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We formulate the transition from decelerated to accelerated expansion as a bounce in connection space and

study its quantum cosmology, knowing that reflections are notorious for bringing to the fore quantum effects. We

use a formalism for obtaining a time variable via the demotion of the constants of Nature to integration constants,

and focus on a toy Universe containing only radiation and a cosmological constant Λ for its simplicity. We find

that, beside the usual factor ordering ambiguities, there is an ambiguity in the order of the quantum equation,

leading to two distinct theories: one second, the other first order. In both cases two time variables may be

defined, conjugate to Λ and to the radiation constant of motion. We make little headway with the second order

theory, but are able to produce solutions to the first order theory. They exhibit the well-known “ringing” whereby

incident and reflected waves interfere, leading to oscillations in the probability distribution even for well-peaked

wave packets. We also examine in detail the probability measure within the semiclassical approximation. Close

to the bounce, the probability distribution becomes double-peaked, one peak following a trajectory close to the

classical limit but with a Hubble parameter slightly shifted downwards, the other with a value of b stuck at its

minimum. An examination of the effects still closer to the bounce, and within a more realistic model involving

matter and Λ, is left to future work.

I. INTRODUCTION

It is not often pointed out that the Universe has recently

undergone a bounce in connection space (not to be confused

with a possible metric bounce at the Planck epoch). The nat-

ural connection variable in homogenous cosmological mod-

els is the inverse comoving Hubble parameter, here called b,
as opposed to the expansion factor a in metric space (with

b = ȧ/N on-shell for a lapse function N ). This is precisely

the variable used in characterizing the horizon structure of the

Universe. It is well established ([1] and references therein)

that b has recently transitioned from a decreasing function of

time (associated with decelerated expansion) to an increasing

function of time (accelerated expansion), due to Λ or more

generally a form of dark energy taking over. If we choose

the connection representation in quantum cosmology the Uni-

verse has, therefore, in the recent few billion years of its life

undergone a bounce or a reflection.

Reflection is one of the best ways to highlight quan-

tum wave-like behavior [2], sometimes with paradoxical re-

sults [3]. The incident and reflected waves interfere, intro-

ducing oscillations in the probability, or “ringing”, which af-

fects the classical limit. Such interference transforms travel-

ing waves into stationary waves, leading to effects not dissim-

ilar to those investigated in [4]. Independently of this, turning

points in the effective potential, dividing classically allowed
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and forbidden regions, are always regions where the WKB

or semiclassical limit potentially breaks down, revealing fully

quantum behavior. The point of this paper is to initiate an

investigation into this matter, specifically into whether the ex-

tremes of “quantum reflection” could ever be felt by our recent

Universe.

In this study we will base ourselves on recent work where a

relational time (converting the Wheeler-DeWitt equation into

a Schrödinger-like equation) is obtained by demoting the con-

stants of Nature to constants-on-shell only [5, 6] (i.e., quan-

tities which are constant as a result of the equations of mo-

tion, rather than being fixed parameters in the action). The

conjugates of such “constants” supply excellent physical time

variables. This method is nothing but an extension of unimod-

ular gravity [7] as formulated in [8], where the demoted con-

stant is the cosmological constant, Λ, and its conjugate time

is Misner’s volume time [9]. Extensions targeting other con-

stants (for example Newton’s constant) have been considered

before, notably in the context of the sequester [10, 11] in the

form [12] (where the associated “times” are called “fluxes”),

or more recently in [13, 14].

Regarding the Wheeler–DeWitt equation in this fashion,

one finds that the fixed constant solutions appear as mono-

chromatic partial waves. By “de-constantizing” the constants

the general solution is a superposition of such partial waves,

with amplitudes that depend on the “de-constants”. Such su-

perpositions can form wave packets with better normalizabil-

ity properties. In this paper we investigate the simplest toy

model exhibiting a b-bounce, a mixture of radiation and Λ,

subject to the deconstantization of Λ and of a radiation vari-
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able (which can be the gravitational coupling G). The wave

packets we build thus move in two alternative time variables,

the description being simpler [6] in terms of the clock as-

sociated with the dominant specie (e.g., Misner time during

Lambda domination). The b-bounce is the interesting epoch

where the “time-zone” changes.

The plan of this paper is as follows. In Section II we set

up the classical theory highlighting the connection rather than

the metric, with a view to quantization in the connection repre-

sentation (Section III). We stress the large number of decision

forks in the connection representation (thus, leading to non-

equivalent theories with respect to quantizations based upon

the metric). Notably, beside factor ordering issues, we have

ambiguities in the order of the quantum equation. Thus we

find two distinct theories for our toy model: one first, another

second order.

We seek solutions to the second order theory in Sec. IV,

but encounter a number of mathematical problems that hinder

progress. In contrast, we produce explicit solutions to the first

order theory in Section V, albeit at the cost of several approx-

imations that may erase or soften important quantum behav-

ior. Gaussian wave packets are found, and the motion of their

peaks reproduces the semiclassical limit. At the bounce they

do exhibit “ringing” in |ψ|2, as in all other quantum mechan-

ical reflections. However, with at least one definition of inner

product and unitarity, within the semiclassical approximation

this “ringing” disappears from the probability, as shown in

Section VI. Nonetheless in Section VII we find hints of inter-

esting phenomenology: even within the semiclassical approx-

imation, for a period around the bounce, the Universe is ruled

by a double peaked distribution biased towards the value of b
at the bounce. This could be observable.

Whether the features found/erased in Sections V, VI and

VII vanish or become more pronounced in a realistic model

with fewer approximations is left to future work (e.g., [15]),

as we discuss in a concluding Section.

II. CLASSICAL THEORY

We study a cosmological model with two candidate matter

clocks, modeled as perfect fluids with equation of state pa-

rameter w = 1
3 (radiation) and w = −1 (dark energy), respec-

tively. In minisuperspace, these fluids can be characterized by

their energy density ρ or equivalently by a conserved quantity

ρa3(w+1). This conserved quantity is canonically conjugate to

a clock variable, and hence particularly convenient to use.

Reduction of the Einstein–Hilbert action (with appropriate

boundary term) to a homogeneous and isotropic minisuper-

space model yields

SGR =
3Vc
8πG

∫

dt
(

ḃa2 +Na
(

b2 + k
)

)

(1)

where b is conjugate to the squared scale factor a2; varying

with respect to b gives b = ȧ/N , as stated above. k = 0, ±1 is

the usual spatial curvature parameter, and Vc is the coordinate

volume of each 3-dimensional slice.

