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1 Observed Ice Speed and Error Measurements

Figure S1: Ice Speed and Error Maps. Annual median mosaics of ice speed (rows 1 and 2) and ice speed error (rows 3 and 4) over TG from

2015 to 2020, as measured using the intensity feature tracking method. The ice speed error is estimated as the reciprocal signal-to-noise ratio

of the cross-correlation peak at each feature tracking window, scaled by the local measurement of ice velocity. We define the signal-to-noise

ratio as the amplitude of the primary cross-correlation peak divided by the mean of all secondary peaks (as in [1]). Pixels with less than 20%

data coverage during the year are excluded from the annual mosaics. The 2011 grounding line location is also shown as the dashed black

lines in rows 1 and 2, and the dashed white lines in rows 3 and 4 ([2]).
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2 Fracture and Calving Front Measurements

2.1 Deep Neural Networks - Background

Figure S2: Neural Network Architecture. Network architecture

showing 2D convolutions (blue arrows), max-pooling (red arrows)

with a kernel size of 3, stride of 2 and padding of 1, skip

connections (black arrows), and bilinear up-sampling followed by

2D convolution (gold arrows). Numbers inside boxes indicate the

number of channels at each stage, while numbers outside boxes

indicate the number of pixels in each channel. All 2D convolutions

are of kernel size 3, stride of 1 and padding of 1 except the first two

which use kernel size of 7, stride of 1 and padding of 3. The

number of trainable parameters in the model totals 534 230.

Over the last decade, deep learning in the field of com-

puter vision has been dominated by convolutional neural net-

works. These models have been responsible for significant

advances in areas such as image classification, segmentation

and feature extraction ([3, 4, 5, 6]). Such neural networks op-

erate by applying to the elements xi of a dataset X = {xi}Ni=1
a

series of successive convolutional transformations with train-

able parameters θ, separated by non-linear transformations. In

a supervised learning regime the output of this series of trans-

formations ŷi is compared to the desired output - or target -

yi ∈ Y using a “cost function”, f : (yi, ŷi) 7→ f (yi, ŷi) ∈ R,

which defines a distance measure between model outputs and

targets. By updating the parameters θ according to the min-

imisation of the cost function via stochastic gradient descent

(where the gradient at each step is calculated only for a subset

of the data b ⊂ X with cardinality referred to as the “batch

size”), the neural network is trained to approximate the de-

sired mapping m : X → Y.

2.2 Network Architecture

The architecture we use (Fig. S2) for both fracture and calv-

ing front detection was based on the U-Net ([5]), and is sim-

ilar to that used by [7] for the segmentation of vegetation

from remote sensing imagery. Unlike the original U-Net, we

perform bilinear up-sampling followed by 2D convolution in

the decoder section instead of transposed convolution, include

batch normalisation after each 2D convolution, dropout with

probability 0.1 after each Leaky-ReLU activation, and reduce

the network depth considerably. The model was written in

Pytorch ([8]) and trained using an Nvidia Tesla K80 GPU.

2.3 Neural Network Fracture Measurement

A large training dataset (X,Y) is required to train the U-Net

to identify surface crevasses on TG in SAR images. Given

the scale of the challenge presented by creating such a dataset

manually, we opt instead to use a combination of manual an-

notation, bootstrapping and image augmentation to achieve

this. First, we manually delineated the calving front location

at 50 m spatial resolution in 20 Sentinel-1 interferometric-

wideswath mode SAR backscatter images, from 10 glacier lo-

cations in Antarctica, ignoring the presence of crevasses in the

images. These scenes were selected to represent the realistic

variation of surface features seen in SAR images of Antarc-

tica. The images were then tiled into 256× 256 pixel patches,

before random rigid transformations were applied - preferen-

tially to image patches containing calving fronts. This re-

sulted in 3000 images with associated segmentation maps,

85% of which contained sections of calving front (an example

training pair is given in Fig. S3a and b). The neural network

was then trained on this calving front dataset using cross en-

tropy loss, Adam optimisation ([9]) with a learning rate of

0.0005, and a batch size of 32. The training was stopped af-

ter 9 epochs (44 minutes), before convergence of the network

parameters. At this time, the network had become capable of

discerning large linear features, including the calving fronts,

on which it was trained, and crevasses.

