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Abstract. Perception of physical features through touch requires the
execution of exploratory movements. Modifying the state parameters of
the sensory apparatus to obtain relevant information to achieve a task
contributes to an efficient manner for exploration of object properties.
These principles have served as inspiration in the development of robotics
and autonomous systems. Following the contour of an object poses mul-
tiple challenges in the perception of the geometry of an object such as
identifying the angle of the sensor relative to the edge to perform tangen-
tial exploratory motions, and localising the sensor to place it where the
angle tends to be perceived with more accuracy. The variability in the ac-
quisition of tactile data may induce inaccuracies in the predictions from
the sensor model. This work examines the influence of integrating pro-
prioceptive information for the assessment and update of the parameters
of a Bayesian probabilistic model. This inclusion leads to an increment
in the number of task completion relative to performing the task with
a model trained solely with data collected offline. Studies in biological
touch suggest that tactile and proprioceptive information converge syn-
ergistically to drawing conclusions about the feature that is in contact
with the sensory apparatus, this work provides a method for improving
the modelling of the sensor responses to actively perform object explo-
ration under variability of tactile data in the acquisition process.

Keywords: Active Touch · Online Learning · Contour Following · Ex-
ploratory procedure.

1 Introduction

Tactile sensing provides the capability of interacting with the world by estab-
lishing direct contact with objects and surfaces to extract relevant properties
for achieving a task. The required interaction implies that specific movements
need to be performed to elicit the tactile properties associated to the executed
motion [11]. The relevance of the tactile information needed to achieve a desired
outcome is translated into the active nature of touch. Active touch involves the
execution of an action-perception loop in which dedicated actions are intended
to guide the spatially constrained sensory apparatus [6]. The execution of these
actions is conducted by taking into account the tactile and proprioceptive sen-
sory information, its prior understanding , as well as knowledge about the task
that is being executed [21].
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The human hand has evolved to serve as a skillful tool for perception of tac-
tile properties. The hand consists of glabrous and non glabrous skin; being the
former, present in the palmar skin, the most receptive part to mechanosensation
due to its high density innervation that is correlated with psychophysical spa-
tial acuity [2]. This highly innervated area contains four types of receptors that
respond to low thresholds of skin deformation, contact events, and sensitivity to
high frequency stimuli. When these receptors receive a stimulus related to the
sensitive-related physical property, the information is conveyed to the somatosen-
sory cortex to be processed and encoded [22]. Studies in non-human primates
have identified four areas in the primary somatosensory cortex, i.e. Broadmann
areas 3a, 3b, 1 and 2, these areas have been described as being hierarchical
and interconnected [8, 7, 5]. In that sense, higher-in-hierarchy areas, with the
function of processing more complex information, receive information from their
lower-in-hierarchy counterparts, as well as information from areas dedicated to
sensing and execution of motor behaviour. According to these studies, at the base
of the hierarchy, 3a area receives proprioceptive spatial information form mus-
cle spindles; 3b area retrieves information from receptors located closer to the
skin surface; area 1 obtains information from rapidly adapting fibers; and area
2 receiving proprioceptive signals, as well as information from the previously
mentioned areas to process complex touch. The processed information in the
primary somatosensory cortex is conveyed to the the secondary somatosensory
cortex which processes information that is conveyed to cortical areas in charge
of the execution of motor commands and recognition of physical properties [4].

Apart from apprehending semantic representations from mechanoreception,
tactile and proprioceptive information contribute to the processing of complex
touch as well as active touch by means of the intentional exploration of surfaces
and objects. The exploratory essence of touch has been characterised under
the term of ’Exploratory Procedures’. EPs are described as stereotypical move-
ments that subjects execute when prompted to learn about a certain tactile
property [12]. Material properties of an object can be retrieved by performing
characteristic actions such as lateral motion for texture, pressure for compliance
and static contact for temperature. Geometric properties such as global shape
and volume can be obtained with the enclosure exploratory procedure; the exact
shape and volume can be retrieved through following the contour of the ob-
ject [13]. These characteristics of human touch are inspiring the development of
technologies and tactile systems to result in remarkable sensing capabilities [15].