A perfect fluid action in minisuperspace can be defined

by [16]

Sfl =

∫

dt

(

Uτ̇ −Na3Vc ρ

(

U

a3Vc

))

(2)

where U is the total particle number (whose conservation is

ensured by the first term) and τ is a Lagrange multiplier. For

a fluid with equation of state parameter w, ρ(n) = ρ0n
1+w

for some ρ0 where n = U/(a3Vc) is the particle number den-

sity. Now introducing a new variable m = 8πGρ0

3Vc
( U
Vc
)1+w,

conservation of U is equivalent to conservation of m, and we

can define an equivalent fluid action (see also [17, 18])

S
(w)
fl =

3Vc
8πG

∫

dt
(

ṁχ−N
m

a3w

)

. (3)

The total action for gravity with two fluids is then

SGR + S
( 1
3 )

fl + S
(−1)
fl =

3Vc
8πG

∫

dt
[

ḃa2 + ṁχ1 + Λ̇χ2 (4)

−Na
(

−(b2 + k) +
m

a2
+

Λ

3
a2
)]

where we now write m for the conserved quantity associated

to radiation and Λ/3 for the “cosmological integration con-

stant” of dark energy. (The latter is equivalent to the way

in which the cosmological constant emerges in unimodular

gravity [8]; the factor of 3 ensures consistency with the usual

definition of Λ.) We will assume that m and Λ are positive:

other solutions are of less direct interest in cosmology. Clas-

sically the values of such conserved quantities can be fixed

once and for all. In the quantum theory discussed below, we

will only be interested in semiclassical states sharply peaked

around some positive m and Λ values, even though the corre-

sponding operators are defined with eigenvalues covering the

whole real line in order to simplify the technical aspects of the

theory.

The Lagrangian is in canonical form L = piq̇
i −H, which

implies the nonvanishing Poisson brackets

{b, a2} = {m,χ1} = {Λ, χ2} =
8πG

3Vc
(5)

and Hamiltonian

H =
3Vc
8πG

Na

(

−(b2 + k) +
m

a2
+

Λ

3
a2
)

. (6)

Importantly, this Hamiltonian is linear in m and Λ; for a suit-

able choice of lapse given by the appropriate power of a, the

equations of motion for χ1 and χ2 can be brought into the

form χ̇i = −1; if one allows for a negative lapse χ̇i = 1
would also be possible. Hence, in such a gauge either χ1 or

χ2 are identified with (minus) the time coordinate [5, 18].

We could apply any canonical transformation upon these

variables, in particular point transformations from constants
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to functions of themselves (inducing time conjugates propor-

tional to the original one, the proportionality factor being a

function of the constants). In particular it will be convenient

to introduce the canonically transformed pair

φ =
3

Λ
; Tφ = −3

χ2

φ2
(7)

instead of Λ and χ2.

Evidently, variation of Eq. (4) with respect to N leads to a

Hamiltonian constraint

− (b2 + k) +
m

a2
+

Λ

3
a2 = 0 (8)

which is equivalent to the Friedmann equation. We will think

of b as a “coordinate” and of a2 as a “momentum” variable,

and introduce the shorthand V (b) ≡ b2 + k viewing the b de-

pendence in Eq. (8) as a potential, whereas the a2-dependent

terms play the role of kinetic terms.

If we use the variables (7) from now on, we can give the

two solutions to the constraint in terms of a2 as

a2± =
φ

2

(

V (b)±
√

V (b)2 − 4m/φ
)

(9)

which can be seen as two constraints, linear in a2, which taken

together are equivalent to the original (8) which is quadratic

in a2. We could write this alternatively as

h±(b)a
2
± − φ :=

2a2±

V (b)±
√

V (b)2 − 4m/φ
− φ = 0 (10)

in terms of the “linearizing” conserved quantity φ, as sug-

gested in [5, 6]. The negative sign solution in Eq. (9) corre-

sponds to a regime in which radiation dominates (φm ≫ a4)

whereas the positive sign corresponds to Λ domination, as one

can see by checking which solution survives in the m → 0 or

Λ → 0 (φ→ ∞) limit.

The equations of motion arising from Eq. (8) can be solved

numerically1, which shows explicitly how the classical solu-

tions transition from a radiation-dominated to a Λ-dominated

branch of Eq. (9). We plot some examples (one for k = 0 and

one for k = 1) in Fig. 1. Notice that the point of handover

between the two branches (which is when radiation and dark

energy have equal energy densities, φm = a4) corresponds to

a “bounce” in b, where ḃ = 0. This bounce of course hap-

pens at a time where the Universe is overall still expanding. It

happens when V (b) = 2
√

m/φ, or equivalently when

b2 = b20 := 2

√

m

φ
− k . (11)

1 Analytical solutions can be given in conformal time in terms of Jacobi

elliptic functions [19].
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FIG. 1. Cosmological solutions with initial data (set at t = 0) a = 1,

b = 2, and m = 1.2, (top: k = 0, Λ = 8.4, bottom: k = 1, Λ =
11.4). These follow the radiation-dominated (orange dotted) branch

at small a2 but the Λ-dominated (green dashed) branch at large a2.

The time coordinate is defined by setting N = 1/a.

It is important to realize that a linearized form of the con-

straints based on Eq. (9) leads to the same dynamical equa-

tions as the ones arising from Eq. (6): for the Hamiltonian

H± =
3Vc
8πG

(

a2 − φ

2

(

V (b)±
√

V (b)2 − 4m/φ
)

)

(12)

we obtain

db

dt
= 1 ,

d(a2)

dt
= φb

(

1± V (b)
√

V (b)2 − 4m/φ

)

. (13)

This form of the dynamics corresponds to a gauge in which b
plays the role of time and we are expressing the solution for

a2 in “relational” form a2(b). The second equation in Eq. (13)

can be obtained from Hamilton’s equations for Eq. (6) by us-

ing
d(a2)
db ≡ d(a2)

dt /db
dt and substituting in one of the solutions

for a2(b) given by Eq. (9). Of course this way of defining

things can only ever reproduce one branch of the dynamics

corresponding to one of the two possible sign choices; the

equations of motion break down at the turning point φm = a4,

where one should flip from H+ to H− or vice versa and where

both the parametrization a2(b) and the gauge choice ḃ = 1 in

Eq. (13) fail. In this sense, the ambiguities in passing from

Eq. (6) to the linearized form (9) are related to the failure of b
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to be a good global clock for this system, a situation frequently

discussed in the literature on constrained systems [20].

III. QUANTUM THEORY

Minisuperspace quantization follows from promoting the

first Poisson bracket in (5) to

[

b̂, â2
]

= i
l2P
3Vc

, (14)

where lP =
√
8πGN~ is the reduced Planck length. Given

our focus on a bounce in connection space, we choose the

representation diagonalizing b, so that

â2 = −i
l2P
3Vc

∂

∂b
=: −ih

∂

∂b
(15)

where we are introducing a shorthand for the “effective Planck

parameter” h as in [21].