We treat calving fronts as a subset of the set of features

corresponding to large, linear textural discontinuities in the

backscatter images. This subset is ultimately defined by high-

level, semantic features e.g. the identification of sea on one

side of the calving front, and glacier ice on the other. U-Net

is a hierarchical network in which early layers learn to iden-

tify low-level spatial features such as texture and the presence

of steep intensity gradients, while higher-level semantic fea-

tures are learned by deeper layers. Skip connections com-

bine early layers with those towards the end of the decoder

section of the network, and enable the network to rapidly re-

duce the cost function early on in training, by using the activa-

tions of the shallow layers to inform its output. At this stage,

basic semantic information is provided by the deeper layers,

for example constraints on the size and linearity of features.

Therefore, early on in training, the network learns to identify

the superset of linear features consisting of calving fronts and

crevasses.

We then applied this partially trained network to a number

of unseen images, identified patches for which the network

appeared to have performed well, and added those network

outputs and corresponding inputs to the training data set, re-

placing a random sample of the calving front training images.

The network was then retrained with the new data-set before

this procedure was repeated. This formed the “bootstrapping”

part of the training process.
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Figure S3: Example Training Data. (a) An example 256 × 256-pixel SAR backscatter image included in the training dataset for both

fracture and calving fronts. (b) The manually delineated calving front for the corresponding SAR image (a) used during the training of the

U-Net for fracture detection, note that no crevasses are identified. (c) The target image corresponding to (a) used to train the network in

calving front delineation; this image is segmented into the classes glacier (green) and sea (white).

Figure S4: Network Performance and Output. (a) Performance of

the neural network as a detector of crevasses after training for 0-40

epochs. (b) Comparison between the network output (red) after 9

epochs and the ground truth (light blue), with the intersection (Int.)

between the two data-sets also shown (purple).

2.3.1 Fracture Detection: Error Estimation and Perfor-

mance

In order to assess the performance of the trained network for

the detection of crevasses, the network output after 9 epochs,

for a large test image covering the TGIT, was compared to a

manually delineated ground truth. The resulting segmentation

maps and their intersection clearly shows that there is signif-

icant agreement between the ground truth and the network

output (Fig. S4b), with both data-sets showing good visual

representation of the surface crevasse features visible in the

corresponding SAR image. We generated accuracy metrics

(Fig. S4a), where Sensitivity (S ) is the proportion of true frac-

ture locations to be correctly identified by the network, and

precision (P) is the proportion of fracture locations identified

by the network that is true according to the manual annota-

tion. Based on these metrics we define error on the fracture

density (ρ f ) in a region to be bounded at the top by ρ f ×(2−S )

and at the bottom by ρ f × P. The evolution of the accuracy

metrics is shown in Fig. S4b. The sensitivity (green line) is

shown to increase to a maximum value of 0.81 after 9 epochs

and decrease thereafter, as the network - trained on calving

front locations - learns to ignore smaller crevasses. The preci-

sion (blue line) increases sharply and plateaus, showing that

the network remains successful in the identification of true

crevasses. The F1 score (2PS/(P + S )) (black line) is also

shown, taken as an overall measure of performance. This

peaks at 9 epochs, at which point we take the network to be at

its optimal efficacy in identifying damage.

