In this section we show that this is indeed the case for
a wider class of receptor-ligand systems. An analytic closed-form expression for the
amplitude follows with little extra work. The EC50 can then be studied making use
of key steps 6 and 7 in section 3.2. We start by giving an abstract generalization of
the example from section 3.1.1.

Definition 4.1 (SRLK model). We call a sequential receptor-ligand model with
extrinsic kinase (SRLK) a receptor-ligand model with the following properties:

\bullet The receptor is composed of n different transmembrane chains, X1, . . . ,Xn,
which bind sequentially,

X1 : . . . :Xi - 1 +Xi \rightleftharpoons X1 : . . . :Xi for all i\in \{ 2, . . . , n\} .

\bullet X1 can bind reversibly to an intracellular extrinsic kinase Z.
\bullet The signaling receptor is given by Z :X1 : . . . :Xn and the dummy receptor by
X1 : . . . :Xn.

\bullet The extracellular ligand, L, binds reversibly to the signaling (or dummy) re-
ceptor, forming the signaling (or dummy) complex Z : X1 : . . . : Xn : L (or
X1 : . . . :Xn :L).

The biochemical reaction network for a general SRLK model is given by

(4.1)

Z + X1 \rightleftharpoons Z :X1, K0,
X2 + Z :X1 \rightleftharpoons Z :X1 :X2, K1,
X2 + X1 \rightleftharpoons X1 :X2, K \prime 

1,
...

...
...

...
Xi+1 + Z :X1 : . . . :Xi \rightleftharpoons Z :X1 : . . . :Xi+1, Ki,
Xi+1 + X1 : . . . :Xi \rightleftharpoons X1 : . . . :Xi+1, K \prime 

i,
...

...
...

...
Xn + Z :X1 : . . . :Xn - 1 \rightleftharpoons Z :X1 : . . . :Xn, Kn - 1,
Xn + X1 : . . . :Xn - 1 \rightleftharpoons X1 : . . . :Xn, K \prime 

n - 1,
L + Z :X1 : . . . :Xn \rightleftharpoons Z :X1 : . . . :Xn :L, Kn,
L + X1 : . . . :Xn \rightleftharpoons X1 : . . . :Xn :L, K \prime 

n,
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Z
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X1X2X3

Z

X1X2X3X4

Z

X1X2X3X4

L

(a) Sequential formation of the signalling complex.

X1 X1X2 X1X2X3 X1X2X3X4 X1X2X3X4

L

(b) Sequential formation of the dummy complex.

Z

Z

X1

X1

X2

Z

X1X2

X1X2

Z

X1X2X3

X3

X1X2X3

Z

X1X2X3X4

X4

X1X2X3X4

Z

X1X2X3X4

L

X1X2X3X4

L

L

signalling complex

dummy complex

(c) SRLK model: sequential biochemical reaction scheme.

Fig. 5. SRLK model with n = 4 transmembrane chains: (a)/(b) Sequential formation of the
signaling/dummy complex. (c) Scheme of the sequential formation of the signaling/dummy complex:
the chain X1 binds first to the intracellular extrinsic kinase Z (only for the signaling complex). Next,
the chain X2 binds to the complex Z : X1 (or X1) and X3 binds to Z : X1 : X2 (or X1 : X2). Then,
X4 binds to Z : X1 : X2 : X3 (or X1 : X2 : X3). Finally, the ligand L binds to the signaling receptor
Z : X1 : X2 : X3 : X4 (or dummy receptor X1 : X2 : X3 : X4), thus forming the signaling (or dummy)
complex.

where theKi (orK
\prime 
i) are the affinity constants related to the formation of the signaling

(or dummy) complex. Figure 5 illustrates the formation of the signaling and dummy
complexes in an SRLK model with n = 4 transmembrane chains. We assume the
system at steady state and ligand in excess. In what follows we refer to these two
assumptions as the experimental hypotheses.

We write z (or xi) for the steady state concentration of unbound chain Z (or Xi).
We also use L to denote the ligand concentration. Finally, Nz (or Ni) denotes the
total copy number per cell of the species Z (or Xi). An SRLK model satisfying the
experimental hypotheses is then described by the following polynomial system:
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S127

Nz = z +K0zx1 +K0K1zx1x2 + \cdot \cdot \cdot (4.2a)

+K0K1 . . .Kn - 1zx1 . . . xn +K0 . . .Knzx1 . . . xnL

= z +K0z

\left[  x1 +

n\sum 
j=2

\Biggl( 
j - 1\prod 
l=1

Klxlxj

\Biggr) 
+L

n\prod 
j=1

Kjxj

\right]  ,
N1 = x1 +K \prime 

1x1x2 + \cdot \cdot \cdot +K \prime 
1 . . .K

\prime 
n - 1x1 . . . xn +K \prime 

1 . . .K
\prime 
nLx1 . . . xn(4.2b)

+K0z(x1 +K1x1x2 + \cdot \cdot \cdot +K1 . . .Kn - 1x1 . . . xn +K1 . . .Knx1 . . . xnL)

for i= 2, . . . , n - 1:

Ni = xi +K \prime 
1 . . .K

\prime 
i - 1x1 . . . xi + \cdot \cdot \cdot +K \prime 

1 . . .K
\prime 
n - 1x1 . . . xn +K \prime 

1 . . .K
\prime 
nx1 . . . xnL

(4.2c)

+K0z(K1 . . .Ki - 1x1 . . . xi + \cdot \cdot \cdot +K1 . . .Kn - 1x1 . . . xn +K1 . . .Knx1 . . . xnL)

= xi +

n\sum 
j=i

\Biggl( 
j - 1\prod 
l=1

K \prime 
lxlxj +K0z

j - 1\prod 
l=1

Klxlxj

\Biggr) 
+L

n\prod 
j=1

K \prime 
jxj +K0zL

n\prod 
j=1

Kjxj ,

Nn = xn +K0 . . .Kn - 1zx1 . . . xn

(4.2d)

+K \prime 
1 . . .K

\prime 
n - 1x1 . . . xn +K \prime 

1 . . .K
\prime 
nLx1 . . . xn +K0 . . .KnzLx1 . . . xn .

We note that many results in this section can be further simplified under the
additional hypothesis of no allostery.

Definition 4.2. There is no allostery in an SRLK model if Ki = K \prime 
i for all

i= 1, . . . , n.

Finally, we formally define the signaling and dummy functions for this class of
models.

Definition 4.3. For an SRLK model under the experimental hypotheses the sig-
naling function, \sigma (L), is the number of signaling complexes formed as a function of
the ligand concentration, L, and can be written as follows:

\sigma (L) =K0zL

n\prod 
i=1

Kixi.

Similarly, the dummy function, \delta (L), is the number of dummy complexes formed as a
function of the ligand concentration, L, and can be written as follows:

\delta (L) =L

n\prod 
i=1

K \prime 
ixi.

Note that the IL-7R model of section 3.1.1 is one example of an SRLK model
and the definition of signaling function given in section 2.2 is equivalent. We now
introduce the notion of a limiting component.

Definition 4.4. The species, Xj, which has the smallest total copy number of
molecules

0<Nj <Ni \forall i \not = j,

is the limiting component of the system. If there are multiple limiting components,
Xj1 , . . . ,Xjr , then

0<Nj1 = \cdot \cdot \cdot =Njr <Ni \forall i /\in \{ j1, . . . , jr\} .
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If the signaling function attains its maximum for large values of the ligand concen-
tration, then, since by definition \sigma (0) = 0, the amplitude of such a model is given by

A\equiv lim
L\rightarrow +\infty 

\sigma (L).

In this section we present some general results for limL\rightarrow +\infty \delta (L) and limL\rightarrow +\infty \sigma (L)
applicable to SRLK models. The proofs of the lemmas and theorems can be found
in Appendix D.

4.1. Asymptotic study of the steady states. While it is difficult to find
closed-form expressions of the steady states for general receptor-ligand systems, in
what follows we show that considerable progress can be made for the specific case of
SRLK models. In this section we describe the behavior of the concentrations, xi, in
the limit L\rightarrow +\infty . The proofs of our results can be found in Appendix D. First, we
recall the definition and a property of algebraic functions.

