
This is a repository copy of Probabilistic program performance analysis with confidence
intervals.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/195273/

Version: Published Version

Article:

Stefanakos, Ioannis orcid.org/0000-0003-3741-252X, Calinescu, Radu orcid.org/0000-
0002-2678-9260 and Gerasimou, Simos (2023) Probabilistic program performance
analysis with confidence intervals. Information and Software Technology. 107143. ISSN
0950-5849

https://doi.org/10.1016/j.infsof.2022.107143

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Information and Software Technology 156 (2023) 107143

Available online 26 December 2022
0950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Probabilistic program performance analysis with confidence intervals
Ioannis Stefanakos ∗, Radu Calinescu, Simos Gerasimou
Department of Computer Science, University of York, York, YO10 5GH, UK

A R T I C L E I N F O

Keywords:
Program quality analysis
Software performance
Discrete-time Markov chains
Probabilistic model checking
Formal verification with confidence intervals

A B S T R A C T

Context: More often than not, the algorithms implemented by software systems continue to operate correctly
when executed on different platforms or with different inputs, and can be easily replaced with functionally
equivalent ones. However, such changes can have a significant and difficult to predict impact on the software
performance, resource use, and other key quality properties.
Objective: The paper introduces a method for the formal analysis of timing, resource use, cost and other
quality aspects of computer programs, and a tool that automates the application of the method to Java code.
Method: A tool-supported probabilistic program performance analysis (PROPER) method was developed, and
was evaluated using Java code from the Apache Commons Math library, the Android messaging app Telegram,
and open-source implementations of the knapsack, binary search, and minimum path sum algorithms. PROPER
synthesises a parametric Markov-chain model of the analysed code, uses information from program logs to
calculate confidence intervals for the parameters of this model, and employs formal verification with confidence
intervals to obtain confidence intervals for the performance properties of interest. A PROPER variant that
operates with point estimates instead of confidence intervals can be used when large program logs are available.
Results: The PROPER point estimates for the analysed performance properties were accurate within 7.9%
and 1.75% of the ground truth when using program logs with 103 and 104 entries, respectively. All PROPER
confidence intervals for these properties contained the true property value, and became narrower when larger
logs were used in the analysis. The analyses were completed in under 15 ms for point estimates, and in between
6.7 s and 7.8 s for confidence intervals on a regular laptop computer.
Conclusion: PROPER can synthesise and reuse a parametric Markov model to accurately predict how software
performance would change if the code ran on a different hardware platform, used a new function library, or
had a different usage profile—supporting practitioners who are interested in these analyses.

1. Introduction

Software applications can often be executed unmodified on hard-
ware platforms as diverse as servers, laptops and smartphones, and/or
with different usage profiles (i.e., probability distributions of the pro-
gram inputs). Even changes such as the replacement of a function or
module with a functionally equivalent one that is, for instance, faster or
more reliable, can typically be implemented without major efforts with-
out impacting the functionality of the application. While this unique
characteristic of software is of major benefit, it makes the analysis of
the performance, cost and other quality properties of software systems
very difficult [1,2]. Indeed, modifications in the platform, usage profile
and individual components of software systems may not impact their
functionality, but can significantly affect their execution time, resource
use and cost. Given the importance of these quality properties [3–5],
the modelling and analysis of software performance have been studied
extensively [6–8].

∗ Corresponding author.
E-mail address: ioannis.stefanakos@york.ac.uk (I. Stefanakos).

Existing software performance engineering methods are primarily

targeting the analysis of software performance at architectural-level,

with the quality properties of service-based systems, software product

lines, and other component-based software systems evaluated through

formally modelling the dependencies and interactions between their

components [9–13]. In contrast, the equally important evaluation of

software performance at code-level is typically carried out using em-

pirical methods involving program instrumentation, monitoring and

profiling [14–18]. These methods tend to yield accurate results, but

have the major limitation that the code needs to be actually deployed

and executed on every platform and for each usage profile under

evaluation, and/or after each change to the code.

To address this limitation, we developed a new method for

probabilistic program performance analysis (PROPER). PROPER op-

erates in three stages. In the first stage, it models the code under

analysis (CUA) as a parametric discrete-time Markov chain (pDTMC).

https://doi.org/10.1016/j.infsof.2022.107143
Received 2 March 2022; Received in revised form 28 September 2022; Accepted 20 December 2022

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:ioannis.stefanakos@york.ac.uk
https://doi.org/10.1016/j.infsof.2022.107143

Information and Software Technology 156 (2023) 107143

2

I. Stefanakos et al.

This PROPER pDTMC is generated automatically from the CUA, and

is parameterised by the probabilities with which the CUA conditional

statements and loops are performed during a CUA execution. In the

second stage, PROPER computes either point estimates or confidence

intervals for the unknown pDTMC parameters by exploiting informa-

tion from program logs. Finally, in its last stage, PROPER analyses

the CUA performance properties of interest, yielding point estimates

or confidence intervals for their values. The analysis based on point

estimates is only accurate when large program logs are available to

ensure that its results are not affected by epistemic uncertainty.

PROPER represents the first method that uses formal verification

with confidence-interval to automatically evaluate software perfor-

mance properties at code-level. An approach that uses probabilistic

modelling for code-level analysis was proposed in [19,20]. However,

unlike our PROPER method, this approach addresses the analysis of

program reliability, uses bounded loop unfolding to handle loops, and

can only perform approximate analysis for programs that contain loops.

More generally, PROPER differs from existing approaches to program

performance analysis through its use of confidence intervals. This

unique characteristic enables PROPER to reflect the epistemic uncer-

tainty due to the necessarily finite size of the program logs that the

CUA usage profile is derived from, with narrower confidence intervals

produced from larger logs than from smaller ones. In contrast, any

approaches that use point estimates disregard this uncertainty, yielding

potentially inaccurate results without any warning when only small

program logs are available.

The main contributions of our paper include:

1. The PROPER method for the formal what-if analysis of pro-

gram performance (i) before deploying the CUA on a new plat-

form; (ii) for an expected change in the CUA usage profile;

and/or (iii) to assess the performance impact of using a new

implementation of a function.
2. A tool that automates the application of our program perfor-

mance analysis method to Java code.
3. An extension of the confidence-interval probabilistic model

checker FACT [21] that enables its use to analyse PROPER-

generated pDTMCs.
4. An extensive evaluation of the PROPER method and tool for

Java code from the Apache Commons Math library, the Android

messaging app Telegram, and open-source implementations of

the knapsack, binary search, and minimum path sum algorithms.

A preliminary version of PROPER that does not include the use of

confidence intervals was introduced in [22]. This paper updates and

extends the theoretical foundation from [22] with the results required

for the derivation of confidence intervals for the PROPER pDTMC

parameters and the CUA performance properties. This extension is

presented in Section 4 and, as described in Section 5, is implemented

by our PROPER tool and modified version of the FACT model checker.

Furthermore, we considerably extended and improved the validation

of PROPER by evaluating it for additional Java methods that include a

more complex running example (Section 2), and by comparing it to a

broader range of related work in Section 7.

The remainder of the paper is structured as follows. In Section 2

we provide a running example used to demonstrate the application of

PROPER later in the paper. Section 3 provides background information

on probabilistic model checking. This is then used to describe the

PROPER theoretical foundation in Section 4, and its implementation

tool in Section 5. The experiments carried out for the PROPER evalua-

tion are described in Section 6. Finally, we compare PROPER to related

research in Section 7, and we present our conclusions and propose

directions for further research in Section 8.

2. Running example

We illustrate the steps and application of our PROPER method using
a scenario where a software engineer is interested in evaluating per-
formance aspects of the minimum path sum algorithm (minPathSum)
implemented in Java. The dynamic-programming implementation of
the algorithm is adapted from a public repository on GitHub1 that
contains implementations of popular algorithms. Given an 𝑚 × 𝑛 grid
with non-negative numbers, where 𝑚 and 𝑛 refer to length and width
of the input array, respectively, this method finds the path from top
left to bottom right such that the sum of numbers along its path is
minimised. As shown in Fig. 1, the method receives as input a two-
dimensional array (grid), and performs the calculations based on the
following rules: (a) moving from the top left corner to the down right
corner, and (b) moving one step down or right. We suppose that the
method minPathSum is used by an application for which a detailed
log reflecting the method’s usage profile (i.e., the number of executions
for each conditional statement and/or loop that appears in the code) is
available. Additionally, we suppose that the application’s developers
want to assess:

• the expected cost (i.e., the mean cost) for an invocation of the
method, given that a cost of 0.25 is incurred each time the
Math.min(. . .) function is invoked in line 22;
• the expected execution time of the method, under the assumption
that the while loops from lines 9 and 14 require 0.01 ms on
average, and the execution of the while loop from line 21 requires
0.03 ms on average.

The annotations ‘@cost=0.25’ appended as comment to line 22,
‘@time=0.01’ appended as comment to lines 9 and 14, and
‘@time=0.03’ appended as comment to line 21, are used to specify the
two performance properties whose evaluation is of interest.

3. Theoretical basis

3.1. Probabilistic model checking

Probabilistic model checking (PMC) [23] is a mathematically based
technique used to verify the correctness, reliability and performance of
systems with stochastic behaviour, where this behaviour is formalised
using Markov models. The technique operates with multiple types of
Markov models, each of which is suitable for the analysis of different
classes of system properties. While probabilistic model checking can
be used with multiple types of Markov models, such as discrete-time
Markov chains, continuous-time Markov chains and Markov decision
processes [23], in this section we focus on (parametric) discrete-time
Markov chains, which are the type of models generated and used by
our approach.

Definition 1. A discrete-time Markov chain (DTMC) over a set of
atomic propositions 𝐴𝑃 is a tuple 𝐷 = (𝑆, 𝑠0,𝐏, 𝐿) where 𝑆 is a finite
set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝐏 ∶ 𝑆 × 𝑆 → [0, 1] is a transition
probability matrix such that, for all 𝑠 ∈ 𝑆,

∑
𝑠′∈𝑆 𝐏(𝑠, 𝑠′) = 1, and

𝐿 ∶ 𝑆 → 2𝐴𝑃 is a state labelling function that maps each state 𝑠 ∈ 𝑆 to
the set of atomic propositions 𝐿(𝑠) ⊆ 𝐴𝑃 that hold in state 𝑠.

To support the analysis of a wider range of properties types, DTMCs
are augmented with cost/reward structures [24] that associate non-
negative values with their states and transitions. The difference be-
tween cost and reward is purely semantic. There is no mathematical
distinction, just a commonly adopted notion that ‘‘cost’’ should be
minimised and ‘‘reward’’ should be maximised.

1 https://github.com/TheAlgorithms/Java/

https://github.com/TheAlgorithms/Java/

Information and Software Technology 156 (2023) 107143

3

I. Stefanakos et al.

Fig. 1. Java minPathSum method calculating the minimum path sum of an 𝑚 × 𝑛 matrix. PROPER annotations, described later in the paper, indicate that the statements in
lines 10 and 15 have a mean execution time of 0.01 s, and the statement in line 22 has a cost of 0.25 and a mean execution time of 0.03 s on the platform that will be used to
execute the method.

Definition 2. A cost/reward structure over a DTMC 𝐷 = (𝑆, 𝑠0,𝐏, 𝐿) is
a pair of real-valued functions (

̄
𝜌, 𝜄) where:

•

̄
𝜌 ∶ 𝑆 → R≥0 is a state reward function that defines the value
(cost/reward) obtained when 𝐷 is in state 𝑠 ∈ 𝑆 for one time
step.
• 𝜄 ∶ 𝑆 × 𝑆 → R≥0 is a transition reward function that defines the
value (cost/reward) obtained each time a transition occurs.

Finally, the DTMCs used by PROPER are parametric, i.e., they con-
tain transition probabilities that are unknown when these models are
derived.

Definition 3. A parametric discrete-time Markov chain (pDTMC) is a
discrete-time Markov chain comprising one or several unknown state
transition probabilities and/or costs/rewards that are specified as ra-
tional functions (i.e., as fractions whose numerators and denominators
are polynomial functions) over a set of continuous variables [25].

The properties of DTMCs and pDTMCs analysed through PMC are
formally expressed in probabilistic computation tree logic (PCTL) [26],
a branching-time temporal logic with the following syntax.

Definition 4. PCTL state formulae 𝛷 and path formulae 𝜙 over an
atomic proposition set 𝐴𝑃 are defined by the grammar:

𝛷 ∶∶= 𝑡𝑟𝑢𝑒 ∣ 𝑎 ∣ ¬ 𝛷 ∣ 𝛷 ∧ 𝛷 ∣ 𝑃⋈𝑝[𝜙]

𝜙 ∶∶= 𝑋 𝛷 ∣ 𝛷 𝑈≤𝑘 𝛷

and cost/reward state formulae are defined by the grammar:

𝑅⋈𝑟[𝐶
≤𝑘] ∣ 𝑅⋈𝑟[𝐼

=𝑘] ∣ 𝑅⋈𝑟[𝐹 𝛷]

where 𝑎 ∈ 𝐴𝑃 , ⋈ ∈ {<,≤,≥, >} is a relational operator, 𝑘 ∈ N ∪ {∞},
𝑝 ∈ [0, 1] is a probability bound, and 𝑟 ∈ 𝑅≥0 is a reward bound.

