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Splitting Kronecker squares,

2-decomposition numbers, Catalan
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Christine Bessenrodt & Chris Bowman

It is with much sadness that we mark

the passing of Christine Bessenrodt,

a great friend and mathematician.

Abstract This paper concerns the symmetric and anti-symmetric Kronecker products of char-
acters of the symmetric groups. We provide new closed formulas for decomposing these products,
unexpected connections with 2-modular decomposition numbers, Catalan combinatorics, and
a reĄnement of the famous Saxl conjecture.

1. Introduction

The Kronecker problem asks for an understanding of the tensor products of characters
of symmetric groups. Given λ ⊢ n a partition of n, we let [λ] denote the corresponding
simple CSn-character. The Kronecker coefficients g(λ, µ, ν) encode the multiplicities

[λ][µ] =
∑
ν g(λ, µ, ν)[ν].(1.1)

The Kronecker coefficients have been described as “perhaps the most challenging, deep
and mysterious objects in algebraic combinatorics” [36]. Richard Stanley identified the
calculation of Kronecker coefficients as one of the definitive open problems in algebraic
combinatorics [46, Problems 9]. The positivity of Kronecker coefficients is equivalent
to the existence of certain quantum systems [14, 13] and they have been used to
understand entanglement entropy [15].

The Kronecker squares decompose as sums of symmetric and anti-symmetric parts;
we hence define the symmetric and anti-symmetric Kronecker coefficients

[λ][λ] = S2[λ] +A2[λ] S2[λ] =
∑
ν sg(λ, ν)[ν] A2[λ] =

∑
ν ag(λ, ν)[ν].(1.2)

The question of the irreducibility of symmetric and anti-symmetric tensor products
is a central problem in group theory, where it is key to the Aschbacher–Scott maxi-
mal subgroup programme [30, 29, 31]. For λ a rectangular partition, the coefficients
sg(λ, ν) played a starring role in the demise of several famous conjectures Geomet-
ric Complexity Theory [24, 11]. Despite their central importance, almost nothing is
known about the symmetric and anti-symmetric Kronecker coefficients. In particular,
much less is known about the coefficients in (1.2) than their classical counterparts
in (1.1).
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In this paper, we take some of the first significant steps towards understanding sym-
metric and anti-symmetric Kronecker products. We provide new closed formulas for
decomposing these products, unexpected connections with 2-modular decomposition
numbers, Catalan combinatorics, and a refinement of the famous Saxl conjecture.

1.1. Generalising milestones from the classical theory. The bulk of the
paper is dedicated to advancing our understanding of symmetric and anti-symmetric
Kronecker coefficients by analogy with well-known milestones in the classical theory.
The milestones we generalise include: the classification of homogeneous and irreducible
products [5]; the classification of multiplicity-free Kronecker products [4]; partial and
complete results for special classes of partitions (such as hooks [6, 28], 2-line parti-
tions [1, 42], partitions of small depth [43, 49, 52], and rectangles [32, 33]); and most
recently, Saxl’s Kronecker positivity conjecture.

We provide the analogue of the Bessenrodt–Kleshchev classification of multiplicity-
free products for the symmetric and anti-symmetric Kronecker squares. Unlike in the
case of classical Kronecker products, we do find that there exist non-linear homoge-
neous anti-symmetric Kronecker products.

Theorem A. Any symmetric product S2([λ]) for λ ⊢ n is (reducible and) inhomoge-
neous unless λ is a linear partition. Any anti-symmetric product A2([λ]) for λ ⊢ n is
(reducible and) inhomogeneous unless λ = (n), (n − 1, 1), (22), or (32) (up to conju-
gation).

The corresponding classification for plethysm products was obtained in [7]. The
classification of multiplicity-free symmetric and anti-symmetric Kronecker products
is the subject of Theorem 9.3 and Conjecture 9.4; when both parts are multiplicity-
free, a complete answer is given.

The symmetric and anti-symmetric Kronecker squares of hook characters were re-
cently determined in [34]; we provide new results on the hook constituents in arbitrary
symmetric and anti-symmetric Kronecker products in Subsection 4.2. We provide the
complete decomposition of S2([k, k]) and A2([k, k]) in Theorem 7.8 (see also Theo-
rem B) as well as S2([k+ 1, k]), A2([k+ 1, k]) and S2([k+ 1, k− 1]), A2([k+ 1, k− 1])
in Theorem 7.11, Theorem 7.13. For arbitrary λ, we determine the constituents of
small depth in S2([λ]) and A2([λ]) in Theorem 5.2 and we obtain stronger results
for λ a rectangular partition in Proposition 5.3 (these results are also an essential
part of our proof of the classification of multiplicity-free products for the symmetric
and anti-symmetric Kronecker squares). For λ of small depth we obtain the complete
decompositions in Subsection 5.2. In Section 6 we look at the opposite end of the
spectrum and locate the sign character (giving an alternative proof of a recent result
of [20]) and its neighbour within A2[λ].

1.2. A new Catalan identity. The (symmetric) Kronecker coefficients have been
intensely studied in recent years, motivated by applications across invariant theory,
geometric complexity theory, and quantum information theory. We provide a new ap-
plication to algebraic combinatorics and answer a question posed by Laurent Manivel
in 2010 [32].

Theorem B. For k ∈ N and n = 2k, we have

S2([k, k]) =
∑

α∈E4(n)

[α] , A2([k, k]) =
∑

α∈O4(n)

[α](1.3)

Algebraic Combinatorics, Vol. 6 #4 (2023) 864



Splitting Kronecker squares

where E4(n) and O4(n) denote the sets of partitions of the form λ = (λ1, λ2, λ3, λ4)
with all λi ∈ 2N (or λi ∈ 2N + 1, respectively). This result has the following combi-
natorial shadow. We define

s(α) =





1 if α ∈ E4(n)

−1 if α ∈ O4(n)

0 otherwise.

Letting Ck = 1
k+1

(
2k
k

)
denote the k-th Catalan number, we have that

Ck =
∑

α⊢2k

s(α)f(α)

where f(α) = [α](id) is the number of standard Young tableaux of shape α.

The result for Kronecker squares [k, k]⊗2 received a great detail of attention a
decade ago [19, 8, 32] in part due to motivation from theoretical quantum compu-
tation. It was in Manivel’s paper concerning these tensor squares that he posed the
question as to the decomposition of [k, k]⊗2 into symmetric and anti-symmetric parts,
which Theorem B resolves. The first few examples of Catalan numbers can be calcu-
lated using Theorem B as follows,

C1 = 1 = 1 = f( )

C2 = 2 = 1 + 2 − 1 = f( ) + f( ) − f( )

C3 = 5 = 1 + 9 + 5 − 10 = f( ) + f( ) + f( ) − f( ).

1.3. Saxl’s conjecture. A few years ago, fresh impetus for the Kronecker problem
came from a conjecture of Saxl which states that for a triangular number n = 1

2k(k+1)

and ρk = (k, . . . , 2, 1) ⊢ n the staircase partition, the tensor square [ρk]2 contains every
irreducible CSn-character with positivity multiplicity. Whilst Saxl’s conjecture is still
unverified, many constituents of [ρk]2 have been found and the conjecture has inspired
a lot of recent work, some using connections to other groups, or having applications
to Geometric Complexity Theory and Quantum Information Theory. We suggest the
following strengthening of Saxl’s conjecture:

Conjecture C. The symmetric part S2([ρk]) of the square [ρk]2 contains all irre-
ducible characters [λ] of Sn as constituents, except for the character [1n] when k ≡ 2
mod 4.

We also formulate (anti-)symmetric generalisations of the Heide–Saxl–Tiep–
Zalesskii conjecture [21]; see Section 10 for more details.

1.4. Kronecker splitting and 2-modular representation theory. In Sec-
tion 3 we provide a surprising new link between the splitting of Kronecker squares
of complex characters and the calculation of 2-modular decomposition numbers. This
serves both ways: as a further motivation for studying the splitting of Kronecker
squares (we will see that the square splitting provides new linear relations between 2-
decomposition numbers) but also for obtaining results on Kronecker squares by using
2-projective characters. For example, using the fact that triangular partitions label
simple projective modules in characteristic 2, we obtain the following:

Theorem D. Let k ∈ N, n = k(k + 1)/2 and ρk = (k, k − 1, . . . , 1) the staircase
partition. Given λ ̸= ρk, we have that

⟨S2([λ]), [ρk]⟩ = ⟨A2([λ]), [ρk]⟩

and, in particular, g(λ, λ, ρk) is even.
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Our 2-modular results are also key to the proof of Theorem A above. Further con-
nections between Kronecker splittings and 2-decomposition numbers are discussed in
some detail in Section 3 and are used to calculate information about hook constituents
of symmetric and anti-symmetric Kronecker products in Subsection 4.2. These mod-
ular results are also used later in the proof of Theorem A. We hope this should add
further interest in the problem of determining the splitting of Kronecker squares.

1.5. Existing literature on symmetric Kronecker coefficients. The sym-
metric Kronecker coefficients are of fundamental importance in Geometric Complexity
Theory (see for example [9, 10, 20, 12] and references therein). Despite this inter-
est, almost nothing is known about values of symmetric Kronecker coefficients: the
sg((a, 1b), λ) for λ ⊢ a+ b were calculated in [34]; some examples of zero values were
calculated in [41]; the irreducible (anti-)symmetric squares for alternating groups were
classified in [30] (over fields of arbitrary characteristic). In this paper we provides new
tools for the calculation of symmetric (and anti-symmetric) Kronecker coefficients and
suggest further avenues of research.

2. Preliminaries

In this section we introduce some notions, fix some notation, and we also recall some
background.

2.1. Partition combinatorics. We define a partition, λ ⊢ n, to be a finite, weakly
decreasing sequence of non-negative integers (λ1, λ2, . . . ) whose sum ♣λ♣ = λ1+λ2+· · ·
equals n. We denote by P (n) the set of all partitions of n. For a partition λ ∈ P (n),
we write ♣λ♣ = n for its size and ℓ(λ) for its length, i.e., the number of positive parts
of λ. We define Pℓ(n) to be the set of all partitions λ = (λ1, λ2, . . . , λℓ) with at most ℓ
positive parts. The Young diagram of λ is given as

Y (λ) = ¶(i, j) ♣ i ∈ ¶1, . . . , ℓ(λ)♢, j ∈ ¶1, . . . , λi♢♢.

We think of the Young diagram as a diagram depicted in matrix notation, with a
box at each (i, j) ∈ Y (λ), and row 1 being the top row. The partition λ and its
diagram are occasionally identified, e.g., when we talk about an intersection λ ∩ µ of
two partitions λ and µ. Given ν and λ two partitions, we write λ ⊆ ν if λi ⩽ νi for
all i ⩾ 1. Given λ ∈ P (m) and ν ∈ P (n) such that λ ⊆ ν, we define the resulting
skew-partition ν∖λ (or Y (ν∖λ)) of n−m to be the set difference Y (ν)∖Y (λ). We say
that λ ⊢ n is a linear partition if its Young diagram is a line, that is λ ∈ ¶(n), (1n)♢.

When λ = (λ1, λ2, . . .) ∈ P (n), its depth is defined to be d(λ) = n − λ1. For two
partitions λ = (λ1, λ2, . . .), µ = (µ1, µ2, . . .), we define their sum componentwise, i.e.,
λ + µ = (λ1 + µ1, λ2 + µ2, . . .) (where we extend the partitions by trailing zeros,
if necessary). When the smallest part of λ is greater than or equal to µ1, we can
concatenate the parts of λ and µ and we denote the resulting partition by λ ∪ µ.

An important notion in the theory is that of a hook in a diagram (see [27, Sec-
tion 2.3.17] for more on this). The hook Hij to (i, j) ∈ Y (λ) is the set of boxes

Hij(λ) = ¶(i, s) ♣ s ∈ ¶j, . . . , λi♢♢ ∪ ¶(r, j) ♣ r ∈ ¶i, . . . , λtj♢♢;

its length is hij = ♣Hij(λ)♣; a hook of length k is also called a k-hook. The diagonal (or
Durfee) length of λ, denoted by dl(λ), is the number of non-zero principal hooks hi :=
Hii(λ) for i ⩾ 1. We let H(λ) denote the partition formed from the principal hook
lengths of λ, that is H(λ) = (h1, h2, . . . , hdl(λ)). For example H(4, 3, 3) = (6, 3, 1).

Fixing k, and successively removing k-hooks from λ as long as possible, we reach the
(uniquely determined) k-core λ(k) of λ; the number of k-hooks that we have removed
from λ to obtain its k-core is called the k-weight of λ. For k = 2, the 2-cores are just
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the partitions of staircase form ρm = (m,m−1,m−2, . . . , 2, 1), for some m ∈ N0 (for
m = 0 considering ρ0 as the empty partition).

Given ν∖λ a (skew) partition of n, we define a (ν∖λ)-tableau of weight µ to be a
map T : Y (ν ∖ λ) → ¶1, . . . , n♢ such that µi = ♣¶x ∈ Y (ν ∖ λ) : T(x) = i♢♣ for i ⩾ 1.
We depict this by placing each integer within the corresponding box in the Young
diagram, for example

1 2

3 4

2 1

3 4

1 2

4 3

2 1

4 3

1 1

2 3

1 1

3 2

are all examples of ((3, 2) ∖ (1))-tableaux; the first 4 tableaux are of weight (14) and
the final two tableaux are of weight (2, 12). We define an equivalence relation on ν∖λ-
tableaux of weight µ by S ∼ T if S and T differ only by permuting the entries within
their rows. For example, the first 4 tableaux above (respectively the final 2 tableaux
above) belong to the same equivalence class ∼. We define a row-standard tableau to
be an equivalence class of ∼ and we choose as a ∼-class representative to be that in
which the entries along the rows are weakly increasing. We say that a row-standard
tableau is semistandard if the entries along its columns are strictly increasing. We
denote the sets of all row-standard and semistandard ν ∖ λ-tableaux of weight µ by
RStd(ν∖λ, µ) and SStd(ν∖λ, µ), respectively. We define the reverse reading word of
a tableau, T, to be the sequence of integers obtained by recording the entries of the
first row of T backwards, followed by the second row, and continuing in this fashion.
For example the reverse reading words of the above tableaux are

2143 1243 2134 1234 1132 1123

respectively. We define the set of Littlewood–Richardson tableaux, LR(ν ∖ λ, µ) ⊆
SStd(ν ∖ λ, µ) whose reverse reading word is a lattice word (i.e., every left subfactor
has more js than (j + 1)s for j ⩾ 1). We refer to [26, Chapter 16] for a less terse
definition of these tableaux.