2.4 Neural Network Calving Front Delineation

The dataset used in training the U-Net for the segmentation

of SAR images into the classes glacier and sea was split into

two parts. The network architecture is the same as that used

in the training of the network for crevasse detection, with the

calving front target images replaced with binary segmentation

maps (Fig. S3a and c). After initial training with this dataset,

the model was “tuned” using a smaller training set consisting

of 500 patches generated from 5 SAR images of TG, and their

manually segmented target images. In both the initial training

and the tuning, we used a binary cross-entropy loss function,

Adam optimisation with a learning rate of 0.0001, and a batch

size of 12. The model training time comprised of 6 hours of

initial training and ∼ 3 minutes of tuning.

Upon implementation of the trained network, a softmax

function was applied to the network output to generate nor-

malised images for each two-channel output. The channels

in these normalised images can be interpreted as the prob-

abilities that each pixel corresponds to the classes ‘sea’ and

‘glacier’ respectively. Though this association between a nor-

malised output and a probability is naïve, we make use of it

to define a notion of uncertainty in the segmentation (Sect.
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2.4.1). As with the fracture measurements, to reconstruct a

larger image the 256 × 256-pixel patches, which overlap by

128-pixels, are tiled together with a Gaussian weighting away

from the centre pixels applied. We extract the calving front

location from the probability maps using thresholding and

canny edge detection. Unreliable calving front data-points,

that don’t appear in Fig. 3e of the main text, were identified

according to the procedure defined in the methods.

2.4.1 Neural Network Calving Front Error Estimation

Figure S5: Sigmoid fit to the probabilities that a pixel corresponds

to the class ‘glacier’ for pixels close to the calving front along an

example measuring line.

We use probability maps, which represent the likelihood

that each pixel in the input image is ‘glacier’ (Pg) or ‘sea’

(Ps), to calculate an uncertainty in the calving front posi-

tion. If we define a transect c(t) along which we measure

the distance to the calving front, with t0 = 0 in the sea, and

t1 = 1 upstream of the calving front, we can define the prob-

ability that each point along that line corresponds to glacier

pg(t). If the value of t corresponds to a true point on the

calving front (tc f ), then we can denote the probability that

each point on the transect corresponds to a point on the calv-

ing front as Pc f (t = tc f ). This allows for the following cor-

respondence: pg(t) = Pc f (t > tc f ). Therefore, if we take

(t0, t1) 7→ (−∞,+∞), we can view pg(t) as the cumulative

probability distribution of Pc f (t = tc f ) (Fig. S5). A cross-

section through Pg approximates a sigmoid function near the

calving front, which we can express using parameters µ and

σ as:

pg(t) =
1

1 + e
− t−µ

qσ

(1)

where q =
√

3/π. Differentiating this, we find that Pc f (t =

tc f ) follows a logistic distribution with mean µ and standard

deviation σ.

Hence, by fitting a sigmoid curve (s(t; µ, σ)) to the proba-

bilities that pixels in a cross section of an image Pg, defined

by the line c(t), we can estimate the uncertainty in our mea-

sured calving front position along that line, namely: σ.

3 The Temperature Component of Damage

The rate factor A(T ), in Glen’s flow law depends exponen-

tially on temperature. The effective viscosity of ice, η, defined

through τi j = η ϵ̇i j, can be written

η = A(T )−1τ1−n
II , (2)

where τII = (τi jτi j)
1/2 is the second invariant of the devia-

toric stress tensor. Hence, the effective viscosity is strongly

temperature dependent as well. Using Hooke’s modification

to the Arrhenius relation for A(T ) ([10]), we find, at constant

stress, and at temperature T, that for a small fluctuation in

temperature δT :

δη

η
= −

(

Q

RT 2
+

3Ck

(T0 − T )k+1

)

δT, (3)

where Q is the activation energy for creep, R is the universal

gas constant, T0 = 273.39 K, C = 0.16612 Kk is the flow rate

factor, and k = 1.17. The model inversions undertaken in this

study assume a constant temperature field T ≡ T (x, y) ([11])

when calculating ϕ, however, clearly inaccuracies in the tem-

perature field that alter the value of η from eq. 2 will cause

changes in ϕ to compensate. We argue that the temperature

field is accurate enough for us to ignore this contribution to ϕ

and assume that deviations of ϕ from 1 are dominated by ice

fracture.