The PCTL semantics are defined using a satisfaction relation ⊧.
Given a Markov chain 𝐷 = (𝑆, 𝑠0,𝐏, 𝐿), we have:

∙ always 𝐷 ⊧ 𝑡𝑟𝑢𝑒;
∙ 𝐷 ⊧ 𝑎 iff 𝑎 ∈ 𝐿(𝑠0);
∙ 𝐷 ⊧ ¬𝛷 iff ¬(𝐷 ⊧ 𝛷);
∙ 𝐷 ⊧ 𝛷1 ∧𝛷2 iff 𝐷 ⊧ 𝛷1 and 𝐷 ⊧ 𝛷2;
∙ and 𝐷 ⊧ 𝑃⋈𝑝[𝜙] iff the probability 𝑥 that paths starting at state 𝑠0
(i.e., sequence of states 𝑠0𝑠1𝑠2 … such that ∀𝑖 ≥ 0 ∶ 𝐏(𝑠𝑖, 𝑠𝑖+1) > 0)
satisfy the path property 𝜙 satisfies 𝑥 ⋈ 𝑝.

The next formula X 𝛷 holds for a path if 𝛷 is satisfied in the next state of
the path; and the until formula 𝛷1 𝑈

≤𝑘 𝛷2 holds for a path iff 𝛷1 holds in
the first 𝑖 < 𝑘 path states and 𝛷2 holds in the (𝑖+1)-th path state. Finally,
the three reward state formulae use the reward operator 𝑅 to verify if
the expected reward 𝑥 accumulated up to timestep 𝑘, at timestep 𝑘,
and accumulated to reach a state that satisfies 𝛷, respectively, satisfies
𝑥 ⋈ 𝑟. Finally, the notation 𝑃=?[⋅] and 𝑅=?[⋅] is used to denote the value
of the probability and expected reward from a PCTL state and reward
state formula, respectively. Detailed descriptions of the PCTL semantics
are available in [24,26].

Our PROPER program performance analysis method uses PCTL re-
ward reachability properties 𝑅=?[⋅] to formalise performance properties
of a program such as execution time, energy consumption and cost.

3.2. Formal verification with confidence intervals

Formal verification with confidence intervals [27] is a formal tech-
nique that computes confidence intervals for the quality properties of
systems with stochastic behaviour. Given a pDTMC that models the
behaviour of such a system, a PCTL formula 𝑃=?[⋅] or 𝑅=?[⋅] associated
with a quality property of this system, and a confidence level 𝛼 ∈ (0, 1),
the technique computes an 𝛼 confidence interval for the property.
For example, the technique can be used to establish that the 95%

Information and Software Technology 156 (2023) 107143

4

I. Stefanakos et al.

Fig. 2. PROPER probabilistic program performance analysis.

confidence interval for the expected execution time of a Java method
is [150 ms, 190 ms], or that the 99% confidence interval for the daily
energy consumption of a sensor is [85 J, 103 J].

This confidence interval computation is performed in three steps.
First, a confidence interval is calculated for each pDTMC parameter
by using observations of the system related to that parameter. Next,
parametric model checking is used to obtain a closed-form expression
(i.e., an expression containing only the basic arithmetic operators
and exponent) for the quality property. Parametric model checking
is supported by model checkers including PARAM [28], PRISM [29],
Storm [30] and ePMC/fPMC [31,32]. Finally, the expression obtained
in this way and the parameter confidence intervals are used to establish
the confidence interval for the quality property under analysis. The
width of this confidence interval depends on the number of available
observations and the confidence level 𝛼. In particular, wide confidence
intervals are obtained when only few observations are available, and
narrow intervals can be computed given large number of observations.
For a complete description of the technique and of the FACT model
checker that implements it, see [21,27], respectively.

4. PROPER performance analysis method

4.1. Method overview

Fig. 2 shows the stages of our PROPER method for the analysis of
performance properties of the program of interest. In a first stage, a
reward-augmented parametric DTMC model is automatically extracted
from the analysed Java code. This pDTMC is parameterised by the
probabilities of executing the conditional statements and loops from the
analysed code, which are initially unknown. To enable the generation
of this pDTMC, the CUA is annotated by appending comments of the
form

∕∕ @𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 𝑣𝑎𝑙𝑢𝑒 (1)

to its Java statements. In this PROPER annotation, property is a one-
word label that corresponds to a code property under analysis
(e.g., ‘cost ’ or ‘time’, as shown in Fig. 1), and value represents the
(actual or estimated) mean value of that property for the statement that
the annotation is associated with. As an example, the annotation ‘//
@time=0.01’ from line 10 of the Java method from Fig. 1 indicates that
the mean execution time of the statement from that line is 0.01 (time
units). The same property label needs to be added to all statements
for which the property has a non-negligible value, e.g., to indicate
that a non-negligible cost or execution time is associated with multiple
statements. Instances of such annotations can be observed in Fig. 1 for
several statements from the Java method we use as a running example.

In the second stage, PROPER calculates the transition probabilities
associated with the pDTMC states that model the conditional statements
and the loops from the code. This calculation is carried out based on
the usage profile of the analysed code, taken or derived from program
logs, where we assume that the code is appropriately instrumented

to generate logs containing this information. Two techniques for this
calculation are available. First, the usage profile can be used to obtain
point estimates for the unknown transition probabilities. However,
using such probability estimates can yield inaccurate overall results
unless the usage profile is based on very large program logs. Therefore,
PROPER also supports the calculation of confidence intervals for the
unknown transition probabilities. This technique has the advantage
that it takes into account the log size by producing wider confidence
intervals when only small program logs are available, and narrow
confidence intervals when the calculation is based on large logs.

Finally, in the third PROPER stage, the PCTL-formulated perfor-
mance properties of interest are analysed, again using one of two
techniques: (i) standard probabilistic model checking is used when
point estimates were calculated for the unknown transition probabil-
ities of the pDTMC model of the CUA; and (ii) formal verification with
confidence intervals (at a user-specified confidence level) is used when
confidence intervals were computed for these transition probabilities.
The result of the analysis is also a point estimate in the first case, and
a confidence interval in the second case.

The three stages of our PROPER method and further types of anal-
yses enabled by the pDTMC model are described in detail in the
remainder of this section. The PROPER method is applicable to the
performance analysis of single-threaded Java code. The current version
of our PROPER prototype tool can handle the analysis of single Java
methods that use variables declared locally or passed as arguments
to the method, and whose invocations of other methods have no side
effects (i.e., do not change the analysed method’s variables). However,
these constraints are only a limitation of the current implementation;
the steps of our method do not impose any of these constraints.

Before describing the stages of our method in detail, we summarise
the underlying assumptions for its application below:

• The CUA is annotated as shown in (1) in order to convey to
PROPER relevant information about the nonfunctional properties
of interest.
• Log files (obtained as described further in Section 4.3.1) are avail-
able to enable inferring usage profiles, computing and providing
point estimates or confidence intervals for the unknown transition
probabilities of the produced pDTMC model.
• The logs contain representative samples of the inputs that the
analysed code will encounter when deployed.2

4.2. Probabilistic model synthesis

PROPER enables the synthesis of pDTMC models through the re-
cursive application of the code-to-model transformation rules shown in
Fig. 3. Our method supports the four types of statements below:

2 As emphasised in software performance evaluation surveys [1,6,33], it is
essential (and non-trivial) to ensure that the usage profile obtained from such
logs is representative; the use of code instrumentation and other techniques to
obtain representative logs is discussed in these surveys.

Information and Software Technology 156 (2023) 107143

5

I. Stefanakos et al.

Fig. 3. PROPER code-to-model transformation rules.

1. Assignment statements and method calls (with no side effects)
are modelled using a single pDTMC state. This state has one
incoming transition (from the pDTMC fragment modelling the
previous statement in the code) and one outgoing transition (to
the pDTMC fragment modelling the next statement).

2. Conditional statements are modelled using a state with two
outgoing transitions, one to the pDTMC fragment modelling the
statements from the ‘if’ branch, and one to the pDTMC fragment
modelling the ‘else’ branch. The latter pDTMC fragment is empty
if the else branch is missing. The derivation of the probability 𝑝𝗂𝖿
from the program logs is described in the next section.

3. Loops are modelled using a state with two outgoing transitions,
one leading to the pDTMC fragment modelling the statements
from the loop body, and one leading to the fragment modelling
the statement that comes after the loop. Additionally, the outgo-
ing transition of the pDTMC fragment modelling the statements
from the loop body leads back to the initial state of the loop.
The derivation of the probability 𝑝𝗐𝗁𝗂𝗅𝖾 for the initial state of the
loop is described in the next section. Although we describe here
the transformation for ‘while’ loops, PROPER also supports other
types of loops (e.g., ‘for’ loops) since they can easily be converted
into ‘while’ loops.

4. Return statements and exceptions are modelled using a state
whose only outgoing transitions leads to the ‘‘end’’ state of the
pDTMC. This state, shown in dashed line in Fig. 3, has a self-
loop transition with probability 1, does not correspond to any
statement from the code, and is used as the sink state for all
outgoing transitions corresponding to final statements from the
code.

Example 1. Fig. 4 depicts the pDTMC obtained by applying the
above rules to the Java code from our running example (see Fig. 1).
The statement modelled by each pDTMC state is mentioned under the
state, and the states are numbered 0 to 21. The grey-shaded areas
contain states, as shown in the figure, that correspond to blocks of code
contained within conditional statements and loops.

To allow the use of model checkers to analyse its synthesised
pDTMCs, PROPER uses the rules from Fig. 3 to generate these pDTMCs
in the high-level modelling language of the PRISM model checker [29],

Fig. 4. DTMC model for the minPathSum Java method.

which models a system as the parallel composition of a set of modules.
The state of a module is determined by a set of finite-range local
variables, and its state transitions are specified by probabilistic guarded
commands that modify these variables, and have the form:

[𝑎𝑐𝑡𝑖𝑜𝑛] 𝑔𝑢𝑎𝑟𝑑 → 𝑒1 ∶ 𝑢𝑝𝑑𝑎𝑡𝑒1 + … + 𝑒𝑛 ∶ 𝑢𝑝𝑑𝑎𝑡𝑒𝑛;

where 𝑔𝑢𝑎𝑟𝑑 is a boolean expression over all model variables. If the
𝑔𝑢𝑎𝑟𝑑 is true, the arithmetic expression 𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑛, gives the
probability with which the 𝑢𝑝𝑑𝑎𝑡𝑒𝑖 change of the module variables oc-
curs. When the optional label 𝑎𝑐𝑡𝑖𝑜𝑛 is present, all modules comprising
commands with the same 𝑎𝑐𝑡𝑖𝑜𝑛 must perform one of these commands
simultaneously.

The pDTMC produced by PROPER comprises a single PRISM mod-
ule, and is generated by the function BuildModel shown in Algorithm
1. This function takes as input a Java method, parses its code into an
abstract syntax tree 𝑎𝑠𝑡 in line 33, and obtains the PRISM module com-
mands by invoking the function Synthesis. These commands – prefixed
with the appropriate model preamble assembled in lines 35 and 36,
and followed by the model ending built in line 37 – are then returned
in line 38.
Synthesis starts with a 𝑚𝑜𝑑𝑒𝑙 comprising an empty sequence of

commands (line 3). The 𝑚𝑜𝑑𝑒𝑙’s guarded commands are then generated
by the for loop in lines 4–29. The iterations of this loop handle one
statement from the 𝑎𝑠𝑡 abstract syntax tree at a time, by using the
switch from lines 5–25 to handle each statement according to its type.
The four cases of the switch statement correspond to the four types of
statements described earlier in this section. This part of the algorithm
uses the counters 𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 and 𝑐𝑜𝑛𝑑𝐶𝑡𝑟 (initialised in line 1) to keep
track of the index for the states and transition probabilities being
generated, respectively.

A single guarded command is generated if the processed statement
𝑠𝑡𝑚𝑡 is an assignment or a method call (line 7). If 𝑠𝑡𝑚𝑡 is a conditional,
a new state with two outgoing transitions is created (line 9). The first
transition, corresponding to the ‘if’ branch of the conditional, points
to the next state with a probability p𝑐𝑜𝑛𝑑𝐶𝑡𝑟. The second transition,
corresponding to the ‘else’ branch (if this branch exists) or to the
statement after the conditional (otherwise), has probability 1−p𝑐𝑜𝑛𝑑𝐶𝑡𝑟,
points to a state identified (in line 12 if the else branch is missing, or
in line 14 otherwise) after the 𝑚𝑜𝑑𝑒𝑙 commands for the ‘if’ branch are
obtained by invoking Synthesis recursively in line 10. These commands
are appended to the 𝑚𝑜𝑑𝑒𝑙 in line 12 if the ‘else’ branch is missing, or in
line 14 otherwise. In the latter case, the commands for the ‘else’ branch
are then generated (line 15) and added to the 𝑚𝑜𝑑𝑒𝑙 (line 16).