2.2. Representations of symmetric groups. We write Sn for the symmetric
group on n letters. For background on the representation theory of the symmetric
groups, the reader is referred to [26, 27]. For λ ∈ P (n), we let Sλ

Z
and Mλ

Z
denote

the Specht and Young permutation modules for Sn associated to λ, defined over Z.
Given F a field, we set SλF = Sλ

Z
⊗Z F and Mλ

F = Mλ
Z

⊗Z F . The permutation
module Mλ

Z
can be constructed as having basis indexed by the set RStd(λ) under the

symmetric group action by place permutation (modulo the equivalence class ∼). By
classical rules of Young and Littlewood–Richardson, we have that

Mν
C

∼=
⊕

ν∈P (n)

♣SStd(λ, ν)♣SλC ind
Sm+n

Sm×Sn
(SλC ⊠ Sµ

C
) ∼=

⊕
ν∈P (m+n)

♣LR(ν ∖ λ, µ)♣SνC.

For Sλ
C

, we write [λ] for the corresponding irreducible complex character of Sn.
Then ¶[λ] ♣ λ ∈ P (n)♢ is the set of all irreducible complex characters of Sn. When
λ = (λ1, . . . , λm), we omit the parentheses and write [λ1, . . . , λm]; in particular, [n] is
the trivial character of Sn.

When we evaluate [λ] on an element of Sn of cycle type µ ∈ P (n), we simply write
[λ](µ) for the corresponding value. For λ ∈ P (n), we write f(λ) = [λ](id) for the
degree of [λ].

Of central interest in the representation theory of the symmetric groups are the
Kronecker coefficients g(λ, µ, ν) appearing as expansion coefficients in the Kronecker
products

[λ][µ] =
∑

ν

g(λ, µ, ν)[ν],
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where [λ][µ] is the character defined by [λ][µ](g) = ([λ](g))([µ](g)) for g ∈ Sn.
Our main topic here is to split Kronecker squares into their symmetric and alter-

nating parts.

2.3. Symmetric and anti-symmetric squares of representations. We now
recall some well known notions and results on the symmetric and alternating parts of
a tensor square (see [22, 25]). For any finite group G, we denote by Irr(G) the set of
its irreducible (complex) characters, and ⟨−,−⟩ will denote the usual scalar product
on the C-vector space of class functions on G.

Now let F be a field and V a (finite-dimensional) FG-module; we consider its
tensor square V ⊗F V , on which G acts diagonally. Let τ : V ⊗ V → V ⊗ V be the
FG-homomorphism defined on elementary tensors by

τ(v1 ⊗ v2) = v2 ⊗ v1.

Let S2(V ) and A2(V ), respectively, be the eigenspaces to 1 and −1 for τ ; these are the
symmetric and alternating part of the tensor square, respectively; A2(V ) is also called
the antisymmetric or exterior part of the square. When F = C, one easily computes
the characters of S2(V ) and A2(V ) from the character to V ; we recall the formula
here:

Lemma 2.1. Let V be a CG-module with character χ. Then the character χS of S2(V )
is given by

χS(g) = 1
2 (χ(g)2 + χ(g2)), for all g ∈ G.(2.1)

The character χA of A2(V ) is given by

χA(g) = 1
2 (χ(g)2 − χ(g2)), for all g ∈ G.(2.2)

In particular, for a character χ, the class function χ(2) defined by

χ(2)(g) = χ(g2) for all g ∈ G

is a difference of two characters, namely

χ(2) = χS − χA.(2.3)

We denote by 1G the trivial character of G. Then

⟨χ(2),1G⟩ =
1

♣G♣

∑

g∈G

χ(g2) =: ν2(χ)

is the Frobenius–Schur indicator for χ. It is well known that ν2(χ) ∈ ¶−1, 0, 1♢, and
that this value is nonzero if and only if χ is a real-valued character, and it is 1 exactly
if χ is the character of a real representation of G (see [22, 13.1] or [25, Chap. 4]).
Thus, when χ is the character of a real representation of G, we have

1 = ν2(χ) = ⟨χ(2),1G⟩ = ⟨χS − χA,1G⟩,

and 1 = ⟨χ, χ⟩ = ⟨χ2,1G⟩; hence ⟨χS ,1G⟩ = 1 and ⟨χA,1G⟩ = 0.
Since all irreducible complex characters of Sn are characters of rational represen-

tations, we have these properties for all χ ∈ Irr(Sn); i.e., the trivial character [n] is a
constituent of S2([λ]), but not of A2([λ]), for all λ ∈ P (n).

The main aim of our investigations is to contribute several results on the characters
S2([λ]) and A2([λ]), i.e., to provide information on the coefficients sg(λ, µ), ag(λ, µ) ∈
N0 defined for λ ∈ P (n) by

S2([λ]) =
∑

µ∈P (n)

sg(λ, µ)[µ] and A2([λ]) =
∑

µ∈P (n)

ag(λ, µ)[µ].
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Remark 2.2. We note that A2([λ]) = 0 if and only if λ ∈ ¶(n), (1n)♢. To see this,
note that χλ(id) > 1 for all λ ̸∈ ¶(n), (1n)♢ and so the character is non-zero by
equation (2.2). We note that S2([λ]) is never zero (for instance, we have already seen
that it always contains the trivial character).

In later sections, the following facts will be useful (they only require short compu-
tations with the explicit values from Lemma 2.1):

Lemma 2.3. Let G be a finite group and U a subgroup of G. Let χ be a character of G,
and suppose the restriction to U decomposes as χ↓U = χ1 +χ2, with characters χ1, χ2

of U . Writing X for either S or A, we have

X2(χ)↓U = X2(χ1) +X2(χ2) + χ1χ2.

Lemma 2.4. Let G,H be finite groups. Let χ be a character of G, and ψ a linear
character of H and χ × ψ be the corresponding character for G × H. Writing X for
either S or A, we then have

X2(χ× ψ) = X2(χ) × ψ2.

While there is a strong monotonicity property for Kronecker coefficients, for the
symmetric and alternating coefficients less is known. We state here the semigroup
property recently proven by Ressayre [41].

Proposition 2.5 ([41, Proposition 2]). Given m ∈ N, we define

Lm = ¶(λ, µ) ♣ λ ∈ Pm(n), µ ∈ Pm2(n) and sg(λ, µ) ̸= 0♢.

Then, as a subset of Zm+m2

, Lm is a finitely generated semigroup. In particular, if
α, β ⊢ n1 and λ, µ ⊢ n2 are such that sg(α, β) > 0 and sg(λ, µ) > 0 then we have
have that

sg(α+ λ, β + µ) > 0.

3. The class functions χ(m) and modular decomposition numbers

In this section we want to explain how information on the splitting of squares [λ]2

gives information on 2-decomposition numbers, i.e., computing character data leads
to information on the compositions series of the (non-simple) Specht modules SλF
for F a field of characteristic 2.

But first we consider a more general situation. Generalising the class functions χ(2)

defined in the previous section, one defines for a character χ of a finite group G and
m ∈ N the class function χ(m) by χ(m)(g) = χ(gm), for all g ∈ G. This class function
is also known to be a difference of two characters [25].

We start with an easy but useful observation. Let C = xG be a conjugacy class of
the finite group G. Then we define a class function ϑC by

ϑC =
∑

ψ∈Irr(G)

ψ(x−1)ψ.

We note that by column orthogonality, we have

ϑC(g) =


♣CG(x)♣ if g ∈ C = xG

0 otherwise.

Lemma 3.1. Let G be a finite group, χ a character of G, and m ∈ N. For any conjugacy
class C = xG of G we have

⟨χ(m), ϑC⟩ = χ(xm).
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Proof. We have

⟨χ(m), ϑC⟩ =
1

♣G♣

∑

g∈G

χ(gm)ϑC(g) =
1

♣G♣

∑

g∈xG

♣CG(x)♣χ(xm) = χ(xm).

□

In the case of a prime p, we will now first consider the more general situation
of class functions χ(p) and relate these to p-modular decomposition numbers (or p-
decomposition numbers, for short). For more details on the background of the modular
theory, we refer the reader to the textbooks [16, 35, 44, 50]. For the convenience of
readers less familiar with the modular theory, and also to fix some notation on the
way, we give a brief introduction to the theory.

For g ∈ G, we write ord(x) for the order of the element x ∈ G. We say that an
element x ∈ G is p-regular if p does not divide ord(x).

We start again in the general setting of a finite group and recall some of the rel-
evant notions. For the connection between representations in characteristic 0 and
prime characteristic p, we require a p-modular splitting system (R,F,K) where R is
a complete discrete valuation ring with quotient field K = Q(R) of characteristic 0
and residue field F of characteristic p > 0, such that K and F are splitting fields
for G and its subgroups (e.g., K and F are taken to be algebraically closed). This is
fixed for what follows, and Irr(G) now denotes the set of characters to the irreducible
KG-representations. Take χ ∈ Irr(G), to an irreducible KG-module M , say; then M
has as R-form, i.e., there is an irreducible RG-lattice, say U , such that M = KU . The
composition factors of the FG-module U := F ⊗R U are uniquely determined by χ.
When S is a simple FG-module and φ its (irreducible) Brauer character, then the de-
composition number dχφ is defined to be the multiplicity of S as a composition factor

of U . Let IBr(G) denote the set of irreducible Brauer characters; these correspond to
the isomorphism classes of simple FG-modules. Then

D := (dχφ)χ∈Irr(G)
φ∈IBr(G)

is the p-modular decomposition matrix for G (defined as a matrix uniquely up to
permutations of rows and columns). The size of the matrix D is given by the numbers

♣Irr(G)♣ = k(G), the number of conjugacy classes of G,

and

♣IBr(G)♣ = kp(G), the number of p-regular conjugacy classes of G.

Computing the decomposition matrix for a group is usually an enormously diffi-
cult problem; the recent use of geometry and categorical Lie theory in the study of
decomposition matrices of symmetric groups was the topic of Geordie Williamson’s
plenary talk at the 2018 ICM [45].

By reordering the rows and columns, the matrixD can be put into a “block diagonal
form”, where the blocks cannot be refined into a block diagonal sum any further. The
p-blocks of G correspond to the blocks in this finest block diagonal form of D. To
a p-block B associated to a block DB in the decomposition matrix D, we associate
all the irreducible characters and simple FG-modules labelling the rows and columns
of DB ; the corresponding set of irreducible characters is denoted by Irr(B). There
is also an intrinsic definition of p-blocks as the indecomposable ideals in the group
algebra, and a direct criterion for when two irreducible characters belong to the same
p-block (see for example [16, 18, 35]).

While we have defined the decomposition matrix D by rows, the columns carry
important information about projective modules. Each simple FG-module S has a
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unique (up to isomorphism) projective cover PS ; when S runs through a system of
representatives for the isomorphism classes of simple FG-modules, PS runs through
a system of representatives for the isomorphism classes of indecomposable projective
FG-modules. Each projective FG-module PS can be lifted to a projective RG-lattice,
which has a corresponding character ΦS of G (over K); when φ is the Brauer character
to S, we also write Φφ for this character. The character Φφ is uniquely determined
by the simple module S, and we have the following property of the columns of the
decomposition matrix:

Φφ =
∑

χ∈Irr(G)

dχφχ , for φ ∈ IBr(G).

The character of a projective (indecomposable) RG-lattice is also called a (p-
)projective (indecomposable) character of G. The elements in the Z-span of the
characters Φφ, φ ∈ IBr(G), are called virtual (p-)projective characters. In the
character ring

RZ(G) = ¶
∑
χ∈Irr(G) aχχ ♣ all aχ ∈ Z♢

of virtual characters, the virtual projective characters are characterized by the prop-
erty that they vanish on all p-singular elements of G, i.e., on the set

Gp = ¶x ∈ G
∣∣ p divides ord(x)♢.

Now we are ready for the following results (we fix the p-modular system (R,F,K)).
First an easy observation for which we will see a rather direct application in the
context of symmetric groups further below, in Theorem 3.7.

Lemma 3.2. Let G be a finite group, χ a character of G such that χ(gp) = χ(g) for all
p-regular elements g ∈ G. Let ϑ be a class function on G that vanishes on Gp. Then
we have

⟨χ(p), ϑ⟩ = ⟨χ, ϑ⟩.

In particular, when χ, ϑ are in addition irreducible, then

⟨χ(p), ϑ⟩ = δχϑ.

Proof. The claim follows immediately by observing that ⟨χ(p) − χ, ϑ⟩ = 0, since the
two class functions χ(p) − χ and ϑ vanish on complementary sets. □

Using this, we obtain the following information on decomposition numbers:

Proposition 3.3. Let G be a finite group, χ ∈ Irr(G) such that χ(gp) = χ(g) for all
p-regular elements g ∈ G. For ψ ∈ Irr(G) set aψ = ⟨χ(p), ψ⟩. Then for all φ ∈ IBr(G)
we have

dχφ =
∑

ψ∈Irr(G)

aψdψφ.

Proof. As noted earlier, the projective character Φφ to φ ∈ IBr(G) vanishes on Gp.
Hence using Lemma 3.2 we compute

dχφ = ⟨χ,Φφ⟩ = ⟨χ(p),Φφ⟩ =
∑

ψ∈Irr(G)

aψ⟨ψ,Φφ⟩ =
∑

ψ∈Irr(G)

aψdψφ.

□

Remark 3.4. (1) First, some comments on the assumption on χ in Lemma 3.2 and
Proposition 3.3.

Clearly, whenG is a finite group such that each p-regular element g ∈ G is conjugate
to its power gp, then the assumption on χ in these results is satisfied for all characters
of G. In particular, this holds for the symmetric groups at all primes p: when g ∈ Sn
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is p-regular, p does not divide any part of its cycle type λ, and so gp has the same
cycle type λ.

More generally, if G is a group with a rational character table, then G has this
property for all primes p, since each element g ∈ G is conjugate to all powers gm,
where gcd(m, ord g) = 1.

But of course, there are many examples of groups where this property holds only
for some primes p, and examples where it does not hold for G at a given prime p, but
for certain irreducible characters.

(2) We emphasise that in applying Proposition 3.3, the decomposition of χ(p) into
irreducible characters (which is a characteristic 0 computation) gives a linear relation
between the p-modular decomposition numbers dψφ, φ ∈ IBr(G), which are in general
hard to determine.