By choosing this representation we are making a very

non-innocuous decision, leading to minimal quantum theories

which are not dual to the most obvious ones based on the met-

ric representation. When implementing the Hamiltonian con-

straint, in the metric representation all matter contents (subject

to a given theory of gravity) share the same gravity-fixed ki-

netic term, with the different equations of state w reflected in

different powers of a in the effective potential, U(a), as is well

known (e.g., [22]). In contrast, in the connection representa-

tion all matter fillings share the same gravity-fixed effective

potential V (b) = b2 + k introduced below Eq. (8), with dif-

ferent matter components appearing as different kinetic terms,

induced by their different powers of a2 → −ih∂/∂b.
As a result the connection representation leads to further

ambiguities quantizing these theories, besides the usual factor

ordering ambiguities. In addition to these, we have an ambi-

guity in the order of the quantum equation (with a non-trivial

interaction between the two issues). In the specific model we

are studying here, we already discussed this issue for the clas-

sical theory above. We can work with a single Hamiltonian

constraint (8) which is quadratic in a2,

a4

φ
− V (b)a2 +m = 0 , (16)

with the middle term providing ordering problems; or we can

write Eq. (16) as (a2 − a2+)(a
2 − a2−) = 0 with a2± given

in Eq. (9), and quantize a Hamiltonian constraint written as a

two-branch condition

â2 − φ

2

(

V (b)±
√

V (b)2 − 4m/φ
)

= 0. (17)

The two branches then naturally link with the mono-fluid pre-

scriptions in [5, 6] when Λ or radiation dominate (as we will

see in detail later). For more complicated cosmological mod-

els in which multiple components with different powers of

a2 are present the situation can clearly become more com-

plicated, with additional ambiguities in how to impose the

Hamiltonian constraint. Notice also that an analogous lin-

earization would have been possible in the metric represen-

tation, by writing Eq. (16) as (b − b+)(b − b−) = 0 in terms

of the two solutions for b(a2). We see no reason to expect that

the resulting theories obtained by applying this procedure to

either b or a2 would be related by Fourier transform.

We therefore have in hand two distinct quantum theories

based on applying Eq. (15) to either Eq. (16), leading to

[

(â2)2

φ
− V (b)â2 +m

]

ψ = 0 , (18)

or to Eq. (17), leading to

[

h±(b)â
2 − φ

]

ψ = 0 (19)

with h±(b) defined in Eq. (10). One results in a second order

formulation; the other in a two-branch first order formulation.

These theories are different and there is no reason why one

(with any ordering) should be equivalent to the other. Indeed,

they are not. Let us define operators

D± = â2 − a2±(b;m,φ) (20)

where we work (for now) in a representation in which m and

φ act as multiplication operators. These operators clearly do

not commute:

[D+, D−] 6= 0 . (21)

The second order formulation, based on the constraint (16),

has an equation of the form

: D+D− : ψ = 0 (22)

where the : denote some conventional “normal ordering”, for

example keeping the b to the left of the a2. The first order

formulation defined by Eq. (19) leads to a pair of equations

D+ψ = 0 ∨D−ψ = 0 (23)

(note that an ordering prescription is implied here). In keeping

with the philosophy of quantum mechanics, in the presence of

a situation which classically corresponds to an “OR” conjunc-

tion, we superpose the separate results upon quantization, so

that the space of solutions is still a vector space as in standard

quantum mechanics. A generic element of this solution space

will satisfy neither D+ψ = 0 nor D−ψ = 0.

To understand the difference between the two types of

theory, we can compare with a simple quantum mechanics

Hamiltonian H = p2/2m + V (x). Quantizing the relation

E = H(p, x) leads to a Schrödinger equation that is sec-

ond order in x derivatives (and which, depending on the form

of V (x), may not be solvable analytically). Alternatively,

we could replace this fixed energy relation by two conditions
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p ∓
√

2m(E − V (x)) = 0 linear in p; these would be anal-

ogous to the conditions D± = 0 appearing in our quantum

cosmology model. In the quantum mechanics case, quantiz-

ing the linear relations and taking superpositions of their re-

spective solutions results in a set of plane wave solutions, dif-

ferent to those of the second order theory. The interpretation

of these plane wave solutions would be as the lowest order

WKB/eikonal approximation to the theory given by the initial

Schrödinger equation. Hence, while these approaches agree

in producing the same classical dynamics (away from turn-

ing points where p can change sign), the two quantum theo-

ries give different predictions in terms of ~-dependent correc-

tions to the classical limit. In quantum cosmology, we do not

know which type of quantization is “correct” and we saw at

the end of Section II that the classical cosmological dynamics

can be equally described by the linear Hamiltonian (12) or by

the original (6). In the quantum theory we can then follow

either a first order or a second order approach as separate the-

ories, with the difference between them becoming relevant at

next-to-lowest order in ~. Again, we stress that this ambiguity

goes beyond the issue of ordering ambiguities: it is about dif-

ferent classical representations of the same dynamics used as

starting points for quantization. The strategy proposed here is

a new type of quantization procedure compared to most of the

existing quantum cosmology literature.

Indeed no ordering prescription for the second order for-

mulation would lead to the total space of solutions of the

first order formulation. By choosing : D+D− : = D+D−,

for example, the solutions of D−ψ = 0 would be present

in the second order formulation but not those of D+ψ = 0
(and vice versa). One might prefer a symmetric ordering

: D+D− : = (D+D− + D−D+)/2 but the resulting equa-

tion would not be solved by solutions of either D−ψ = 0 or

D+ψ = 0. If we start from a second order formulation in

which we keep all b to the left,
(

(â2)2

φ
− V (b)â2 +m

)

ψ = 0 , (24)

we do not exactly recover any of the solutions of the first or-

der formulation, and even asymptotically (in regions in which

either m or Λ dominates) we can only recover the D−ψ = 0
solutions (and the radiation solutions in [5]). Indeed, by let-

ting φ→ ∞, Eq. 24 reduces to

(

−V (b)â2 +m
)

ψ = 0 (25)

which asymptotically is the same as D−ψ = 0 (since a2− ≈
m/V (b) when V (b)2 ≫ 4m/φ). However, for m = 0 we get

(

â4

φ
− V (b)â2

)

ψ = 0 (26)

with V (b) to the left of â2. Thus, we cannot factor out â2 on

the left, to obtain
(

1

V (b)
â2 − φ

)

ψ = 0 (27)

and so force some solutions to asymptotically match those of

D+ψ = 0 and the pure Λ solutions of [5]. The solutions

of (26) instead match those studied in [23]. They are not

the Chern–Simons state but the integral of the Chern–Simons

state.

From the second order perspective, in order to reproduce

the solutions of the first order theory one would need to put the

b to the left or right depending on the branch we look at. The

ordering in one formulation can therefore never be matched

by the ordering in the other 2.

IV. SOLUTIONS IN THE SECOND ORDER

FORUMLATION

In our model, as in the example of a general potential in the

usual Schrödinger equation, the second order theory is more

difficult to solve. If we add a possible operator ordering cor-

rection proportional to [b̂2, â2] = 2ihb̂ to Eq. (24), we obtain

the more general form

(

(â2)2

φ
+ iξhb− V (b)â2 +m

)

ψ = 0 (28)

where ξ is a free parameter (which could be fixed by self-

consistency arguments; for instance, requiring the Hamilto-

nian constraint to be self-adjoint with respect to a standard L2

inner product would imply ξ = 1).

We can eliminate the first derivative in Eq. (28) by making

the ansatz

ψ(b,m, φ) = e
i

2hφ
(

b
3

3 +bk
)

χ(b,m, φ) (29)

so that χ now has to satisfy

(

−h2

φ

∂2

∂b2
+

(

m+ ih(ξ − 1)b− φ

4
V (b)2

))

χ = 0 (30)

which we recognize (with ξ = 1) as a standard Schrödinger

equation with a (negative) quartic potential. One can write

down the general solution to this problem in terms of tri-

confluent Heun functions (see, e.g., [24]),

χ = c1(m,φ)e
− i

2hφ
(

b
3

3 +bk
)

HT

(

mφ

h2
;−i

φ

h
,−i

kφ

h
, 0,−i

φ

h
; b

)

+c2(m,φ)e
i

2hφ
(

b
3

3 +bk
)

HT

(

mφ

h2
; i
φ

h
, i
kφ

h
, 0, i

φ

h
; b

)

where the tri-confluent Heun functions HT are normalized by

defining them to be solutions to the tri-confluent Heun differ-

ential equation subject to the boundary conditions f(0) = 1

2 Apart from the forceful two-branched ordering : D+D− :≡ D+D− ∨

D−D+, of course.
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and f ′(0) = 0. These are defined in terms of a power series

around b = 0, so that we get

ψ = c1+ c2+i c2
kφ

h
b+

mφ(c1 + c2)− k2φ2c2
2h2

b2+O(b3) .