Information and Software Technology 156 (2023) 107143

6

I. Stefanakos et al.

Algorithm 1: DTMC model synthesis (shaded strings indicate literals included in the model)

1 𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟=0, 𝑐𝑜𝑛𝑑𝐶𝑡𝑟=0, 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 = ()

2 function Synthesis(𝑎𝑠𝑡)
3 𝑚𝑜𝑑𝑒𝑙 = ‘’
4 for each 𝑠𝑡𝑚𝑡 ∈ 𝑎𝑠𝑡 do
5 switch (𝑠𝑡𝑚𝑡)
6 case 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 or 𝑚𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑙 ∶

7 𝑚𝑜𝑑𝑒𝑙 += ‘[] s=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟++) + ‘→ 1:(s’=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟) + ‘);’
8 case 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ∶
9 𝑚𝑜𝑑𝑒𝑙 += ‘[] s=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟++) + ‘→ p’ + 𝑐𝑜𝑛𝑑𝐶𝑡𝑟 + ‘:(s’=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟) + ‘)+(1-p’ + (𝑐𝑜𝑛𝑑𝐶𝑡𝑟++) + ‘):(s’=’

10 𝑖𝑓 _𝑏𝑟𝑎𝑛𝑐ℎ_𝑚𝑜𝑑𝑒𝑙 = Synthesis(𝑠𝑡𝑚𝑡.𝑡ℎ𝑒𝑛𝑆𝑡𝑚𝑡𝑠);
11 if ¬𝑠𝑡𝑚𝑡.ℎ𝑎𝑠𝐸𝑙𝑠𝑒𝐵𝑟𝑎𝑛𝑐ℎ then
12 𝑚𝑜𝑑𝑒𝑙 += (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟) + ‘);’ + 𝑖𝑓 _𝑏𝑟𝑎𝑛𝑐ℎ_𝑚𝑜𝑑𝑒𝑙
13 else
14 𝑚𝑜𝑑𝑒𝑙 += (++𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟) + ‘);’ + 𝑖𝑓 _𝑏𝑟𝑎𝑛𝑐ℎ_𝑚𝑜𝑑𝑒𝑙 + ‘[] s=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 − 1) + ‘→ 1:(s’=’
15 𝑒𝑙𝑠𝑒_𝑏𝑟𝑎𝑛𝑐ℎ_𝑚𝑜𝑑𝑒𝑙 = Synthesis(𝑠𝑡𝑚𝑡.𝑒𝑙𝑠𝑒𝑆𝑡𝑚𝑡𝑠)

16 𝑚𝑜𝑑𝑒𝑙 += (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟) + ‘);’ + 𝑒𝑙𝑠𝑒_𝑏𝑟𝑎𝑛𝑐ℎ_𝑚𝑜𝑑𝑒𝑙

17 end

18 case 𝑙𝑜𝑜𝑝 ∶

19 𝑙𝑜𝑜𝑝𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑒=𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟

20 𝑚𝑜𝑑𝑒𝑙 += ‘[] s=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟++) + ‘→ p’ + 𝑐𝑜𝑛𝑑𝐶𝑡𝑟 + ‘:(s’=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟) + ‘)+(1-p’ + (𝑐𝑜𝑛𝑑𝐶𝑡𝑟++) + ‘):(s’=’

21 𝑙𝑜𝑜𝑝_𝑏𝑜𝑑𝑦_𝑚𝑜𝑑𝑒𝑙 = Synthesis(𝑠𝑡𝑚𝑡.𝑙𝑜𝑜𝑝𝐵𝑜𝑑𝑦)

22 𝑚𝑜𝑑𝑒𝑙 += (++𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟) + ‘);’ + 𝑙𝑜𝑜𝑝_𝑏𝑜𝑑𝑦_𝑚𝑜𝑑𝑒𝑙 + ‘[] s=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 − 1) + ‘→ 1:(s’=’ + 𝑙𝑜𝑜𝑝𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑒 + ‘);’

23 case 𝑟𝑒𝑡𝑢𝑟𝑛 or 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 ∶

24 𝑚𝑜𝑑𝑒𝑙 += ‘[] s=’ + (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟++) + ‘→ 1:(s’=end_state);’

25 end
26 while 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑠𝑡𝑚𝑡.𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝑅𝑒𝑤𝑎𝑟𝑑 do
27 𝑟𝑒𝑤𝑎𝑟𝑑𝑠[𝑟𝑒𝑤𝑎𝑟𝑑.𝑛𝑎𝑚𝑒] += (𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 − 1, 𝑟𝑒𝑤𝑎𝑟𝑑.𝑣𝑎𝑙𝑢𝑒)

28 end

29 end
30 return 𝑚𝑜𝑑𝑒𝑙

31 end

32 function BuildModel(𝑚𝑒𝑡ℎ𝑜𝑑)
33 𝑎𝑠𝑡 = Parse(𝑚𝑒𝑡ℎ𝑜𝑑)
34 𝑚𝑜𝑑𝑒𝑙_𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠 = Synthesis(𝑎𝑠𝑡)

35 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 = ‘dtmc’ + AddVariables(condCtr) + ‘const int end_state = ’ + 𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 + ‘; \n’

36 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 += ‘module’ + 𝑎𝑠𝑡.𝑚𝑒𝑡ℎ𝑜𝑑𝑁𝑎𝑚𝑒 + ‘\n s : [0..end_state] init 0; \n’

37 𝑚𝑜𝑑𝑒𝑙_𝑒𝑛𝑑𝑖𝑛𝑔 = ‘[] s=’ + 𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 + ‘→ 1:(s’=’ + 𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 + ‘);\n endmodule’ + AddRewardStructures(rewards)
38 return 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 𝑚𝑜𝑑𝑒𝑙_𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠 + 𝑚𝑜𝑑𝑒𝑙_𝑒𝑛𝑑𝑖𝑛𝑔

39 end

Lines 19–22 produce the 𝑚𝑜𝑑𝑒𝑙 commands when 𝑠𝑡𝑚𝑡 is a loop
statement. The process followed is similar to that employed for a
conditional statement, except that the last state modelling the loop
body has its only outgoing transition leading back to the first state
modelling the loop (line 22). The 𝑙𝑜𝑜𝑝𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑒 command in line
19 records the 𝑠𝑡𝑎𝑡𝑒𝐶𝑡𝑟 value for the first state of the loop statement
execution.

Finally, when 𝑠𝑡𝑚𝑡 is a return or an exception statement, a new
𝑚𝑜𝑑𝑒𝑙 state is created (line 24). The only outgoing transition of this
state points to the 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 of the 𝑚𝑜𝑑𝑒𝑙. This state is declared in
the 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 in line 35 of BuildModel and is generated in the
𝑚𝑜𝑑𝑒𝑙_𝑒𝑛𝑑𝑖𝑛𝑔 in line 37 of BuildModel, after the execution of Synthesis
finishes and the index of this state is known.

To enable the generation of the reward structures for the 𝑚𝑜𝑑𝑒𝑙,
Synthesis records the reward annotations from all statements (lines
26–28) into the 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 dictionary initialised in line 1. The reward
structures are then included in the 𝑚𝑜𝑑𝑒𝑙_𝑒𝑛𝑑𝑖𝑛𝑔 by invoking the auxil-
iary function AddRewardStructures in line 37 of BuildModel. Finally, the
auxiliary function AddVariables is invoked in line 35 of BuildModel to
create the variable declarations for all unknown transition probabilities
generated by Synthesis for conditional statements and loops. The format
of the reward structures and variable declarations generated by the two
auxiliary functions is illustrated in the following example.

The following result establishes the complexity of the model synthe-
sis algorithm.

Theorem 1. The function BuildModel from Algorithm 1 requires 𝖮(𝑛𝑠𝑛𝑎)
time, where 𝑛𝑠 and 𝑛𝑎 represent the number of statements from the 𝑚𝑒𝑡ℎ𝑜𝑑
supplied as its only argument, and the maximum number of annotations (1)
for the same statement, respectively.

Proof. Building the abstract syntax tree in line 22 of BuildModel
involves the examination of each statement, to establish its type (as
required by the switch from line 5 of the function Synthesis) and to
record each of its up to 𝑛𝑎 annotations (1). As such, each statement
can be parsed in 𝖮(𝑛𝑎) time, and parsing all 𝑛𝑠 statements from 𝑚𝑒𝑡ℎ𝑜𝑑

requires 𝖮(𝑛𝑠𝑛𝑎) time.
The invocation of the function Synthesis in line 34 of BuildModel also

takes 𝖮(𝑛𝑠𝑛𝑎) time, because: (i) the depth-first search performed by this
function (through its for each loop starting in line 4 and the recursive
invocations of Synthesis from lines 10, 15 and 21) visits each of the
𝑛𝑠 nodes of the 𝑎𝑠𝑡 abstract syntax tree once; (ii) each operation that
does not invoke Synthesis within the switch statement from lines 5–25
only requires constant time; and (iii) the while loop from lines 26–28
(executed once for each statement) requires 𝖮(𝑛𝑎) time to handle the up
to 𝑛𝑎 annotations associated to the statement 𝑠𝑡𝑚𝑡 under examination.

The creation of the model variables in line 35 of BuildModel takes
𝖮(𝑛𝑠) time since the number of such variables is given the final value
of 𝑐𝑜𝑛𝑑𝐶𝑡𝑟 counter, which is incremented at most once (in line 9 or in
line 20 of Synthesis) for each of the 𝑛𝑠 statements from 𝑚𝑒𝑡ℎ𝑜𝑑. Finally,
the operation from line 36 of BuildModel requires constant time, the

Information and Software Technology 156 (2023) 107143

7

I. Stefanakos et al.

Fig. 5. PRISM model synthesised for the minPathSum Java method.

addition of the model’s reward structures (which comprise up to 𝑛𝑎

reward values for each of the 𝑛𝑠 statements from 𝑚𝑒𝑡ℎ𝑜𝑑) in line 37 is

completed in 𝖮(𝑛𝑠𝑛𝑎) time, and returning the three parts of the model

in line 38 requires constant time (or 𝖮(𝑛𝑠𝑛𝑎) if a fully fledged string

concatenation is performed).

As each operation from lines 33–38 of BuildModel can be completed

in 𝖮(𝑛𝑠𝑛𝑎), 𝖮(𝑛𝑠) or constant time, we conclude that the entire method

requires 𝖮(𝑛𝑠𝑛𝑎) time. □

Example 2. Fig. 5 shows the PRISM-encoded pDTMC model generated

by Algorithm 1 for the minPathSum Java method from our running

example. The model has two reward structures, corresponding to the

time and cost annotations from the Java code in Fig. 1. The variables

p1,… ,p5 correspond to the probabilities of executing the ‘if’ statement

(line 3) and ‘while’ loops (lines 9, 14, 19, and 21). Their values depend

on the usage profile of the code, and are determined as described in

the next section.

4.3. Transition probability calculation

The transition probabilities for the DTMC states modelling condi-
tional statements and loops are calculated from the usage profile of the
analysed code.

4.3.1. Point estimate calculation
To calculate point estimates for the pDTMC transition probabilities,

PROPER requires a usage profile that provides, for each of 𝑁0 execu-
tions of the analysed code, the observed number of executions of every
CUA conditional statement ‘if’ branch and loop body. This usage profile
can be obtained:

• Directly from the program logs, if the code is instrumented to log
this information.
• Through a technique called model counting [34], which can calcu-
late expected values for these counts from empirical probability
distributions of the program inputs, where these distributions are
taken from program logs. Model counting has been applied to
programs with both linear and non-linear numerical constraints
with tools such as Latte [35] and SharpSAT [36], respectively.
Application areas include but are not limited to probabilistic
software analysis [37,38] and software reliability [39].
• By applying Monte Carlo simulation to a simplified version of the
code (from which the statements with no impact on the required
execution counts are removed), where the program inputs for
the simulation are drawn randomly from logs that reflect the
empirical probability distributions of these inputs. Regarding the
validity of the simplification process, only the statements with no
impact on the required execution counts are removed, i.e., state-
ments that do not affect the code’s operational profile. The code’s
simplification is due to the constraints discussed in Section 4.1.

Given a usage profile with these characteristics, consider a set of
𝑛 ≥ 1 nested conditional statements and/or loops from the analysed
code. If the execution counts for these conditional statements/loops are
𝑁1, 𝑁2, . . . , 𝑁𝑛,

3 then the transition probability associated with the 𝑖th
conditional statement/loop is calculated as:

𝑝𝑖 =

⎧⎪⎨⎪⎩

𝑁𝑖

𝑁𝑖−1
, if statement 𝑖 is a conditional

𝑁𝑖

𝑁𝑖−1+𝑁𝑖
, otherwise (if statement 𝑖 is a loop)

(2)

where 1 ≤ 𝑖 ≤ 𝑛. As we show later in Theorem 2, this result is inspired
by the way of calculating the sum of an infinite geometric series, cf. (4).
For conditional statements and loops that are not nested within other
conditional statements/loops (such as those from our running example,
except the nested loop from lines 21–24 in Fig. 1), the number of
executions of the analysed code is used in (2), i.e., 𝑁𝑖−1 = 𝑁0.

Example 3. Suppose that the usage profile for the Java method
minPathSum from our running example indicates that, across 𝑁0 =

10, 000 invocations of the method, the mean number of executions of
the if branch of the conditional statement starting in line 3 from Fig. 1
is 𝑁1 = 912, and the mean numbers of executions of the bodies of the
while loops from lines 9–12, 14–17, 19–26, and 21–24 are𝑁2 = 45, 000,
𝑁3 = 40, 000, 𝑁4 = 45, 000, and 𝑁5 = 202, 400 times, respectively.
Accordingly, the values of the unspecified transition probabilities for
the DTMC model from Fig. 5 are given by 𝑝1 =

𝑁1

𝑁0
=

912

10,000
= 0.0912,

𝑝2 =
𝑁2

𝑁0+𝑁2
=

45,000

10,000+45,000
= 0.8181, 𝑝3 =

𝑁3

𝑁0+𝑁3
=

40000

10,000+40,000
= 0.8,

𝑝4 =
𝑁4

𝑁0+𝑁4
=

45,000

10,000+45,000
= 0.8181, and 𝑝5 =

𝑁5

𝑁4+𝑁5
=

202,400

45,000+202,400
=

0.8181.