(3) We also emphasise that Lemma 3.2 may not only be applied towards the de-
composition of the indecomposable projective characters Φφ, but for obtaining linear
relations between the coefficients of arbitrary projective characters.

We want to mention a method for obtaining a suitable class function that can
easily be applied in particular in the case of the symmetric groups. First we state this
property, called Block orthogonality [35], for general finite groups.

Proposition 3.5. Let B be a p-block of the finite group G, and let x ∈ G be p-regular.
Then for all p-singular y ∈ G we have

∑

ψ∈Irr(B)

ψ(x)ψ(y) = 0.

We formulate a consequence for square splitting, using the case p = 2; note that
the class function ϑ appearing below is a virtual 2-projective character in the case of
G = Sn.

Corollary 3.6. Let χ ∈ Irr(G) such that χ(g) = χ(g2) for all 2-regular g ∈ G. Let B
be a 2-block of G, let x ∈ G be 2-regular and set ϑ =

∑
ψ∈Irr(B) ψ(x−1)ψ. Then

⟨S2(χ), ϑ⟩ − ⟨A2(χ), ϑ⟩ =


χ(x) if χ ∈ Irr(B)

0 otherwise

Turning to the case of the symmetric groups, we observe the following. When we
have computed the coefficients g(λ, λ, µ) for the Kronecker square [λ]2, then from
the splitting of the square into its symmetric and alternating part, we obtain the
explicit decomposition of S2([λ]) − A2([λ]) = [λ](2). By Proposition 3.3, this implies
linear relations for the 2-modular decomposition numbers. For the symmetric group
Sn, the (isomorphism classes of) simple modules (and their Brauer characters) in
characteristic 2 are labelled by the 2-regular partitions of n, i.e., the partitions of n
into distinct parts. The decomposition numbers are then written as dλµ, where λ is
the partition label of the irreducible complex character and µ is the 2-regular partition
labelling the simple module Dµ, its projective cover Pµ and corresponding projective
character Φµ. Thus,

Φµ =
∑

λ∈P (n)

dλµ[λ].

The observation made above on the 2-decomposition numbers adds to the moti-
vation for determining the splitting of the Kronecker squares, for which so far very
few results are known. We will mention some such results on square splittings in the
following sections as well as provide new results (and also conjectures).

One strategy in the following will be to pick suitable characters Φ which are vir-
tual projective characters (or close to such characters), and apply Lemma 3.2 (or a
variation thereof). We consider some examples for this strategy.
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Theorem 3.7. Let k ∈ N, n = k(k + 1)/2 and ρk = (k, k − 1, . . . , 1) ∈ P (n) the
staircase partition. Let λ ∈ P (n). Then we have

sg(λ, ρk) − ag(λ, ρk) = ⟨S2([λ]), [ρk]⟩ − ⟨A2([λ]), [ρk]⟩ =


1 if λ = ρk
0 if λ ̸= ρk

.

In particular, [ρk] is a constituent of S2([ρk]), and for any λ ̸= ρk, the Kronecker
coefficient g(λ, λ, ρk) = 2 sg(λ, ρk) is even.

Proof. Since ρk is a 2-core (i.e., a partition without a 2-hook), the character [ρk] itself
is a 2-projective irreducible character (see [27]). Furthermore, any 2-regular element
g ∈ Sn is conjugate to its square g2. Hence we can apply Lemma 3.2 to ϑ = [ρk],
χ = [λ] and p = 2, and we obtain the result immediately. □

Remark 3.8. The final assertion implies in particular that [ρk] is a constituent of [ρk]2,
which is a special case of the fact that g(λ, λ, λ) > 0 for all symmetric partitions
λ ∈ P (n) (see [3]).

We have mentioned earlier a method for finding p-projective characters Φ in par-
ticular for the symmetric groups, via a weighted sum of characters in a p-block.
Taking x = 1 in Corollary 3.6 we see that for a 2-block B the contributions of the
weighted B-part in S2(χ) and that of the weighted B-part in A2(χ) coincide if χ does
not belong to B and differs by χ(1) if it does. In the case of the character [ρk], this
was particularly simple, as this is the unique irreducible character in its 2-block, so
we could drop the weight.

We state the consequence of Corollary 3.6 in the case of Sn explicitly, and illustrate
this with examples below. Fortunately, for the symmetric groups we have a combina-
torial criterion that determines when two irreducible characters belong to the same
p-block: this is the case if and only if their labelling partitions have the same p-core
(see [27]). Thus a 2-block B of Sn is combinatorially determined by the common
2-core λ(2) of all the partitions λ labelling the irreducible characters in Irr(B). The
common 2-weight of all these characters λ is called the 2-weight w = w(B) of B.
Thus n = 2w + ♣ρ♣.

Corollary 3.9. Let n ∈ N, λ ∈ P (n). Let B be a 2-block of Sn, with associated
2-core ρ. Then we have

∑

µ∈P (n),µ(2)=ρ

(sg(λ, µ) − ag(λ, µ))f(µ) =


f(λ) if λ(2) = ρ

0 otherwise.

Example 3.10. Let λ = (3, 22). Then

S2([λ]) = [7] + [6, 1] + 2[5, 2] + [4, 3] + 2[4, 2, 1] + 2[3, 22]
+[3, 2, 12] + [3, 14] + [23, 1] + [2, 15]

A2([λ]) = [5, 12] + [4, 2, 1] + 2[4, 13] + [32, 1] + 2[3, 2, 12] + [3, 14] + [22, 13]

Here, λ(2) = (1), i.e., [λ] belongs to the so-called principal 2-block B0. Furthermore,

f(λ) = 21. The constituents in S2([λ]) and A2([λ]) belonging to B0 are

[7], [5, 2], [4, 2, 1], [3, 22], [3, 2, 12], [3, 14]

and

[5, 12], [4, 2, 1], [32, 1], [3, 2, 12], [3, 14], [22, 13],

respectively. As expected, the weighted sum on the left hand-side above is then

1 + 2 · 14 − 15 + 35 − 21 + 2 · 21 − 35 − 14 = 21.
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We also want to extend the application of these methods in another direction and
look at 2-blocks of small weight.

Corollary 3.11. Let n ∈ N, λ ∈ P (n). Let B be a 2-block of Sn, with associated
2-core ρk = (k, . . . , 2, 1).

(1) Assume w(B) = 1. Set τk = ρk + (2). Then we have

⟨S2([λ]), [τk] + [τ tk]⟩ − ⟨A2([λ]), [τk] + [τ tk]⟩ =


1 if λ ∈ ¶τk, τ

t
k♢;

0 otherwise.

(2) Assume w(B) = 2. Set ζk = ρk + (4), ξk = τk ∪ (12). Then we have

⟨S2([λ]), [ζk] + [ξk] + [ζtk]⟩ − ⟨A2([λ]), [ζk] + [ξk] + [ζtk]⟩ =


1 if λ ∈ ¶ζk, ξk, ζ

t
k♢;

0 otherwise. .

Proof. (1) When w(B) = 1, we have Irr(B) = ¶[τk], [τ tk]♢; note that these two char-
acters have the same values on all 2-regular elements (which belong to An). Then
Φ = [τk] + [τ tk] vanishes on G2, and the result follows (using Corollary 3.6).

(2) When w(B) = 2, the irreducible characters in B are the ones already listed,
together with the ones to ρk + (22) and its conjugate, i.e., [k+ 2, k+ 1, k− 2 . . . , 2, 1]
and [k, k − 1, . . . , 3, 23, 1].

Now let µ = H(ζk) be the partition formed from the principal hook lengths of ζk.
By the Murnaghan–Nakayama formula, the characters to ζk, ξk, ζ

t
k all have the

same value on the class of type µ (which is ±1), while the further two characters are
zero on this class. Hence taking Φ = [ζk] + [ξk] + [ζtk] implies the claim (again using
Corollary 3.6). □

4. Splitting the square: Hooks

In this and the following sections we will discuss a number of cases for which a formula
for some family of Kronecker coefficients is known, and we want to obtain refined
information on the decomposition into its symmetric and alternating parts. We will
also recall some of the few results where the splitting has already been determined.

Kronecker products of characters involving (various combinations of) hooks and
2-part partitions formulae were first given by Remmel; in the case of products of
hook characters a small error occurred in [39], but in the case of products of 2-part
partitions, the formulae in [40] contained multiple errors. Alternative correct formulae
were later provided by Rosas [42]; these are not in all cases manifestly positive, but
they do still satisfy the “taste test” of a “combinatorial solution”. Later, manifestly
positive formulae for special products of characters of 2-part partitions in [19, 8, 32].
More recently, general formulae were obtained in the cases when one factor is labelled
by special 2-part partitions [1] or when one factor is a hook [6, 28]. We will discuss
some interesting cases of squares of 2-part partitions in Section 7.

4.1. Splitting squares of hooks. In the case of hooks, the splitting of the squares
has recently been determined by Mészáros and Wolosz [34]. We recall their result here:

Theorem 4.1 ([34]). Let n ∈ N. Let λ = (n− k, 1k) be a hook partition.

(1) Let µ = (n−m, 1m) be a hook with 0 ⩽ m ⩽ 2 min(k, n− k − 1). Then

sg(λ, µ) = 1 if m ≡ 0 or 1 mod 4,
ag(λ, µ) = 1 if m ≡ 2 or 3 mod 4.
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(2) Let µ be a double-hook (µ1, µ2, 2
d2 , 1d1), where µ1 ⩾ µ2 ⩾ 2, d2, d1 ⩾ 0. Then

sg(λ, µ) =





2 if ♣2k + 1 − n♣ ⩽ µ1 − µ2 and d1 ≡ 0 mod 4;
1 if ♣2k + 1 − n♣ ⩽ µ1 − µ2 and d1 odd,
1 or ♣2k + 1 − n♣ = µ1 − µ2 + 1 and d1 ≡ 0 mod 4.

ag(λ, µ) =





2 if ♣2k + 1 − n♣ ⩽ µ1 − µ2 and d1 ≡ 2 mod 4;
1 if ♣2k + 1 − n♣ ⩽ µ1 − µ2 and d1 odd,
1 or ♣2k + 1 − n♣ = µ1 − µ2 + 1 and d1 ≡ 2 mod 4.

For all other partitions µ ∈ P (n), the coefficients sg(λ, µ) and ag(λ, µ) are 0.

4.2. Hook constituents. We now want to take up the ideas of Section 3 to obtain
some information on the distribution of hook constituents in the symmetric and alter-
nating part of an arbitrary Kronecker square. For an application of Lemma 3.2 we take
a closer look at the character of Sn obtained by summing over all hook characters:

χhook =
n−1∑

k=0

[n− k, 1k].

This character has already been fruitfully used in [2] for finding further constituents
in the Saxl square [ρk]2.

The character χhook is a virtual 2-projective character; more precisely, in recent
years it was shown (see [2, 38, 47]) that its values are as follows.
Let σα ∈ Sn be an element of cycle type α. Then

χhook(σα) =


2ℓ(α)−1 if α is 2-regular
0 otherwise

.

The following result tells us that the symmetric part S2([λ]) and the alternating
part A2([λ]) always have the same number of hook constituents (counted with multi-
plicities) if λ is not a hook, and S2([λ]) contains one more hook constituent if λ is a
hook.

Proposition 4.2. Let λ ∈ P (n). Then we have

⟨[λ](2), χhook⟩ =


1 if λ is a hook
0 otherwise

.

or equivalently,

n−1∑

k=0

sg(λ, [n− k, 1k]) −

n−1∑

k=0

ag(λ, [n− k, 1k]) =


1 if λ is a hook
0 otherwise

.

In particular, when λ is not a hook, A2([λ]) must always contain a hook constituent.

Proof. We apply Lemma 3.2 with χ = [λ], p = 2, and ϑ = χhook. Thus we obtain

∑n−1
k=0 sg(λ, [n− k, 1k]) −

∑n−1
k=0 ag(λ, [n− k, 1k]) = ⟨S2([λ]) −A2([λ]), χhook⟩

= ⟨[λ](2), χhook⟩

= ⟨[λ], χhook⟩

=


1 if λ is a hook
0 otherwise

.

The final assertion follows since we have already seen that S2([λ]) always contains
the hook constituent [n]. □
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We want to make this result more precise and at the same time illustrate how to
use the idea of Lemma 3.2 when we consider a class function ϑ close to a virtual
projective character. The important aspect is that one should have good control over
the non-zero values on 2-singular classes. For n ∈ N, we set

ϑn =
n−1∑

k=0

(−1)k[n− k, 1k].

This is just a special case of the class function ϑC defined earlier, here for the class
C of n-cycles in Sn. Thus, for σα ∈ Sn of cycle type α, we have

ϑn(σα) =


n if α = (n)
0 otherwise

.

Now we consider

Φn =

⌊(n−1)/2⌋∑

m=0

[n− 2m, 12m],

the sum of the characters to hooks of even leg length. By the discussion above,

Φn = 1
2 (χhook + ϑn)

is a virtual 2-projective character when n is odd; when n is even, the only 2-singular
elements where Φn does not vanish, are the n-cycles. We now want to use Φn to obtain
information on the constituents to hooks of even leg length in [λ](2).

Proposition 4.3. Let n ∈ N and λ ∈ P (n); set χ = [λ] and let Φn be as above. When
n is odd, we have

⟨χS − χA,Φn⟩ =


1
2 (1 + (−1)k) if λ = (n− k, 1k)

0 otherwise.

When n is even, we have

⟨χS − χA,Φn⟩ =





1
2 (1 + (−1)k) if λ = (n− k, 1k) and n− k > k

1
2 (1 + (−1)k−1) if λ = (n− k, 1k) and n− k ⩽ k

1
2 [λ]

(
(n2 ,

n
2 )
)

otherwise.

In any case, we have

⟨χS − χA,Φn⟩ ∈ ¶−1, 0, 1♢;

i.e., the numbers of constituents (counted with multiplicity) in χS and χA to hooks of
even leg length differ at most by one.

Proof. We have

⟨χS − χA,Φn⟩ = ⟨χ(2),Φn⟩ = 1
2 ⟨χ(2), χhook⟩ + 1

2 ⟨χ(2), ϑn⟩.