Definition 4.5. A univariate function y = f(x) is said to be algebraic if it
satisfies the polynomial equation

(\ast ) ym +Rm - 1(x)y
m - 1 + \cdot \cdot \cdot +R0(x) = 0,

where the Ri(x) are rational functions of x, i.e., are of the form p(x)
q(x) , where p and q

are polynomial functions and q(x) \not = 0 for all x\in \BbbR .

Remark 4.6. Note that the polynomial (\ast ) has m solutions. These solutions
are called the branches of an algebraic function and one often specifies a particular
branch.

Since we are interested in the limit behavior, the following lemma proves useful.

Lemma 4.7. Any bounded, continuous solution of (\ast ) defined on \BbbR has a finite
limit at +\infty (and  - \infty ).

With this background in place, we can now proceed to study SRLK models in de-
tail. We start by showing that in steady state the signaling and the dummy functions
have a positive limit when L tends to +\infty .

Lemma 4.8. The signaling and the dummy functions of an SRLK model satisfying
the experimental hypotheses admit a finite limit when L \rightarrow +\infty and this limit is
positive.

An equivalent result holds for the steady state concentration of the kinase.

Lemma 4.9. In an SRLK model under the experimental hypotheses, the concen-
tration of the extrinsic intracellular kinase Z admits a positive finite limit, cz > 0,
when L\rightarrow +\infty .

In the particular case of no allostery, we can write an explicit expression of the
limit of z, cz.

Lemma 4.10. Consider an SRLK model which satisfies the experimental hypothe-
ses. If we assume no allostery, then the steady state value of the extrinsic intracellular
kinase, z, is given by

z =
 - 1 +K0(Nz  - N1) +

\surd 
\Delta z

2K0
,(4.3)
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where

\Delta z = (1+K0(N1  - Nz))
2 + 4K0Nz.

By Lemma 4.10, z is independent of L (thus, cz = z) and only depends on K1,
N1, and Nz. Note that this result is equivalent to the one obtained in section 3.1.1
for the IL-7R model. Finally, we study the behavior of the concentration xi in the
limit L\rightarrow +\infty . We first give bounds to the asymptotic dependency of xi on L.

Lemma 4.11. Let us consider an SRLK model which satisfies the experimental
hypotheses. Then no concentration xi behaves proportionally to Lq, q > 0, or 1

Lp ,
p > 1, when L\rightarrow +\infty .

We can now state the main theorem of this section.

Theorem 4.12. We consider an SRLK model which satisfies the experimental
hypotheses. If there exists a unique limiting component Xi0 , then

xi0 \sim 
L\rightarrow +\infty 

ci0
L

,

and for all i= 1, . . . , n, i \not = i0,

xi \sim 
L\rightarrow +\infty 

ci,

where ci0 and ci are positive constants.

Corollary 4.13. If an SRLK model, which satisfies the experimental hypothe-
ses, has multiple limiting components, Xi1 , . . . ,Xir , i1 < \cdot \cdot \cdot < ir, then

xi1 \sim 
L\rightarrow +\infty 

ci1
Lp1

, . . . , xir \sim 
L\rightarrow +\infty 

cir
Lpr

,

where ci1 , . . . cir are positive constants and p1 = \cdot \cdot \cdot = pr =
1
r . The concentrations of

the nonlimiting components, xi (for i /\in \{ i1, . . . , ir\} ) tend to positive constants, ci > 0.

4.2. Asymptotic study of the signaling and dummy functions. The pre-
vious section presented numerous small results which give insight into the steady state
behavior of SRLK receptor-ligand systems. We are now in a position to combine these
results to state and prove our main theorem, which gives closed-form formulas for the
limits of the signaling and dummy functions.

Theorem 4.14. Consider an SRLK model which satisfies the experimental hy-
potheses. Let us write Xi1 , . . . ,Xir as the limiting components and denote Ni0 as the
total amount of any limiting component, i.e., Ni0 \equiv Ni1 = \cdot \cdot \cdot =Nir . The limit of the
signaling function is given by

lim
L\rightarrow +\infty 

\sigma (L) =

\prod n
i=1KiK0cz\prod n

i=1K
\prime 
i +
\prod n

i=1KiK0cz
Ni0 ,

and the limit of the dummy function is

lim
L\rightarrow +\infty 

\delta (L) =

\prod n
i=1K

\prime 
i\prod n

i=1K
\prime 
i +
\prod n

i=1KiK0cz
Ni0 ,

where

cz = lim
L\rightarrow +\infty 

z.
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Under the assumption of no allostery, these expressions can be further simplified.

Corollary 4.15. Consider the system of Theorem 4.14 and assume there is no
allostery. Denote the limiting components by Xi1 , . . . ,Xir and and let Ni0 be the total
amount of any limiting component, i.e., Ni0 \equiv Ni1 = \cdot \cdot \cdot = Nir . The limit of the
signaling function is

lim
L\rightarrow +\infty 

\sigma (L) =
K0z

1 +K0z
Ni0 ,

and the limit of the dummy function is

lim
L\rightarrow +\infty 

\delta (L) =
Ni0

1 +K0z
,

with z given by (4.3) in Lemma 4.10.

From the previous expressions we observe that the limit of the signaling and
dummy functions are equal to the total copy number of the limiting component, Ni0 ,
multiplied by a term which is bounded between 0 and 1. This term only depends on the
affinity constantK0 and the steady state concentration of the kinase. In order to relate
the above limits back to biologically meaningful quantities, all there is left to show is
that the explicit expression of the limit of \sigma is in fact the amplitude of the system.
Since \sigma (0) = 0, let us first note that the amplitude is equal to the maximum of \sigma .
Under the no allostery assumption, we can show mathematically that this maximum
is the limit of \sigma when L\rightarrow +\infty . To this end, the following lemma is needed.

Lemma 4.16. Consider an SRLK model under the experimental hypotheses. If
there is no allostery, then we have

sup\sigma (L) = lim
L\rightarrow +\infty 

\sigma (L).

The supremum here is attained and is a maximum. Thus, the amplitude for an
SRLK receptor-ligand system when there is no allostery is the limit of \sigma described in
Corollary 4.15. This result is the generalization of the example discussed in section
3.1.1. We note that the amplitude of the IL-7R model of section 3.1.1 can be recovered
by setting Ni0 =min(Nx,Ny). We now have also rigorously shown that the limit of the
signaling function is indeed the amplitude. The EC50 can now be found as outlined
in section 3.1.1.

Remark 4.17. Theorem 4.14 provides a Gr\"obner basis-free result to find the
amplitude of an SRLK system. This is crucial due to the fact that finding Gr\"obner
bases is a costly process, and no a priori algorithmic complexity bounds have been
derived for SRLK systems.

4.3. SRLK models with additional subunit receptor chains. As hinted
at in section 3.1.2, the IL-7R model with the additional subunit receptor chain is part
of a larger group of models which are an extension of the SRLK family. Therefore,
our previous results can be extended to these types of models. Again, we start by
giving an abstract definition of the extended SRLK family of models.

Definition 4.18 (extended SRLK model). An extended SRLK model is an
SRLK model where we assume that each intermediate complex, Z : X1 : . . . : Xi (or
X1 : . . . :Xi), for i= 1, . . . , n can bind to an extra chain, Yi, with an affinity constant
Kyi

(or K \prime 
yi
), to form a decoy complex Z : X1 : . . .Xi : Yi (or X1 : . . .Xi : Yi). The
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S131

addition of a subunit chain of the kind Yi prevents the binding of ligand to the receptor,
and thus, does not allow the formation of signaling or dummy complexes.

The chemical reaction network for an extended SRLK model is given by:

Z + X1 \rightleftharpoons Z :X1, K0,
Y1 + X1 \rightleftharpoons X1 : Y1, K \prime 

y1
,

Y1 + Z :X1 \rightleftharpoons Z :X1 : Y1, Ky1 ,
X2 + Z :X1 \rightleftharpoons Z :X1 :X2, K1,
X2 + X1 \rightleftharpoons X1 :X2, K \prime 

1,
Y2 + X1 :X2 \rightleftharpoons X1 :X2 : Y2, K \prime 

y2
,

Y2 + Z :X1 :X2 \rightleftharpoons Z :X1 :X2 : Y2, Ky2 ,
...