Providing robotic systems with the capacity to sense and draw conclusions
about tactile data can be essential for the achievement of tasks that require feed-
back from physical interaction with the environment; such tasks include grasp-
ing, in-hand manipulation, and object exploration [10]. The execution of these
tasks can be benefited by possessing knowledge about the shape of the object.
Retrieval of geometric object information through touch is generally attained
by mapping from data related to sensor deformation to the pose of the sensing
device relative to the object [17]. This process contributes with information for
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the control and guidance of movement of the sensory apparatus to extract the
global or exact shape according to the objectives of the perceiver.

Tactile perceptual systems are restricted to the size of the sensor, thus ac-
quiring geometric information through touch has been a compelling object of
study in examining methods to effectively place the sensor where information
relevant to the task can be obtained [23]. Retrieval of tridimensional surfaces
have been achieved through the registering of coordinates where the event of
touching the object has occurred. These coordinates are used as an input in a
function approximator that provides an estimate of the object shape in three
dimensions [24]. The implicit hurdle in using these models is determining the
next sampling position to attain a fast and accurate shape estimation [9, 20,
3]. Inspired from psychophysical studies in touch, the obtention of the exact
shape of an object has been investigated by means of the replication of contour
following exploratory procedures in robotic platforms [19]. Tactile information
related to sensor deformation has been related to allocentric sensor localisation
to follow the contour of objects. These methods rely on Bayesian inference in
which the hypotheses for perceptual classes given the tactile data are updated
with the acquisition and accumulation evidence to make a decision regarding a
perceptual outcome [18, 16].

Although the implementation of contour following exploratory procedure us-
ing Bayesian methods using only tactile data in robotic platforms has demon-
strated the feasibility of successfully obtaining the exact shape of the contour of
an object, the effect of taking into account the proprioceptive information from
the robotic platform for assessing and updating a probabilistic model remains to
be studied. Obtaining the exact shape of an object through tactile information
requires perception models that can accurately infer a position of the sensor with
respect to an object using tactile data. However, tactile data acquisition can be
effected by sensor noise, hysteresis-induced errors, and the wear and tear off of
the sensor [10]. These possible issues can lead to deficiencies in the repeatability
of tactile measurements, and consequently a reduction in accuracy of perceptual
outcomes. In that sense, the mapping of tactile data into sensor position can
be supported by the millimetric, precise and accurate information that robot
proprioception can provide.

The present work evaluates the effects of implementing a Bayesian proba-
bilistic model for sensor localisation with respect to an object to execute a con-
tour following exploratory procedure with tactile data. Additionally, examining
the integration of proprioceptive information in the assessment and updating
of the model. Improvements in task completion are verified through the use of
the ground truth information provided by the sensor position against the initial
model that uses solely tactile information.
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2 Methods

2.1 Robotic Setting

The robotic system used for the aqcuisition of the tactile information and move-
ment of the sensor to perform a contour following exploratory procedure consists
of a TacTip biomimetic tactile sensor [1] mounted on a robotic platform able to
perform movements in the Cartesian space. This setting is used in an action-
perception closed loop to execute the exploratory procedure with information
obtained from the tactile sensor.

Robotic Platform The robotic platform is composed of a Yamaha XYX robot
and an Actuonix P-16 linear actuator, providing horizontal and vertical move-
ments respectively, as can be seen in Fig. 1a. The Yamaha robot has been used
in previous studies on active touch with fingertips and artificial whiskers [14]
offering an accuracy of about 20µm in the positioning of the sensor in the x− y

plane. The linear actuator spans a stroke of 50mm allowing a vertical motion
of the sensor. The robotic platform allows the execution of precise movements
in the x and y axes for the positioning of the sensor to establish a relationship
between the acquired tactile data and the location of the sensor relative to the
object.