By Proposition 4.2, the first summand contributes zero if λ is not a hook, and 1
2

otherwise.
When n is odd, ϑn vanishes on G2 and is non-zero only on n-cycles. By Lemma 3.1

the second summand on the right hand side above is then 1
2χ(σ2

(n)) = 1
2 [λ]((n)); hence

this is zero if λ is not a hook, and it is 1
2 (−1)k when λ = (n− k, 1k). This yields the

assertion in this case.
Now assume that n is even. Then Lemma 3.1 gives

1
2 ⟨χ(2), ϑn⟩ = 1

2χ(σ2
(n)) = 1

2 [λ]
(
(n2 ,

n
2 )
)
.
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If λ is not a hook, this immediately yields the claim. Now assume that λ = (n−k, 1k).
When n− k > k, we have

[n− k, 1k]
(
(n2 ,

n
2 )
)

= [n2 − k, 1k]
(
(n2 )
)

= (−1)k.

When n− k ⩽ k, we have

[n− k, 1k]
(
(n2 ,

n
2 )
)

= (−1)
n
2 −1[n− k, 1k− n

2 ]
(
(n2 )
)

= (−1)
n
2 −1−k+ n

2 = (−1)k−1.

Thus also in the hook case we arrive at the stated formulae.
For the final assertion, we only have to consider the case where n is even and λ

is a non-hook partition. By the Murnaghan–Nakayama formula, the only non-hook
partitions λ with [λ]((n2 ,

n
2 )) ̸= 0 are partitions λ with dl(λ) = 2 and of n

2 -weight
exactly 2. Furthermore, the only possible non-zero values are then ±2. Thus also in
this case ⟨χS − χA,Φn⟩ is ±1, as claimed. □

Remark 4.4. In the case of even n, it is not difficult to count (and construct) all λ
with [λ]((n2 ,

n
2 )) ̸= 0. We already know that we only have to consider λ with dl(λ) ⩽ 2

and of n
2 -weight exactly 2. All n hooks λ satisfy [λ]((n2 ,

n
2 )) = ±1. As the centraliser

of an element of cycle type (n2 ,
n
2 ) has order n2

2 , there are then exactly 1
8n(n − 2)

non-hook partitions λ that contribute a value ±2 on this class.

Recall that a hook (a, 1b) is said to have ladder length b and arm length a − 1
for a > 0 and b ⩾ 0. From Proposition 4.2 and Proposition 4.3 we now obtain the
following result that says that the sum of the multiplicities of the constituents to
hooks of even leg length (and odd leg length, respectively) in S2([λ]) and A2([λ])
coincide.

Corollary 4.5. Let λ ∈ P (n). Assume that λ is not a hook, and that λ is also not a
double-hook with [λ]((n2 ,

n
2 )) ̸= 0 (when n is even). Then

⌊(n−1)/2⌋∑

m=0

sg(λ, (n− 2m, 12m)) =

⌊(n−1)/2⌋∑

m=0

ag(λ, (n− 2m, 12m))

⌊n/2⌋∑

m=1

sg(λ, (n− 2m+ 1, 12m−1)) =

⌊n/2⌋∑

m=1

ag(λ, (n− 2m+ 1, 12m−1)).

Remark 4.6. Towards the Saxl Conjecture, it has been proved with a variety of
methods that all hook characters [n− k, 1k] are constituents of [ρk]2 (see [2, 23, 37]).

From the results above we deduce a refinement on the distribution of the hooks into
the symmetric and alternating part of [ρk]2. For k ⩾ 5, the sum of the multiplicities
of the constituents to hooks of even leg length (and odd leg length, respectively) in
S2([ρk]) and A2([ρk]) coincide. For k = 3 and 4, [ρk]((n2 ,

n
2 )) = −2, and the sum of

the multiplicities of the characters to hooks of odd leg length is one larger in S2([ρk])
than in A2([ρk]), and conversely for the sums to the even hook length characters. More
precisely, for k = 4 the part in S2([ρ4]) corresponding to hooks of even leg length is

[10] + 3[8, 12] + 12[6, 14] + 10[4, 16] + [2, 18],

(note that the coefficients sum to 27) and the corresponding part in A2([ρ4]) is

6[8, 12] + 12[6, 14] + 8[4, 16] + 2[2, 18]

(note that the coefficients sum to 28). Note that [110] appears in neither summand as
it has odd leg length.
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5. Splitting of Kronecker squares: Small depth

In this section we start by studying constituents of small depth in arbitrary Kronecker
squares, and we also consider squares [λ]2 where λ is a partition of small depth.

5.1. Constituents of small depth. First we consider the constituents of small
depth in Kronecker squares. We recall the following information on the multiplicities
of constituents up to depth 3 explicitly (see [43, 49, 52]). We see that already the
formulae for constituents of depth 3 get involved; in fact, also formulae for the case
of depth 4 constituents have been determined by Vallejo [49].

Proposition 5.1. Let λ ∈ P (n) with λ ̸= (n), (1n). Let rk = #¶k-hooks in λ♢ for
k = 1, 2, 3, and let r21 = #¶non-linear 3-hooks H in λ♢. Then

[λ]2 = [n]+a1[n−1, 1]+a2[n−2, 2]+b2[n−2, 12]+a3[n−3, 3]+b3[n−3, 13]+c3[n−3, 2, 1]+. . .

where

a1 = r1 − 1,

a2 = r2 + r1(r1 − 2), for n ⩾ 4,

b2 = (r1 − 1)2,

a3 = r1(r1 − 1)(r1 − 3) + r2(2r1 − 3) + r3, for n ⩾ 6,

b3 = r1(r1 − 1)(r1 − 3) + (r1 − 1)(r2 + 1) + r21, for n ⩾ 4,

c3 = 2r1(r1 − 1)(r1 − 3) + r2(3r1 − 4) + r1 + r21, for n ⩾ 5.

In particular, for n ⩾ 4 we have a2 > 0.

In the following result we provide the splitting into the two parts of a square for
the constituents up to depth 2.

Theorem 5.2. Let λ ∈ P (n), n ⩾ 4. Let a1, a2, b2 and r1 be as in Proposition 5.1.
Let a1,S = sg(λ, (n− 1, 1)), a1,A = ag(λ, (n− 1, 1)), and similarly define the splitting
of the coefficients a2 and b2 into a2,S, a2,A, and b2,S, b2,A, respectively. Then

a1,S = a1, a1,A = 0, a2,S = a2, a2,A = 0, b2,S =


r1 − 1

2


, b2,A =


r1

2


,

i.e., with coefficients as determined above,

S2([λ]) = [n] + a1[n− 1, 1] + a2[n− 2, 2] + b2,S [n− 2, 12] + constituents of depth > 2

and

A2([λ]) = b2,A[n− 2, 12] + constituents of depth > 2.

Proof. Let n ⩾ 3, and let λ ∈ P (n). We have already seen earlier that the con-
stituent [n] only appears once in [λ]2, and it is located in the symmetric part.

We now show that [n− 1, 1] never appears in A2([λ]). Assume it does occur; then
[n− 1] appears in the restriction

A2([λ])↓Sn−1
=
∑

B

A2([λB ]) +
∑

B ̸=C

[λB ][λC ],

where B and C run over all removable boxes of λ, and λD denotes the partition of
n − 1 obtained by removing a (corner) box D from λ. But we already know that no
summand A2([λB ]) contains a constituent [n − 1]. Furthermore, since in the second
sum λB ̸= λC , no product [λB ][λC ] contains [n− 1]. Hence a1,A = 0 and a1,S = a1.

Now let n ⩾ 4. We want to consider [n− 2, 2] and [n− 2, 12] in X2([λ]) for X = S
or A. This time we consider the restriction of X2([λ]) to Sn−2 × S2, and we apply
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Lemma 2.4; notice that here the square of the linear character of S2 is always trivial.
Then for X ∈ ¶S,A♢ we obtain

X
2([λ])↓Sn−2×S2

=
∑

µ∈P (n−2)
µ⊆λ

2cc(λ/µ)−1
X

2([µ])× [2]+
∑

(µ1,ν1)

̸=(µ2,ν2)

c
λ
µ1,ν1 c

λ
µ2,ν2 [µ1][µ2]× [ν1][ν2],

where cc(λ/µ) is the number of connected components of the diagram λ/µ, (µj , νj) ∈
P (n− 2) × P (2) and cλµj ,νj are the Littlewood-Richardson coefficients.

We want to show that [n− 2, 2] never appears in A2([λ]). We notice that [n− 2, 2]
has a constituent [n− 2] × [2] in its restriction to Sn−2 ×S2. This cannot occur in the
first summand of A2([λ]), because A2([µ]) does not contain [n−2]. In the second sum
it could only occur for µ1 = µ2, to have [n − 2] in the first component; but then we
must have ν1 ̸= ν2, so that then [ν1][ν2] = [12], and thus we do not get [n− 2] × [2].
Hence a2,A = 0 and a2,S = a2.

Still assuming that n ⩾ 4, we finally consider the distribution of the constituents
[n−2, 12]. As above, we consider the restriction of S2([λ]) and A2([λ]) to Sn−2×S2 and
we notice that the second term is the same in both cases. Now, the term [n− 2] × [12]
in the restriction X2([λ]) can only appear in this second summand (the first summand
consists only of characters of the form [ν] × [2] for some ν ∈ P2(n)); moreover, it can
only come from the constituents [n − 1, 1] and [n − 2, 12], where it appears once in
the restriction. Hence we deduce that a1 + b2,S = b2,A, i.e., b2,A − b2,S = r1 − 1.
On the other hand, by Proposition 5.1 we have b2,A + b2,S = b2 = (r1 − 1)2, hence
b2,A = 1

2r1(r1 − 1) and b2,S = 1
2 (r1 − 2)(r1 − 1), as claimed. □

Proposition 5.3. For a, b ⩾ 3 we have that

S2([ab]) = [ab] + [ab− 2, 2] + [ab− 3, 3] + . . . A2([ab]) = [ab− 3, 13] + . . .

where the . . . are terms of depth 4 or higher.

Proof. The terms of depth 2 and the term (ab−3, 2, 1) can be obtained from Proposi-
tion 5.1 and Theorem 5.2. We now check the remaining constituents. For X ∈ ¶S,A♢
we consider the [ab− 3] × [3] and [ab− 3] × [13] isotypic summands of the following
(5.1)

X2(λ)↓Sn−k×Sk
=

∑

µ∈P
(ab)

(k)

X2([(ab)−µ]× [µ])+
∑

µ,ν∈P
(ab)

(k)

µ̸=ν

[(ab)−µ][(ab)−ν]× [µ][ν].

The multiplicity of [ab − 3] × [α] for α ∈ ¶(3), (13)♢ is zero in the second summand
(because µ ̸= ν implies that [(ab) − µ][(ab) − ν] does not contain the trivial repre-
sentation). We now consider the first summand. Let α ∈ ¶(3), (13)♢, we can apply
Lemma 2.4 to obtain

∑

µ∈¶(3),(13)♢

⟨X2([(ab) − µ] × [µ]) ♣ [ab− 3] × [α]⟩

=
∑

µ∈¶(3),(33)♢

⟨X2([(ab) − µ]) × [µ]2 ♣ [ab− 3] × [α]⟩(5.2)

=

{
2 if X = S and α = (3)

0 otherwise
(5.3)

Thus it only remains to consider the contribution of µ = (2, 1) to the [ab − 3] × [α]
isotypic summand. We consider the α = (13) case as the α = (3) case can be argued
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in an identical fashion. We have that

⟨X2([(ab) − (2, 1)] × [2, 1]) ♣ [ab− 3] × [13]⟩

=
1

6(n− 3)!

∑

(g,h)∈Sab−3×S3

X2([(ab) − (2, 1)] × [2, 1])(g, h) × (−1)ℓ(h).(5.4)

We breakdown the right-hand side of eq. (5.4) according to the elements h ∈ S3. We
note that (g, 1)2 = (g, 1) and [2, 1](1) = 2 and therefore

X2([(ab) − (2, 1)] × [2, 1])(g, 1) = X2(2[(ab) − (2, 1)](g)(5.5)

similarly, (g, (1, 2))2 = (g, 1) and [2, 1](1) = 2 and and [2, 1](1, 2) = 0 and therefore

X2([(ab) − (2, 1)] × [2, 1])(g, (1, 2)) =

{
−[(ab) − (2, 1)](g2) for X = A

[(ab) − (2, 1)](g2) for X = S
(5.6)

and finally, (g, (1, 2, 3))2 = (g, (1, 3, 2)) and [2, 1](1, 2, 3) = −1 = [2, 1](1, 3, 2) and
therefore

X2([(ab) − (2, 1)] × [2, 1])(g, (1, 2, 3)) = X2(−[(ab) − (2, 1)])(g)(5.7)

We can now decompose the right-hand side of eq. (5.4) for X = A according to the
conjugacy classes of S3 (of size 1, 3, and 2 respectively) and substitute in eqs. (5.5)
to (5.7) and hence obtain

1
6(n−3)!

∑

g∈Sn−3


A2(2[(ab) − (2, 1)])(g) + 3[(ab) − (2, 1)](g2) + 2S2[(ab) − (2, 1)](g)



where the final term comes from the substitution A2(−[λ]) = S2([λ]). We now consider
the three terms in the above sum. We have that

1
6(n−3)!

∑

g∈Sn−3

A2(2[(ab) − (2, 1)])(g) = 1
6 ⟨A2(2[(ab) − (2, 1)]) ♣ [ab− 3]⟩

= 1
6 (2⟨A2[(ab) − (2, 1)] ♣ [ab− 3]⟩

+ ⟨[(ab) − (2, 1)]2 ♣ [ab− 3]⟩)

= 1
6

where the final equality follows from Proposition 5.1. Similarly, we have that

3
6(n−3)!

∑

g∈Sn−3

[(ab) − (2, 1)](g2) = 1
2 ⟨[(ab) − (2, 1)](g2) ♣ [ab− 3]⟩

= 1
2 ⟨S2[(ab) − (2, 1)] −A2[(ab) − (2, 1)] ♣ [ab− 3]⟩

= 1
2

where the second equality follows from eq. (2.3) and the third from Proposition 5.1.
Finally, we have that

2
6(n−3)!

∑

g∈Sn−3

S2[(ab) − (2, 1)](2) = 1
3 ⟨S2[(ab) − (2, 1)] ♣ [ab− 3]⟩

= 1
3

where again the second equality follows from Proposition 5.1. Summing over these
terms we obtain

⟨A2([(ab) − (2, 1)] × [2, 1]) ♣ [ab− 3] × [13]⟩ = 1.(5.8)

In a similar fashion, one can show that

⟨S2([(ab) − (2, 1)] × [2, 1]) ♣ [ab− 3] × [3]⟩ = 1.(5.9)
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Thus, putting all of eqs. (5.3), (5.8) and (5.9) into eq. (5.1) we obtain

⟨X2(λ)↓Sn−k×Sk
♣ [ab− 3] × [α]⟩ =

{
1 if X = A and α = (13)

3 if X = S and α = (3)
.