...
...

...
Xi+1 + Z :X1 : . . . :Xi \rightleftharpoons Z :X1 : . . . :Xi+1, Ki,
Xi+1 + X1 : . . . :Xi \rightleftharpoons X1 : . . . :Xi+1, K \prime 

i,
Yi + X1 : . . . :Xi \rightleftharpoons X1 : . . . :Xi : Yi, K \prime 

yi
,

Yi + Z :X1 : . . . :Xi \rightleftharpoons Z :X1 : . . . :Xi : Yi, Kyi ,
... +

...
...

...
Yn + X1 : . . . :Xn \rightleftharpoons X1 : . . . :Xn : Yn, K \prime 

yn
,

Yn + Z :X1 : . . . :Xn \rightleftharpoons Z :X1 : . . . :Xn : Yn, Kyn
,

L + Z :X1 : . . . .Xn \rightleftharpoons Z :X1 : . . . :Xn :L, Kn,
L, + X1 : . . . .Xn \rightleftharpoons X1 : . . . :Xn :L, K \prime 

n,

where Ki, K \prime 
i, Kyi

, and K \prime 
yi

denote the affinity constants. Figures 6(a) and 6(b)
show the decoy complexes of an extended SRLK receptor-ligand system with n = 4
transmembrane chains. The signaling and dummy complexes are built sequentially
similarly to the classic SRLK model (see Figures 5 and 6(c)).

We note that while we assume all the Xi to be different species, we allow that
Yi = Yj or Yi = \emptyset , as long as for i = 1, . . . , n, Yi /\in \{ X1, . . . ,Xn,Z,L\} . We assume
that the receptor-ligand system is in a steady state and the ligand is in excess. We
further assume that the concentrations of the species Yi (which we write yi) are all
bounded. We could consider the case when the Yi are in excess, and thus, treat their
concentration as a parameter of the model, or assume that the number of Yi molecules
is conserved. We refer to these assumptions as the extended experimental hypotheses.

The signaling and dummy functions of classic and extended SRLK receptor-ligand
systems are equivalent (see Definition 4.3). The polynomial system describing an
extended SRLK model under the extended experimental hypotheses is given by

Nz = z +K0z

\left(  x1(1 +Ky1
y1) +

n\sum 
j=2

\Biggl( 
(1 +Kyj

yj)

j - 1\prod 
l=1

Klxlxj

\Biggr) \right)  + \sigma (L),(4.4a)

N1 = x1(1 +K \prime 
y1
y1) +

n\sum 
j=2

\Biggl( \Bigl( 
1 +K \prime 

yj
yj

\Bigr) j - 1\prod 
l=1

K \prime 
lxlxj

\Biggr) 
+ \delta (L)(4.4b)

+K0z

\left(  x1 (1 +Ky1
y1) +

n\sum 
j=2

\Biggl( \bigl( 
1 +Kyj

yj
\bigr) j - 1\prod 
l=1

Klxlxj

\Biggr) \right)  + \sigma (L),

...
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X1X2 Y2
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X1X2X3 Y3
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X1X2X3X4 Y4

(a) Decoy complexes with kinase.

X1 Y1 X1X2 Y2 X1X2X3 Y3 X1X2X3X4 Y4

(b) Decoy complexes without kinase.

Z

Z

X1

X1

X2

Z

X1X2

X1X2

Z

X1X2X3

X3

X1X2X3

Z

X1X2X3X4

X4

X1X2X3X4

Z

X1X2X3X4

L

X1X2X3X4

L

L

Z

X1 Y1

Z

X1X2 Y2

Z

X1X2X3 Y3

Z

X1X2X3X4 Y4

Y1 Y2 Y3 Y4

X1 Y1 X1X2 Y2 X1X2X3 Y3 X1X2X3X4 Y4

Y1 Y2 Y3 Y4

signalling complex

dummy complex

decoycomplexes
withkinase

decoycomplexes
withoutkinase

(c) Extended SRLK model: sequential biochemical reaction scheme.

Fig. 6. Extended SRLK model with n = 4 transmembrane chains: (a) An additional subunit
chain, Yi, can bind to each intermediate signaling complex Z : X1 : . . . : Xi, to form decoy complexes
with kinase. (b) The subunit chain Yi can also bind to the intermediate dummy complexes X1 :
X2 : . . . : Xi, forming decoy complexes without kinase. (a) Scheme of the sequential formation of the
signaling and dummy complexes. At each step their formation can be interrupted by the binding of
a subunit chain, Yi, to the intermediate complex, forming a decoy complex.
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and for i= 2, . . . , n - 1,

Ni = xi +

n\sum 
j=i

\Biggl( \Bigl( 
1 +K \prime 

yj
yj

\Bigr) j - 1\prod 
l=1

K \prime 
lxlxj +K0z(1 +Kyjyj)

j - 1\prod 
l=1

Klxlxj

\Biggr) 
+ \delta (L) + \sigma (L),

(4.4c)

...

Nn = xn +K0z(1 +Kyn
yn)

n - 1\prod 
j=1

Kjxjxn + (1+K \prime 
yn
yn)

n - 1\prod 
j=1

K \prime 
jxjxn + \delta (L) + \sigma (L).

(4.4d)

This system of polynomials is completed by the conservation equations of the
species Yi, for i= 1, . . . , n, if we assume they are conserved.

We can extend the notion of no allostery to the extended models.

Definition 4.19. An extended SRLK model is said to be under the assumption
of no allostery if for each i= 1, . . . , n, Ki =K \prime 

i, and Kyi
=K \prime 

yi
.

With these expanded definitions, we can extend the results previously obtained for
the SRLK receptor-ligand systems.

Theorem 4.20. The theorems and lemmas previously true for the SRLK models
are true for the extended SRLK models under the same (extended) hypotheses.

4.4. A few examples of (extended) SRLK models. In spite of some pre-
sumably strong modeling assumptions, the (extended) SRLK models can describe a
broad range of cytokine-receptor systems. The IL-7R models described in sections
3.1.1 and 3.1.2 are, respectively, an SRLK and an extended SRLK model. In this
section, we provide examples of other interleukin-signaling systems which are part of
the SRLK family.

Example 4.21 (SRLK models: IL-2R and IL-15R). The interleukin-2 (IL-2) re-
ceptor is composed of three transmembrane subunit chains: the common gamma
chain, \gamma , the IL-2R\alpha chain, and the IL-2R\beta chain. Additionally, \gamma binds to the intra-
cellular extrinsic kinase JAK3. This IL-2 receptor-ligand system can be considered
an SRLK model with \{ Z,X1,X2,X3,L\} = \{ JAK3, \gamma , IL-2R\beta , IL-2R\alpha , IL-2\} . Simi-
larly, the interleukin-15 (IL-15) receptor is composed of three transmembrane subunit
chains, \gamma , IL-2R\beta , and IL-15R\alpha , as well as the kinase JAK3. It can be considered an
SRLK model with \{ Z,X1,X2,X3,L\} = \{ JAK3, \gamma , IL-2R\beta , IL-15R\alpha , IL-15\} .

A number of interleukin receptors share different molecular components. For in-
stance, cytokine receptors of the common gamma family (comprising the receptors for
IL-2,4,7,9,15, and 21 [50]) share the common gamma chain, \gamma . In addition the IL-2 and
IL-15 receptors share the subunit chain, IL-2R\beta . The competition for these subunit
chains can be mathematically described with an extended SRLK model, as follows.

Example 4.22 (extended SRLK model: IL-2/IL-2R model with formation of IL-7R
and IL-15R). Let us suppose we want to study the formation of IL-2/IL-2R complexes
taking into account the competition for the \gamma chain between IL-2R\beta and IL-7R\alpha , and
the competition for the complex \gamma :IL-2R\beta between the subunits IL-2R\alpha and IL-15R\alpha .
We can use an extended SRLK model with

\{ Z,X1,X2,X3,L\} = \{ JAK3, \gamma , IL-2R\beta , IL-2\alpha , IL-2\} 
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(a) IL-2/IL-2R model with IL-7R and
IL-15R competition.
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(b) IL-12 receptor family.