(31)

These solutions could be useful for setting “no-bounce”

boundary conditions at b = 0 (now referring to a bounce in the

scale factor), in the classically forbidden region. An immedi-

ate issue however is that tri-confluent Heun functions defined

in this way diverge badly at large b, and are hence not very

useful for studying the classically allowed region. While they

can be written down for arbitrary ξ, there seems to be no par-

ticular value which allows for more elementary expressions or

analytical functions that are well-defined for all b.

The divergences seen in these “analytical” solutions are

rooted in the definition of these functions as a power series

around b = 0; full numerical solutions show no such diver-

gence but decay at large b. This is reassuring, but one might

prefer retaining analytical expressions that can at least be valid

at large b. In this limit, we can obtain an approximate solution

by setting m = 0, ξ = 1, and V (b) = b4 in Eq. (30); the

resulting differential equation has the general solution

χ =
√
b

(

c3(m,φ)J− 1
6

(

φb3

6h

)

+ c4(m,φ)J 1
6

(

φb3

6h

))

(32)

where Jν(z) are Bessel functions. At large b, these Bessel

functions have the asymptotic form

χ ∼ 2

b

√

3h

πφ

(

c3(m,φ) sin

(

φb3

6h
+
π

3

)

+

c4(m,φ) sin

(

φb3

6h
+
π

6

))

. (33)

These asymptotic solutions are plane waves in b3 modulated

by a prefactor decaying as 1/b, so they are certainly well be-

haved at large b. These large b solutions can be matched to the

tri-confluent Heun functions at smaller values of b; see Fig. 2

for an example. The result of this matching agrees perfectly

with a numerically constructed solution. Of course, the coeffi-

cients c3 and c4 in Eq. (32) which correspond to certain initial

conditions are then also only known numerically. We have

no good analytical control over these solutions where they are

most interesting, in the region around b = b0.

If we interpret |ψ|2 as a probability density, we see that this

falls off as 1/b2 at large b and so most of the probability would

in fact be concentrated near the “bounce” b = b0. One might

be tempted to relate this property to the coincidence problem

of cosmology, since it would suggest that an observer would

be likely to find themselves not too far from equality between

radiation and Λ, contrary to the naive expectation in classi-

cal cosmology that Λ should dominate completely. Below we

will compare this expectation with a more detailed calculation

(and using a different measure) in the first order theory.

1 2 3 4 5 6 7

b

-3

-2

-1

1

2

3

ψ(b)

2 4 6 8

b

-0.5

0.5

1.0

1.5

2.0

ψ(b)

FIG. 2. Solutions with m = 1.2, k = 0, Λ = 8.4 and in units h = 1
(real part in blue, imaginary part in orange). The top plot shows a so-

lution given in terms of a tri-confluent Heun function which diverges

at b ≈ 6.8. At the bottom we have matched this to an approxi-

mate solution (32) by matching the wave function and its derivative

at b = 6, which leads to a solution defined at arbitrarily large b.
The classically allowed region is b > b0 ≈ 1.91. This solution

agrees with a numerical solution constructed from the same initial

data ψ(0) = 1, ψ′(0) = 0 (black, dashed and dotted).

We can contrast these attempts at obtaining exact solutions

to the second order theory with what would be the traditional

approach in quantum cosmology, which is to resort to approx-

imate semiclassical solutions. After all, the setup of quan-

tum cosmology is anyway at best a semiclassical approxima-

tion to quantum gravity. If we start from a WKB-type ansatz

ψ(b,m, φ) = A(b,m, φ)eiP (b,m,φ)/h, truncation of Eq. (28)

to lowest order in h implies that

1

φ

(

∂P

∂b

)2

− V (b)
∂P

∂b
+m = 0 , (34)

the Hamilton–Jacobi equation corresponding to Eq. (16). Its

solutions are ∂P/∂b = a2±(b;m,φ) with a2± as in Eq. (9),

a2± =
φ

2

(

V (b)±
√

V (b)2 − 4m/φ
)

, (35)

and the general lowest-order WKB solution to the second or-

der theory is

ψ = c+(m,φ)e
i
h

∫

b db′ a2
+ + c−(m,φ)e

i
h

∫

b db′ a2
− . (36)

On the other hand, Eq. (36) is already the exact general solu-

tion of the first order theory we defined by Eq. (23). These so-

lutions are pure plane waves in the classically allowed region
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|V (b)| ≥ 2
√

m/φ but have a growing or decaying exponen-

tial part in the classically forbidden region |V (b)| < 2
√

m/φ,

as expected. In the next section we will discard the expo-

nentially growing solution corresponding to a2−, but since this

forbidden region is of finite extent there are no obvious nor-

malizability arguments that mean it has to be excluded.

V. DETAILED SOLUTION IN THE FIRST ORDER

FORMULATION

Needless to say, the first order formulation is easier to

solve analytically and take further. In these theories (e.g., [6])

the general solution is a superposition for different values of

“constants” α of “spatial” monochromatic functions ψs(b;α)
(solving a Wheeler–DeWitt equation for fixed values of the α)

multiplied by the appropriate time evolution factor combining

α and their conjugates T . The total integral takes the form

ψ(b,T ) =

∫

dαA(α) exp

[

− i

h
α · T

]

ψs(b;α) . (37)

The ψs are conventionally normalized so that in the classically

allowed region

|ψs|2 =
1

(2πh)D
(38)

where D is the dimensionality of the deconstantized space,

i.e., the number of conserved quantities α. The model studied

in this paper corresponds to (see Eq. (4), (7))

α =

(

φ ≡ 3

Λ
,m

)

, T = (Tφ, Tm = χ1) (39)

with D = 2.

A. Monochromatic solutions

In our model, the ψs(b;α) are defined to be the solutions to

the two branches of Eq. (19), given by

ψs±(b;φ,m) = N exp

[

i

h
φX±(b;φ,m)

]

(40)

with (see also Eq. (36))

X±(b;φ,m) =

∫ b

b0

db̃
1

2

(

V (b̃)±
√

V (b̃)2 − 4m/φ

)

,

(41)

where the integration limit is chosen to be b = b0, defined

in Eq. (11) as the value of b at the bounce. We plot these

functions, with this choice of limits and for some particular

choices of the parameters, in Fig. 3.