Finally, the irreducible Sn-characters for which [ab−3]× [13] appears as a constituent
in the restriction are [ab− 3, 13] and [ab− 2, 12], the latter appears with coefficient 0
in A2([ab]) and so the former must appear with coefficient 1, as required. The irre-
ducible Sn-characters for which [ab−3]× [3] appears as a constituent in the restriction
are [ab− 3, 3], [ab− 2, 2], [ab− 1, 1] and [ab]; the final three of which appear with co-
efficients 1, 0, 1 respectively in S2([ab]) and so the first must appear with coefficient
3 − 2 = 1, as required. □

5.2. Squares of small depth characters. We now turn to the squares of char-
acters to partitions of depth at most 2. First we recall a result due to Malle and
Magaard on the squares of such characters obtained in the context of determining the
situations when the symmetric or alternating parts are irreducible [30, Lemma 2].

Below, for numbers n,m ∈ N the expression δn⩾m is defined to be 0 if n < m and 1
if n ⩾ m. The detailed description below makes the monotonous behaviour of the
coefficients explicitly visible. Note that the case of the character [n− 1, 1] also follows
from Theorem 5.2, and both [n− 1, 1] and [n− 2, 12] are also covered as special cases
of the more recent Theorem 4.1 from [34].

Proposition 5.4 ([30]). Let n ∈ N. Then we have the following decompositions. For
all n ⩾ 3:

S2([n− 1, 1]) = [n] + [n− 1, 1] + δn⩾4[n− 2, 2], A2([n− 1, 1]) = [n− 2, 12].

For all n ⩾ 4:

S2([n− 2, 2]) = [n] + δn⩾5[n− 1, 1] + (1 + δn⩾6)[n− 2, 2] + δn⩾7[n− 3, 3]

+ δn⩾5[n− 3, 2, 1] + δn⩾8[n− 4, 4] + δn⩾6[n− 4, 22],

A2([n− 2, 2]) = δn⩾5[n− 2, 12] + δn⩾6[n− 3, 2, 1] + [n− 3, 13] + δn⩾7[n− 4, 3, 1].

For all n ⩾ 5:

S2([n− 2, 12]) = [n] + [n− 1, 1] + 2[n− 2, 2]+

+ δn⩾6[n− 3, 3] + [n− 3, 2, 1] + δn⩾6[n− 4, 22] + [n− 4, 14],

A2([n− 2, 12]) = [n− 2, 12] + [n− 3, 2, 1] + [n− 3, 13] + δn⩾6[n− 4, 2, 12].

We now go one step further, to depth 3. In [30], the proof of Proposition 5.1 in
the case of [n − 1, 1] is given in detail, while the proofs in the case of [n − 2, 2] and
[n − 2, 12] are only hinted at; as the proof of the result in case of [n − 3, 3] is quite
involved we will give a detailed proof of this decomposition here. The case of [n−3, 13]
is again covered by the recent result on hooks [34]. For [n− 3, 2, 1], the data suggest
a formula that is much more involved.

Theorem 5.5. Let n ∈ N, n ⩾ 6. Then we have the following decompositions. The
symmetric square S2([n− 3, 3]) decomposes as follows

[n] + δn⩾7[n− 1, 1] + (1 + δn⩾8)[n− 2, 2] + (δn⩾7 + δn⩾9)[n− 3, 3]

+ δn⩾7[n− 3, 2, 1] + (δn⩾8 + δn⩾10)[n− 4, 4] + δn⩾8[n− 4, 3, 1]

+ (1 + δn⩾8)[n− 4, 22] + δn⩾11[n− 5, 5] + δn⩾9[n− 5, 4, 1]

+ δn⩾9[n− 5, 3, 2] + δn⩾7[n− 5, 22, 1] + δn⩾12[n− 6, 6] + δn⩾10[n− 6, 4, 2].
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The symmetric square A2([n− 3, 3]) decomposes as follows

δn⩾7[n− 2, 12] + δn⩾8[n− 3, 2, 1] + [n− 3, 13] + (δn⩾7 + δn⩾9)[n− 4, 3, 1]

+ δn⩾7[n− 4, 2, 12] + δn⩾10[n− 5, 4, 1] + δn⩾8[n− 5, 3, 2]

+ δn⩾8[n− 5, 3, 12] + δn⩾11[n− 6, 5, 1] + δn⩾9[n− 6, 32]

Proof. Set λ = (n− 3, 3). Since formulae for the product of 2-part partitions but also
for the multiplicity of constituents [n−3, 3] in arbitrary products are available (see [1,
42, 43, 49]), we know how [λ]2 decomposes into irreducibles. The two expressions for
the symmetric and alternating part given in the assertion above sum to [λ]2, and we
have to show that the distribution is indeed correct. For this we will use induction; by
computation (with Maple) we know that the result holds up to S12. So we can now
assume that n ⩾ 13, and then all δ-coefficients appearing in the formula are 1. Using
Lemma 2.3 we obtain

S2([n− 3, 3])↓Sn−1
= S2([n− 4, 3]) + S2([n− 3, 2]) + [n− 4, 3][n− 3, 2].(5.10)

By induction and Proposition 5.1, respectively, we know how the first two summands
decompose, and from the formula for characters to 2-part partitions, we know the
decomposition of the product [n− 4, 3][n− 3, 2] (e.g., from [1]):

[n− 4, 3][n− 3, 2] =[n− 2, 1] + [n− 3, 2] + [n− 3, 12] + 2[n− 4, 3] + 2[n− 4, 2, 1]

+ [n− 5, 4] + 2[n− 5, 3, 1] + [n− 5, 22] + [n− 5, 2, 12] + [n− 6, 5]

+ [n− 6, 4, 1] + [n− 6, 3, 2]

(5.11)

Altogether we obtain the following expression for the restriction S2([n− 3, 3])↓Sn−1
:

2[n− 1] + 3[n− 2, 1] + [n− 3, 12] + 5[n− 3, 2] + 5[n− 4, 3] + 4[n− 5, 4]

+ 3[n− 5, 22] + 4[n− 4, 2, 1] + 3[n− 5, 3, 1] + 2[n− 6, 5] + 2[n− 6, 4, 1]

+ 2[n− 6, 3, 2] + [n− 6, 22, 1] + [n− 7, 6] + [n− 7, 4, 2] + [n− 3, 12] + [n− 5, 2, 12]

(5.12)

From Theorem 5.2, we already know

S2([n− 3, 3]) = [n] + [n− 1, 1] + 2[n− 2, 2] + constituents of depth > 2,

and
A2([n− 3, 3]) = [n− 2, 12] + constituents of depth > 2.

As mentioned, we also have the decomposition of the square [n− 3, 3]2. Next we want
to apply Corollary 4.5; it is easily checked that for even n > 6, [n− 3, 3] vanishes on
elements of cycle type (n2 ,

n
2 ). Hence we obtain that S2([n− 3, 3]) and A2([n− 3, 3])

have the same number of constituents labelled by hooks of odd leg length; this implies
that [n− 3, 13] is (only) a constituent of A2([n− 3, 3]).

From the first 3 terms in S2([n − 3, 3]), we get as contributions to the restriction
(5.12):

2[n− 1] + 3[n− 2, 1] + 2[n− 3, 2].

We now have to determine the three constituents in 2[n − 3, 3] + 2[n − 3, 2, 1] (from
[n− 3, 3]2) which belong to S2 and contribute the other three constituents [n− 3, 2]
to (5.12). Since [n− 3, 12] appears only with multiplicity 1 in (5.12), we deduce that
2[n− 3, 3] + [n− 3, 2, 1] belongs to S2, and one constituent [n− 3, 2, 1] to A2. We also
note that [n−4, 13] is not in the restriction (5.12) of S2, so [n−4, 2, 12] must be in A2.
Next, we need three constituents of 2[n − 4, 4] + 3[n − 4, 3, 1] in S2 to get in total
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5[n− 4, 3] in (5.12), and the other two will then contribute the required 2[n− 4, 3] to
the restriction of A2.

By induction, in the restriction of A2, the term [n − 5, 4] (and also [n − 6, 5])
only appears once, in the product, so A2 can contain at most one constituent of
2[n− 4, 4] + [n− 5, 5] + 2[n− 5, 4, 1]. Also by induction, [n− 7, 6] does not occur at all
in the restriction of A2, so [n−6, 6] only occurs in S2, and then [n−6, 5, 1] must occur
(once) in A2; but then [n−5, 5] cannot also occur in A2. Furthermore, since [n−7, 4, 2]
does not occur in the restriction of A2 by induction, the second constituent [n−6, 4, 1]
can only come from [n− 5, 4, 1] in A2, and hence 2[n− 4, 4] + [n− 5, 5] + [n− 5, 4, 1]
is in S2. To get a total of 5[n− 4, 3] in the restriction of S2, we then have exactly one
[n−4, 3, 1] in S2 (and 2[n−4, 3, 1] in A2). We note that [n−4, 22] is not in A2, since this
would give a surplus term [n− 4, 2, 1] in the restriction of A2, so 2[n− 4, 22] is in S2.
By induction, there is only one [n−5, 22] in the restriction of A2, but 3[n−5, 22] in S2.
Hence A2 can contain only one constituent of 2[n−5, 3, 2]+[n−5, 22, 1]. But for the still
missing 2[n−5, 3, 1] in the restriction of A2, 2 constituents of 2[n−5, 3, 2]+[n−5, 3, 12]
are needed in A2. Hence [n−5, 3, 2]+[n−5, 3, 12] is in A2, and [n−5, 3, 2]+[n−5, 22, 1]
in S2. Finally, from the restrictions we immediately conclude that [n− 6, 4, 2] belongs
to S2 and [n− 6, 32] to A2.

(A final check shows that the restrictions of the stated decompositions give indeed
the right result.) □

Remark 5.6. (1) While the patterns are not really clear from the cases of small k,
we will later see some general properties for the symmetric and alternating part of
[n− k, k]2 (see Section 7).

(2) In light of Proposition 3.3 and Remark 3.4 it is worth pointing out again that
all the splittings determined here in case of small depth partitions (and later for some
other families of partitions) immediately provide relations between the coefficients of
projective characters. Apart from the decomposition numbers, we also obtain relations
between some coefficients ⟨[ρk]2, [µ]⟩ appearing in the Saxl square.

6. Splitting the square: The sign constituent and its neighbour

We have already seen that for all λ ∈ P (n), the trivial character [n] is a constituent
of S2([λ]). How about the sign character [1n]?

Let λt denote the transpose of λ. It is well known that [1n][λ] = [λt], so

⟨[λ]2, [1n]⟩ = ⟨[λ], [λt]⟩ =


1 if λ = λt

0 otherwise

Thus, [1n] occurs as a constituent in the square [λ]2 only when λ is symmetric, and
in this case with multiplicity 1.

The question for which symmetric λ the constituent [1n] occurs in A2([λ]) was
answered in [20, Theorem 3.3]; the proof of this theorem required some intricate
results and tableaux combinatorics. We state the answer below and provide a new
proof involving the characters of the alternating groups which seems more conceptual.

First, we recall some facts on the irreducible characters of the alternating group An.
For λ ̸= λt ∈ P (n), the restriction [λ]↓An

= ¶λ♢ is irreducible, while for λ = λt, the
restriction is a sum of two different but algebraically conjugate irreducible characters
¶λ♢+ and ¶λ♢−. In this way we obtain all irreducible characters of An.

In particular, the characters ¶λ♢+ and ¶λ♢− have the same Frobenius–Schur indica-
tor (mentioned in Section 2), and when they are non-real, they are complex conjugate
to each other. In fact, for λ = λt with principal hook lengths h1, . . . , hd (for d = dl(λ)
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the Durfee length of λ), the only possibly non-integral values of ¶λ♢± are

1
2 (ελ ±

√
ελ
∏d
j=1 hj),

where ελ = (−1)(n−d)/2; in particular, the characters ¶λ♢± are real exactly if ελ = 1.

Theorem 6.1. Let λ ∈ P (n) be a symmetric partition; set d = dl(λ). Then [1n] is a
constituent of S2([λ]) exactly if the characters ¶λ♢± are real, i.e., if n ≡ d mod 4.
Equivalently,

sg(λ, (1n)) − ag(λ, (1n)) = (−1)
n−d

2 .

Proof. Since [λ]↓An
= ¶λ♢+ + ¶λ♢−, using Lemma 2.3

we have for X ∈ ¶S,A♢:

X2([λ])↓An
= X2(¶λ♢+) +X2(¶λ♢−) + ¶λ♢+¶λ♢−.

When the characters ¶λ♢± are non-real, we have

1 = ⟨¶λ♢+, ¶λ♢+⟩ = ⟨¶λ♢+¶λ♢−, ¶n♢⟩,

while in the real case ⟨¶λ♢+¶λ♢−, ¶n♢⟩ = 0. Now the trivial character ¶n♢ only comes
from the restriction of [n] and [1n] to An, and we already know that both occur only
once in [λ]2, and that [n] is a constituent of S2([λ]). Hence, when ¶λ♢± are non-real,
[1n] must occur in A2([λ]). Now assume that the characters ¶λ♢± are real; by the
reasoning above, at least one of S2(¶λ♢±) has to contain ¶n♢, but since ¶λ♢± have
the same Frobenius–Schur indicator, then both S2(¶λ♢±) contain ¶n♢. Thus, in the
real case, S2([λ]) has to contain both, [n] and [1n].

Finally, it was already pointed out above that the characters ¶λ♢± are non-real
exactly if ελ = (−1)(n−d)/2 = −1, so we are done. □

For the location of the sign character in one of the two parts of the Saxl square we
then have the following consequence.

Corollary 6.2. Let k ∈ N, k > 1, n = k(k + 1)/2. Then the following holds.

(1) If k ̸≡ 2 mod 4, then sg(ρk, (1
n)) = 1, ag(ρk, (1

n)) = 0.
(2) If k ≡ 2 mod 4, then sg(ρk, (1

n)) = 0, ag(ρk, (1
n)) = 1.