Fig. 7. (a) Illustration of example 4.22: IL-2R, IL-7R, and IL-15R competing for the common
gamma chain and IL-2R\beta . The IL-2R is composed of three subunit chains: the gamma chain, IL-
2R\beta , and IL-2R\alpha . IL-15R is composed of the gamma chain, IL-2R\beta , and the specific chain IL-15R\alpha .
The IL-7R is composed of the gamma chain and IL-7R\alpha . All these receptors signal through the Janus
kinase JAK3. (b) Illustration of example 4.23: (i) models the competition for IL-12R\beta 1 between the
IL-12 and the IL-23 receptors. We assume that IL-23R and IL-12R\beta 2 are already bound to their
associated extrinsic kinase JAK2; (ii) models the competition for IL-12R\beta 2 between the IL-12 and
IL-35 receptors. We consider the complexes IL-12R\beta 1:TYK2 and gp130:JAK1 already preformed;
(iii) models the competition for gp130 between the IL-35 and the IL-27 receptors. We consider the
complexes IL-12R\beta 2:JAK2 and IL-27R:JAK2 already preformed.

and

\{ Y1, Y2, Y3\} = \{ IL-7R\alpha , IL-15R\alpha ,\emptyset \} .

This example is illustrated in Figure 7a.

A further extended SRLK example is that of the IL-12 family of receptors, which
share multiple components [61], and each of which is composed of two transmembrane
subunit chains. The IL-12 receptor is composed of the subunit chains IL-12R\beta 1 and
IL-12R\beta 2. The IL-23 receptor signals via the IL-23R chain and the IL-12R\beta 2 chain.
The IL-27R (also known as WSX-1) and glycoprotein 130 (gp130) form the IL-27
receptor. Finally, IL-12R\beta 2 and gp130 form the IL-35 receptor. The subunit chains
gp130, IL-12R\beta 1, and IL-12R\beta 2 bind to a kinase from the JAK family (JAK1, TYK2,
and JAK2, respectively). This competition can be described with extended SRLK
models as follows.

Example 4.23 (extended SRLK models: IL-12R family). We provide three ex-
amples of extended SRLK systems which characterize the competition for receptor
subunits between receptors of the IL-12 family (see Figure 7(b)).

1. Suppose we want to study the IL-12-induced signaling process taking into
account the competition for IL-12R\beta 1. We can use an extended SRLK model
with

\{ Z,X1,X2,L,Y1, Y2\} = \{ TYK2, IL-12R\beta 1, IL-12R\beta 2\ast , IL-12, IL-23R\ast ,\emptyset \} .

2. To study IL-35-induced signaling taking into account the competition for IL-
12R\beta 2, we can use an extended SRLK model with

\{ Z,X1,X2,L,Y1, Y2\} = \{ JAK2, IL-12R\beta 2,gp130\ast , IL-35, IL-12R\beta 1\ast ,\emptyset \} .

3. An extended SRLK model with

\{ Z,X1,X2,L,Y1, Y2\} = \{ JAK1,gp130, IL-27R\ast , IL-27, IL-12R\beta 2\ast ,\emptyset \} 

can describe the IL-27-induced signaling, when there is competition for the
subunit chain gp130 with the IL-35 receptor.
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Above we have made use of the notation X\ast to denote the preformed complex com-
posed of the receptor chain X and its intracellular extrinsic kinase (TYK2 for IL-
12R\beta 1, JAK1 for gp130, and JAK2 for all the others).

5. Conclusion. In the first part of this paper we propose a method to compute
analytic expressions for two relevant pharmacodynamic metrics, the amplitude and
the EC50 for receptor-ligand systems, based on two (simple) IL-7 receptor models.
Our method starts with the computation of a Gr\"obner basis for the polynomial sys-
tem of the receptor-ligand system in a steady state. As shown in our IL-7R models
from sections 3.1.1 and 3.1.2, the derivation of the amplitude is easier when the maxi-
mum of the dose-response curve is attained at large ligand concentration (for instance
when the dose-response curve is a sigmoid). In that case, the amplitude is the limit
of the signaling function when the ligand concentration tends to infinity. When the
model is simple enough, as is the case of the first IL-7R model, the polynomial sys-
tem, simplified by the computation of the Gr\"obner basis, can be solved iteratively to
obtain an analytic expression for the steady state. From these expressions, it is then
relatively straightforward to compute the amplitude (i.e., the limit of the signaling
function at large values of the ligand concentration) and the EC50. For more complex
models, such as our second IL-7R model, getting such steady state expressions can be
more challenging. However, perturbation theory can be used to derive the expression
for the amplitude. Computing another Gr\"obner basis can dramatically simplify the
calculation of the EC50, and in turn display how it depends on the parameters of
the model. Analytic expressions for the amplitude and the EC50 offer mechanistic
insight for the receptor-ligand systems under consideration, allow one to quantify the
parameter dependency of these two key variables, and can facilitate model validation
and parameter exploration. Indeed, for both IL-7R models, we noticed that the affin-
ity constant of the association of the gamma chain to the kinase JAK3, K1, was the
only constant involved in the expression for the amplitude. As a consequence, and
if conducting parameter inference to fit the model to experimental data, K1 would
be the only parameter that could be inferred by comparison of the theoretical to the
experimental amplitude. On the contrary, this constant was absent from both EC50

expressions and, thus, its value would be impossible to infer by only comparing the ex-
perimental to the theoretical EC50. Our exact analysis also showed that both models
have the same amplitude. Finally, the application of our method no longer requires
the numerical computation of the dose-response curve, finding its maximum to then
obtain the amplitude and fit the curve to derive the EC50. This reduces dramatically
the computational cost and numerical errors. However, our method requires mod-
els simple enough to be able to compute a lex Gr\"obner basis, which is known to be
computationally intensive [9, 40]. Additionally, computing the amplitude when the
maximum response is not the asymptotic behavior of the dose-response curve can be
tricky. For instance the computation of the maximum for bell-shaped dose-response
curves (which has been done for simple models in [38, 13]) may involve the compu-
tation of the derivative of the signaling function. This computation can be laborious
even with the use of symbolic software. Finally, our method often requires additional
mathematical tools or knowledge, such as perturbation theory in section 3.1.2, which
makes it rather a challenge to be used by those who are not mathematically trained.
In spite of the (sometimes complicated) calculations that our method requires, we
believe that analytic expressions of the pharmacological metrics characterizing sim-
ple receptor-ligand systems may provide significant advantages when studying such
biological systems.
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S136 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

In the second part of this paper, we introduced a family of receptor-ligand sys-
tems, called SRLK, in which the signaling complex, composed of a kinase, a ligand,
and n transmembrane subunit chains, is built sequentially. These models could also
form dummy and decoy complexes, similarly to the IL-7R models which the SRLK
family encompasses. By manipulating the polynomials describing the SRLK models,
we are able to derive an analytic expression of the amplitude under the no allostery
assumption. We also show that the maximum of the dose-response curve for both
our IL-7R models was indeed the amplitude of the models. Despite relatively strong
assumptions, we believe that the SRLK approach can be used to model a broad range
of biochemical systems, such as receptor competition in interleukin signaling. The
analytic expressions obtained for the amplitude could improve our understanding of
biological mechanisms requiring a fine tuning of cytokine signaling such as cancer
treatment [57] or cytokine storm control [16, 53]. We showed in section 4.4 how our
SRLK models can account for the competition for the gamma chain between the IL-2
family of receptors and the competition for receptor components between the IL-12
family of receptors. However, many receptors signal through different configurations.
IL-35, for instance, can signal through homodimerization of gp130 or IL-12R\beta 2 [7].
It has been shown that IL-6, a cytokine implied in cytokine storms [5, 16], signals
through a hexameric structure composed of two IL-6R\alpha chains and two gp130 mole-
cules [4]. Furthermore, it seems that the ligand IL-6 first binds to the IL-6R\alpha chain
before any association with gp130 [4]. Thus, one could imagine other general receptor
models that may involve any of the following: (1) homooligomerization (when two
transmembrane chains Xi are identical); (2) other orders of signaling complex forma-
tion (nonsequential orders or, for instance, if the ligand is not the final subunit to be
bound); (3) thermodynamic cycles (when there are several ways to form the signaling
complex); (4) multiple kinases (including kinases binding to other subunit chains,
such as JAK1 which binds to IL-7R\alpha [46]); or (5) a more detailed JAK-STAT path-
way (most cytokine receptors activate multiple STAT molecules, whose copy numbers
tune the immune response elicited [35]).