We see that for b2 ≫ b20 the +/− branches have

X+(b;φ,m) ≈ Xφ =
b3

3
+ kb , (42)

X−(b;φ,m) ≈ m

φ
Xr =

m

φ

∫ b db̃

b̃2 + k
, (43)

Λ-domination Rad-domination

0.050 0.055 0.060 0.065 0.070 0.075
b

-1.0

-0.5

0.5

1.0

Im[ψ(b)]

FIG. 3. Imaginary part of the wave functions ψs± (Lambda branch +
in blue, radiation branch − in orange), with h = 1,m = 1, φ = 106,

defined with the lower limit b0 (here and in the following plots b0 ≈
0.0447). Notice how the oscillation frequency increases/decreases

with b for the Λ/radiation dominated branches.

where Xφ and Xr would be the corresponding functions ap-

pearing in the exponent for a model of pure Λ (characterized

by the quantity φ) and a model of pure radiation. Hence this

leads to the correct limits far away from the bounce [6],

ψs+(b;φ,m) ≈ N exp

[

i

h
φXφ(b)

]

, (44)

ψs−(b;φ,m) ≈ N exp

[

i

h
mXr(b)

]

, (45)

up to a phase related to the limits of integration. This phase

is irrelevant for the + wave, since Xφ diverges with b, so that

the b0 contribution quickly becomes negligible. It does affect

the − wave, if we want to match with Eq. (45) asymptotically.

Let us assume k = 0 3. Then, X−(b) ∼ − 1
b for large b, so

in order to have agreement between Eq. (40) and Eq. (45) we

should subtract the extra phase obtained by using b0 as the

lower limit of the integral, which we denote by

χ :=
1

h
φX−(∞) . (46)

We could also take the lower limit of the integral to be ∞ or

absorb the phase (46) into the − amplitude defined in Eq. (48),

A− → A−e
iχ . (47)

We have plotted the various options for defining ψs− in Fig. 4.

The general solution for b > b0 is the superposition

ψs(b) = A+ψs+(b) +A−ψs−(b) , (48)

3 The other cases are more complicated, as we could go curvature dominated

before Λ domination.
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b
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Im[ψ(b)]

FIG. 4. Imaginary part of the wave functions ψs− with h = 1, m =
1, φ = 106, defined with the lower limit of integration b0 (orange)

and with lower limit infinity (green), compared with the asymptotic

radiation dominated wave function (blue).

0.036 0.038 0.040 0.042 0.044
b

-0.6

-0.4

-0.2

Im[ψ(b)]

FIG. 5. Imaginary part of the evanescent wave function ψs− valid

for b < b0 with h = 1, m = 1, φ = 106, defined with the lower

limit b0. (Strictly speaking the integrals used are only valid for b > 0
but we ignore the region b < 0.)

where we dropped the φ and m labels to lighten up the no-

tation. In the b < b0 region we have the usual evanescent

wave4. The appropriate solution (i.e., the one that is exponen-

tially suppressed, rather than blowing up) is

ψ(b) = Bψs−(b)

= B exp

[

i

h
φX−(b;φ,m)

]

(49)

= B exp

[

φ

2h

∫ b

b0

db̃

(

iV (b̃) +

√

4m/φ− V (b̃)2
)

]

.

Note that the limits of integration then ensure a negative sign

for the real exponential. In addition to this there is also an

oscillatory factor. This solution is plotted in Fig. 5.

4 Here we shall assume that the amplitude for tunneling into the contracting

region b < −b0 < 0 is negligible.

Our problem is now similar to a quantum reflection prob-

lem, but with significant novelties because the medium is

highly dispersive. Usually all we have to do is match the wave

functions and their derivatives at the reflection point b0 to get a

fully defined wave function. Given that X+(b0) = X−(b0) =
0, imposing continuity at b = b0 requires

A+ +A− = B . (50)

However, imposing that the first derivative of ψs is continuous

at b = b0 produces the same condition, given that X ′
±(b0) =

V (b0)/2. Second derivatives diverge as b → b0, as can be

understood from the fact that this is a classical turning point

and the monochromatic solutions are eiP (b,m,φ)/h where P is

the classical Hamilton–Jacobi function. We will require as a

matching condition that these divergences have the same form

as we approach b0 from above or below. This leads to

A+ −A− = iB (51)

from a term that diverges as b→ b0. Hence

A±

B
=

1± i

2
. (52)

For wave packets, the same conditions arise from imposing

continuity of the wave function and requiring that divergent

first derivatives match, as we shall see below.

Specifically, in order to match the radiation dominated

phase for the partial waves we should choose

A− = e−iχ ,

B =
√
2ei(−χ+π/4) ,

A+ = ei(−χ+π/2) . (53)

The resulting ψs is plotted in Fig. 6. Suppressing for the mo-

ment the α label, it has the form

ψs(b) = [A+ψs+(b) +A−ψs−(b)]Θ(b− b0) +

+ Bψs−(b)Θ(b0 − b) (54)

with the coefficients given by Eq. (53).

B. Wave packets

To construct coherent/squeezed wave packets we must now

evaluate Eq. (37) with a factorizable state,

A(α) =
∏

i

Ai(αi) =
∏

i

exp
[

− (αi−αi0)
2

4σ2
αi

]

(2πσ2
αi)

1/4
. (55)

Given Eq. (54), this results in

ψ(b,T ) = [A+ψ+(b,T ) +A−ψ−(b,T )]Θ(b− b0) +

+ Bψ−(b,T )Θ(b0 − b) (56)
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FIG. 6. Imaginary part of the full wave function ψs normalized so as

to match the asymptotic radiation dominated expression, with param-

eters h = 1, m = 1, φ = 106. The incident (orange) and reflected

(blue) waves, when superposed, match the evanescent wave (green)

up to second derivatives in this plot.

with

ψ±(b,T ) =

∫

dαA(α) exp

[

− i

h
α · T

]

ψs±(b;α) . (57)

These are the superposition of three wave packets: an incident

one, coming from the radiation epoch, a reflected one, going

into the Λ epoch, and an evanescent packet in the classically

forbidden region significant around the “time” of the bounce.

We can now follow a saddle point approximation, as in

Ref. [6], appropriate for interpreting minisuperspace as a dis-

persive medium, where the concept of group speed of a packet

is crucial. Defining the spatial phases P± from

ψs±(b,α) = N exp

[

i

h
P±(b,α)

]

(58)

so that

P± = φX± = φ

∫ b

b0

db̃
1

2

(

V (b̃)±
√

V (b̃)2 − 4
m

φ

)

,

(59)

we can approximate:

P±(b,α) ≈ P±(b;α0) +
∑

i

∂P±

∂αi

∣

∣

∣

∣

α0

(αi − αi0) . (60)

These P± again correspond to the two solutions for the clas-

sical Hamilton–Jacobi function of the model, as discussed be-

fore Eq. (36). Then, for any factorizable amplitude, the wave

functions (57) simplify to

ψ±(b,T ) ≈ e
i

h
(P±(b;α0)−α0·T )

∏

i

ψ±i(b, Ti) (61)

with

ψ±i(b, Ti) =

∫

dαi√
2πh

Ai(αi) e
− i

h
(αi−αi0)

(

Ti−
∂P±

∂αi

∣

∣

α0

)

.

(62)

The first factor is the monochromatic wave centered on α0

derived in Section V A, with the time phases α0 · T included.