Proof. The diagonal length of ρk is d = ⌊k+1
2 ⌋. Thus, when k is odd, we have

n− d

2
= 1

4 (k(k + 1) − (k + 1)) = 1
4 (k − 1)(k + 1),

which is always even. When k is even, we have

n− d

2
= 1

4 (k(k + 1) − k) = 1
4k

2,

which is even exactly when k ≡ 0 mod 4. □

We want to build on Theorem 6.1 and determine next the distribution of [2, 1n−2]
in the Kronecker square [λ]2.

Theorem 6.3. Let λ ∈ P (n), with d = dl(λ) and r1 the number of removable boxes.

(1) Assume ♣λ ∩ λt♣ < n− 1. Then

sg(λ, (2, 1n−2)) = 0 = ag(λ, (2, 1n−2)).

(2) Assume ♣λ ∩ λt♣ = n− 1. Then

sg(λ, (2, 1n−2)) = 1, ag(λ, (2, 1n−2)) = 0 if n−1−d
2 is even,

sg(λ, (2, 1n−2)) = 0, ag(λ, (2, 1n−2)) = 1 if n−1−d
2 is odd.
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(3) Assume ♣λ ∩ λt♣ = n, i.e., λ = λt. Set ελ = (−1)(n−d)/2. Then

sg(λ, (2, 1n−2)) = r1−1
2 = ag(λ, (2, 1n−2)) if r1 is odd

sg(λ, (2, 1n−2)) = ⌊ r1−ελ

2 ⌋, ag(λ, (2, 1n−2)) = ⌊ r1+ελ

2 ⌋ if r1 is even.

Proof. First of all, we note that ♣λ∩λt♣ is the maximal length of a constituent in [λ]2

(see [17]). Hence [2, 1n−2] can only occur as a constituent in [λ]2 if ♣λ ∩ λt♣ ⩾ n − 1.
This gives (1).

Furthermore, when ♣λ ∩ λt♣ = n− 1, then we have (using [17]):

⟨[λ]2, [2, 1n−2]⟩ = ⟨[1][1], [1]⟩ = 1.

So for (2), we only have to determine whether [2, 1n−2] belongs to S2([λ]) or A2([λ]).
We keep in mind that [λ]2 does not contain [1n].

We now consider the restriction of [λ] to Sn−1. Let again X ∈ ¶A,S♢. We have
already seen before that we obtain

(6.1) X2([λ])↓Sn−1
=
∑

C

X2([λC ]) +
∑

C ̸=D

[λC ][λD],

where C,D run over the removable boxes of λ. Let B be the box in λ/(λ ∩ λt). Now,
[1n−1] is a constituent in a product [λC ][λD] (appearing in the sum above) if and only
if λC = λtD. But if C = B, this cannot hold for any D ̸= C; then, C ̸= D must be in
transpose positions, but then λC ̸= λtD, by comparing B and its transpose. So [1n−1]
can occur as a constituent in X2([λ])↓Sn−1

, if and only if it is in X2([λB ]). For X = S

(X = A, respectively), we know by Theorem 6.1, that this is the case if and only
if 1

2 (n− 1 − dl(λC)) is even (odd, respectively). As C is not on the diagonal of λ, we
have that

1
2 (n− 1 − dl(λC)) = 1

2 (n− 1 − d).

Since [1n] does not appear in [λ]2, [1n−1] can occur as a constituent in X2([λ])↓Sn−1
,

if and only if [2, 1n−2] is a constituent of X2([λ]). Hence [2, 1n−2] is a constituent of
S2([λ]) (A2([λ]), respectively) if and only if 1

2 (n− 1 − d) is even (odd, respectively),
and thus (2) is proved.

Now we turn to (3), i.e., now λ = λt. In this case, we have (see Proposition 5.1)

g(λ, λ, (2, 1n−2)) = g(λ, λ, (n− 1, 1)) = r1 − 1.

As in the previous case, we consider the restriction of [λ] to Sn−1 and look at eq. (6.1).
First we consider the case that r1 is odd, i.e., there is a removable box, B say, on the

diagonal of λ. This time, a product [λC ][λD] (appearing in eq. (6.1) above) can contain
a constituent [1n−1], namely, exactly when C,D are a pair of transpose boxes in λ. As
the box B is never involved, we obtain exactly r1−1

2 such constituents [1n−1]. In the

first sum on the right side of eq. (6.1), we can have at most one constituent [1n−1],
namely in X2([λB ]), and we know it is in S2([λB ]) (A2([λB ]), respectively), when
1
2 (n− 1 − (d− 1)) = 1

2 (n− d) is even (odd, respectively). We thus have found r1

constituents [1n−1] in [λ]2↓Sn−1
, which must come from the part [1n]+(r1 −1)[2, 1n−2]

in [λ]2; we also know from the previous arguments that [1n] is in X2([λ]) if and only
if [1n−1] is in X2([λB ]). Thus we must have exactly 1

2 (r1 − 1) constituents [2, 1n−2]

in both S2([λ]) and A2([λ]), as claimed.
Next we consider the case that r1 is even, i.e., there is no removable box on the

diagonal of λ. Similar as in the previous case, we find exactly r1

2 products [λC ][λD]

with a constituent [1n−1], to pairs of transposed boxes in λ; lying above these, we find
r1

2 constituents in X2([λ]). In this case no λC is symmetric, so none of X2([λC ]) can

contain a constituent [1n−1]. So the one constituent [1n] in either S2([λ]) or A2([λ])
(depending on ελ being 1 or −1, respectively), restricts to one of the constituents
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[1n−1] in
∑
C ̸=D[λC ][λD], while all the other such constituents have to come from

r1

2 − 1 constituents [2, 1n−2] in S2([λ]) or A2([λ]), respectively, and the other part of

the Kronecker square has r1

2 constituents [2, 1n−2]. It is easily seen that this is exactly
the assertion in (3) in the case of even r1. □

7. Splitting the square: 2-part partitions

For the Kronecker square of a 2-part partition λ even the coefficients g(λ, λ, µ) are
difficult to determine (see the earlier comments on Remmel’s formula), and we have
also seen that even in case of partitions of small depth the formulae are intricate. So
we will focus here on some particularly nice squares. We first state the decomposition
of some multiplicity-free products of characters to 2-part partitions. These follow
from the general formulae, and were known already as part of the easy direction
of the classification conjecture on multiplicity-free products (see [4]); they have also
appeared explicitly in some more recent papers. The fact that only partitions of length
at most 4 can appear is easy to see as a consequence of [17].

Proposition 7.1. For k ∈ N0 and n = 2k + 1, we have that

(1) [k + 1, k]2 =
∑

λ∈P4(n)

[λ] .

For k ∈ N and n = 2k, we let E4(n) and O4(n) denote the sets of partitions λ ∈ P4(n)
into only even parts and only odd parts, respectively. Then

(2) [k, k]2 =
∑

λ∈E4(n)

[λ] +
∑

λ∈O4(n)

[λ] .

Let k ∈ N, n = 2k. Let E2O2(n) denote the set of partitions λ ∈ P4(n) with two even
and two odd parts (again, 0 is considered an even part). Then

(3) [k, k][k + 1, k − 1] =
∑

λ∈E2O2(n)

[λ] .

Notably the square in (2) above was also computed by Manivel [32], who added
“that it would be interesting to understand the splitting of [n, n][n, n] into its symmetric
and skew-symmetric parts”. We will answer his question and provide some further
square splittings below.

We further note that (1) can easily be deduced from (2) by restriction.
First we show that all characters to E4-partitions occur in the symmetric part.

Proposition 7.2. For k ∈ N and n = 2k, we have

sg((k, k), λ) = 1 for all λ ∈ E4(n).

Proof. For j ∈ ¶1, 2, 3♢ we already know and for j = 4 we check by computer that
sg((j, j), (2j)) = 1. Now if λ ∈ E4(n), we can decompose λ into a sum of double-

columns, i.e., λ =
∑λ1/2
j=1 λ(j), where λ(j) ∈ ¶(2), (22), (23), (24)♢, for all j. Hence

by Proposition 7.1 and the semigroup property stated in Proposition 2.5, we obtain
sg((k, k), λ) = 1. □

Next we prove with considerable more work that for all λ ∈ O4(2k) we have
sg((k, k), λ) = 0. This will then give the desired splitting.

In this section we deal with characters and modules induced from Young subgroups
and wreath product subgroups, the irreducible characters and modules, and the sym-
metric powers of all these modules. It is thus easier to use module notation (rather
than introduce new character notation) throughout this section (in contrast to earlier
sections).
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We first recall a couple of results on decomposing induced representations and
Kronecker products, which will be essential in what follows.

Proposition 7.3 ([48]). For k ⩾ 1, we have that

indS2k

Sk≀S2
(C) =

⊕
µ∈P2(k)

S2µ
C

Proposition 7.4 ([8]). For 1 ⩽ k ⩽ d we have that

S
(d,d)
C

⊗ S
(d+k,d−k)
C

=
k⊕
i=0

S
(k+i,k,i)P
C

k⊕
i=1

S
(k+1+i,k+1,i)P
C

(7.1)

where γP = ¶µ ♣ µ− γ ∈ O4(2d) or µ− γ ∈ E4(2d)♢.

We are now ready to begin proving that no sg((k, k), λ) = 0 for all λ ∈ O4(2k).
The first step toward this goal is to understand the symmetric powers of Young
permutation modules and their quotients.

Proposition 7.5. For λ ∈ P2(n), we have that

S2(Mλ
C ) =

⊕
0⩽k⩽λ2

⊕
α∈P2(k)

indSn

Sn−2k×S2k
(M

(λ1−k,λ2−k)
C

⊠ S2α
C )(7.2)

and hence the multiplicities [S2(Mλ
C

) : Sµ
C

] can be calculated using Young’s rule.

Proof. We consider the action of Sn on the basis ¶s ⊗ t + t ⊗ s ♣ s, t ∈ RStd(λ)♢. We
define the intersection number of a pair of row-standard tableaux as follows

ı(s, t) = λ2 − ♣¶s(2, c) ♣ 1 ⩽ c ⩽ λ2♢ ∩ ¶t(2, c) ♣ 1 ⩽ c ⩽ λ2♢♣

and we notice that ı(s, t) = ı(g(s), g(t)) for g ∈ Sn and so S2(M(λ) = ⊕0⩽k⩽λ2
Mk(λ)

where

Mk(λ) = ¶s ⊗ t + t ⊗ s ♣ s, t ∈ RStd(λ), ı(s, t) = k♢.

Each Mk(λ) is transitive permutation module of S2n with stabiliser given by

Sλ1−k,λ2−k × Sk ≀ S2

and so the result follows. □

Corollary 7.6. For d ⩾ 1, we have that S2(M
(d+1,d−1
C

) is a submodule of S2(M
(d,d)
C

)
and the quotient module is as follows

S2(M
(d,d)
C

)/S2(M
(d+1,d−1)
C

) ∼=
⊕

0⩽k⩽d

⊕
α∈P2(k)

indSn

Sn−2k×S2k
(S

(d−k,d−k)
C

⊠ S2α
C ).

Proof. Setting λ = (d, d), the right-hand side of (7.2) has d terms (the Mk(d, d)
for 0 ⩽ k ⩽ d). Setting λ = (d + 1, d − 1), the right-hand side of (7.2) has (d − 1)
terms (the Mk(d+ 1, d− 1) for 0 ⩽ k ⩽ d− 1). For each 0 ⩽ k ⩽ d− 1 we have that
Mk(d+ 1, d− 1) is a submodule of Mk(d, d) and the quotient module is isomorphic to

⊕
α∈P2(k)

indSn

Sn−2k×S2k
(S

(d−k,d−k)
C

⊠ S2α
C ),

and the result follows. □

Proposition 7.7. For µ ∈ O4(n), we have that [S2(S
(d,d)
C

) : Sµ
C

] = 0.

Proof. For λ, ν ∈ P2(n), we have that ♣SStd(λ, ν)♣ = 1 if λ ⊵ ν (and is 0 otherwise).
Therefore

[M
(d,d)
C

] = [S
(d,d)
C

] + [M
(d+1,d−1)
C

]
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by Young’s rule. Rearranging this, we note that

χ2
S [S

(d,d)
C

] = χ2
S([M

(d,d)
C

] − [M
(d+1,d−1)
C

])

= χ2
S [M

(d,d)
C

] − χ2
S [M

(d+1,d−1)
C

] − [S
(d,d)
C

] ⊗ [M
(d+1,d−1)
C

].

We need to verify, for µ ∈ O4(n), that the following holds

(7.3) ⟨χ2
S [M

(d,d)
C

] − χ2
S [M

(d+1,d−1)
C

] ♣ [Sµ
C

]⟩ = ⟨[S
(d,d)
C

] ⊗ [M
(d+1,d−1)
C

] ♣ [Sµ
C

]⟩.

We calculate the left-hand side of equation (7.3) using Corollary 7.6 and the right-
hand side of (7.3) using Proposition 7.4.
Calculating the left-hand side of equation (7.3). For µ ∈ O4(n), we will calcu-
late the multiplicity of any Sµ

C
in the right-hand side of (7.6) using the Littlewood–

Richardson rule. Namely, we will calculate
∑

0⩽k⩽d

∑

α∈P2(k)

♣LR(µ∖ (d− k, d− k), 2α)♣

for µ ∈ O4(2d). Now, since (d−k, d−k) and α are both two-row partitions and µ is a
four-row partition, we deduce that necessary conditions for ♣LR(µ∖(d−k, d−k), 2α)♣ ≠
0 are that d−k ⩾ µ3 and d ⩾ µ2 ⩾ d−k. Therefore we can set m = d−k and rewrite
the above sum as follows∑

µ3⩽m⩽µ2

∑

α∈P2(d−m)

♣LR(µ∖ (m,m), 2α)♣.

For any T ∈ LR(µ∖ (m,m), 2α), we have that

T(3, c) = 1 T(4, c) = 2

for all 1 ⩽ c ⩽ µ4. Furthermore,

T(1, c) = 1 T(2, c) = 2

for all µ2 ⩽ c ⩽ µ1. At this point, we split into two families of tableaux, depending on
the parity of µ2−m. We will use without further mention the fact that µ1−µ2, µ2−µ3,
2α1 and 2α2 are even numbers and that µ3 − µ4 is odd.