A B

Fig. 1. Robotic setting. A) The Robotic platform consists of a Yamaha XYX robot
and an Actuonix P-16 linear actuator. B) TacTip sensor [1] and object for contour
following

Tactile fingertip sensor The TacTip Sensor (Fig. 1b) is a biomimetic soft
optical tactile sensor. Inspired in the shallow layers of glabrous skin, the sen-
sor contains a 20mm-radius hemispheric compliant pad with 127 pins acting as
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markers whose shear displacement is related to the deformation of the compli-
ant component. The behaviour of the markers is captured by a webcam with a
resolution of 640 x 480 pixels, sampled at approximately 20 fps. The software
for marker detection and tracking, implemented in [16], provides data of the dis-
placement of each marker in the x and y axes. The information obtained from
the sensor is used to train a Bayesian probabilistic classifier for the localisation of
the sensor with respect to an allocentric origin of coordinates and identification
of angular classes for exploration.

Sensorimotor Integration The control of the robotic platform is achieved
through serial communication between the computer and the robotic devices.
The Yamaha robot and the linear actuator provide position feedback and posi-
tion control. Both are integrated in a python script. Similarly, the data obtained
from the TacTip data processor are included as an input to a probabilistic clas-
sifier that relate tactile information to sensor position. The action-perception
loop obtains information from the sensor, and executes the movements for the
completion of the task, i.e. contour following of an object, taking into account
the predictions of the probabilistic classifier.

Acquisition of Tactile Data Tactile data acquisition follows a tapping proce-
dure against the surface close to the edges to elicit a displacement of the internal
markers of the TacTip Sensor. Vertical taps along a range between -9mm and
9mm in an interval of 1mm with respect to each of the edges comprise the data
for each angular class. In that sense, an angular class contains 19 taps, and po-
sition classes as can be observed in Fig. 2. Each position class consists of two
time series streams of data corresponding to the tracking of 127 marker positions
(Fig. 2c) for x axis (Fig. 2a), and y axis (Fig. 2b). The data collection process
is replicated for perceptual angles of [0, 90, 180, 270]degrees giving a total of 76
perceptual classes to train a probabilistic Bayesian classifier.

2.2 Bayesian Probabilistic Classifier

A Multinomial Naive Bayes Classifier is implemented as a sensor model for the
mapping from tactile data to angle and position of the sensor. In which, the
probability of a class given a measurement is proportional to the likelihood of
the measurement given the class multiplied by the prior probability of the class:

P (c|z) α P (c)
∏

1≤k≤nb

P (zk|c), (1)

where P (zk|c) is interpreted as a quantification of the contribution of the evi-
dence zk to the correctness of class c. Tactile data is spatiotemporally encoded
in histograms. Each stream of data corresponding to a single tap is distributed
into a histogram composed of 100 bins. Specifically, each bin of the histogram
contains the number of times that a marker displacement in the x and y axes
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Fig. 2. Tactile data for 19 position classes corresponding to angle perceptual class: 0
degrees. A) Tracking of marker displacement in x axis (∆X). B) Tracking of marker
displacement in y axis (∆Y). C) Layout of 127 markers, colours on each plot correspond
to the shown marker position

occur within a certain pixel variation range. [z1, z2, ..., zn] corresponds to each
marker displacement belonging to a bin in the histogram, being nz the number
of samples from the stream of sensory data.

The best class for each tap from the Bayesian model corresponds to the most
likely or maximumaposteriori (MAP) class cmap:

cmap = argmax
c∈C

P̂ (c|z) = argmax
c∈C

P̂ (c)
∏

1≤k≤nz

P̂ (zk|c). (2)

The values of the parameters P̂ (c) and P̂ (zk|c) are estimated from the training
data. The prior probability is estimated with the assumption that all classes
are equally likely to occur, thus flat priors are set for each class, being Nc the
number of classes:

P̂ (c) =
1

Nc

(3)

The conditional probability P̂ (z|c) is calculated as the relative frequency of
marker displacements corresponding to a certain pixel range that belongs to
class c:

P̂ (z|c) =
Zcz∑

z′∈V Zcz′

, (4)

where Zcz is the number of occurrences of a marker displacement in a pixel
variation range for a tap stream data from class c. An independence assumption
has been made between samples for each tracked marker in the x and y axes
for model simplification. Even though this assumption might not be fulfilled in
the real world, the outcomes from the model tend to be still reasonable [25].
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Due to the sparseness that may occur within the encoding of the sensory data,
a Laplace smoother is implemented by adding a one to each count:

P̂ (z|c) =
Zcz + 1∑

z′∈B(Zcz′ + 1)
. (5)

This smoothing method can be interpreted as a uniform prior for the occur-
rence of a certain displacement in a pixel variation range stated by the encoding
histogram.