With this paper we hope to have initiated, or renewed, an interest for the alge-
braic analysis of receptor-ligand systems. Finally, we believe the results presented in
this paper are a first step to account for the variability of receptor expression levels
when designing and studying receptor-ligand models (both from an experimental and
mathematical perspective) [17, 8, 23, 49].

Appendix A. Perturbation theory. A well-known difficulty with the lex
Gr\"obner basis method, and polynomial equations in general, is that there is usu-
ally no analytic solution when the degree of a univariate polynomial is greater than
four. This result is known as the Abel--Ruffini theorem [65]. Therefore, in order to
make progress, we need to resort to either numerical computations or analytic ap-
proximations. Since receptor-ligand systems are often characterized by a sigmoidal
dose-response curve, at least to calculate the amplitude, the only quantity of interest
is the limit of the signaling function at infinity. In order to calculate this limit (where
possible, analytically, otherwise numerically) we make use of perturbation theory for
polynomial equations.

Greatly inspired by the Dover book written by Simmonds and Mann [56], this
section reviews some notions of perturbation theory and justifies the steps of the
method used to compute the analytic amplitude expression in section 3.1.2. We start
by defining an asymptotic expansion.
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S137

Definition A.1 (asymptotic expansion). We say that

N\sum 
n=0

cn fn(\epsilon )

is an asymptotic expansion of f in \epsilon if
\bullet \{ fn\} n=0,...,N+1 is a gauge sequence, i.e., fn(\epsilon ) = o(fn - 1(\epsilon )) as \epsilon \rightarrow 0, for
n= 0, . . . ,N + 1, and

\bullet f(\epsilon ) - 
\sum N

n=0 cn fn(\epsilon ) =\scrO (\epsilon N+1) as \epsilon \rightarrow 0.

The core of perturbation theory is the notion of asymptotic expansion and the
following fundamental theorem.

Theorem A.2 (fundamental theorem of perturbation theory). If an asymptotic
expansion satisfies

A0 +A1\epsilon +A2\epsilon 
2 + \cdot \cdot \cdot +An\epsilon 

N +\scrO (\epsilon N+1) = 0

for any sufficiently small \epsilon , and the coefficients Ai are independent of \epsilon , then we have

A0 =A1 = \cdot \cdot \cdot =AN = 0.

We are now ready to study the behavior of the root of a univariate polynomial.
Let n \in \BbbN \ast , where \BbbN \ast is the set of natural numbers without zero. We consider a
univariate polynomial, P\epsilon (x), of degree n, in the variable x, with coefficients which
depend on the parameter \epsilon . We are interested in the behavior of the roots of P\epsilon (x)
when \epsilon \rightarrow 0. This polynomial can be rewritten in the following form,

(A.1)
P\epsilon (x) = (1 + b0\epsilon + c0\epsilon 

2 + \cdot \cdot \cdot ) +A1\epsilon 
\alpha 1(1 + b1\epsilon + c1\epsilon 

2 + \cdot \cdot \cdot )x+ \cdot \cdot \cdot 
+An\epsilon 

\alpha n(1 + bn\epsilon + cn\epsilon 
2 + \cdot \cdot \cdot )xn,

where for each i \alpha i is a rational number, bi, ci, . . . are real constants, and (1+bi\epsilon +\cdot \cdot \cdot )
is a regular asymptotic expansion of the general form

a0 + a1\epsilon + \cdot \cdot \cdot + aN \epsilon N +\scrO (\epsilon N+1).

For such a polynomial, P\epsilon (x), we have the following result.

Theorem A.3. Each root of a polynomial, such as (A.1) is of the form

(A.2) x(\epsilon ) = \epsilon p\omega (\epsilon ), \omega (0) \not = 0,

where \omega is a continuous function of \epsilon for \epsilon sufficiently small and p\in \BbbQ .

The proof of this theorem (see [56]) gives a method to study the asymptotic
behavior of the roots of polynomial (A.1).

Method. Let P\epsilon (x) be a polynomial that can be written as in (A.1). Let p be a
rational and x a root of P\epsilon . Let us replace x by \epsilon p\omega (\epsilon ) in P\epsilon . We can rewrite the
polynomial as follows,

(A.3) P\epsilon (\epsilon 
p\omega (\epsilon )) =Q\epsilon (\omega ) + \epsilon (b0 + b1A1\epsilon 

\alpha 1+p\omega (\epsilon ) + \cdot \cdot \cdot + bnAn\epsilon 
\alpha n+np\omega (\epsilon )n) + \cdot \cdot \cdot ,

where

Q\epsilon (\omega ) = 1+A1\omega (\epsilon )\epsilon 
\alpha 1+p + \cdot \cdot \cdot +An\omega (\epsilon )

n\epsilon \alpha n+np.

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

12
/1

0/
24

 to
 8

3.
10

5.
24

5.
15

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



S138 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

As \epsilon \rightarrow 0, the dominant term in P\epsilon is the term with the smallest exponent in Q\epsilon , i.e.,
the smallest element of

(A.4) E = \{ 0, \alpha 1 + p, . . . ,\alpha n + np\} .

However, the set E must have two identical values. Indeed, if \alpha k + kp is the smallest
value of E, then we have

\epsilon  - (\alpha k+kp)P\epsilon (\epsilon 
p\omega (\epsilon )) \sim 

\epsilon \rightarrow 0
Ak\omega (0).

Since \omega (0) \not = 0 and P\epsilon (\epsilon 
p\omega (\epsilon )) = 0 by hypothesis, we have Ak = 0 which is a contra-

diction with the fact that \alpha k + kp \in E. To select the proper value of p, we follow a
graphical algorithm which indicates when two or more components of E have equal
minimal values:

1. On a plane (p, q), draw the lines q= \alpha j + jp, j = 1, . . . , n, and the line q= 0.
2. From the right, for p sufficiently large, the smallest exponent is 0. As p

decreases (one can imagine a fictive vertical line moving from right to left),
there will be a first point where at least two lines intersect (q= 0 and another
one). Let us call this point (p1,0). One line will have the largest slope, n1.

3. Let the fictive vertical line keep moving to the left and follow this line of slope
n1 until the next intersection (p2, e2). Find the new intersected line with the
largest slope n2.

4. Continue until there is no other intersection. The last intersection involves
the line with the largest slope of all the lines n.

We apply this method on an example and illustrate the algorithm in section 3.1.2.
This algorithm finds all the intersection points of the lines of equation q = \alpha j + jp,
j = 0, . . . , n, and q = 0 that are on the lower envelope of these lines. In this way, we
have generated a set of pairs \{ (pj , ej)\} j=1,...,m corresponding to each intersection we
encountered. Each of these intersection points corresponds to an asymptotic behavior
of one branch of the roots of our original polynomial P\epsilon . Now let us define for each
branch j, the scaled polynomial T

(j)
\epsilon , as follows:

(A.5) T (j)
\epsilon (\omega ) = \epsilon  - ejP\epsilon (\epsilon 

pj\omega ).

We can rewrite T
(j)
\epsilon as a sum of two polynomials

T (j)
\epsilon (\omega ) = T

(j)
0 (\omega ) +E(j)

\epsilon (\omega ),

where E
(j)
0 = 0 and T

(j)
0 do not depend on \epsilon . The nonzero roots of T

(j)
\epsilon (approached

by the roots of T
(j)
0 as \epsilon \rightarrow 0) need to be regular but this is not necessarily the case.

Indeed, \alpha j or (pj , ej) may be noninteger rationals or T
(j)
0 may have repeated roots.