If µ2 − m is even, then we fill the remaining entries T(3, c) with an odd number
of 2s (and an odd number of 1s). We note that the total number of 2s used in filling
these boxes must be less than or equal to µ1 −µ2, in order to satisfy the semistandard
condition. Thus the total number of such tableaux is given by

1
2 min¶µ3 − µ4, µ1 − µ2♢ × 1

2 (µ2 − µ3 + 2)(7.4)

where there are 1
2 min¶µ3 −µ4, µ1 −µ2♢ choices for the number of 2s in the third row

and where the value µ3 ⩽ m ⩽ µ2 must satisfy the parity condition.
If m − µ2 is odd, then we fill the remaining entries T(3, c) with an even number

of 2s (and an even number of 1s). Similarly to the above, the total number of such
tableaux is given by

1
2 (min¶µ3 − µ4, µ1 − µ2♢ + 2) × 1

2 (µ2 − µ3).(7.5)

Therefore, summing over (7.4) and (7.5) we deduce that the left-hand side of equation
(7.3) is equal to

1
2 (min¶µ3 − µ4, µ1 − µ2♢(µ2 − µ3) + min¶µ3 − µ4, µ1 − µ2♢ + (µ2 − µ3))

for µ ∈ O4(n).
Calculating the right-hand side of equation (7.3). We first remark that if µ ∈ γP
then µ has 4 non-zero rows, whereas γ only has 3 rows. Therefore µ ∖ γ has an odd
fourth row; hence all its rows are odd and (µ− γ) ∈ O4(n). This implies that γ must
have only even rows. We note that precisely one of the two summands in (7.1) has γ2
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1 1

1 1 1

2 2

1 1 2

Figure 1. A generic example of a semistandard tableau for µ2−m =
0 and α maximal in the dominance ordering. We note that there are
an odd number of 2s (and therefore an odd number of 1s) in the pink
region. We note that for a fixed value m, the only choices we can
make are in the pink region.

1

2

1 1

1 1 1

2 2

1 1 1

1

2

1 1

1 1 1

2 2

1 2 2

Figure 2. Generic examples of semistandard tableaux for µ2 −m =
1 and α maximal and near maximal in the dominance ordering. There
are an odd number of 2s (and therefore an even number of 1s) in the
pink region. Again, we emphasise that for a fixed value m, the only
choices we can make are in the pink region.

even. In particular, for k even the righthand sum is zero (since γ2 = k+ 1 is odd) and
for k odd the lefthand sum is zero (since γ2 = k is odd). Moreover, we are summing

over all S
(d,d)
C

⊗S
(d+k,d−k)
C

for 1 ⩽ k ⩽ d and we notice that the non-zero term in the
kth even case can be rewritten as follows

∑

0⩽i⩽k

[S
(k+i,k,i)P
C

] = [S
(k,k)P
C

] + [S
(2k,k,k)P
C

] +
∑

0<i<k

[S
(k+i,k,i)P
C

]

where the final sum on the right-hand side is equal to the non-zero term in the (k−1)th
case, namely

k−1∑

i=1

[S
((k−1)+1+i,(k−1)+1,i)P
C

].

Thus, it remains to understand the non-empty even partitions γ = 2(c+ j, c, j) such
that µ− γ is itself a partition; we denote this set by

Dµ = ¶γ = 2(c+ j, c, j) ♣ γ ̸= ∅ and µ− γ is a partition♢.
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By the above and (7.1), we have that
(7.6)

⟨[S
(d,d)
C

⊗M
(d+1,d−1)
C

] ♣ [Sµ
C

]⟩ = 2♣¶γ ∈ Dµ ♣ γ3 ̸∈ ¶0, γ2♢♢♣ + ♣¶γ ∈ Dµ ♣ γ3 ∈ ¶0, γ2♢♢♣.

We have that β = µ− γ is a partition if and only

• β1 − β2 ⩾ 0 which is equivalent to j ⩽ 1
2 (µ1 − µ2); and

• β3 − β4 ⩾ 0 which is equivalent to j ⩽ 1
2 (µ3 − µ4); and

• β2 − β3 ⩾ 0 which is equivalent to c ⩽ 1
2 (µ2 − µ3) + j.

Putting the first two equalities together with the fact that (c + j, c, j) is itself a
partition, we deduce that 0 ⩽ j ⩽ 1

2 min¶µ3 −µ4, µ1 −µ2♢. Putting the final equality
together with the fact that (c + j, c, j) is itself a partition, we deduce that j ⩽ c ⩽
1
2 (µ2 − µ3) + j. Thus we have that

2♣¶γ ∈ Dµ ♣ γ3 ̸∈ ¶0, γ2♢♢♣ = 2♣¶2(c+ j, c, j) ∈ Dµ ♣ 0 ̸= j ̸= c♢♣

= 2 × ( 1
2 min¶µ3 − µ4, µ1 − µ2♢ × 1

2 (µ2 − µ3))

and setting j = 0 or j = c respectively, we obtain

♣¶γ ∈ Dµ ♣ γ3 = 0♢♣ = 1
2 (µ2 −µ3), ♣¶γ ∈ Dµ ♣ γ3 = γ2♢♣ = 1

2 min¶µ1 −µ2, µ3 −µ4♢.

Substituting these three terms into the right-hand side of (7.6), we obtain

1
2 (min¶µ3 − µ4, µ1 − µ2♢(µ2 − µ3) + min¶µ3 − µ4, µ1 − µ2♢ + (µ2 − µ3))

as required. □

Thus putting together Propositions 7.2 and 7.7 we immediately obtain the following
rather nice splitting of the square [k, k]2:

Theorem 7.8. For k ∈ N and n = 2k, we have

S2([k, k]) =
∑

λ∈E4(n)

[λ] , A2([k, k]) =
∑

λ∈O4(n)

[λ] .

The above theorem has an immediate consequence in algebraic combinatorics. We
recall that Ck = 1

k+1

(
2k
k

)
is the k-th Catalan number, and f(α) = [α](id) is the

number of standard Young tableaux of shape α.

Corollary 7.9. Given α a partition, we define

s(α) =





1 if α ∈ E4(n)

−1 if α ∈ O4(n)

0 otherwise.

We have that

Ck =
∑

α∈P (2k)

s(α)f(α).(7.7)

Proof. This follows from Theorem 7.8 by evaluating S2([k, k]) − A2([k, k]) = [k, k](2)

at the identity, since Ck = f(k, k). □

Example 7.10. The fourth Catalan number can be calculated as follows

C4 = 14 = 1 + 20 + 14 + 56 + 14 − 35 − 56

= f( ) + f( ) + f( ) + f( ) + f( ) − f( ) − f( ).

The splitting of the square [k, k]2 immediately implies the splitting of [k, k − 1]2

by restriction; this splitting is explicitly formulated in the following result.
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Theorem 7.11. For k ∈ N0 and n = 2k + 1, we let E3O1(n) and E1O3(n) denote
the sets of partitions λ ∈ P4(n) into three even and one odd parts, and one even and
three odd parts, respectively. Then we have

S2([k + 1, k]) =
∑

λ∈E3O1(n)

[λ] , A2([k + 1, k]) =
∑

λ∈E1O3(n)

[λ] .

There are some further closely related cases that have nice decompositions. The
decomposition of the Kronecker square [k + 1, k − 1]2 (which is not multiplicity-free)
into its irreducible constituents can be obtained from the general 2-part formulae, but
is also easily derived from the special formulae for [k, k]2 and [k, k][k + 1, k − 1].

For λ ∈ P4(n), we denote by d(λ) the number of different parts of λ; note that
here we are also taking 0 into account, so this may be different from the number r1

of removable boxes.

Proposition 7.12. Let k ∈ N, n = 2k. Let E2O
′
2(n) (and E2O

′
2(n), respectively)

denote the set of partitions λ ∈ P4(n) with two even and two odd parts, where the two
odd parts (the two even parts, respectively) are different (again, 0 is considered as an
even part). Then

[k + 1, k − 1]2 =
∑

λ∈E4(n)∪O4(n)

(d(λ) − 1)[λ] +
∑

λ∈E2O′

2(n)

[λ] +
∑

λ∈E′

2O2(n)

[λ] .

Setting δλ = 1 if λ has exactly two odd parts, and δλ = 0 otherwise, we can formulate
equivalently:

g((k + 1, k − 1), (k + 1, k − 1), λ) = d(λ) − 1 − δλ.

The splitting of the square [k + 1, k − 1]2 into its symmetric and alternating part
is given in the following result.

Theorem 7.13. For k ∈ N, n = 2k, we have

S2([k + 1, k − 1]) =
∑

λ∈E4(n)

(d(λ) − 1)[λ] +
∑

λ∈E2O′

2(n)

[λ]

A2([k + 1, k − 1]) =
∑

λ∈O4(n)

(d(λ) − 1)[λ] +
∑

λ∈E′

2O2(n)

[λ] .

Proof. We want to use the splitting results for [k, k]2 and [k + 1, k]2 in Theorems 7.8
and 7.11, as well as the product formula for [k, k][k + 1, k] in Proposition 7.1(3).

For the restriction of S2([k+ 1, k]) to S2k = Sn we obtain by Theorem 7.11 on the
one hand

S2([k + 1, k])↓Sn
=

∑

µ∈E3O1(n+1)

∑

A∈Rem(µ)

[µA].

On the other hand, by Lemma 2.3 we have that

S2([k + 1, k])↓Sn
= S2([k, k]) + S2([k + 1, k − 1]) + [k, k][k + 1, k − 1].

We know the decomposition of all terms here except for that of S2([k + 1, k − 1]);
thus we can now determine the multiplicities of all constituents of S2([k + 1, k − 1]).
First we note that only constituents λ ∈ E4(n) ∪ E2O2(n) can occur. For λ ∈ E4(n),
we obtain

⟨S2([k + 1, k − 1]), [λ]⟩ = ♣¶(µ,A) ∈ E3O1(n+ 1) × Rem(µ) ♣ µA = λ♢♣ − 1 = d(λ) − 1.

Now take λ ∈ E2O2(n); let dodd(λ) be the number of different odd parts of λ. Then
we obtain

⟨S2([k + 1, k − 1]), [λ]⟩ = ♣¶(µ,A) ∈ E3O1(n+1)×Rem(µ) ♣ µA = λ♢♣−1 = dodd(λ)−1.
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Hence

S2([k + 1, k − 1]) =
∑

λ∈E4(n)

(d(λ) − 1)[λ] +
∑

λ∈E2O2(n)

(dodd(λ) − 1)[λ]

=
∑

λ∈E4(n)

(d(λ) − 1)[λ] +
∑

λ∈E2O′

2(n)

[λ],

which proves our claim on S2([k+1, k−1]). As we already know the decomposition of
[k+1, k−1]2 into its constituents, we immediately obtain that also the stated formula
for A2([k + 1, k − 1]) is correct. □

We end the section with some further results on the splitting of squares to arbitrary
2-part partitions.

First we consider the distribution of hooks in the square of characters to arbitrary
2-part partitions; note that only hook partitions of length at most 4 can appear.

Proposition 7.14. Let n ∈ N, λ ∈ P (n) with ℓ(λ) = 2. Then the hook constituents
appearing in [λ]2 distribute as follows into the symmetric and alternating part.

(1) For n ⩾ 3, λ = (n− 1, 1), we have

sg(λ, (n)) = 1 = sg(λ, (n− 1, 1)), ag(λ, (n− 2, 12)) = 1.

(2) For n = 2k and λ = (k, k), we have

sg(λ, (n)) = 1, ag(λ, (n− 3, 13)) = 1.

(3) For n ⩾ 4, λ ̸= (n− 1, 1), (k, k), we have

sg(λ, (n)) = 1 = sg(λ, (n− 1, 1), ag(λ, (n− 2, 12)) = 1 = ag(λ, (n− 3, 13)).

Proof. By Theorem 5.2 we know that [n] always appears in S2([λ]) with multiplic-
ity 1, and [n − 1, 1] appears in S2([λ]) with multiplicity 1 if λ ̸= (k, k) (and is not a
constituent of [λ]2 otherwise).

For (1): this has already been stated in Proposition 5.4.
For (2) and (3): since only (n− 2, 12) and (n− 3, 13) need to be considered, both

assertions follow from Propositions 4.2 and 4.3. □

By the general formulae we know the multiplicities of the 2-part constituents in the
square of a character to a 2-part partition; the next result tells us that none of these
2-part constituents appear in the alternating part. For the proof we modify the proof
of the special case contained in [51, Theorem 1.1(a)]; in particular, we also apply the
crucial result proved in [51, Lemma 2.1].

Theorem 7.15. Let n ∈ N and λ, µ ∈ P (n) such that ℓ(λ), ℓ(µ) ⩽ 2. Then we have

ag(λ, µ) = 0.

Proof. If ℓ(λ) = 1 the result is trivial. So from now on we will assume that ℓ(λ) = 2.
For k with 0 ⩽ 2k ⩽ n we set χk = [n − k, k] and χAk = A2([n − k, k]). The proof of
our assertion is now equivalent to showing that for all 1 ⩽ l ⩽ n/2 and 0 ⩽ k ⩽ n/2:

⟨χk, χ
A
l ⟩ = 0.

For 0 ⩽ j ⩽ n/2, we let πj be the character to the permutation character of the
natural action of Sn on j-element subsets of ¶1, . . . , n♢. By [43] we know that πj
decomposes as

πj =

j∑

k=0

χk .

Now for all k ⩽ j, ⟨πj , χ
A
l ⟩ ⩾ ⟨χk, χ

A
l ⟩ ⩾ 0, hence if we can show that ⟨πj , χ

A
l ⟩ = 0

for some j, then ⟨χk, χ
A
l ⟩ = 0 for all k ⩽ j.
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We now set out to prove ⟨πj , χ
A
l ⟩ = 0 for all l, j such that 1 ⩽ l ⩽ j ⩽ n/2 (of

course, j = ⌊n/2⌋ would be sufficient, but the argument does not become easier); this
will then imply ⟨χk, χ

A
l ⟩ = 0 for all k ⩽ n/2. Using χl = πl − πl−1 and the explicit

formula for χAl , this amounts to showing for l ⩽ j ⩽ n/2:

0 =
∑

g∈Sn

πj(g)(πl(g)2 + πl−1(g)2 − 2πl(g)πl−1(g) − πl(g
2) + πl−1(g2)).

Now, as observed in [51], the character values of the permutation characters on g2 can

be rewritten using suitable character values on g. Namely, if π
¶2♢
l is the permutation

character to the action of Sn on unordered pairs of l-element subsets of ¶1, . . . , n♢,
then

πl(g
2) = 2π

¶2♢
l (g) − πl(g)2 + 2πl(g) .

Using this, our rephrased aim now is to show:

0 =
∑
g∈Sn

πj(g)

πl(g)2 − πl(g)πl−1(g) − π

¶2♢
l (g) + π

¶2♢
l−1(g) − πl(g) + πl−1(g)


.