2.3 Active Bayesian Tactile Sensing

Tactile sensing for contour following requires an active approach for perception
and selection of action. Active sensing implies modifying the state parameters of
the sensor in order to acquire information relevant to the completion of the task.
In this work, the perception of the angle of the sensor relative to the edge of an
object is pertinent for the execution of exploratory tactile data acquisition to
follow the contour of an object. An accurate perception of the angular perceptual
class relies on modifying the radial position of the sensor. The repositioning of
the sensor requires the localisation of the sensor with respect to the edge of the
object. Sensor localisation is performed by the implementation of a probabilistic
Bayesian classifier. The Bayesian model outputs the most likely perceptual class
regarding to angle and position of the sensor. Given that some position classes
will provide a more accurate angular perception, the sensor needs to be radially
moved to the place where accuracy tends to be higher. This procedure leads
to a correct perception of angular class for the execution of further tangential
exploratory movements.

Active Contour Following The process for contour following takes place when
a taping procedure against the object elicits the deformation of the compliant
component of the sensor. The data from the tracking of maker displacement is
then spatiotemporally encoded, and incorporated as evidence for the perceptual
classes. The most likely class is selected by obtaining the maximumaposteriori

of all classes. A fixation range in which the data acquisition can provide an
accurate angular class is selected offline. The selection of the range takes into
account the accuracy of the classifier on test data. Being the case that the
perceptual outcome from the classifier states that the sensor is localised outside
of the fixation range, the sensor will be radially moved to be located within
that range. When the sensor is placed in the fixation range, and the outcome
of the classifier determines that the sensor is within that range, a exploratory
tangential motion is executed. A scheme of the process can be observed in Fig. 3a

Online Learning Robot proprioception provides accurate information about
the location of the robot in the workspace. This information can be used for
supporting the mapping from tactile data to angle and position of the sensor
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Fig. 3. Active Bayesian tactile sensing. A)Active sensing process B) Active sensing
with online learning

with respect to an edge of the object. This information can be transformed to act
as an automatic label provider given that the position of the object is previously
known. Therefore, proprioceptive data is included in the process to assess the
accuracy of the probabilistic classifier. In that sense, the angle and position
outcomes from the classifier are compared with the labels from proprioception.
Given the case in which the model does not provide an accurate perceptual
class, the encoded tactile information becomes a training data point with the
label given by the actual perceptual class followed by the updating of the model
parameters. Conceding that the angle and position classes provided by the model
are accurate, the process follows similar steps as in the active contour following
process as seen in Fig. 3b

3 Results

3.1 Angle and position perception

The Bayesian probabilistic classifier is tested offline with a set of data obtained
with the same procedure as for the acquisition of training data. The classification
absolute error for the angular classes (Fig. 4a) provides us with understanding
of the position classes in which the angle is correctly classified, thus the fixation
range can be determined. Furthermore, the absolute classification error for the
position classes contributes to the identification of a fixation point. The fixation
point is the location where the perception of angle and position tends to be
correct. Results in Fig. 4b suggest that the fixation point should be designed as
the −1mm position perceptual class given the accurate response for angle and
position classification. The fixation point is extended into a fixation range, this
position span will eventually be the location where angular perceptual classes
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are likely to be perceived with more accuracy. Correct perception of angular
classes leads to the execution of proper exploratory movements to achieve the
completion of the task.
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Fig. 4. Angle and position discrimination from the probabilistic Bayesian classifier. A)
Absolute error for angle classification. B) Absolute error for position classification