3 For a conditional statement, the count is of the number of executions of
the if branch, if this branch is part of the statement nest, or of the else branch,
if this branch exists and is part of the statement nest. For a loop, the count is
of the number of executions of the statements within the body of the loop.

Information and Software Technology 156 (2023) 107143

8

I. Stefanakos et al.

The following result shows that the PROPER probabilistic model
synthesised in Section 4.2 and instantiated with the probabilities cal-
culated above can be used to determine the performance properties for
the code under analysis.

Theorem 2. Given a Java method annotated with a performance prop-
erty (1), its DTMC 𝐷 generated by Algorithm 1, and the DTMC transition
probabilities (2) calculated for a usage profile of the method, the expected
value of the property for this usage profile is given by the probabilistic model
checking of the reward property 𝑅=?[𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒] over 𝐷.

Proof. The performance properties analysed by our PROPER method
are additive, i.e., if the execution time, cost or resource use under
analysis is due to multiple program statements, the analysis can be
carried out by adding up the property values determined separately for
each of these statements. As such, we only need to prove the theorem
for a property that associates a value 𝑣 > 0 with a single program
statement. We consider the general case where this statement is part
of the body of 𝑛 ≥ 0 nested loops and/or conditional statements. Given
𝑁0 program executions representative for the analysed usage profile,
let 𝑁𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, be the total number of executions of the 𝑛th such
loop/conditional statement over the 𝑁0 program executions.

The relevant part of the DTMC model 𝐷 generated for the analysed
code (i.e., the part modelling the 𝑛 loop/conditional statement nest)
comprises (a) 𝑛 nested loop/conditional statement model constructs
with the structure from Fig. 3 and probabilities 𝑝𝗐𝗁𝗂𝗅𝖾 = 𝑝1, 𝑝2,… , 𝑝𝑖
given by (2); and (b) a reward structure that associates the value 𝑣 with
a state within the innermost of these constructs. As such, the probabilis-
tic model checking of the reward property 𝑅=?[𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒] over 𝐷
yields the expected reward value:

𝑟 = 𝑓1𝑓2 … 𝑓𝑛 ⋅ 𝑣, (3)

where 𝑓𝑖 is a multiplicative factor associated with the 𝑖th model con-
struct, 1 ≤ 𝑖 ≤ 𝑛. For a model construct associated with a loop, this
factor is given by

𝑓𝑖 = 𝑝𝑖(1 + 𝑝𝑖(1 + 𝑝𝑖(…))) = lim
𝑘→∞

(
𝑝𝑖

1 − 𝑝𝑘
𝑖

1 − 𝑝𝑖

)

=
𝑝𝑖

1 − 𝑝𝑖
=

𝑁𝑖

𝑁𝑖−1+𝑁𝑖

1 −
𝑁𝑖

𝑁𝑖−1+𝑁𝑖

=
𝑁𝑖

𝑁𝑖−1

(4)

due to the repeated execution of 𝑖th loop with probability 𝑝𝑖. For a
model construct associated with a conditional statement, the factor is
simply 𝑓𝑖 = 𝑝𝑖 =

𝑁𝑖

𝑁𝑖−1
. Replacing these factor values in (3) gives an

expected reward value

𝑟 =
𝑁1

𝑁0

⋅
𝑁2

𝑁1

⋅… ⋅
𝑁𝑛

𝑁𝑛−1

⋅ 𝑣 =
𝑁𝑛

𝑁0

⋅ 𝑣, (5)

i.e., the mean value of the analysed property for the considered usage
profile (because the value 𝑣 is associated with a statement executed 𝑁𝑖

times across 𝑁0 program executions). □

4.3.2. Confidence interval calculation
To calculate confidence intervals for the pDTMC transition proba-

bilities, PROPER requires a usage profile that provides, for each of 𝑁0

executions of the CUA, the number of executions of the ‘if’ branch of
every conditional statement and of the body of every loop. This usage
profile needs to be obtained from appropriately instrumented logs
of the analysed program, or though model counting [34]. Simulation
with the program inputs drawn randomly from logs that reflect the
empirical probability distributions of these inputs cannot be used, as
this technique is able to generate any number of observations, including
duplicates that are disallowed in the calculation of confidence intervals.
Assume that the number of such executions for a generic conditional
statement or loop body 𝑥 are 𝑥1, 𝑥2, . . . , 𝑥𝑁0

. Using the law of large

numbers and the central limit theorem [40], PROPER calculates an 𝛼𝑥
confidence interval [𝑚𝑥, 𝑚𝑥] for the true mean number of executions 𝜇𝑥
of that conditional statement or loop body, with the interval bounds
given by:

𝑚𝑥 = 𝑚𝑥 − 𝑧(𝛼𝑥)
𝑠√
𝑁0

(6)

and

𝑚𝑥 = 𝑚𝑥 + 𝑧(𝛼𝑥)
𝑠√
𝑁0

(7)

where 𝑚𝑥 =

∑𝑁0
𝑖=1

𝑥𝑖

𝑁0
is the sample mean, 𝑠 =

√∑𝑁0
𝑖=1

(𝑥𝑖−𝑚𝑥)
2

𝑁0−1
is the sample

standard deviation, and 𝑧(𝛼𝑥) is the value from the standard normal
distribution  (0, 1) corresponding to the selected confidence level 𝛼𝑥.
For a generic CUA comprising 𝑚 conditional statements and loops,

PROPER uses this technique to calculate an 𝛼𝑥 = 𝛼
1
𝑚 confidence interval

for the mean number of executions 𝜇𝑥 of each conditional statement or
loop body 𝑥, where 𝛼 ∈ (0, 1) is the user-specified confidence level for
the analysis of the properties of interest (see Fig. 2).

Given a generic set of 𝑛 ≥ 1 nested conditional statements and/or
loops from the analysed code, the unknown transition probabilities 𝑝1,
𝑝2, . . . , 𝑝𝑛 that Algorithm 1 associates with these conditional statements
and loops are redefined as

𝑝𝑖 =

⎧⎪⎨⎪⎩

𝜇𝑖

𝜇𝑖−1
, if statement 𝑖 is a conditional

𝜇𝑖

𝜇𝑖−1+𝜇𝑖
, otherwise (if statement 𝑖 is a loop)

(8)

where 𝜇0 = 1. The following result shows that this definition is
equivalent to (2).

Theorem 3. The probability definitions (2) and (8) are equivalent when
𝑁0 → ∞.

Proof. Consider a generic probability 𝑝𝑖 from (2), 1 ≤ 𝑖 ≤ 𝑛. We
consider first the case when statement 𝑖 is a conditional statement. In
this case, we have:

lim
𝑁0→∞

𝑁𝑖

𝑁𝑖−1

= lim
𝑁0→∞

𝑁𝑖∕𝑁0

𝑁𝑖−1∕𝑁0

=
𝜇𝑖

𝜇𝑖−1
,

which shows that the theorem holds in this case. Otherwise, i.e., if
statement 𝑖 is a loop, we have:

lim
𝑁0→∞

𝑁𝑖

𝑁𝑖−1 +𝑁𝑖

= lim
𝑁0→∞

𝑁𝑖∕𝑁0

𝑁𝑖−1∕𝑁0 +𝑁𝑖∕𝑁0

=
𝜇𝑖

𝜇𝑖−1 + 𝜇𝑖
,

which shows that the theorem also holds in this case, completing the
proof. □

This theorem allows us to use definition (8) instead of (2) for
the transition probabilities from the pDTMC generated by PROPER,
and therefore to obtain simultaneous confidence intervals [𝑝𝑖, 𝑝𝑖] at
confidence level 𝛼 for the pDTMC probabilities 𝑝𝑖 as follows:

[𝑝𝑖, 𝑝𝑖] =

⎧⎪⎪⎨⎪⎪⎩

[
𝑚𝑖

𝑚𝑖−1
,

𝑚𝑖

𝑚𝑖−1

]
, if statement 𝑖 is a conditional

[
𝑚𝑖

𝑚𝑖−1+𝑚𝑖
,

𝑚𝑖

𝑚𝑖−1+𝑚𝑖

]
, otherwise

(9)

for 1 ≤ 𝑖 ≤ 𝑛, where [𝑚𝑖, 𝑚𝑖] represents the confidence interval for the
true mean 𝜇𝑖, and 𝜇0 = 𝜇0 = 1.

4.4. Analysis

4.4.1. Probabilistic model checking with point estimates
Given the synthesised pDTMC model (Section 4.2) and the calcu-

lated transition probabilities (Section 4.3.1), PROPER uses a probabilis-
tic model checker such as PRISM [29] or Storm [30] to evaluate the
PCTL-encoded performance properties of interest.

Information and Software Technology 156 (2023) 107143

9

I. Stefanakos et al.

Fig. 6. Confidence intervals (shown as vertical segments) and point estimates (shown as solid horizontal lines) for the properties of interest from our running example from Section 2.
The dotted horizontal line shows requirement bounds for the two properties. The vertical blue lines exceeding the bound indicate requirement violation. (For interpretation of
thereferences to colour in this figure legend, the reader is referred to the web version of this article.)

Example 4. Consider again our running example (Section 2). Deter-
mining the values of the ‘cost’ and ‘time’ properties specified using
PROPER annotations in Fig. 1 involves the probabilistic model check-
ing of the reward PCTL properties 𝑅{‘‘𝑐𝑜𝑠𝑡’’}=?[𝐹𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒] and
𝑅{‘‘𝑡𝑖𝑚𝑒’’}=?[𝐹𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒] over the pDTMC model from Fig. 5. To
carry out these analyses for the usage profile from Example 3, the
unspecified DTMC probabilities need to be initialised such that p1 =

0.0912, p2 = 0.8181, p3 = 0.8, p4 = 0.8181, and p5 = 0.8181. Using
PRISM, the results of these analyses are time = 0.628 and cost = 4.59.

4.4.2. Probabilistic model checking with confidence intervals
Although PROPER can support the quantitative verification of prop-

erties for the CUA using point estimates (Section 4.4.1), the outcome
of this formal analysis depends on the accuracy of the (unknown) tran-
sition probabilities. Establishing these probabilities as point estimates
can be done by involving domain experts or by applying techniques for
model fitting to log data or run-time observations [41]. Unavoidably,
point estimates are affected by unquantified estimation errors. Given
the nonlinear nature of Markov models, the propagation of these er-
rors in formal analysis leads to imprecise results with unknown, but
most likely, significant consequences that could invalidate the analysis
conclusions or any decisions made.

To alleviate this issue, PROPER also supports the derivation of
confidence intervals for the CUA performance properties of interest.
To this end, PROPER uses the calculated simultaneous confidence in-
tervals for the transition probabilities of the pDTMC at a user-specified
confidence level 𝛼 (Section 4.3.2) and employs an adapted variant of
the formal verification with confidence intervals tool FACT [21] to
obtain confidence intervals for the performance properties of interest.
More specifically, our adapted FACT tool (Section 5) initially uses
the synthesised pDTMC and the performance property to obtain an
algebraic expression representing this property. Then, an optimisation
problem is formed using the estimated confidence intervals for the
transition probabilities and the derived algebraic expression, which is
solved using a Matlab optimisation package providing the confidence
interval for the target performance property.

Example 5. By applying probabilistic model checking with confidence
intervals to the pDTMC from our running example, we can obtain
confidence intervals for the time and cost properties of interest. Fig. 6

illustrates the output of the formal analysis. The blue vertical lines
correspond to the range of confidence intervals for a given confidence
level 𝛼 ∈ {0.9, 0.91, 0.92,… , 0.99}, and the solid red horizontal line
depicts the point estimate obtained during the analysis in Example 4
(and which falls within the obtained ranges). Assuming that the red
dotted horizontal lines specify the time and cost requirement bounds,
i.e., 0.66 ms and 4.75, respectively, the use of point estimates would
indicate that both requirements are satisfied. In contrast, using the
confidence interval-based variant of PROPER with any confidence level
𝑎 > 0.95 would indicate that the cost exceeds the requirement bound,
thus enabling software engineers to perform modifications to the CUA
and reduce the cost below the requirement bound.

4.5. Further application scenarios

Besides supporting the analysis of the performance properties spec-
ified by the initial code annotations, the PROPER DTMC model can be
reused for additional analyses in scenarios encountered in software en-
gineering practice. One such scenario occurs when a method invocation
from the analysed code is replaced with the invocation of a functionally
equivalent method with different performance characteristics.

Example 6. The impact of replacing the Math.min(. . .) function call
from line 22 of the minPathSum Java method from Fig. 1 with a call
to the improved function FastMath.min(. . .) can be analysed using the
same pDTMC model as in Example 4, after only updating the reward
values from lines 48 and 52 of the model (see Fig. 5) to match the
specifications of the new function.