To obtain regular expansions, we introduce the new variable \beta such that:

(A.6) \epsilon = \beta qj ,

where qj is the least common denominator of the set \{ 0, \alpha 1+pj , . . . , \alpha n+npj\} . Finally,
we define

(A.7) R
(j)
\beta (\omega ) = Tj(\omega ,\beta 

qj ) = \beta  - qjejP (\beta qjpj\omega ,\beta qj ),

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

12
/1

0/
24

 to
 8

3.
10

5.
24

5.
15

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S139

where Tj(\omega , \epsilon ) = T
(j)
\epsilon (\omega ) and P (\omega , \epsilon ) = P\epsilon (\omega ). The polynomial R

(j)
\beta has the same

roots as the polynomial T
(j)
\epsilon but its nonzero roots have a regular expansion in \omega of

the form

\omega (\beta ) = a0 + a1\beta + \cdot \cdot \cdot + aN\beta N +\scrO (\beta N+1).

By substituting this expansion into R
(j)
\beta and applying the fundamental theorem of

perturbation theory (Theorem A.2), we find an expression for a0, a1, . . .. We then
come back to x with the transformation x = \beta qjpj\omega (\beta ) for each branch. In practice
we explore each branch one by one and can eliminate those which are irrelevant (for
instance, when we have a negative root, since in our case the roots of the polynomials
are concentrations of species, or \omega (0) = 0).

The above discussion can be summarized algorithmically as follows.

1. Replace the variable x by \epsilon p\omega (\epsilon ) in P\epsilon (x), assuming \omega (0) \not = 0. One obtains a
polynomial of the form

P\epsilon (\epsilon 
p\omega (\epsilon )) =Q\epsilon (\omega ) + \epsilon (. . .) + \cdot \cdot \cdot .

2. Write the set of exponents for Q\epsilon : E = \{ 0, \alpha 1 + p, . . . ,\alpha n + np\} .
3. Determine the pairs, (pj , ej), of proper values and minimal exponents follow-

ing the graphical algorithm described above. Each pair corresponds to an
asymptotic branch to explore.

4. For each branch j:
4.1. Define T

(j)
\epsilon (\omega ) = \epsilon  - ejP\epsilon (\epsilon 

pj\omega ).
4.2. Introduce \beta such that \epsilon = \beta q

j , where qj = lcd(0, \alpha 1 + p, . . . , \alpha n +np), and

define R
(j)
\beta (\omega ) = T

(j)

\beta q
j
(\omega ).

4.3. In R
(j)
\beta (\omega ) = 0, substitute \omega by a regular expansion \omega (\beta ) = a0 + a1\beta +

\cdot \cdot \cdot + aN\beta N +\scrO (\beta N+1).
4.4. Apply the fundamental theorem of perturbation theory to obtain an an-

alytic expression for a0, a1, . . .. Usually at this step, we can discriminate
whether this branch is relevant (see example 3.1.2).

4.5. Find the asymptotic expansion of the root of the original polynomial, P\epsilon 

by x= \beta qjpj\omega (\beta ).

In this paper we are mainly interested in the first nonzero coefficient of the regular
expansion of \omega since it drives the behavior of the root of P\epsilon in the limit \epsilon \rightarrow 0.

Appendix B. Computation of EC50 for the IL-7R model. We make use
of the expression for \sigma (L), the signaling function described in (3.10), and (3.11), to
isolate the square root in (3.14),

(B.1)
\sqrt{} 

\Delta 2 =K2(K3L50 + 1)(Nx +Ny) + 1 - K2(K3L50 + 1)2M

K3L
,

with M =min(Nx,Ny). We square the equation to remove the root and simplify the
expression to obtain

(B.2)

0 = 4K2
2 (K3L50 + 1)2NxNy +K2

2 (K3L50 + 1)4
M2

K2
3L

2
50

 - 2
K2

2 (K3L50 + 1)3M(Nx +Ny)

K3L50
 - 2

K2(K3L50 + 1)2M

K3L50
.
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S140 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

Since we are looking for a positive value of L50, we divide by K2(K3L50 + 1)2 and
rewrite the previous expression as follows:

(B.3)
0 = 4K2K

2
3L

2
50NxNy +K2(K3L50 + 1)2M2

 - 2K2(K3L50 + 1)M(Nx +Ny)K3L50  - MK3L50.

It leads to a polynomial of degree 2 in L50:
(B.4)
0 =M2K2 + 2K3L50M( - 1 +K2(M  - Nx  - Ny)) +K2

3K2L
2
50(M  - 2Nx)(M  - 2Ny).

The discriminant of this polynomial is positive,

(B.5) \Delta = [1 +K2
2 (Ny  - Nx)

2 + 2K2(Nx +Ny  - M)]4K2
3M

2,

so that there are two potential solutions:

L+
50 =M

1 +K2(Nx +Ny  - M) +
\sqrt{} 
1 +K2

2 (Ny  - Nx)2 + 2K2(Nx +Ny  - M)

K2K3(M  - 2Nx)(M  - 2Ny)
,

L - 
50 =M

1 +K2(Nx +Ny  - M) - 
\sqrt{} 

1 +K2
2 (Ny  - Nx)2 + 2K2(Nx +Ny  - M)

K2K3(M  - 2Nx)(M  - 2Ny)
.

Two solutions exist since by squaring (B.1) we lose the positive steady state hypoth-
esis. Substituting these expressions back into the steady state equations shows that
only L+

50 leads to a biologically relevant solution. The use of the algebraic method
described at the end of section 3.1.1 is more elegant as it gives directly the correct
EC50 expression.

Appendix C. Macaulay2 code to compute Gr\"obner bases. Every Gr\"obner
basis of this paper has been computed making use of the software Macaulay2 [25].
We provide the code to compute the Gr\"oebner basis of the IL-7R model described in
section 3.1.1.

Appendix D. Analytic study of general sequential receptor-ligand sys-
tems.

D.1. Asymptotic study of the steady states.
Lemma 4.7. Any bounded, continuous solution of (\ast \ast ) defined on \BbbR has a finite

limit at +\infty (and  - \infty ).
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S141

Proof. Multiply (\ast \ast ) by the common denominator of the Ri and let x = \epsilon  - 1 to
obtain \Biggl[ 

m\prod 
i=0

\~qi(\epsilon )

\Biggr] 
\underbrace{}  \underbrace{}  

\~rm(\epsilon )

\~ym + \~rm - 1(\epsilon )\~y
m - 1 + \cdot \cdot \cdot + \~r0(\epsilon ) = 0,

with \~y = \~f(\epsilon ). We have now recast the original problem into the form of (A.1). By
Theorem A.3 we know, that an expansion for the roots exists and we note that the
points of f(x) as x\rightarrow \infty correspond to the points of \~f(\epsilon ) as \epsilon = 0. Note that, since
all real f(x) are bounded, so are the real \~f(\epsilon ). Therefore all real \~f(0) are finite and
equal to the limits limx\rightarrow \infty f(x). A unique limit is chosen by specifying a branch of
f(x). The proof for x\rightarrow  - \infty follows mutatis mutandis.

Lemma 4.8. The signaling and the dummy functions of an SRLK model satisfying
the experimental hypotheses admit a finite limit when L \rightarrow +\infty and this limit is
positive.

Proof. The function \sigma (or \delta ) is an algebraic function bounded on \BbbR between 0 and
min(Nz,N1, . . . ,Nn) (or min(N1, . . . ,Nn)) so they admit a finite limit when L\rightarrow +\infty .
Let us denote this limit by c\sigma (or c\delta ). We know that c\sigma and c\delta are nonnegative
because \sigma and \delta are products of nonnegative functions.

Consider c\delta = 0. Then since \sigma (L) = K0z
\prod n

i=1
Ki

K\prime 
i
\delta (L), we have c\sigma = 0 (we note

that z being also an algebraic function, z also admits a finite limit when +\infty ). Since
\delta converges to 0, we need

(D.1)

n\prod 
i=1

xi \sim 
L\rightarrow +\infty 

Cn

Lp
,

with Cn a positive constant and p > 1. We recall and rewrite polynomial (4.2d):

(D.2) Nn = xn +K0z

n - 1\prod 
i=1

Ki

n\prod 
i=1

xi +

n - 1\prod 
i=1

K \prime 
i

n\prod 
i=1

xi + \delta (L) + \sigma (L).