3.2 Online Learning

Proprioceptive information from the robot is used to generate the ground truth
of each perceptual class. Knowledge of the actual angle and position classes is
employed to assess the accuracy of the sensor model. Fig. 5 presents the ground
truth as a solid line; each point illustrates the place where the robot executed a
tap for data acquisition. The assessment and learning procedure is executed for
each tap. When the model provides an inaccurate prediction, the ground truth
serves as a label to update the conditional probability of the data belonging to
the actual class. The learning process is carried on until the model produces an
accurate prediction. As the figure displays, the distribution of the data points
that require one or two times of model updating are concentrated outside of
the corners. This effect can be attributed to the variation in consistency of the
behaviour of the linear actuator when executing vertical movements. Addition-
ally, as presented in the figure, the data points that require more than three
times to update the model parameters are located on the corners of the object.
This increase in the number of model updating might be given that the training
data was not acquired by directly tapping on the corners of the object. The
initial model might provide correct predictions of perceptual classes. However,
the prediction of data streams subject to variability in the execution of vertical
movements demands the update of the parameters to improve the output of the
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Fig. 5. Online learning in a contour following setting. Black solid line represents the
ground truth of figure contour. Each point represents a tap on the edge of the object.
Blue, red, green, magenta, cyan points correspond to the number of taps used for
learning and updating the model

model. Therefore leading to a reduction of inaccuracies in prediction of angular
and position classes.

3.3 Active Contour Following

The initial and updated models are tested under the same conditions as previ-
ously presented in Fig. 3a where the movement policy relies on executing radial
motions to place the sensor within a fixation range, and perform tangential ex-
ploratory movements to follow the contour of the object. In that sense, three
trials were executed for both models. Contour following with the initial model
represented in Fig. 6a states that the contour following procedure was completed
only in one out of three trials. It has to be highlighted that the initial model
was not trained with data where the sensor is placed on the corners; thus, the
inaccuracy of the probabilistic classifier had incidence in predicting the required
angular class to perform tangential exploratory movements for the completion of
the task. Testing the updated model for contour following results in the comple-
tion of the task on three out of three trials, as presented in Fig. 6b. This result
shows that an accurate perception of angular classes leads to the execution of
the necessary exploratory taps to completely follow the contour of the object.
The updated model outperforms the outcome of the initial model not only in
the completion of the task, but in the number of taps required to follow the
contour of the object. While 208 taps were needed to complete the task with
the initial model, contour following of the object using the updated model was
achieved with 131, 144, and 152 number of taps for each trial. This reduction
of the number of taps to complete the task reveals an improvement in the time
required for its achievement.
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Fig. 6. Active contour following test. Where black solid line represents the ground
truth of the figure contour. Each point depicts the position of an executed tap. Red
points: first trial; green points: second trial; blue points: third trial. A) Trials on contour
following: Initial model. B) Tests on contour following: Model after parameter updating.

4 Discussion

In this work, a sensorimotor action-perception loop was implemented for follow-
ing the contour of an object. A Bayesian probabilistic classifier was trained as a
sensor model to map from tactile data to angle and position classes relative to
the edges of the object. The predictions of the classifier were used for the localisa-
tion of the sensor and the identification of angular perceptual classes to perform
exploratory movements. Inspired from the processing of complex touch in the hi-
erarchical structure of somatosensory processing. Specifically, in the integration
of tactile and proprioceptive information for guidance and control of the sen-
sory apparatus. The data from robot proprioception was taken into account for
the assessment of the model and performing online learning when required. The
initial and updated models were tested under the same circumstances on three
trials for each classifier. The effect of incorporating proprioceptive information
for evaluating and updating a Bayesian probabilistic classifier in the context of
contour following with tactile data was studied. As showed in the results section,
taking into account the ground truth for assessing the predictions of the classifier,
and updating the parameters of the model had an incidence in the completion
of the task by resulting in three out of completed trials; as opposite to one out
of three completions of the task for the initial model. Therefore, the assessment
and updating of the model with proprioceptive information can result convenient
in situations where there is variability in the execution of vertical movements
for the tapping procedure in the tactile data acquisition. This variation in the
consistency of tactile data might be present in real world applications, thus the
improvement of the parameters of the sensor model displays the potential to
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attain robust perception, and scalability to implement the method in further
robotic platforms.
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