Warmer temperatures in T will cause η in the model to be

smaller than in reality, hence a ϕ greater than unity and a neg-

ative value of D. We, therefore, investigate errors in the tem-

perature field by looking at negative damage in the inversion

outputs.

In Fig. S6 (a)-(b) we see that there are few areas of negative

damage, with negative values anyway close to zero. Using

the distribution of negative damage values (Fig. S6 (b)), we

define a rough error on ϕ induced by errors in the temperature

field of ∆D ∼ 0.05. We also see, in Fig. S6 (c) that, for a such

an error in the effective viscosity, the temperature field would

have to be accurate to ∼ 2K, showing that T is likely to be a

very good representation of the temperatures in this region of

the WAIS.
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Figure S6: Distribution of D over the TG terminus. (a) shows a reproduction of figure 4 with negative values of damage also shown in blue.

The MEaSUREs grounding line is shown as the dashed black line [2]. (b) the distribution of damage values over the whole domain and

timeseries. (c) temperature fluctuations corresponding to changes in the effective viscosity in the linear regime, using eq. 3, for values of T

between 240 and 260 K.

4 External Forcing Mechanisms

In the discussion of the main text, we make clear that exter-

nal influences beyond the interplay between fracture develop-

ment and dynamic change are likely required to explain the

observations. Here, we briefly discuss such forcing.

Environmental forcing mechanisms known to impact the

West Antarctic Ice Sheet include incursions of warm ocean

water onto the continental shelf ([12, 13, 14]) or increased

discharge of meltwater through the sub-glacial drainage sys-

tem ([15, 16, 17, 18]), both of which can drive higher rates of

basal melt and lead to dynamic speedup. The known decadal

variability in ocean forcing in the ASE ([19]) has likely been

responsible for past dynamic events and structural changes on

the ice tongue ([20, 21]) and will continue to have an influ-

ence today. Examination of conductivity-temperature-depth

(CTD) casts in the region ([22]) suggest that ocean temper-

atures in the 400 − 600 m depth range were 0.25 − 0.5 ◦C
warmer in 2019 than in 2014 (Fig. S7).

The absence of detailed knowledge on ocean temperature

and circulation during the first ice dynamic episode makes

it difficult to robustly link these observations. However, the

strong El Nino event in 2016 ([23]) could plausibly have in-

creased oceanic heat delivery to the TGIT during 2017 and

may therefore have played a role in the 2017-2018 accelera-

tion episode and the continued deterioration of TGIT.

Increased sub-glacial discharge is caused by the drainage

of sub-glacial lakes, and satellite observations show that two

large sub-glacial lakes in the Thwaites catchment drained in

March 2017 ([16]). These results indicate that the drainage

events led to the filling of a downstream lake rather than rout-

ing water to the ice margin, which would seemingly preclude

an influence of these lakes on TGIT dynamics. However,

given the temporal coincidence of these events we do not rule

out a potential link between the drainage event and the accel-

eration of TGIT.

Surface melting is not thought to play a significant role

in Antarctic ice mass loss ([24]), however, observations in

Greenland show that surface meltwater penetration to the bed

can cause large and rapid speed variations ([25]). Despite ob-

serving a decrease in backscatter signal throughout the sum-

mer of 2018/19, we found no evidence of supra-glacial melt

ponds, but further work is required to understand if surface

melt processes were linked to the observed dynamic ice speedup

on TG.