Assuming (D.1) when L\rightarrow +\infty in (D.2), we obtain

lim
L\rightarrow +\infty 

xn =Nn,

and so we must have

n - 1\prod 
i=1

xi \sim 
L\rightarrow +\infty 

Cn - 1

Lp
,

with p > 1 and Cn - 1 a positive constant. Passing to the limit in polynomial (4.2c)
for i= n - 1, we obtain

lim
L\rightarrow +\infty 

xn - 1 =Nn - 1.

We repeat the process for every conservation equation (4.2c) of the species Xi and we
obtain

\forall i= 1, . . . , n, lim
L\rightarrow +\infty 

xi =Ni,

which is in contradiction to (D.1). So c\delta > 0.
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S142 L\'EA STA, MICHAEL F. ADAMER AND CARMEN MOLINA-PAR\'IS

Now, consider c\sigma = 0. Then since \sigma (L) = K0z
\prod n

i=1
Ki

K\prime 
i
\delta (L), z has to tend to 0.

However, when passing to the limit L\rightarrow +\infty in (4.2a), we obtain

Nz = lim
L\rightarrow +\infty 

(z +K0zx1 + \cdot \cdot \cdot + \sigma (L)) = 0,

which is a contradiction.
Conclusion: c\sigma > 0 and c\delta > 0.

Lemma 4.9. In an SRLK model under the experimental hypotheses, the con-
centration of the extrinsic intracellular kinase Z admits a positive finite limit, cz > 0,
when L\rightarrow +\infty .

Proof. The concentration of kinase z being an algebraic function bounded on \BbbR 
between 0 and Nz, it admits a finite limit cz when L \rightarrow +\infty . We know that cz \geq 0
because z is a concentration. We now prove that cz > 0. Since \delta converges to a
positive constant when L\rightarrow +\infty , we must have

n\prod 
i=1

xi \sim 
L\rightarrow +\infty 

cd
L
,

where cd is a positive constant. Since \sigma also admits a finite limit when L\rightarrow +\infty , it
means that

z

n\prod 
i=1

xi \sim 
L\rightarrow +\infty 

cs
L
,

where cs is a positive constant. So z has to satisfy

z \sim 
L\rightarrow +\infty 

cz,

where cz =
cs
cd

is a positive constant.

Lemma 4.10. Consider an SRLK model which satisfies the experimental hy-
potheses. If we assume no allostery, then the steady state value of the extrinsic intra-
cellular kinase, z, is given by

z =
 - 1 +K0(Nz  - N1) +

\surd 
\Delta z

2K0
,(4.3)

where

\Delta z = (1+K0(N1  - Nz))
2 + 4K0Nz.

Proof. We assumed no allostery so Ki =K \prime 
i for all i = 1, . . . , n. Equation (4.2a)

gives

Nz  - z =K0z

\left(  x1 +

n\sum 
j=2

\Biggl( 
j - 1\prod 
l=1

Klxlxj

\Biggr) 
+L

n\prod 
j=1

Kjxj

\right)  .

By substituting this equality into (4.2b), we obtain

N1 =Nz  - z +
Nz  - z

K0z
,
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ALGEBRAIC STUDY OF RECEPTOR-LIGAND SYSTEMS S143

so z is a positive root of the polynomial

 - Nz + z(1 +K0(N1  - Nz)) +K0z
2

with L-independent coefficients. The two possibilities are

z1 =
 - 1 +K0(Nz  - N1) +

\sqrt{} 
4K0Nz + (1+K0(N1  - Nz))2

2K0
,

z2 =
 - 1 +K0(Nz  - N1) - 

\sqrt{} 
4K0Nz + (1+K0(N1  - Nz))2

2K0
.

The expression z1 is always positive while z2 is always negative. Hence z1 is the steady
state kinase concentration, z.

Lemma 4.11. Let us consider an SRLK model which satisfies the experimental
hypotheses. Then no concentration xi behaves proportionally to Lq, q > 0, or 1

Lp ,
p > 1, when L\rightarrow +\infty .

Proof. Lemma 4.9 affirms that z tends to a positive constant when L\rightarrow +\infty . In
order for \sigma or \delta to converge to a positive constant as stated in lemma 4.8, we need

(D.3)

n\prod 
i=1

xi \sim 
L\rightarrow +\infty 

c

L
,

where c is a positive constant. Since the concentrations x1, . . . , xn are bounded func-
tions (between 0 and their respective Ni), it is impossible to have for any i= 1 . . . n,
xi \sim 

L\rightarrow +\infty 
ciL

q with ci constant and q > 0. From (D.3) it follows that it is impossible

to have any xi \sim 
L\rightarrow +\infty 

ci
Lp for p > 1.

Theorem 4.12. We consider an SRLK model which satisfies the experimental
hypotheses. If there exists a unique limiting component Xi0 , then

xi0 \sim 
L\rightarrow +\infty 

ci0
L

,

and for all i= 1, . . . , n, i \not = i0,

xi \sim 
L\rightarrow +\infty 

ci,

where ci0 and ci are positive constants.

Proof. Since the concentrations xi are algebraic functions (with coefficients in \BbbR )
bounded on \BbbR , they admit a nonnegative limit when L\rightarrow +\infty .

We know that we need

(D.4)

n\prod 
i=1

xi \sim 
L\rightarrow +\infty 

c

L
,

with c a positive constant, so that \sigma and \delta converge when L\rightarrow +\infty . Lemma 4.9 shows
that z tends to a positive constant when L \rightarrow +\infty . Thus, it follows from (D.4) and
Lemma 4.11 that at least one of the xi must tend to 0. We will prove that the only
concentration that can tend to 0 is xi0 and so xi0 \sim 

L\rightarrow +\infty 

ci0
L with ci0 a constant.
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(1) There exists at least one chain Xj whose concentration tends to 0. The
conservation equation of Xj described in (4.2c) is

Nj = xj +

j\prod 
i=1

K \prime 
ixi +K0z

j\prod 
i=1

Kixi +

j+1\prod 
i=1

K \prime 
ixi +K0z

j+1\prod 
i=1

Kixi + \cdot \cdot \cdot + \delta (L) + \sigma (L).

When L\rightarrow +\infty , we obtain

Nj = lim
L\rightarrow +\infty 

\delta (L) + lim
L\rightarrow +\infty 

\sigma (L).

We cannot form more dummy or signaling complexes than the number of molecules
available. Since Xi0 is the limiting component, we have

\delta (L) + \sigma (L)\leq Ni0 \forall L.

This yields, in the limit L \rightarrow +\infty , Nj \leq Ni0 . By hypothesis this implies that j = i0
and so Xj is our limiting component Xi0 .

(2) Reciprocally, if xi0 tends to a positive constant when L \rightarrow +\infty , then there
exists at least one xj , j \not = i0, such that xj \rightarrow 0 when L \rightarrow +\infty . The limit when
L\rightarrow +\infty of (4.2c) when i= j gives

lim
L\rightarrow +\infty 

[\delta (L) + \sigma (L)] =Nj .

However, since we also have \delta + \sigma \leq Ni0 , we obtain when taking the limit, Nj \leq Ni0 ,
which is a contradiction with the fact that Xi0 is the only limiting component.

Conclusion: Xi0 is limiting if and only if its concentration tends to 0, and we
have

xi0 \sim 
L\rightarrow +\infty 

ci0
L

,

and for i \not = i0,

xi \sim 
L\rightarrow +\infty 

ci,

where ci0 and ci are positive constants.

Corollary 4.13. If an SRLK model, which satisfies the experimental hypothe-
ses, has multiple limiting components, Xi1 , . . . ,Xir , i1 < \cdot \cdot \cdot < ir, then

xi1 \sim 
L\rightarrow +\infty 

ci1
Lp1

, . . . , xir \sim 
L\rightarrow +\infty 

cir
Lpr

,

where ci1 , . . . cir are positive constants and p1 = \cdot \cdot \cdot = pr =
1
r . The concentrations of the

nonlimiting components, xi (for i /\in \{ i1, . . . , ir\} ), tend to positive constants, ci > 0.