Another scenario in which the DTMC model can be reused is when
the code needs to be deployed on a new hardware platform with
different quality attributes. As shown by the following example, new
quality properties can be analysed in this scenario by defining new
reward structures for the DTMC.

Example 7. Suppose that the application using the method minPath-
Sum from our running example needs to be deployed on a smart phone
on which each invocation ofMath.min(. . .) consumes 60 J. The expected
energy consumption of minPathSum can be predicted before actually

Information and Software Technology 156 (2023) 107143

10

I. Stefanakos et al.

Table 1
Description of the models and properties of interest (expressed in both natural language and PCTL) for the analysed code.

Analysed code #states #transitions #linesOfcode Performance property description PCTL

distance1 8 10 16
What is the expected time? 𝑅{‘‘𝑡𝑖𝑚𝑒’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]
What is the expected cost? 𝑅{‘‘𝑐𝑜𝑠𝑡’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]

devPerf 17 21 40 What is the expected energy consumption? 𝑅{‘‘𝑒𝑛𝑒𝑟𝑔𝑦’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]

fst 30 35 47
What is the expected time? 𝑅{‘‘𝑡𝑖𝑚𝑒’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]
What is the expected cost? 𝑅{‘‘𝑐𝑜𝑠𝑡’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]

knapsackDP 18 23 29
What is the expected energy consumption? 𝑅{‘‘𝑒𝑛𝑒𝑟𝑔𝑦’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]
What is the expected time? 𝑅{‘‘𝑡𝑖𝑚𝑒’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]

minPathSum 21 26 28
What is the expected time? 𝑅{‘‘𝑡𝑖𝑚𝑒’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]
What is the expected cost? 𝑅{‘‘𝑐𝑜𝑠𝑡’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]

binarySearch 8 11 17 What is the expected time? 𝑅{‘‘𝑡𝑖𝑚𝑒’’}= ? [𝐹 𝑠 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒]

running the application on the new hardware, by simply augmenting
the pDTMC model from Fig. 5 with the new rewards structure

rewards "energy "
s=18 : 60;

endrewards

where 𝑠 = 18 is the pDTMC state modelling the statement that uses
Math.min(. . .).

5. Implementation

To automate the PROPER-driven performance analysis of probabilis-
tic programs, we implemented a tool with its high-level description
shown in Fig. 2. Our PROPER prototype tool uses JavaParser4 to
parse the Java code of interest and generate the corresponding pDTMC
models (Section 4.2). We implemented a customised Monte Carlo sim-
ulation method in Java for the generation of program logs for the
CUA. The point estimate calculation variant of PROPER employs the
probabilistic model checker PRISM [29] to analyse properties of in-
terest (Section 4.4.1) using the transition probabilities calculation as
described in Section 4.3.1. For the estimation of confidence intervals
(Section 4.4.2), we extended the FACT model checker [21] and incor-
porated its extension into PROPER’s workflow. In particular, we have
adapted the FACT construct ‘param double 𝑥 =;’ to also accept the
number of executions of a conditional statement or loop body 𝑥 over
the 𝑁0 runs of the CUA, i.e., 𝑥1, 𝑥2, . . . , 𝑥𝑁0

. We also incorporated
into FACT the confidence interval calculation of statement 𝑥 described
in Eqs. (6) and (7). The PROPER open-source prototype tool, the
full experimental results summarised in the next section, additional
information about our approach and the artefacts from its evaluation
are available at https://github.com/is742/PROPER.

6. Evaluation

6.1. Research questions

We evaluated PROPER by performing extensive experiments to
answer the following research questions.
RQ1 (Accuracy): How accurately does PROPER support the anal-
ysis of nonfunctional properties of interest as the amount of log
data increases? We used this research question to establish how the
accuracy of our PROPER method is affected as the log size varies and
compare the derived confidence intervals against point estimates.
RQ2 (Decision-Making): How effective is PROPER to support the
intended uses? To support software engineers in their
decision-making, our PROPER method should successfully predict the
effect of changes within the code and within the code’s operating
environment.

4 https://javaparser.org

RQ3 (Efficiency): What are the computational overheads of
PROPER? To establish the extent to which PROPER can be used in
practice, we evaluated the execution time and memory footprint during
the execution of the various PROPER stages.

6.2. Experimental setup

We applied PROPER (version 1.0) in multiple scenarios using Java
source-code adapted from six Java libraries and open-source applica-
tions:

1. The distance1 Java method from the Apache Commons Math
library.5 This method calculates the L1 distance between two
points in a multidimensional space, which is a distance met-
ric widely used in applications such as machine learning. The
method receives as input two integer arrays, and checks whether
the arrays have equal length.

2. The getDevicePerfomanceClass method from the An-
droid messaging app Telegram6 (abbreviated ‘devPerf’ in this
section). Given a mobile device in which Telegram operates, this
method identifies the specifications of the operating device and
determines its performance class. The performance categories
that a device can be linked with are: low, average and high.
In our experimentation, we assumed that based on the result
returned by this method, Telegram adapts to the specifications
and shifts the performance of some of its features. Additionally,
we introduced a new performance category (very high) to show
the applicability of our approach in cases where additional code
is being introduced.

3. The fst method from the Apache Commons Maths library.
This method implements the fast sine transformer algorithm for
one-dimensional real data sets.

4. An implementation of the widely used dynamic-programming
knapsack algorithm (knapsackDP) taken from a public tutorial
series on GitHub.7

5. An implementation of the minimum path sum algorithm
(minPathSum)8 (see running example in Section 2).

6. An implementation of the binary search algorithm
(binarySearch) taken from the same public repository of
algorithms as minPathSum on GitHub. This method finds the
position of a target value within a sorted array.

Table 1 provides an overview of the analysed code, along with a
list of identified performance properties of interest, formally expressed
in PCTL [26], that can be evaluated using our tool-supported PROPER
method.

5 https://commons.apache.org/proper/commons-math/
6 https://github.com/DrKLO/Telegram/
7 https://github.com/eugenp/tutorials/
8 https://github.com/TheAlgorithms/Java/

https://github.com/is742/PROPER
https://javaparser.org
https://commons.apache.org/proper/commons-math/
https://github.com/DrKLO/Telegram/
https://github.com/eugenp/tutorials/
https://github.com/TheAlgorithms/Java/

Information and Software Technology 156 (2023) 107143

11

I. Stefanakos et al.

Table 2
Property point estimate comparison for different log sizes.

Log size Analysed code

distance1 devPerf fst knapsackDP minPathSum binarySearch

Time (ms) Cost Energy (J) Time (ms) Cost Time (ms) Energy (J) Time (ms) Cost Time (ms)

102 2.875 4.48 30.24 1.365 1.9 19.08 639.18 0.5759 4.137 0.0947
103 2.302 4.78 30.98 1.15 1.82 21.32 714.22 0.64126 4.648 0.0905
104 2.518 4.64 31.02 1.16 1.9 21.79 730.16 0.63304 4.5918 0.0924
105 2.5 4.66 30.96 1.14 1.91 21.96 735.93 0.63357 4.5978 0.0918

True value 2.5 4.66 30.96 1.14 1.91 21.96 735.93 0.63357 4.5978 0.0918

Table 3
Error percentage of property point estimates for different log sizes (compared to ground truth).

Log size Analysed code

distance1 devPerf fst knapsackDP minPathSum binarySearch

Time (ms) Cost Energy (J) Time (ms) Cost Time (ms) Energy (J) Time (ms) Cost Time (ms)

102 15% 3.8% 2.3% 19.7% 0.5% 13% 13% 9% 10% 3%
103 7.9% 2.5% 0.06% 0.87% 4.7% 2.9% 2.9% 1.2% 1.1% 1.4%
104 0.7% 0.4% 0.19% 1.75% 0.5% 0.77% 0.78% 0.08% 0.13% 0.65%
105 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

For the evaluation of all research questions, we assume that the
values of the rewards of interest linked with a service or state, e.g., cost,
execution time or energy consumption, are obtained from the service
provider, and that logs capturing the program’s usage profile are avail-
able. The reward values for each analysed method are detailed below.
We used synthetic logs obtained by first establishing appropriate ranges
for each input argument of the analysed method, and then using a set
of values drawn randomly from a uniform probability distribution over
this range.

In the analysis of the distance1 code, we analyse the expected
time and cost associated with the invocations of Math.abs(. . .) function
and for throwing an exception, respectively, under the assumption
that each Math.abs(. . .) invocation takes 2.5 ms, and that throwing the
exception has a cost of 7. In devPerf code’s analysis, we are interested
in the expected energy consumption of running the code, due to an
Animations(. . .) function that sets the level of the application’s visual
quality. Depending on its input mode, each instance of this function
is linked to a different amount of energy (28 J, 34 J, 40 J or 48 J).
Similarly, in the experimentation with fst, we measure the expected
time associated with the FastMath.sin(. . .) function (where each exe-
cution takes 1.5 ms), together with the expected cost of reaching any
of the two exceptions (of cost 5 each). Analysing the knapsackDP
code, we are interested in the expected energy consumption due to a
display(. . .) function located in the code (whose executions use 67 J
each), and in the expected time associated with the Math.max(. . .)
function, each invocation of which takes 2 ms. Regarding the code
from our running example (minPathSum), we assess the expected time
associated with each loop execution. Specifically, 0.01 ms for the first
two while loops in the code, and 0.03ms for the nested while loop. Also,
we are interested in the expected cost associated with theMath.min(. . .)
function, each invocation of which has a cost of 0.25. Finally, in the
analysis of binarySearch, we measure the expected time associated
with the Integer.compare(. . .) function, each invocation of which takes
0.238 ms.

All experiments were run on a macOS Big Sur Macbook Pro with
2 GHz Dual-Core Intel Core i5 CPU and 8 GB RAM. The source code,
Markov models, data used for the experimental evaluation and full
experimental results are publicly available in our GitHub repository.

6.3. Results and discussion

RQ1 (Accuracy). We answer RQ1 by assessing the results obtained
using PROPER for various log sizes and by comparing the derived
confidence intervals against point estimates. Table 2 shows the results

obtained from the generation of point estimates for properties of in-
terest for the CUA of our six code fragments using PROPER and logs of
different sizes. To execute the PMC step of PROPER (Section 4.4.1) and
quantify the properties shown in Table 1, we used the PRISM model
checker [29] and instantiated the synthesised pDTMC models (Sec-
tion 4.2) using the probabilities obtained after running the transition
probability calculation step of the approach (Section 4.3).

To assess the accuracy of our approach, we created instances of
logs of various sizes ranging from logs with 103 entries to 105 entries.
Unsurprisingly, as can be derived from Table 2, the accuracy of point
estimates with respect to the ground truth9 heavily depends on the
number of log entries. More specifically, the accuracy of properties
evaluated using logs with 𝑛 < 105 entries varied, deviating up to 19.7%
from the ground truth for the smaller logs. The deviation followed a
decreasing pattern (i.e., the verification results became more accurate)
as the log size increases. We observed that for any property of any CUA
with a log size that is 𝑛 ≥ 105, the results match almost perfectly the
anticipated true values. Table 3 provides an overview of the percentage
deviation for the analysed code. A general rule that can be established
based on this experimentation is that the larger the number of entries
of the log, the more accurate the verification results.

We also performed experiments to establish the capacity of PROPER
to produce confidence intervals for the properties of interest of a CUA.
Figs. 7–11 show the confidence intervals for the properties of each
use case from Table 1. On the 𝑥-axis we have the confidence level
in the range of [0.9, 0.99], which increments with a step of 0.01, and
on the 𝑦-axis we have the confidence intervals for time (ms), cost or
energy (J). The graphs depict the range of these property values for
each confidence level (confidence intervals) and for different log sizes
(i.e., 103, 104, 105). As expected, while the confidence level increases
the range of property values decreases and the upper and lower bounds
approach the actual value, indicated by a red sold line.

These graphs reveal two important insights. First, in all use cases
the confidence interval for all properties always enclosed the ground
truth (illustrated as a solid red line in the figures) irrespective of
the log size and the chosen confidence interval. Second, the width of
the interval depends both on the selected confidence level 𝛼 and the
log size. As the log size increases, the confidence interval becomes
smaller. Similarly, for a specific log file the confidence interval becomes

9 We obtained the ground truth assuming that a log of 𝑛 = 106 entries rep-
resents sufficiently the usage profile of the CUA. We carried out experiments
with logs of larger sizes and confirmed that the results follow a similar pattern.
We omit these results for clarity reasons.

Information and Software Technology 156 (2023) 107143

12

I. Stefanakos et al.

Fig. 7. Confidence intervals for the distance1 method using logs of various sizes.

Fig. 8. Confidence intervals for the fst method using logs of various sizes.

Fig. 9. Confidence intervals for the knapsackDP method using logs of various sizes.

larger as the confidence level increases. Accordingly, using confidence

intervals instead of point estimates can prevent wrong estimations of

property values, especially in cases where the log data is limited.

RQ2 (Decision-Making). We illustrate the capabilities of PROPER and

how it can help software engineers to make informed decisions using

three modification scenarios (Scenario A, Scenario B, and Scenario C)

that frequently occur in the domains of product obsolescence [42,43]

and software modernisation [44,45].