Sea ice can act to inhibit iceberg calving even in uncon-

fined Antarctic ice shelves via the bonding of small periph-

eral icebergs, and by attenuating ocean swell and reducing
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the associated ice-shelf flexure ([26]). A visual analysis of

SAR backscatter images shows that sea ice retreated beyond

the northern-most part of the TGIT in November 2016, and

did not fully reform before July 2017 after the large calving

events in March and June of that year, indicating that such

a process contributed to the structural decline of the TGIT

([21]). Further analysis of SAR images over the full 6-year

study period shows that the period of deceleration coincided

with an almost complete removal of sea-ice cover in the ocean

around TG in January to March 2019, before the return of

sea-ice cover prior to the second period of acceleration. This

indicates that, although it is responsible for maintaining the

structural integrity of the northern sections of the TGIT, sea

ice may not always play a decisive role in regulating the speed

of the TGIT. Future studies are required to make observations

of sea ice thickness in the ice shelf peripheral region, so that

the buttressing strength of 1−5 m thick sea ice against the flow

of the 300 m thick shelf ice can be quantitatively determined.

4.1 Ocean Temperature Data

To evaluate the possible effect of changing ocean conditions

on the stability of TGIT, we examined conductivity, temper-

ature, depth (CDT) profiles acquired near the TGIT in 2014

and 2019. The CTD profiles are from the Ocean2ice iSTAR

cruise in 2014 (available at: http://www.bodc.ac.uk/) and from

the 2019 Nathanial B, Palmer cruise (available at: https://doi.

pangaea.de/10.1594/PANGAEA.860066; [27]). All profiles

were acquired within 60 km of the TGIT, but the majority of

profiles were acquired within 30 km. These profiles (Fig. S7)

show that water column temperature in the 400−600 m depth

range was approximately 0.25 − 0.5 ◦C warmer in 2019 com-

pared to 2014. This difference in temperature was consistent

- 85% of the profiles acquired in 2019 were warmer than the

2014 average in the 400−600 m depth range - implying a sus-

tained increase in oceanic heat delivery to the TGIT in 2019

compared to 2014.

Acknowledgements. The LaTex template used for this

document was adapted from that of the European Mathemat-

ical Society, licenced under Creative Commons CC BY 4.0.

Figure S7: CTD profiles acquired close to the TGIT in 2014 (blue)

and 2019 (red). Shaded areas indicate the standard deviation of

water column temperature from all profiles acquired within 50 km

of the TGIT in each year.

References

[1] de Lange, R., Luckman, A. & Murray, T. Improvement

of satellite radar feature tracking for ice velocity deriva-

tion by spatial frequency filtering. IEEE Transactions

on Geoscience and Remote Sensing 45 (7), 2309–2318

(2007) .

[2] Rignot, E., Mouginot, J. & Scheuchl, B. Measures

antarctic grounding line from differential satellite radar

interferometry, version 2 (2016). Boulder, Colorado

USA. NASA National Snow and Ice Data Center Dis-

tributed Active Archive Center. doi: https://doi.org/10.

5067/IKBWW4RYHF1Q. Accessed 15/01/2021.

[3] Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

Advances in neural information processing systems 25,

1097–1105 (2012) .

[4] Long, J., Shelhamer, E. & Darrell, T. Fully convolu-

tional networks for semantic segmentation (2014). URL

https://arxiv.org/abs/1411.4038.

[5] Ronneberger, O., Fischer, P. & Brox, T. U-net: Con-

volutional networks for biomedical image segmentation

(2015). 1505.04597.

[6] Szegedy, C. et al. Going deeper with convolutions

(2014). URL https://arxiv.org/abs/1409.4842.

[7] Kattenborn, T., Eichel, J. & Fassnacht, F. E. Convo-

lutional neural networks enable efficient, accurate and

fine-grained segmentation of plant species and commu-

nities from high-resolution uav imagery. Scientific re-

ports 9 (1), 1–9 (2019) .

[8] Paszke, A. et al. Pytorch: An imperative style, high-

performance deep learning library (2019). URL https:

//arxiv.org/abs/1912.01703.



Page 8

[9] Kingma, D. P. & Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014) .