This is equivalent to seeing that

Ij,l := ⟨πj , π
2
l − πlπl−1 − π

¶2♢
l + π

¶2♢
l−1 − πl + πl−1⟩ = 0.

From the decomposition of the πi’s, we obtain immediately (using 1 ⩽ l ⩽ j):

Ij,l = ⟨πj , π
2
l − πlπl−1 − π

¶2♢
l + π

¶2♢
l−1⟩ − 1.

Now we use [51, Lemma 2.1]; this says that for 1 ⩽ l ⩽ j ⩽ n/2 we have

⟨πj , π
2
l − πlπl−1 − π

¶2♢
l + π

¶2♢
l−1⟩ = 1.

Thus we conclude that Ij,l = 0 for 1 ⩽ l ⩽ j ⩽ n/2, and hence our result is proved. □

Remark 7.16. We note that the analogous question for partitions of width at most 2
(i.e., with largest part at most 2) is much less interesting as all constituents in [λ]2,
for λ of width at most 2, have length at most 4. Hence width 2 constituents can only
occur for n ⩽ 8, and we can answer the question by simple computations. Indeed,
from the results on the constituents to (1n) and (2, 1n−2), we know when they oc-
cur as constituents in A2([λ]); there are no further exceptional cases. In summary,
ag(λ, µ) = 0 for λ, µ of width at most 2, except for (λ, µ) being one of ((2, 1), (13)),
((2, 12), (2, 12)), ((22), (14)), ((22, 1), (2, 13)). Note that the second case is the only one
of a width 2 partition λ with ag(λ, λ) > 0; this is [51, Theorem 1.1(b)].

Remark 7.17. It would be very interesting if one could obtain a complete description
of the S2([λ]) and A2([λ]) for λ ∈ P2(n).

8. Irreducible and homogeneous symmetric and antisymmetric

products

The proof of the following theorem utilises many of our earlier results, including the
analysis of small depth and hook cases (which in turn depended on our introduction
of 2-modular techniques).

Theorem 8.1. Any symmetric product S2([λ]) for λ ∈ P (n) is (reducible and) in-
homogeneous unless λ is a linear partition. Any anti-symmetric product A2([λ]) for
λ ∈ P (n) is (reducible and) inhomogeneous unless λ = (n), (n − 1, 1), (22), or (32)
(up to conjugation).

We have that A2([n − 1, 1]) = [n − 2, 12] is irreducible for all n ⩾ 3; furthermore
A2([22]) = [14] and A2([32]) = [3, 13].
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Proof. That the listed products have the stated form can be easily checked by hand
for the n = 4 and 6 cases and A2([n− 1, 1]) = [n− 2, 12] follows from Proposition 5.4.
We now turn to the main part of the theorem, verifying that these are the only
homogeneous products. We begin with the symmetric case. Assume that λ is a non-
linear partition. For all λ ∈ P (n), the trivial partition always labels a constituent of
S2([λ]) with multiplicity equal to 1. Thus we need only note that the degree of the
character of the symmetric square is 1

2 (χ2(e) + χ(e)) > 1 and so there must be some
other, non-isomorphic, constituent as required.

We turn to the harder case of the anti-symmetric Kronecker products. If λ ∈ P (n)
and n ⩽ 9 we can check the result by hand, and so we now assume that n > 9 and λ is
not of the form λ = (n− 1, 1), (22), (32), or a linear partition. If λ is a hook partition
then A2([λ]) contains all constituents of the form (n−m, 1m) for m ≡ 2, 3 modulo 4
(by Theorem 4.1) and so the result follows. If λ ∈ P2(n) and λ ̸= (n/2, n/2), then the
result follows from Proposition 7.14(iii) and if λ = (n/2, n/2) then the result follows
from Theorem 7.8.

We now consider the case that λ = (ab) is a rectangle for some a, b > 2. We already
know that ⟨A2[(ab)] ♣ [ab − 3, 13]⟩ = 1 and so it suffices to show that A2[(ab)] ̸=
[ab−3, 13]. To do this, we need only find a conjugacy class on which the characters do
not coincide. We set α = (a+ b, 1ab−a−b) if a+ b is odd and α = (a+ b+1, 1ab−a−b−1)
if a+ b is even. Let g ∈ Sab be of cycle type α. Since all parts of α are odd, we have
that χ(g) = χ(g2) for any character χ of Sn. All hooks of (ab) are strictly smaller
than a+ b and so, by the Murnaghan–Nakayama rule, [(ab)](g) = 0 = [(ab)](g2) and
this implies that A2[(ab)](g) = 0. On the other hand, 3 < a+ b, a+ b+ 1 < ab− 3 and
so [ab− 3, 13](g) = [ab− 3 − ♣α♣, 13](1ab−♣α♣) ̸= 0, again by the Murnaghan–Nakayama
rule. Thus the characters do not agree, as required.

We now assume that λ is not of any one of the above forms (so λ has at least 2
removable nodes and is not a hook or 2-line partition). We set r1 = ♣Rem(λ)♣ ⩾ 2,
by assumption. We have that A2([λ]) contains [n − 2, 12] with multiplicity

(
r1

2

)
⩾ 1

by Theorem 5.2. We will show that ⟨A2([λ]) ♣ χhook⟩ >
(
r1

2

)
and hence deduce that

A2([λ]) has another, distinct, hook constituent; the result will then follow. Since λ is
not itself a hook, we can put together Proposition 4.2 and Theorem 5.2 and hence
deduce that

⟨A2([λ]) ♣ χhook⟩ =⟨S2([λ]) ♣ χhook⟩ = 1 + (r1 − 1) +


r1 − 1

2


+ . . .

where . . . denotes the contribution from hook constituents of depth greater than 2.
Now, we have that

1 + (r1 − 1) +


r1 − 1

2


=

2r1 + (r2
1 − 3r1 + 2)

2
=
r2

1 − r1 + 2

2
>
r2

1 − r1

2
=


r1

2



as required. □

Remark 8.2. In [30], Malle and Magaard consider the symmetric and alternating
parts of the tensor squares of irreducible modules for the alternating groups in all
characteristics, and they classify when these are irreducible.

9. Multiplicity-free symmetric and alternating parts

Multiplicity-free Kronecker products have been classified in [4]; fortunately, the clas-
sification of the multiplicity-free Kronecker squares is much easier, and we recall this
here.
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Proposition 9.1. [4, Proposition 4.1] Let λ be a partition of n. Then [λ]2 is
multiplicity-free if and only if λ is one of the following (up to conjugation):

(n), (n− 1, 1), (
⌈n

2

⌉
,
⌊n

2

⌋
) .

Obviously, in the cases arising above, both S2([λ]) and A2([λ]) are multiplicity-
free, and we have seen in all cases how the Kronecker square decomposes into the
symmetric and alternating part. In fact we find:

Proposition 9.2. Let n ∈ N.

(1) If λ (or its conjugate) is one of the partitions

(n), (n− 1, 1), (
⌈n

2

⌉
,
⌊n

2

⌋
)

then S2([λ]) is multiplicity-free.
(2) If λ ∈ P (n) is such that S2([λ]) is multiplicity-free then λ (or its conjugate)

is a rectangle or one of the partitions

(n− 1, 1), or (k + 1, k) with n = 2k + 1.

(3) If λ (or its conjugate) is one of the partitions

(n), (n− 1, 1), (n− 2, 2), (n− 2, 12), (
⌈n

2

⌉
,
⌊n

2

⌋
),

or one of the exceptional partitions (5, 3), (33),

then A2([λ]) is multiplicity-free (or zero).
(4) If λ ∈ P (n) is such that A2([λ]) is multiplicity-free then λ has at most 2

removable nodes.

Proof. Parts (1) and (3): by the comments above and the results in this section,
we have already seen that for (n), (n − 1, 1), (

⌈
n
2

⌉
,
⌊
n
2

⌋
) (and their conjugates) the

Kronecker square is multiplicity-free, and for the partitions (n− 2, 2) and (n− 2, 12)
(and their conjugates) the alternating part of the square is multiplicity-free. The case
λ = (5, 3) follows from Theorem 5.5, and the remaining case λ = (33) was checked by
direct computation.

Parts (2) and (4) are an immediate consequence of Theorem 5.2. □

We are now able to classify the situations in which both the symmetric and alter-
nating parts are multiplicity-free:

Theorem 9.3. Let n ∈ N, λ ∈ P (n). Then both S2([λ]) and A2([λ]) are multiplicity-
free if and only if λ (or its conjugate) is one of the partitions

(n), (n− 1, 1), (
⌈n

2

⌉
,
⌊n

2

⌋
).

Proof. We already know that for the partitions λ listed in the assertion the symmetric
and alternating part of [λ]2 are multiplicity-free.

Conversely, we now assume that both parts of [λ]2 are multiplicity-free, but that
λ is not of one of the listed forms. By Proposition 9.2, we only have to consider
rectangular partitions λ of diagonal length at least 3.

Since λ is not a hook, the proof of [4, Proposition 4.1] immediately shows that [λ]2

has a constituent of multiplicity at least 3, unless possibly (33) ⊆ λ. Thus (at least)
one of S2([λ]) and A2([λ]) has a constituent with multiplicity greater than or equal
to 2.

For λ = (33), the product [λ]2 does not contain any constituent with multiplicity
equal to 3, however we can directly compute ⟨S2([33]), [5, 22]⟩ = ⟨([33])2, [5, 22]⟩ = 2.
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We can now assume that λ ⊃ (33) and ℓ(λ) ⩾ 4. Set λ̃ = λ∩ (34); then λ̃ = (33, j),

j ∈ ¶1, 2, 3♢, and in all these cases [λ̃]2 has a constituent of multiplicity 3, hence by
the monotonicity of Kronecker coefficients, [λ]2 has a constituent of multiplicity at
least 3. □

Computational data lead to the following stronger classification conjecture.

Conjecture 9.4. The partitions listed in Proposition 9.2(1) and (3) are all the par-
titions where the symmetric or the alternating part of the square is multiplicity-free.

Remark 9.5. (1) If the conjecture holds, then a multiplicity-free symmetric part
S2([λ]) implies that [λ]2 is multiplicity-free, while a multiplicity-free alternating part
A2([λ]) implies that the coefficients in [λ]2 are at most 2.

(2) From Theorem 4.1 we already know that no further hooks can appear in the
classification.

10. Splitting the square: Refining the Saxl Conjecture

As we want to discuss refinements of the Saxl conjecture, we first formally recall the
conjecture:

Conjecture 10.1. (Saxl’s conjecture.) For any k ∈ N, the Kronecker square [ρk]2

contains all [λ] ∈ Irr(Sn) as constituents.

As mentioned in the introduction, there is a conjecture (not restricted to trian-
gular numbers) due to Heide, Saxl, Tiep and Zalesski [21], which says that for any
n ̸= 2, 4, 9 there is some character ψ ∈ Irr(Sn) such that ψ2 contains all χ ∈ Irr(Sn)
as constituents. The Saxl conjecture suggests a special candidate for triangular num-
bers n. Apart from computational results for (relatively) small k, there are already
many contributions towards this conjecture that confirm that several families of con-
stituents occur in the square (see e.g. [2, 3, 23, 36, 37]).

We have seen above that we may even refine the Saxl conjecture for certain con-
stituents, as we have found the location (or multiplicities) of some constituents in the
symmetric or alternating part, respectively. For example, apart from the constituents
at the extreme ends, we had found in Theorem 3.7 that [ρk] is a constituent of the
symmetric part of [ρk]2.

Of course, we cannot expect that A2([ρk]) contains all irreducible χ ∈ Irr(Sn) as
it does not contain the trivial character. But computational data suggest that while
both characters S2([ρk]) and A2([ρk]) do not contain all irreducible characters as
constituents, the number of missing irreducible characters is (perhaps surprisingly)
small.

By Theorem 6.1, S2([ρk]) does not have [1n] as a constituent when k ≡ 2 mod 4.
Also, we know that A2([ρk]) never contains [n], [n − 1, 1] and [n − 2, 2], and it does
not contain [1n] when k ̸≡ 2 mod 4.

Based on computational data we suggest the following strengthening of Saxl’s con-
jecture:

Conjecture 10.2. (Refinement of the Saxl Conjecture) The symmetric part
S2([ρk]) of the square [ρk]2 contains all irreducible characters [λ] of Sn as constituents,
except for the character [1n] when k ≡ 2 mod 4.

The alternating part A2([ρk]) of the square [ρk]2 contains almost all irreducible
characters [λ] of Sn as constituents, with the only missing characters being [n], [n−1, 1]
and [n − 2, 2], and furthermore [1n] when k ̸≡ 2 mod 4, and in addition [23] when
k = 3.
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As stated earlier, Saxl’s conjecture is a refinement in the case of triangular num-
bers n of a more general conjecture due to Heide, Saxl, Tiep and Zalesski [21], which
says that for any n ̸= 2, 4, 9 there is some λ ∈ P (n) such that [λ]2 contains all
irreducible characters of Sn as constituents.

In fact, the computational data suggest that also this “HSTZ”-conjecture has a
strengthening; remember that [1n] is a constituent of [λ]2 if and only if λ is symmetric,
and then we know its position in S2([λ]) or A2([λ]) from Theorem 6.1.

Conjecture 10.3. (Refinement of the HSTZ-Conjecture) For any n ⩾ 10 there
is some λ ∈ P (n) such that the symmetric part S2([λ]) of the square [λ]2 contains all
irreducible characters of Sn as constituents, except possibly for the character [1n].

For any n ⩾ 10 there is some µ ∈ P (n) such that the alternating part A2([µ])
of the square [µ]2 contains almost all irreducible characters of Sn as constituents,
with the only missing characters being [n], [n − 1, 1] and [n − 2, 2], and furthermore
possibly [1n].

Furthermore, for any n ⩾ 10 there is always a symmetric partition λ that is optimal
for both S2([λ]) and A2([λ]) (in the sense above).

Also, for a symmetric partition λ that is optimal for A2([λ]), i.e., missing out only
the 3 or 4 stated constituents, the square [λ]2 contains all irreducible characters.

We note explicitly that not every symmetric partition λ with the property that
[λ]2 contains all irreducible characters as its constituents is optimal for both S2([λ])
and A2([λ]). For example, (42, 22) is (in the sense above) not optimal for both parts
of its square, but (5, 3, 2, 12) and (6, 2, 14) both are “doubly optimal”.
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