In Scenario A, software engineers replace one of the external meth-
ods used within the CUA to optimise the requirements defined during
the design phase of the software. Such a modification may involve, for
example, replacing an existing external method with a faster alternative
to reduce response time, or using a less reliable but cheaper method
to reduce the operational cost, provided that the method does not
critically affect the application’s functionality. Since the operational
profile of the application does not change, and given the reward values
for the new method by the service providers in the form of a service-
level agreement, we can use PROPER to quantify quality properties of

Information and Software Technology 156 (2023) 107143

13

I. Stefanakos et al.

Fig. 10. Confidence intervals for the minPathSum method using logs of various sizes.

Fig. 11. Confidence intervals for the binarySearch and devPerf methods using logs of various sizes.

Table 4
Results obtained using PROPER for two different scenarios. Scenario A: replacement of a program method with a functionally-equivalent method with different
performance characteristics. Scenario B: Program deployment on a new hardware platform with different quality attributes.

Properties Scenario A Scenario B

distance1 fst knapsackDP devPerf minPathSum distance1 fst knapsackDP devPerf minPathSum

Time (ms) 1.8 1.67 14.27 N/A 0.376 3.2 1.97 30.75 N/A 0.95
Cost 4.66 1.91 N/A N/A N/A 4.66 1.91 N/A N/A N/A
Energy (J) N/A N/A 856.76 26.27 N/A N/A N/A 900.69 35.73 N/A

interest without simulating the code’s execution. This will not only save
time and effort, but it will also enable engineers to verify additional
properties that were not considered during system design.

Table 4 shows the updated results in bold obtained during Sce-
nario A. In distance1method, we used the function FastMath.abs(. . .)
that offered improved execution time (=1.8 ms) instead of
Math.abs(. . .) whose execution time was 2.5 ms. The expected cost
was not affected by this change, as it is only associated with the
throwing of an exception earlier in the code. In the fst method, we
replaced the FastMath.sin(. . .) function with the slower (=2.2 ms per
invocation) but more reliable Math.sin(. . .) function which resulted in
a slight increase in execution time (i.e., 1.14 ms with FastMath.sin(. . .)
vs 1.67 ms with Math.sin(. . .)). Similarly to distance1, the cost
was not affected. The change in the knapsackDP program affected
both the expected time and energy consumption. In particular, we
introduced the faster (=1.3 ms) function FastMath.max(. . .) instead of
the Math.max(. . .) function, which resulted in reduced execution time
(14.27 ms vs 21.96 ms). We also updated the display(. . .) function to
increase performance using a more computationally-expensive function
(=78 J), which led to an increased overall energy consumption (735.03 J

vs 856.76 J before and after the change, respectively). Finally, in the
devPerf program we assumed that the Animations(. . .) function was
updated to offer better optimisations making use of the increased
number of cores in modern mobile devices (=23 J, 30 J, 35 J, 43 J).
This change resulted in a decrease of the energy consumption (30.96 J
vs 26.27 J) in all its invocations.

In Scenario B, software engineers do not make any internal changes
in the code; instead, the application is deployed in a new device with
different capabilities and specifications. Such scenarios may arise when
transferring the same software between mobile devices or when deploy-
ing the same software in robotic systems with different performance,
memory, networking and other characteristics (e.g., a robot using a
Raspberry Pi 4 and another using a Raspberry Pi Zero) [46].

Since the applied changes are only external and the operational
profile of the application does not change, we can employ PROPER
and obtain the updated values for the properties of interest. Table 4
(Scenario B) shows in bold the updated values of the performance prop-
erties for the five applications assuming that they have been deployed
in a device with reduced hardware performance. Additionally, Figs. 12
and 13 depict the confidence intervals for the properties associated

Information and Software Technology 156 (2023) 107143

14

I. Stefanakos et al.

Fig. 12. Confidence intervals for the evaluated properties in Scenario A (replacing an external function of the CUA) using a log with 𝑛 = 106 entries. The blue vertical lines
correspond to the range of confidence intervals for a given confidence level 𝛼 ∈ {0.9, 0.91, 0.92,… , 0.99}, and the solid red horizontal line is the actual value. (For interpretation
of thereferences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Confidence intervals for the evaluated properties in Scenario B (deploying the CUA in a new device) using a log with 𝑛=106 entries. The blue vertical lines correspond to
the range of confidence intervals for a given confidence level 𝛼 ∈ {0.9, 0.91, 0.92,… , 0.99}, and the solid red horizontal line is the actual value. (For interpretation of thereferences
to colour in this figure legend, the reader is referred to the web version of this article.)

with the two scenarios assuming a log with 𝑛 = 106 entries. On the
𝑥-axis we have the confidence level in the range of [0.9, 0.99], which
increments with a step of 0.01, and on the 𝑦-axis we have the property
values. The vertical blue lines represent the range of property values for
a given confidence level (confidence intervals) and the horizontal red
line the actual value. The derived confidence intervals corroborate our
findings from research question RQ1 regarding the capacity of PROPER
to produce intervals that enclose the true value (solid horizontal red
line) and support decision making considering a desirable confidence
level.
Scenario C involves using PROPER to analyse the binarySearch

method (Fig. 14). The results of this analysis indicated that the ‘if’
conditional statement in line 13 and the ‘else’ statement in line 16 have
higher probabilities (i.e., are executed more frequently) than the earlier
‘if’ statement in line 9. The current structure of the method leads to
additional execution time as the compare(. . .) function in the condition
of the ‘if’ statement (line 9) will be invoked multiple times without
the condition being satisfied. By applying code restructuring, this ad-
ditional cost could be reduced, and thus, improve the performance of
the method. The applied changes can be observed (highlighted) in
Fig. 15 depicting the Java code and the synthesised pDTMC model.
The ‘if’ statement in line 9 of Fig. 14 is now moved at the end of
the ‘if-else’ block in line 16 of Fig. 15 as its condition has the lowest
probability of being satisfied. By applying PROPER without running
the CUA after refactoring the binarySearch method, we confirmed
that this change will reduce the execution time of the method from
0.0918 ms (before restructuring) to 0.0737 ms.

The experimental results from the three scenarios provide sufficient
evidence that PROPER can produce useful insights on the impact of

potential internal changes in the code or external in the operating
environment of an application. The impact of such changes can be as-
sessed without updating the code or deploying it in the target hardware
platform, thus reducing significantly the effort and cost in analysing
performance properties of interest. These results provide evidence how
PROPER can assist software engineers in making informed decisions.

RQ3 (Efficiency). To answer RQ3, we measured the execution time
and memory consumption of PROPER, both for the calculation of point
estimates and of confidence intervals for the properties of interest
and the CUA. To this end, we used the currentTimeMillis method from
Oracle’s System (https://docs.oracle.com/javase) class for the formal
verification with confidence intervals. For the calculation of point esti-
mates, we used the output log from PRISM [29] and obtained both the
time needed for model construction and model checking for each of the
specified properties. To measure the memory consumption, we used the
JavaVisualVM profiling tool which comes with the Java Development
Kit (JDK).

The experimental results in Table 5 demonstrate that PROPER’s
analysis by point estimates is significantly faster than obtaining the
confidence intervals, up to three orders of magnitude. Despite this
performance difference, we can see that the execution time for both
PROPER variants is under 10 s. This difference in execution time is
not surprising, especially since performing probabilistic model checking
using point estimates (Section 4.4.1) involves only the invocation of the
model checker (e.g., PRISM [29]) to evaluate the PCTL performance
property of interest. On the contrary, deriving confidence intervals
for the same property (Section 4.4.2) involves not only calculating
simultaneous confidence intervals for the transition probabilities of the
pDTMC at a user-specified confidence level 𝛼 but also the invocation of

https://docs.oracle.com/javase

Information and Software Technology 156 (2023) 107143

15

I. Stefanakos et al.

Fig. 14. Java method (left) and pDTMC model (right) of the binarySearch method used in Scenario C before restructuring.

Fig. 15. Java method (left) and synthesised pDTMC model (right) of the binarySearch method used in Scenario C after code restructuring. The shaded regions in the Java
code and the pDTMC model indicate the changes compared to their original versions before restructuring from Fig. 14.

Information and Software Technology 156 (2023) 107143

16

I. Stefanakos et al.

Table 5
Time and memory consumption comparison between PROPER’s types of analysis (left: confidence interval; right: point estimates).

Analysed code Probabilistic model checking with CI Probabilistic model checking with point estimates

Execution time (s) Memory consumption (MB) Execution time (s) Memory consumption (MB)

distance1 7.1 [3.2–36] 0.003 [12–39]
fst 6.8 [3.4–36] 0.005 [12–36]
knapsackDP 7.5 [4.2–37.8] 0.01 [12–37]
devPerf 6.7 [2.3–36] 0.004 [11–36]
minPathSum 7.8 [3.7–37.4] 0.012 [12–36]
binarySearch 7.1 [2.6–36.2] 0.002 [12–37]

a MATLAB-based optimisation package within FACT [21] to establish
the confidence interval for the property. In terms of memory, PROPER
independent of the CUA and type of analysis consumes on average
the same amount of memory. Accordingly, we have sufficient evidence
that PROPER can be used in practice with modest execution time and
memory overheads.

Discussion. Our experimental evaluation provides empirical evidence
for the accuracy and efficiency of our PROPER method. The evaluation
also illustrates the capabilities of PROPER in supporting software en-
gineers and practitioners to predict the performance (i.e., cost, energy,
execution time) of their code when making internal changes (e.g., using
a different software library to execute specific functions) or when
deploying the code on a new hardware platform. Through PROPER,
this performance assessment is achieved without updating the code
or deploying it in the target hardware platform. Software refactoring
and modernisation activities are costly and time-consuming [45,47],
and PROPER helps software engineers to perform this assessment by
spending less effort and cost. If the engineers are satisfied with the
predicted impact of the modification, they can then proceed with its
implementation.

As described in Section 4.1, applying PROPER in practice entails
that the Java statements of interest of the CUA are annotated using the
construct from (1). Software engineers are familiar with adding annota-
tions within a code base [48], so we consider this task relatively easy to
achieve. Determining which statements should be annotated entails an
overall understanding of the code. Software engineers responsible for
developing and maintaining the code clearly have this understanding,
and information about the cost, energy and execution time of the state-
ments of interest can be extracted from the documentation of employed
software libraries. Finally, inferring usage profiles for the CUA involves
collecting representative logs during the system’s execution through
code instrumentation [1], an activity incurring modest setup overheads
as described in related research [14,16–18].

6.4. Threats to validity

Construct validity threats may arise from the construction of the
models’ representations based on the selected Java code. To mitigate
this threat, all use cases are based on real-world applications, and the
produced models refer to parts of these applications’ source code.
Internal validity threats can originate from obtaining inaccurate

results via simulating the code’s execution, e.g., to obtain the transition
probabilities in the case of calculating point estimates. To mitigate
these threats, we performed simulation up to 106 times. Additionally,
we created 10 sets of these simulation runs and calculated the average
of their output values.
External validity threats might be due to the difficulty of repre-

senting part of a Java application’s source code as a pDTMC model. To
mitigate this threat, we carefully evaluated each model to its respective
code method, and built an automated implementation of PROPER to
assist us in the code-to-model transformation process. However, further
experiments are needed to establish the applicability, feasibility and
scalability of PROPER in domains and applications with characteristics
different from those used in our evaluation (e.g., databases, distributed
systems).

7. Related work

Probabilistic software analysis (PSA) [49] has been used success-
fully in domains including testing, cryptographic protocols, cyber–
physical systems, and reliability analysis [50]. However, to the best of
our knowledge, our method is the first PSA approach that synthesises
a probabilistic model directly from source code to verify performance
properties of interest. The only related work we are aware of belongs
to the areas of software maintenance [51] and software reliability anal-
ysis [52]. Unlike our approach, research in these areas uses mostly
techniques such as symbolic execution [53,54] and simulation [55,56],
rather than probabilistic model checking.

Probabilistic symbolic execution [53] is an extension of symbolic
execution that allows probabilistic reasoning. A probabilistic environ-
ment for Java based on symbolic execution is proposed in [54]. This
framework can handle probabilistic programming features, and be used
for the encoding and analysis of DTMCs, Bayesian Networks, etc. Addi-
tionally, research proposed in [19] introduces a general methodology
that uses symbolic execution of source code for extracting failure and
success paths that can be used for probabilistic reliability assessment,
against relevant usage scenarios. The work in [20] extends the previous
approach by building upon the symbolic execution framework with
the aim of computing a precise numeric characterisation of program
changes. However, the focus of these approaches is on reliability. In
contrast, PROPER targets the analysis of performance-related quality
properties. Also, the bounded exploration depth set during symbolic
execution can lead to loss of information necessary for quality property
analysis, while our approach achieves precise exploration of loops.

The reliability assessment approach from [57] uses software metrics
for reliability modelling. This work differs from ours as it uses DTMC
models built around the control transfer relationship between compo-
nents and it is not directly applied on source code. Furthermore, the
work described in [58] introduces reduction methods for probabilistic
programs that operate purely on a syntactic level, while the research
in [56] proposes a framework of incorporating path testing into reli-
ability estimation for modular software systems. Also, [55] develops
simulation procedures to assess the impact of individual components on
the reliability of an application in the presence of fault detection and
repair. These approaches differ from ours as they focus on techniques
that improve the calculation and monitoring of reliability.

Techniques for the analysis of nonfunctional properties are not
limited on source code-level. On the contrary, many approaches are
aimed towards the system architecture-level of the targeted software
system. The following paragraph describes research work falling within
this category.