[10] LeB. Hooke, R. Flow law for polycrystalline ice in

glaciers: comparison of theoretical predictions, labo-

ratory data, and field measurements. Reviews of Geo-

physics 19 (4), 664–672 (1981) .

[11] Seroussi, H. et al. initmip-antarctica: an ice sheet model

initialization experiment of ismip6. The Cryosphere

13 (5), 1441–1471 (2019) .

[12] Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P.

Stronger ocean circulation and increased melting under

pine island glacier ice shelf. Nature Geoscience 4 (8),

519–523 (2011) .

[13] Jenkins, A. et al. West antarctic ice sheet retreat in the

amundsen sea driven by decadal oceanic variability. Na-

ture Geoscience 11 (10), 733–738 (2018) .

[14] Dutrieux, P. et al. Strong sensitivity of pine island ice-

shelf melting to climatic variability. Science 343 (6167),

174–178 (2014) .

[15] Schroeder, D. M., Blankenship, D. D. & Young,

D. A. Evidence for a water system transition be-

neath thwaites glacier, west antarctica. Proceedings

of the National Academy of Sciences 110 (30), 12225–

12228 (2013). URL https://www.pnas.org/content/110/

30/12225. https://doi.org/10.1073/pnas.1302828110 .

[16] Malczyk, G., Gourmelen, N., Goldberg, D., Wuite, J. &

Nagler, T. Repeat subglacial lake drainage and filling

beneath thwaites glacier. Geophysical Research Letters

47 (23), e2020GL089658 (2020) .

[17] Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tu-

laczyk, S. Episodic ice velocity fluctuations triggered

by a subglacial flood in west antarctica. Geophysical

Research Letters 43 (6), 2640–2648 (2016) .

[18] Selley, H. L. et al. Widespread increase in

dynamic imbalance in the getz region of antarc-

tica from 1994 to 2018. Nature Communica-

tions 12 (1), 1133 (2021). URL https://doi.org/

10.1038/s41467-021-21321-1. https://doi.org/10.1038/

s41467-021-21321-1 .

[19] Jenkins, A. et al. Decadal ocean forcing and antarc-

tic ice sheet response: Lessons from the amundsen sea.

Oceanography 29 (4), 106–117 (2016) .

[20] Mouginot, J., Rignot, E. & Scheuchl, B. Sustained in-

crease in ice discharge from the amundsen sea embay-

ment, west antarctica, from 1973 to 2013. Geophysical

Research Letters 41 (5), 1576–1584 (2014) .

[21] Miles, B. W. J. et al. Intermittent structural weaken-

ing and acceleration of the thwaites glacier tongue be-

tween 2000 and 2018. Journal of Glaciology 66 (257),

485–495 (2020). https://doi.org/10.1017/jog.2020.20 .

[22] Wåhlin, A. et al. Pathways and modification of warm

water flowing beneath thwaites ice shelf, west antarc-

tica. Science Advances 7 (15), eabd7254 (2021) .

[23] Paolo, F. et al. Response of pacific-sector antarctic ice

shelves to the el niño/southern oscillation. Nature geo-

science 11 (2), 121–126 (2018) .

[24] Slater, T. et al. Earth’s ice imbalance. The Cryosphere

15 (1), 233–246 (2021) .

[25] Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton,

T. R. & Nienow, P. W. The influence of hydrology on the

dynamics of land-terminating sectors of the greenland

ice sheet. Frontiers in Earth Science 7, 10 (2019) .

[26] Massom, R. A. et al. Antarctic ice shelf disintegra-

tion triggered by sea ice loss and ocean swell. Nature

558 (7710), 383–389 (2018) .

[27] Wåhlin, A. K. et al. Pathways and modification of warm

water flowing beneath thwaites ice shelf, west antarc-

tica. Science Advances 7 (15) (2021). URL https://

advances.sciencemag.org/content/7/15/eabd7254. https:

//doi.org/10.1126/sciadv.abd7254 .