The other factors, ψ±i(b, Ti), describe envelopes moving with

equations of motion

Ti =
∂P±(b,α)

∂αi

∣

∣

∣

∣

α0

. (63)

In the classically allowed region, the motion of the envelopes

(and so of their peaks) reproduces the classical equations of

motion for both branches, throughout the whole trajectory, as

proved in [6]. The packets move along outgoing waves whose

group speed can be set to one using the linearizing variable

Xeff
±i(b) =

∂P±(b,α)

∂αi

∣

∣

∣

∣

α0

, (64)

so that Ti = Xeff
±i .

Inserting (55) in (62) we find that the envelopes in our case

are the Gaussians

ψ±i(b, Ti) =
1

(2πσ2
Ti)

1/4
exp

[

− (Xeff
±i(b)− Ti)

2

4σ2
Ti

]

, (65)

with σTi
= h/(2σαi) saturating the Heisenberg inequality as

expected for squeezed/coherent states.

It is interesting to see that the condition (51) obtained in

Section V A from matching divergences in the second deriva-

tive of the plane waves can be derived from the first derivative

of the wave packets. Recall that

P±(b0,α) = 0 ,

P ′
±(b0,α) = φ

V (b0)

2
=
√

mφ , (66)

to which we should add

Xeff
±i(b0) = 0 , (67)

lim
b→b0

(

√

V (b)2 − 4m/φXeff′

±i (b)
)

= ∓φ∂(m/φ)
∂αi

.

Leaving the A± and B undefined in Eq. (56) we then find that

continuity of the wave packet at b = b0 requires

A+ +A− = B , (68)

i.e., Eq. (50), whereas the divergent terms in the first derivative

at b0 agree on both sides if

A+ −A− = iB , (69)

i.e., condition (51).

C. Ringing of the wave function at the bounce

As already studied in detail in [6], the peaks of these wave

packets follow the classical limit throughout the whole trajec-

tory, including the bounce, assuming they remain peaked and
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FIG. 7. Snapshots of the wave function in the classically allowed

region b ≥ b0 for a wave packet with σTm = 4 at times Tm =
8, 0,−8. Note that on-shell Tm = −(η − η0), where η (and η0) is

conformal time (and conformal time at the bounce). The envelope

picks the right portion of the ψs, + or −, away from the bounce.

Close to the bounce, however, the + and − waves interfere.

do not interfere. They are also bona fide WKB states asymp-

totically, in the sense that they have a peaked broad envelope

multiplying a fast oscillating phase (the minority clock in gen-

eral will not produce a coherent packet, but we leave that mat-

ter out of the discussion here). The problem is that none of

this applies at the bounce, where the incident and the reflected

waves interfere, leading to “ringing” in the probability. This

is an example of how the superposition of two semiclassical

states is itself not a semiclassical state.

To illustrate this point at its simplest, let us set k = 0 and

0.05 0.06 0.07 0.08 0.09
b

0.05

0.10

0.15

0.20

|ψ(b)|2

T=12 T=8 T=4 T=0

FIG. 8. A plot of |ψ|2 for the same situation as in Fig.7 at Tm =
12, 8, 4, 0. (For the particular case of Tm – but not for a generic time

– this function is symmetric, so for clarity we have refrained from

plotting the equivalent Tm < 0.)

focus on the factor with the radiation time Tm, so that

Xeff
±m = ∓

∫ b

b0

db̃
√

b̃4 − b40

+ const. (70)

where α0 = (φ0,m0), and we used that for k = 0, Eq. 11

leads to b40 = 4m0/φ0. A term constant in b, resulting from

the dependence onm in the limits of integration in (59), can be

neglected. We will evaluate our wavefunctions numerically,

but we note that in this case the integral can be expressed in

terms of elliptic integrals of the first kind F ,

Xeff
±m = ∓ i

b
F (arcsin(b/b0);−1) + const. (71)

with another constant (b-independent) piece (which includes

the constant imaginary part of the F function, ensuring that

the resulting Xeff
±m is real).

For illustration purposes, we then select a wave packet with

σTm = 4 and follow it around the bounce at Tm = 0. Note

that on-shell Tm = −(η − η0), where η is conformal time

(shifted by η0 so that Tm = 0 at the bounce), so the conven-

tional arrow of Tm is reversed with respect to that of Tφ or the

thermodynamical arrow (see discussion in [6]). In Fig.7 we

plot the wave function away from the bounce on either side,

and at the bounce. As we see, well away from the bounce,

the envelope picks the right portion of the ψs as depicted in

Fig. 6, + or − depending on whether T is positive or nega-

tive. Around the bounce T = 0, however, the + and − waves

clearly interfere (see middle plot).

As in standard reflections [2], this interference could have

implications for the probability, in the form of “ringing”. We

illustrate this point with the traditional |ψ|2, which contains

the interference cross-term (but which, we stress, is not a se-

rious contender for a unitary definition of probability, as we
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will see in the next Section). If we were to compute |ψ|2 for

the ψ+ or ψ− in Fig. 6 we would obtain a constant, in spite

of the wave function oscillations. Likewise, if we dress ψ+ or

ψ− with an envelope, these internal beatings will not appear

in the separate |ψ|2. Close to the bounce, however, the inter-

ference between the + and − wave will appear as ringing in

|ψ|2 (see Fig. 8) or any other measure displaying interference.

A similar construction could be made with the packets locked

on to the time Tφ. Thus one clock hands over to the other.

We close this Section with two words of caution. First, this

ringing is probably as observable as the one associated with

the mesoscopic stationary waves described in [4]. Indeed the

two are formally related. The Chern–Simons wave function

described in [4] translates (by Fourier transform [25]) into a

Hartle–Hawking stationary wave function [26], which is noth-

ing but the superposition of two Vilenkin traveling waves [27]

moving in opposite directions. The reflection studied here is

precisely one such superposition in a different context and in

b space. The scale of the effect, however, is the same.

Secondly, we need to make sure that the probability is in-

deed associated with a function (like |ψ|2) containing an inter-

ference cross-term, and work out the correct integration mea-

sure to obtain a unitary theory. At least with one definition of

inner product, in the semiclassical approximation the ringing

disappears, as we now show.

VI. INNER PRODUCT AND PROBABILITY MEASURE

Usually, the inner product and probability measure are

inferred from the requirement of unitarity, i.e., time-

independence of the inner product, which in turn follows from

a conserved current (see, e.g., [22, 27]). As explained in

Ref. [6], in mono-fluid situations this leaves us with three

equivalent definitions, which we first review.

A. Monofluids

For a single fluid with equation of state parameter w, the

first-order version of the Hamiltonian constraint leads to a dy-

namical equation that can be written as

(

(b2 + k)
2

1+3w
∂

∂b
+

∂

∂T

)

ψ =:

(

∂

∂X
+

∂

∂T

)

ψ = 0

(72)

with T dependent on w and

X =

∫

db

(b2 + k)
2

1+3w

. (73)

From such an equation we can infer a current jX = jT = |ψ|2
satisfying the conservation law

∂Xj
X + ∂T j

T = 0 . (74)

The inner product can then be defined as

〈ψ1|ψ2〉 =
∫

dXψ⋆
1(b(X), T )ψ2(b(X), T ) (75)

with unitarity enforced by current conservation:

∂

∂T
〈ψ1|ψ2〉 = −

∫

dX
∂

∂X
(ψ⋆

1(b, T )ψ2(b, T )) = 0 . (76)

For this argument to be valid without the introduction of

boundary conditions as in, e.g., [18], here and in the follow-

ing we must assume that X(b) takes values over the whole

real line and is monotonic. This is true for many cases includ-

ing the ones studied here, namely radiation and Λ with k = 0
(and also in the case of dust with k = 0, studied in [15]).