The approach proposed in [59] combines synthesis of spaces of
system design alternatives from formal specifications of architectural
styles with probabilistic formal verification. Additionally, the work
presented in [10] introduces an improvement to the planning stage
of self-adaptive systems by predicting the outcome of each adaptation
strategy. A stochastic model is derived from a formal architecture
description of the managed system with the changes imposed by each
strategy. This information is then used to optimise the self-adaptation
decisions to fulfil the desired quality goals.

In a similar track, the approach introduced in [60] automates the
traceability between software architectural models and extra-functional

Information and Software Technology 156 (2023) 107143

17

I. Stefanakos et al.

results by investigating the uncertainty while bridging these two do-
mains. This approach makes use of extra-functional patterns and an-
tipatterns, to deduce the logical consequences between the architec-
tural elements and analysis results. By building a graph of traces, it
becomes possible to identify the most critical causes of extra-functional
flaws. The model-based approach described in [11] enables software
engineers to assess their design solutions for software product lines
in the early stages of development. A nonfunctional MDA framework
(NFMDA) is considered in [9] that embeds new types of model trans-
formations that allow the generation of quantitative models for non-
functional analysis. By using the framework with two methodologies,
one for performance analysis and one for reliability assessment, an
illustration of the relationships between nonfunctional models and
software models is achieved. The above presented approaches are com-
plementary to PROPER, as they do not support the code-level analysis
of software performance and other quality properties.

We have categorised the related work in this area based on the type
of analysis for the targeted system (i.e., code or system architecture-
level). Our PROPER method belongs to the former type of analysis;
however, in [61] we demonstrate how it can also be used in a combined
approach to support software engineers in assessing the software sys-
tem at both levels. Unlike other code-level analysis techniques, PROPER
focuses on performance rather than reliability, synthesises probabilistic
models directly from source code (while the related techniques rely
on symbolic execution and simulation), and can compute confidence
intervals for the analysed nonfunctional properties.

8. Conclusion

We presented PROPER, a tool-supported method for the automated
performance analysis of probabilistic programs, that operates in three
stages. In the first stage, PROPER automatically synthesises a pDTMC
model representation of the CUA, that is parameterised by the execu-
tion probabilities of the conditional statements and loops appearing in
the CUA. In the second stage, PROPER offers the flexibility of either
computing point estimates or confidence intervals for the unknown
pDTMC parameters. This process is carried out using information from
program logs that capture the operational profile of the CUA. In the
third, and final stage, PROPER enables the analysis of CUA performance
properties of interest (e.g., timing, resource use, cost), and obtains point
estimates or confidence intervals for these properties.

We evaluated PROPER on six applications and demonstrated how it
can support the performance analysis in scenarios involving changes
in hardware platforms, function libraries or usage profile. As such,
PROPER can help practitioners to predict the performance that their
code will achieve if deployed on a new platform, run in a scenario with
a different usage profile, or modified to use a different library for some
of its functions.

We plan to continue to develop our program performance analysis
method by: (1) extending PROPER to support analysis of reliabil-
ity properties; (2) extending the pDTMC model synthesis stage of
PROPER with the ability to transform multiple Java classes into a single
pDTMC model; (3) assessing its scalability to larger programs; and
(4) validating PROPER using code from other systems and domains
(e.g., databases, distributed systems).

CRediT authorship contribution statement

Ioannis Stefanakos: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing –
original draft. Radu Calinescu: Conceptualization, Methodology, Soft-
ware, Writing – original draft, Supervision, Funding acquisition. Simos
Gerasimou: Conceptualization, Methodology, Software, Formal analy-
sis, Supervision, Writing – original draft.

Declaration of competing interest

One or more of the authors of this paper have disclosed poten-
tial or pertinent conflicts of interest, which may include receipt of
payment, either direct or indirect, institutional support, or associa-
tion with an entity in the biomedical field which may be perceived
to have potential conflict of interest with this work. For full disclo-
sure statements refer to https://doi.org/10.1016/j.infsof.2022.107143.
Ioannis Stefanakos reports financial support was provided by Assur-
ing Autonomy International Programme. Ioannis Stefanakos reports a
relationship with Assuring Autonomy International Programme that
includes: funding grants. Ioannis Stefanakos reports a relationship with
Microsoft Research that includes: funding grants.

Data availability

All data/code used in this work can be found in our GitHub repos-
itory for which a link is provided in the paper.

Acknowledgements

This work was supported by Microsoft Research, UK through its PhD
Scholarship Programme.

References

[1] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-based performance
prediction in software development: A survey, IEEE Trans. Softw. Eng. 30 (5)
(2004) 295–310, http://dx.doi.org/10.1109/TSE.2004.9.

[2] L. Traini, D. Di Pompeo, M. Tucci, B. Lin, S. Scalabrino, G. Bavota, M. Lanza, R.
Oliveto, V. Cortellessa, How software refactoring impacts execution time, ACM
Trans. Softw. Eng. Methodol. (TOSEM) 31 (2) (2021) 1–23, http://dx.doi.org/
10.1145/3485136.

[3] D. Ameller, X. Franch, C. Gómez, S. Martínez-Fernández, J. Araújo, S. Biffl,
J. Cabot, V. Cortellessa, D.M. Fernández, A. Moreira, et al., Dealing with
non-functional requirements in model-driven development: A survey, IEEE
Trans. Softw. Eng. 47 (4) (2019) 818–835, http://dx.doi.org/10.1109/TSE.2019.
2904476.

[4] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in
Software Engineering, in: International Series in Software Engineering, vol.
5, Springer Science & Business Media, 2012, http://dx.doi.org/10.1007/978-1-
4615-5269-7.

[5] R. Calinescu, Emerging techniques for the engineering of self-adaptive high-
integrity software, in: Assurances for Self-Adaptive Systems, Springer, 2013, pp.
297–310, http://dx.doi.org/10.1007/978-3-642-36249-1_11.

[6] H. Koziolek, Performance evaluation of component-based software systems: A
survey, Perform. Eval. 67 (8) (2010) 634–658, http://dx.doi.org/10.1016/j.peva.
2009.07.007.

[7] M. Plauth, L. Feinbube, A. Polze, A performance survey of lightweight virtu-
alization techniques, in: European Conference on Service-Oriented and Cloud
Computing, 2017, pp. 34–48, http://dx.doi.org/10.1007/978-3-319-67262-5_3.

[8] D. Arcelli, Exploiting queuing networks to model and assess the performance
of self-adaptive software systems: A survey, Procedia Comput. Sci. 170 (2020)
498–505, http://dx.doi.org/10.1016/j.procs.2020.03.108.

[9] V. Cortellessa, A. Di Marco, P. Inverardi, Integrating performance and reliability
analysis in a non-functional MDA framework, in: Fundamental Approaches to
Software Engineering, 2007, pp. 57–71, http://dx.doi.org/10.1007/978-3-540-
71289-3_6.

[10] J.M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela, B. Schmerl, D. Garlan,
Improving self-adaptation planning through software architecture-based stochas-
tic modeling, J. Syst. Softw. 115 (2016) 42–60, http://dx.doi.org/10.1016/j.jss.
2016.01.026.

[11] C. Ghezzi, A. Molzam Sharifloo, Model-based verification of quantitative non-
functional properties for software product lines, Inf. Softw. Technol. 55 (3)
(2013) 508–524, http://dx.doi.org/10.1016/j.infsof.2012.07.017.

[12] K. Cooper, L. Dai, Y. Deng, Performance modeling and analysis of software
architectures: An aspect-oriented UML based approach, Sci. Comput. Program.
57 (1) (2005) 89–108, http://dx.doi.org/10.1016/j.scico.2004.10.007.

[13] S. Becker, H. Koziolek, R. Reussner, The Palladio component model for model-
driven performance prediction, J. Syst. Softw. 82 (1) (2009) 3–22, http://dx.doi.
org/10.1016/j.jss.2008.03.066.

[14] N. Kumar, B.R. Childers, M.L. Soffa, Low overhead program monitoring and
profiling, SIGSOFT 31 (1) (2005) 28–34, http://dx.doi.org/10.1145/1108792.
1108801.

https://doi.org/10.1016/j.infsof.2022.107143
http://dx.doi.org/10.1109/TSE.2004.9
http://dx.doi.org/10.1145/3485136
http://dx.doi.org/10.1145/3485136
http://dx.doi.org/10.1145/3485136
http://dx.doi.org/10.1109/TSE.2019.2904476
http://dx.doi.org/10.1109/TSE.2019.2904476
http://dx.doi.org/10.1109/TSE.2019.2904476
http://dx.doi.org/10.1007/978-1-4615-5269-7
http://dx.doi.org/10.1007/978-1-4615-5269-7
http://dx.doi.org/10.1007/978-1-4615-5269-7
http://dx.doi.org/10.1007/978-3-642-36249-1_11
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://dx.doi.org/10.1007/978-3-319-67262-5_3
http://dx.doi.org/10.1016/j.procs.2020.03.108
http://dx.doi.org/10.1007/978-3-540-71289-3_6
http://dx.doi.org/10.1007/978-3-540-71289-3_6
http://dx.doi.org/10.1007/978-3-540-71289-3_6
http://dx.doi.org/10.1016/j.jss.2016.01.026
http://dx.doi.org/10.1016/j.jss.2016.01.026
http://dx.doi.org/10.1016/j.jss.2016.01.026
http://dx.doi.org/10.1016/j.infsof.2012.07.017
http://dx.doi.org/10.1016/j.scico.2004.10.007
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1145/1108792.1108801
http://dx.doi.org/10.1145/1108792.1108801
http://dx.doi.org/10.1145/1108792.1108801

Information and Software Technology 156 (2023) 107143

18

I. Stefanakos et al.

[15] T. Ball, J.R. Larus, Optimally profiling and tracing programs, TOPLAS 16 (4)
(1994) 1319–1360, http://dx.doi.org/10.1145/183432.183527.

[16] P. Arafa, G.M. Tchamgoue, H. Kashif, S. Fischmeister, QDIME: QoS-aware
dynamic binary instrumentation, in: MASCOTS, 2017, pp. 132–142, http://dx.
doi.org/10.1109/MASCOTS.2017.19.

[17] A. Van Hoorn, J. Waller, W. Hasselbring, Kieker: A framework for application
performance monitoring and dynamic software analysis, in: ICPE, 2012, pp.
247–248, http://dx.doi.org/10.1145/2188286.2188326.

[18] S. Schubert, D. Kostic, W. Zwaenepoel, K.G. Shin, Profiling software for energy
consumption, in: GreenCom, 2012, pp. 515–522, http://dx.doi.org/10.1109/
GreenCom.2012.86.

[19] A. Filieri, C. Pasareanu, W. Visser, Reliability analysis in symbolic pathfinder,
in: ICSE, 2013, pp. 622–631, http://dx.doi.org/10.1109/ICSE.2013.6606608.

[20] A. Filieri, C.S. Pasareanu, G. Yang, Quantification of software changes through
probabilistic symbolic execution, in: ASE, 2015, pp. 703–708, http://dx.doi.org/
10.1109/ASE.2015.78.

[21] R. Calinescu, K. Johnson, C. Paterson, FACT: A probabilistic model checker for
formal verification with confidence intervals, in: TACAS, 2016, pp. 540–546,
http://dx.doi.org/10.1007/978-3-662-49674-9_32.

[22] I. Stefanakos, R. Calinescu, S. Gerasimou, Probabilistic program performance
analysis, in: 47th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA, 2021, pp. 148–157, http://dx.doi.org/10.1109/SEAA53835.
2021.00027.

[23] J.-P. Katoen, The probabilistic model checking landscape, in: LICS, 2016, pp.
31–45, http://dx.doi.org/10.1145/2933575.2934574.

[24] S. Andova, H. Hermanns, J.-P. Katoen, Discrete-time rewards model-checked, in:
International Conference on Formal Modeling and Analysis of Timed Systems,
2004, pp. 88–104, http://dx.doi.org/10.1007/978-3-540-40903-8_8.

[25] C. Daws, Symbolic and parametric model checking of discrete-time Markov
chains, in: International Colloquium on Theoretical Aspects of Computing,
Springer, 2004, pp. 280–294, http://dx.doi.org/10.1007/978-3-540-31862-0_21.

[26] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Form.
Asp. Comput. 6 (1994) 512–535, http://dx.doi.org/10.1007/BF01211866.

[27] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezzé, Y. Rafiq, G. Tamburrelli, Formal
verification with confidence intervals to establish quality of service properties of
software systems, IEEE Trans. Reliab. 65 (1) (2015) 107–125, http://dx.doi.org/
10.1109/TR.2015.2452931.

[28] E.M. Hahn, H. Hermanns, B. Wachter, L. Zhang, PARAM: A model checker for
parametric Markov models, in: Computer Aided Verification, Springer, 2010, pp.
660–664, http://dx.doi.org/10.1007/978-3-642-14295-6_56.

[29] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of probabilistic
real-time systems, in: CAV, 2011, pp. 585–591, http://dx.doi.org/10.1007/978-
3-642-22110-1_47.

[30] C. Dehnert, S. Junges, J. Katoen, M. Volk, A storm is coming: A modern
probabilistic model checker, in: Computer Aided Verification, 2017, pp. 592–600,
http://dx.doi.org/10.1007/978-3-319-63390-9_31.