Proof. If Xi1 and Xi2 are limiting components, they are the only ones whose
concentrations, xi1 and xi2 , tend to 0 when L\rightarrow +\infty . From (D.4) we can write

xi1 \sim 
L\rightarrow +\infty 

ci1
Lp1

,

xi2 \sim 
L\rightarrow +\infty 

ci2
Lp2

,

with ci1 and ci2 constants and p1, p2 > 0, such that p1 + p2 = 1.
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From system (4.2), we have:

Ni1 = xi1 +

n\sum 
j=i1

\Biggl( 
j - 1\prod 
l=1

K \prime 
lxlxj +K0z

j - 1\prod 
l=1

Klxlxj

\Biggr) 
+L

n\prod 
j=1

K \prime 
jxj +K0zL

n\prod 
j=1

Kjxj ,

Ni2 = xi2 +

n\sum 
j=i2

\Biggl( 
j - 1\prod 
l=1

K \prime 
lxlxj +K0z

j - 1\prod 
l=1

Klxlxj

\Biggr) 
+L

n\prod 
j=1

K \prime 
jxj +K0zL

n\prod 
j=1

Kjxj .

Since Xi1 and Xi2 are limiting components, we have Ni1 =Ni2 and, if i1 < i2, we
obtain
(D.5)

Ni1 =Ni2 \Leftarrow \Rightarrow xi1

\left(  1 +

i2 - 1\sum 
j=i1

\left(  j - 1\prod 
l=1

K \prime 
l

j\prod 
l=1,l \not =i1

xl +K0z

j - 1\prod 
l=1

Kl

j\prod 
l=1,l \not =i1

xl

\right)  \right)  = xi2 .

Since all the xi with i \not = i1, i \not = i2, tend to a positive constant when L\rightarrow +\infty , we
have

1 +

i2 - 1\sum 
j=i1

\left(  j - 1\prod 
l=1

K \prime 
l

j\prod 
l=1,l \not =i1

xl +K0z

j - 1\prod 
l=1

Kl

j\prod 
l=1,l \not =i1

xl

\right)  \sim 
L\rightarrow +\infty 

C,

where C is a positive constant. Thus, we obtain the behavior of the left side of (D.5),

xi1

\left(  1 +

i2 - 1\sum 
j=i1

\left(  j - 1\prod 
l=1

K
\prime 

l

j\prod 
l=1,l \not =i1

xl +K0z

j - 1\prod 
l=1

Kl

j\prod 
l=1,l \not =i1

xl

\right)  \right)  \sim 
L\rightarrow +\infty 

Cci1
Lp1

.

Since the right side is given by

xi2 \sim 
L\rightarrow +\infty 

ci2
Lp2

,

it results in p1 = p2 =
1
2 .

If there are r limiting components xi1 , . . . , xir , i1 < \cdot \cdot \cdot < ir, then we have

xi1 \sim 
L\rightarrow +\infty 

ci1
Lp1

,

...
...

xir \sim 
L\rightarrow +\infty 

cir
Lpr

,

with ci1 , . . . , cir positive constants, and p1, . . . , pr > 0 such that p1 + \cdot \cdot \cdot + pr = 1.
We proceed the same way as for the case of two limiting components and we obtain
p1 = \cdot \cdot \cdot = pr =

1
r .

D.2. Asymptotic study of the signaling and dummy functions.
Theorem 4.14. Consider an SRLK model which satisfies the experimental hy-

potheses. Let us write Xi1 , . . . ,Xir as the limiting components and denote Ni0 as the
total amount of any limiting component, i.e., Ni0 \equiv Ni1 = \cdot \cdot \cdot =Nir . The limit of the
signaling function is given by

lim
L\rightarrow +\infty 

\sigma (L) =

\prod n
i=1KiK0cz\prod n

i=1K
\prime 
i +
\prod n

i=1KiK0cz
Ni0 ,
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and the limit of the dummy function is

lim
L\rightarrow +\infty 

\delta (L) =

\prod n
i=1K

\prime 
i\prod n

i=1K
\prime 
i +
\prod n

i=1KiK0cz
Ni0 ,

where

cz = lim
L\rightarrow +\infty 

z.

Proof. By the definition of \sigma and \delta we have

\delta (L) + \sigma (L) =L

n\prod 
i=1

xi

\Biggl( 
n\prod 

i=1

K \prime 
i +K0z

n\prod 
i=1

Ki

\Biggr) 
,

which implies that

lim
L\rightarrow +\infty 

[\delta (L) + \sigma (L)] = lim
L\rightarrow +\infty 

\Biggl( 
L

n\prod 
i=1

xi

\Biggl( 
n\prod 

i=1

K \prime 
i +K0z

n\prod 
i=1

Ki

\Biggr) \Biggr) 
.

Using the limit properties and since everything converges, we obtain

lim
L\rightarrow +\infty 

[\delta (L) + \sigma (L]) = lim
L\rightarrow +\infty 

\Biggl( 
L

n\prod 
i=1

xi

\Biggr) \Biggl( 
n\prod 

i=1

K \prime 
i +K0 lim

L\rightarrow \infty 
(z)

n\prod 
i=1

Ki

\Biggr) 
.

However, Theorem 4.12 states that xi0 tends to 0 when L\rightarrow +\infty . Thus, (4.2c) when
i= i0 at L\rightarrow +\infty gives

Ni0 = lim
L\rightarrow +\infty 

[\delta (L) + \sigma (L)].

Consequently since z\rightarrow cz > 0 from Lemma 4.9, we obtain

lim
L\rightarrow +\infty 

\Biggl( 
L

n\prod 
i=1

xi

\Biggr) 
=

Ni0\prod n
i=1K

\prime 
i +K0cz

\prod n
i=1Ki

.

We substitute this limit into the expression of \sigma and \delta and obtain the desired expres-
sions.

Corollary 4.15. Consider the system of Theorem 4.14 and assume there is
no allostery. Denote the limiting components by Xi1 , . . . ,Xir and and let Ni0 be the
total amount of any limiting component, i.e., Ni0 \equiv Ni1 = \cdot \cdot \cdot =Nir . The limit of the
signaling function is

lim
L\rightarrow +\infty 

\sigma (L) =
K0z

1 +K0z
Ni0 ,

and the limit of the dummy function is

lim
L\rightarrow +\infty 

\delta (L) =
Ni0

1 +K0z
,

with z given by (4.3) in Lemma 4.10.
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Proof. Since there is no allostery, we have Ki =K \prime 
i for all i. Lemma 4.10 states

that z is independent of L, thus cz = z. Applying these statements in the expressions
of the previous theorem, we obtain the expressions of this corollary.

Lemma 4.16. Consider an SRLK model under the experimental hypotheses. If
there is no allostery, then we have

sup\sigma (L) = lim
L\rightarrow +\infty 

\sigma (L).

Proof. Since Xi0 is the limiting component, we know from Theorem 4.12 that its
concentration tends to 0 when L\rightarrow +\infty . We have

(D.6) \delta + \sigma \leq Ni0 = lim
L\rightarrow +\infty 

(\delta + \sigma ).

In the no allostery case, z is independent of L and we have \sigma = K0z\delta . Thus, (D.6)
gives

(1 +K0z)\delta \leq (1 +K0z) lim
L\rightarrow +\infty 

\delta .

Hence, we can conclude

lim
L\rightarrow +\infty 

\delta = sup \delta ,

and

lim
L\rightarrow +\infty 

\sigma = sup\sigma .

D.3. SRLK models with additional receptor sub-units.
Theorem 4.20. The theorems and lemmas previously true for the SRLK models

are true for the extended SRLK models under the same (extended) hypotheses.

Proof. The concentrations yi are bounded (0 \leq yi \leq Nyi) algebraic functions on
\BbbR , and therefore admit a limit when L\rightarrow +\infty . As the expressions of \sigma and \delta are not
modified, the addition of the Yi variables to an SRLK model, assuming the extended
experimental hypotheses, does not change the proofs of the previous lemmas and
theorems.
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