We have then established that a useful integration measure for

mono-fluids is

dµ(b) = dX =
db

∣

∣

∣
(b2 + k)

2
1+3w

∣

∣

∣

. (77)

The normalizability condition |〈ψ|ψ〉| = 1 supports using this

measure to identify the probability. Given the particular form

of the general solution for mono-fluids,

ψ(b, T ) =

∫

dα√
2πh

A(α) exp

[

i

h
α(X(b)− T )

]

, (78)

we can write (75) in the equivalent forms

〈ψ1|ψ2〉 =
∫

dT ψ⋆
1(b, T )ψ2(b, T ) , (79)

〈ψ1|ψ2〉 =
∫

dα A⋆
1(α)A2(α) . (80)

B. Multifluids with no bounce

Unfortunately, not all of this construction generalizes to the

transition regions of multi-fluids, where an “X” variable can

be defined, but in general depends on α as well as b (even

putting aside that there may be multi-branch expressions if

there is a bounce, a matter which we ignore at first).

We may propose that the inner product in a general multi-

fluid setting be defined by the generalization of (80),

〈ψ1|ψ2〉 =
∫

dα A⋆
1(α)A2(α) (81)

which, by construction, is time-independent, and so unitarity

is preserved. However, since ψs in (37) is not a plane wave

in some X(b), its expressions in terms of integrals in b and T

will not generally take the forms (75) and (79). For example

〈ψ1|ψ2〉 =
∫

dT dT ′ ψ⋆
1(b,T )ψ2(b,T

′)K(b,T − T
′)

with

K(b,T − T
′) =

∫

dα
e−

i
h
α·(T−T

′)

(2πh)2D|ψs(b,α)|2
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so we recover Eq. (79) iff ψs is a pure phase5. Even if ψs

is a pure phase, we would not be able to recover a form like

Eq. (75) which would requireψs to be a plane wave in someX
only dependent on b. In general the kernelK(b−b′,T ) for the

X inner product will not be diagonal, inducing an interesting

new quantum effect6.

C. The semiclassical measure

With the proviso that this might erase important quantum

information, matters simplify within the wave packet approx-

imation (already used in Sec. V C). Then, the calculation of

the measure in terms of b is straightforward. We call the mea-

sure thus inferred the semiclassical measure, since it erases

fully quantum effects, as we shall see.

Still ignoring the bounce (and so the double branch) setup,

we can regard minisuperspace for multi-fluids as a dispersive

medium with the single dispersion relation [6]

α · T − P (b,α) = 0 . (82)

If the amplitude A(α) is factorizable and sufficiently peaked

around α0 we can Taylor expand P around α0 to find

ψ ≈ e
i
h
(P (b;α0)−α0·T )

∏

i

ψi(b, Ti) (83)

with (cf. Eq. (62))

ψi(b, Ti) =

∫

dαi A(αi)
e−

i
h
(αi−αi0)(Ti−Xeff

i
)

√
2πh

, (84)

Xeff
i =

∂P

∂αi

∣

∣

∣

αi0

. (85)

Then, for the space of all the functions with an A(α) factor-

ized as A(α) =
∏D

i=1 Ai(αi) and peaked around the same

α0, the definition (81) simplifies to

〈ψ1|ψ2〉 =
D
∏

i=1

∫

dαi A⋆
i1(αi)Ai2(αi) (86)

and is equivalent to7

〈ψ1|ψ2〉 =
D
∏

i=1

∫

dXeff
i ψ⋆

i1(b, Ti)ψi2(b, Ti) (87)

5 As we saw in Eq. (56), in the case of a bounce ψs must be chosen to be

a superposition of the solutions ψs+ and ψs− in the classically allowed

region, so this condition is not met.
6 This would in principle interact with “ringing” in a case where incident and

reflected waves interfere.
7 The amplitude functions in this space, we stress, are not necessarily Gaus-

sian and, if Gaussian, do not necessarily have to have the same variance, but

they must all peak around the same α0 for the argument to follow through.

with dXeff
i = (dXeff

i /db)db. Hence, in this approximation,

in the presence of multiple times the probability factorizes:

P(b,T ) =

D
∏

i=1

Pi(b, Ti) , (88)

and each factor is normalized with respect to the measure

dµi(b) = dXeff
i (89)

which we identify as the semiclassical probability measure.

This normalization implies that each Pi(b, Ti) can itself be

seen as a probability distribution for b at a particular value of

Ti, with unspecified values for the other times.

D. The case of a bounce

In our case D = 2, so the wave function is the prod-

uct of two independent factors, one for m one for φ (and

their respective clocks). The fact that there is a bounce in

b adds on an extra complication. Indeed, each factor is the

superposition of three terms: the incident (−) wave, the re-

flected (+) wave, and the evanescent wave. A crucial nov-

elty is that Xeff
i− ∈ (−∞, Xi0) and Xeff

i+ ∈ (Xi0,∞), where

Xi0 = Xi−(b0) = Xi+(b0). For example, Xi0 = 0 in the

example i = m used in the previous Section, cf. Eq. (70).

Therefore, when performing the manipulations leading to (87,

we find for the cross term:
∫

dαi e
i
αi

h
(Xeff

i+−Xeff′

i− ) = 0 (90)

except in the measure zero point b = b0, killing the cross

term. The requirement that Xeff
i covers the real line is satis-

fied, but with the joint domains of Xeff
i+ and Xeff

i− only, and

without cross terms. Therefore, for this inner product and in

this approximation,

〈ψ1|ψ2〉 =
D
∏

i=1

(

∫

dXeff
i+ψ

⋆
i+1(b, Ti)ψi+2(b, Ti)

+

∫

dXeff
i−ψ

⋆
i−1(b, Ti)ψi−2(b, Ti)

)

(91)

and the interference between incident and reflected waves dis-

appears. Moreover, the norm of a state only depends on the

wave function in the classically allowed region. Calling this

measure semiclassical therefore seems appropriate.

In conclusion, for b ≥ b0 the probability in terms of b has

the form

Pi(b;Ti) = |ψi+|2
∣

∣

∣

∣

∣

dXeff
i+

db

∣

∣

∣

∣

∣

+ |ψi−|2
∣

∣

∣

∣

∣

dXeff
i−

db

∣

∣

∣

∣

∣

. (92)

For our model with radiation and Λ and now assuming k = 0
for simplicity, we have (cf. Eq. (67)) for the measure factors:

dXeff
1±

db
=
b2

2
± b4 − 2m/φ

2
√

b4 − b40
,

dXeff
2±

db
=

∓1
√

b4 − b40
. (93)
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In this semiclassical approximation, one can define an ex-

plicitly unitary notion of time evolution, focusing on one

of the times Ti and therefore on only one of the factors in

(91). From the form of the inner product it is clear that a

self-adjoint “momentum” operator is given by −ih ∂
∂Xeff

i±

=

−ih
(

dXeff
i±

db

)−1
∂
∂b , where in the first definition we think of

Xeff
i± as a single variable going over the whole real line and in

the second expression the sign depends on whether the opera-

tor acts on ψi+ or ψi−.