[31] R. Calinescu, C.A. Paterson, K. Johnson, Efficient parametric model checking
using domain knowledge, IEEE Trans. Softw. Eng. 47 (6) (2021) 1114–1133,
http://dx.doi.org/10.1109/TSE.2019.2912958.

[32] X. Fang, R. Calinescu, S. Gerasimou, F. Alhwikem, Fast parametric model check-
ing through model fragmentation, in: 43rd IEEE/ACM International Conference
on Software Engineering, ICSE, 2021, pp. 835–846, http://dx.doi.org/10.1109/
ICSE43902.2021.00081.

[33] M. Hort, M. Kechagia, F. Sarro, M. Harman, A survey of performance optimiza-
tion for mobile applications, IEEE Trans. Softw. Eng. 48 (8) (2022) 2879–2904,
http://dx.doi.org/10.1109/TSE.2021.3071193.

[34] M. Borges, Q.-S. Phan, A. Filieri, C.S. Păsăreanu, Model-counting approaches for
nonlinear numerical constraints, in: NASA Formal Methods, 2017, pp. 131–138,
http://dx.doi.org/10.1007/978-3-319-57288-8_9.

[35] J.A. De Loera, R. Hemmecke, J. Tauzer, R. Yoshida, Effective lattice point
counting in rational convex polytopes, J. Symbolic Comput. 38 (4) (2004)
1273–1302, http://dx.doi.org/10.1016/j.jsc.2003.04.003.

[36] W. Visser, N. Bjørner, N. Shankar, Software engineering and automated deduc-
tion, in: Proceedings of the on Future of Software Engineering, Association for
Computing Machinery, 2014, pp. 155–166, http://dx.doi.org/10.1145/2593882.
2593899.

[37] A. Filieri, M.F. Frias, C.S. Păsăreanu, W. Visser, Model counting for complex
data structures, in: Model Checking Software, Springer International Publishing,
2015, pp. 222–241, http://dx.doi.org/10.1007/978-3-319-23404-5_15.

[38] W. Visser, C.S. Păsăreanu, Probabilistic programming for Java using symbolic
execution and model counting, in: Proceedings of the South African Institute of
Computer Scientists and Information Technologists, Association for Computing
Machinery, 2017, pp. 1–10, http://dx.doi.org/10.1145/3129416.3129433.

[39] S. Teuber, A. Weigl, Quantifying software reliability via model-counting, in:
Quantitative Evaluation of Systems, Springer International Publishing, 2021, pp.
59–79, http://dx.doi.org/10.1007/978-3-030-85172-9_4.

[40] D.P. Bertsekas, J.N. Tsitsiklis, Introduction to Probability, Vol. 1, Athena
Scientific, 2008.

[41] G. Su, D.S. Rosenblum, Asymptotic bounds for quantitative verification of per-
turbed probabilistic systems, in: International Conference on Formal Engineering
Methods, Springer, 2013, pp. 297–312, http://dx.doi.org/10.1007/978-3-642-
41202-8_20.

[42] B. Bartels, U. Ermel, P. Sandborn, M.G. Pecht, Strategies to the Prediction,
Mitigation and Management of Product Obsolescence, Vol. 87, John Wiley &
Sons, 2012, http://dx.doi.org/10.1002/9781118275474.

[43] S. Gerasimou, D. Kolovos, R. Paige, M. Standish, Technical obsolescence
management strategies for safety-related software for airborne systems, in:
Federation of International Conferences on Software Technologies: Applications
and Foundations, Springer, 2017, pp. 385–393, http://dx.doi.org/10.1007/978-
3-319-74730-9_34.

[44] B.E. Cossette, R.J. Walker, Seeking the ground truth: A retroactive study on
the evolution and migration of software libraries, in: FSE, 2012, pp. 1–11,
http://dx.doi.org/10.1145/2393596.2393661.

[45] S. Gerasimou, M. Kechagia, D. Kolovos, R. Paige, G. Gousios, On software
modernisation due to library obsolescence, in: 2018 IEEE/ACM 2nd International
Workshop on API Usage and Evolution, WAPI, IEEE, 2018, pp. 6–9, http:
//dx.doi.org/10.1145/3194793.3194798.

[46] S. Wood, N. Matragkas, D. Kolovos, R. Paige, S. Gerasimou, Supporting robotic
software migration using static analysis and model-driven engineering, in:
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, 2020, pp. 154–164, http://dx.doi.org/10.
1145/3365438.3410965.

[47] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring challenges
and benefits, in: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, 2012, pp. 1–11, http://dx.doi.org/
10.1145/2393596.2393655.

[48] Z. Yu, C. Bai, L. Seinturier, M. Monperrus, Characterizing the usage, evolution
and impact of Java annotations in practice, IEEE Trans. Softw. Eng. 47 (5) (2019)
969–986, http://dx.doi.org/10.48550/arXiv.1805.01965.

[49] M.B. Dwyer, A. Filieri, J. Geldenhuys, M.J. Gerrard, C.S. Pasareanu, W. Visser,
Probabilistic program analysis, in: Grand Timely Topics in Software Engineering,
GTTSE, in: Lecture Notes in Computer Science, vol. 10223, Springer, 2015, pp.
1–25, http://dx.doi.org/10.1007/978-3-319-60074-1_1.

[50] A.D. Gordon, T.A. Henzinger, A.V. Nori, S.K. Rajamani, Probabilistic program-
ming, in: Proceedings of the on Future of Software Engineering, 2014, pp.
167–181, http://dx.doi.org/10.1145/2593882.2593900.

[51] K.H. Bennett, V. Rajlich, Software maintenance and evolution: A roadmap, in:
ICSE, 2000, pp. 73–87, http://dx.doi.org/10.1145/336512.336534.

[52] P.N. Misra, Software reliability analysis, IBM Syst. J. 22 (3) (1983) 262–270,
http://dx.doi.org/10.1147/sj.223.0262.

[53] J. Geldenhuys, M.B. Dwyer, W. Visser, Probabilistic symbolic execution, in:
ISSTA, 2012, pp. 166–176, http://dx.doi.org/10.1145/2338965.2336773.

[54] W. Visser, C. Pasareanu, Probabilistic programming for Java using symbolic
execution and model counting, in: SAICSIT, 2017, pp. 1–10, http://dx.doi.org/
10.1145/3129416.3129433.

[55] S.S. Gokhale, Michael Rung-Tsong Lyu, A simulation approach to structure-based
software reliability analysis, IEEE Trans. Softw. Eng. 31 (8) (2005) 643–656,
http://dx.doi.org/10.1109/TSE.2005.86.

[56] C. Hsu, C. Huang, An adaptive reliability analysis using path testing for complex
component-based software systems, IEEE Trans. Reliab. 60 (1) (2011) 158–170,
http://dx.doi.org/10.1109/TR.2011.2104490.

[57] J. Zhang, Y. Lu, K. Shi, C. Xu, Empirical research on the application of a
structure-based software reliability model, IEEE/CAA J. Autom. Sin. (2020) 1–10,
http://dx.doi.org/10.1109/JAS.2020.1003309.

[58] C. Dubslaff, A. Morozov, C. Baier, K. Janschek, Reduction methods on proba-
bilistic control-flow programs for reliability analysis, 2020, http://dx.doi.org/10.
48550/arXiv.2004.06637, CoRR.

[59] J. Camara, D. Garlan, B. Schmerl, Synthesis and quantitative verification of
tradeoff spaces for families of software systems, in: Software Architecture, 2017,
pp. 3–21, http://dx.doi.org/10.1007/978-3-319-65831-5_1.

[60] C. Trubiani, A. Ghabi, A. Egyed, Exploiting traceability uncertainty between
software architectural models and extra-functional results, J. Syst. Softw. 125
(2017) 15–34, http://dx.doi.org/10.1016/j.jss.2016.11.032.

[61] I. Stefanakos, S. Gerasimou, R. Calinescu, Software performance engineering with
performance antipatterns and code-level probabilistic analysis, in: ACM/IEEE
International Conference on Model Driven Engineering Languages and Sys-
tems Companion, IEEE, 2021, pp. 249–253, http://dx.doi.org/10.1109/MODELS-
C53483.2021.00045.

http://dx.doi.org/10.1145/183432.183527
http://dx.doi.org/10.1109/MASCOTS.2017.19
http://dx.doi.org/10.1109/MASCOTS.2017.19
http://dx.doi.org/10.1109/MASCOTS.2017.19
http://dx.doi.org/10.1145/2188286.2188326
http://dx.doi.org/10.1109/GreenCom.2012.86
http://dx.doi.org/10.1109/GreenCom.2012.86
http://dx.doi.org/10.1109/GreenCom.2012.86
http://dx.doi.org/10.1109/ICSE.2013.6606608
http://dx.doi.org/10.1109/ASE.2015.78
http://dx.doi.org/10.1109/ASE.2015.78
http://dx.doi.org/10.1109/ASE.2015.78
http://dx.doi.org/10.1007/978-3-662-49674-9_32
http://dx.doi.org/10.1109/SEAA53835.2021.00027
http://dx.doi.org/10.1109/SEAA53835.2021.00027
http://dx.doi.org/10.1109/SEAA53835.2021.00027
http://dx.doi.org/10.1145/2933575.2934574
http://dx.doi.org/10.1007/978-3-540-40903-8_8
http://dx.doi.org/10.1007/978-3-540-31862-0_21
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1109/TR.2015.2452931
http://dx.doi.org/10.1109/TR.2015.2452931
http://dx.doi.org/10.1109/TR.2015.2452931
http://dx.doi.org/10.1007/978-3-642-14295-6_56
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-319-63390-9_31
http://dx.doi.org/10.1109/TSE.2019.2912958
http://dx.doi.org/10.1109/ICSE43902.2021.00081
http://dx.doi.org/10.1109/ICSE43902.2021.00081
http://dx.doi.org/10.1109/ICSE43902.2021.00081
http://dx.doi.org/10.1109/TSE.2021.3071193
http://dx.doi.org/10.1007/978-3-319-57288-8_9
http://dx.doi.org/10.1016/j.jsc.2003.04.003
http://dx.doi.org/10.1145/2593882.2593899
http://dx.doi.org/10.1145/2593882.2593899
http://dx.doi.org/10.1145/2593882.2593899
http://dx.doi.org/10.1007/978-3-319-23404-5_15
http://dx.doi.org/10.1145/3129416.3129433
http://dx.doi.org/10.1007/978-3-030-85172-9_4
http://refhub.elsevier.com/S0950-5849(22)00252-X/sb40
http://refhub.elsevier.com/S0950-5849(22)00252-X/sb40
http://refhub.elsevier.com/S0950-5849(22)00252-X/sb40
http://dx.doi.org/10.1007/978-3-642-41202-8_20
http://dx.doi.org/10.1007/978-3-642-41202-8_20
http://dx.doi.org/10.1007/978-3-642-41202-8_20
http://dx.doi.org/10.1002/9781118275474
http://dx.doi.org/10.1007/978-3-319-74730-9_34
http://dx.doi.org/10.1007/978-3-319-74730-9_34
http://dx.doi.org/10.1007/978-3-319-74730-9_34
http://dx.doi.org/10.1145/2393596.2393661
http://dx.doi.org/10.1145/3194793.3194798
http://dx.doi.org/10.1145/3194793.3194798
http://dx.doi.org/10.1145/3194793.3194798
http://dx.doi.org/10.1145/3365438.3410965
http://dx.doi.org/10.1145/3365438.3410965
http://dx.doi.org/10.1145/3365438.3410965
http://dx.doi.org/10.1145/2393596.2393655
http://dx.doi.org/10.1145/2393596.2393655
http://dx.doi.org/10.1145/2393596.2393655
http://dx.doi.org/10.48550/arXiv.1805.01965
http://dx.doi.org/10.1007/978-3-319-60074-1_1
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1145/336512.336534
http://dx.doi.org/10.1147/sj.223.0262
http://dx.doi.org/10.1145/2338965.2336773
http://dx.doi.org/10.1145/3129416.3129433
http://dx.doi.org/10.1145/3129416.3129433
http://dx.doi.org/10.1145/3129416.3129433
http://dx.doi.org/10.1109/TSE.2005.86
http://dx.doi.org/10.1109/TR.2011.2104490
http://dx.doi.org/10.1109/JAS.2020.1003309
http://dx.doi.org/10.48550/arXiv.2004.06637
http://dx.doi.org/10.48550/arXiv.2004.06637
http://dx.doi.org/10.48550/arXiv.2004.06637
http://dx.doi.org/10.1007/978-3-319-65831-5_1
http://dx.doi.org/10.1016/j.jss.2016.11.032
http://dx.doi.org/10.1109/MODELS-C53483.2021.00045
http://dx.doi.org/10.1109/MODELS-C53483.2021.00045
http://dx.doi.org/10.1109/MODELS-C53483.2021.00045

	Probabilistic program performance analysis with confidence intervals
	Introduction
	Running example
	Theoretical basis
	Probabilistic model checking
	Formal verification with confidence intervals

	PROPER Performance Analysis Method
	Method Overview
	Probabilistic model synthesis
	Transition probability calculation
	Point estimate calculation
	Confidence interval calculation

	Analysis
	Probabilistic Model Checking with Point Estimates
	Probabilistic Model Checking with Confidence Intervals

	Further application scenarios

	Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Results and Discussion
	Threats to Validity

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