Moreover, the waves ψi+ are constructed to satisfy

ih
∂

∂Ti
ψi± = −ih

∂

∂Xeff
i±

ψi± , (94)

see Eq. (62) and the discussion below. Hence they satisfy a

time evolution equation with a self-adjoint operator on the

right-hand side, which is all that is needed.

VII. TOWARDS PHENOMENOLOGY

One may rightly worry that our semiclassical inner prod-

uct and other approximations have removed too much of the

quantum behavior of the full theory. For any state the prob-

ability to be in the classically forbidden region would always

be exactly zero. The phenomenon of “ringing” is erased.

We need to go beyond the semiclassical measure and peaked

wave-packet approximation to see these phenomena. And yet,

even within these approximations we can infer some inter-

esting phenomenology, which probably will survive the tran-

sition to a more realistic model [15] involving pressure-less

matter (rather than radiation) and Λ. We also refer to [15] for

an investigation of effects revealed within the semiclassical

approximation closer to the bounce than considered here.

In Fig. 9 we have replotted Fig. 8 using the semiclassical

measure (92) and Gaussian packets (65). Hence, for the wave

function factor associated with m and Tm we have

P2(b;Tm) =
e
−

(Xeff
+2−Tm)2

2σ2
T2 + e

−
(Xeff

−2−Tm)2

2σ2
T2

√

2πσ2
T2

√

b4 − b40
(95)

without an interference term. At times well away from the

bounce, the measure factor goes like 1/b2, so for a sufficiently

peaked wave packet it factors out. However, for times near

the bounce the measure factor is significant. It induces a soft

divergence as b→ b0:

P2(b→ b0;Tm) =
exp

[

− T 2
m

2σ2
T2

]

√

2πσ2
T2b

3/2
0

√
b− b0

(96)

which becomes exponentially suppressed when |Tm| ≫ σT2

(for example in Fig. 9 this is hardly visible already for Tm =
16), but is otherwise significant. As we see in Fig. 9, the

measure factor therefore leads to a double peaked distribution,

0.05 0.06 0.07 0.08 0.09
b

20

40

60

80

100
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FIG. 9. The probability with the semiclassical measure, for the same

situation as in Fig.7, at the various times Tm = 16, 12, 10, 8, 0. We

have verified explicitly that this probability density, unlike the func-

tion plotted in Fig.8, always integrates to unity.

when the main peak (due to the Gaussian) is present (in this

picture at Tm = 10, 12, 16). The measure factor also shifts the

main peak of the distribution towards b0, since it now follows

Tm −Xeff
i± = ∓2b3σ2

Tm

b4 − b40
, (97)

valid for times when one of the waves dominates (incident

or reflected), the right hand side due fully to the measure ef-

fect. We recall [6] that the classical trajectory is reproduced

by Tm = Xeff
i± . At some critical time close to the bounce,

the “main” peak disappears altogether (see Tm = 8 in Fig. 9),

the distribution retaining only a peak at b = b0. This peak

becomes sharper and sharper as |Tm| → 0 (so the average

value of b will be eventually larger than the classical trajec-

tory, although the peak of the distribution will now be below

the classically expected value, and stuck at b0). A detailed

study of how all these effects interact in a more concrete set-

ting is discussed elsewhere [15], but all of this points to inter-

esting phenomenology near the b-bounce at b0. The strength

of the effects, and for how long they will be felt, depends on

σT for whichever clock is being used, which in turn depends

on the sharpness of its conjugate “constant”. The sharper the

progenitor constant, the larger the σT , and so the stronger the

effect around the b-bounce.

How this fits in with other constraints pertaining to the life

of the Universe well away from the b-bounce has to be taken

into consideration. See, e.g., [15] for a realistic model for

which an examination of these details is more meaningful. We

note that in real life it is the dominant clock for pressure-less

matter (rather than for radiation) that is relevant. This could

be the same as the dominant clock for radiation (for example,

if both are derived from a deconstantization of Newton’s G;

see [12, 28]) or not.
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VIII. CONCLUSIONS

In this paper we laid down the foundation work for studying

the quantum effects of the bounce in b which our Universe has

recently experienced. We investigated a toy model designed

to be simple whilst testing the main issues of a transition from

deceleration to acceleration: a model with only radiation and

Λ. The realistic case of a mixture of matter and Λ is studied

in [15]. Nonetheless we were able to unveil both promising

and disappointing results.

Analogies with quantum reflection and ringing were found,

but these will require going beyond the semiclassical approx-

imation. Specifically, the inner product issues presented in

Section VI were tantalizing in that they point to new quantum

effects, namely in the non-local nature of probability, as high-

lighted in Section VI B. However, as soon as the semiclassical

approximation is consistently applied to both solutions and

inner product, even the usual interference of incident and re-

flected wave is erased (see Section VI D).

Nonetheless, the semiclassical measure factor has a strong

effect on the probabilities near the bounce, as was shown in

Sections VI D and VII. It introduces a double peaked distri-

bution for part of the trajectory8. This eventually becomes

single peaked, with the average b shifting significantly from

the classical trajectory. The period over which this could be

potentially felt depends on the width of the clock, σT . This is

not a priori fixed, since the concept of squeezing is not well

defined in a “unimodular” setting, as pointed out in [6]. In-

deed, any deconstantized constant can be seen as the constant

momentum of an abstract free particle moving with uniform

“speed” in a “dimension” which we identify with a time vari-

able. It is well known that, unlike for a harmonic oscillator

or electromagnetic radiation [29], coherent states for a free a

particle lack a natural scale with which to define dimension-

less quadratures and so the squeezing parameter [30]. Hence

they share with the free particle this problem9. Thus, an un-

certainty in T and b of the order of a few percent, felt over a

significant redshift range around the bounce is a distinct pos-

sibility. It is tempting to relate these findings to the so-called

“Hubble tension” (see, e.g., Ref. [32] and references therein),

as is done in [15].

It should be stressed that due to Heisenberg’s uncertainty

principle in action in this setting (involving constants and con-

jugate times), if we define sharper clocks (so that the fluc-

tuations studied herein are not observable), then it might be

their conjugate constants that bear observable uncertainties.

This would invalidate the approximations used in this paper

(namely those leading to wave packets and the semiclassical

measure). Most crucially, b0, the point of reflection, would not

be not sharply defined for such states, different partial waves

reflecting at different “walls” and then interfering. Such quan-

tum state for our current Universe should not be so easily

dismissed. It might be an excellent example of cosmological

quantum reflection.

We close with two comments. In spite of its “toy” nature,

our paper does make a point of principle: quantum cosmology

could be here and now, rather than something swept under the

carpet of the “Planck epoch”. This is not entirely new (see,

e.g., Ref. [33]), but it would be good to see such speculations

get out of the toy model doldrums. Obviously, important ques-

tions of interpretation would then emerge [34, 35]. Finally we

note that something similar to the bounce studied here hap-

pens in a reflection in the reverse direction at the end of infla-

tion. One may wonder about the interconnection between any

effects studied here and re/pre-heating.
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