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Rhizosphere phage communities drive soil 
suppressiveness to bacterial wilt disease
Keming Yang1†, Xiaofang Wang1†, Rujiao Hou1, Chunxia Lu1, Zhe Fan1, Jingxuan Li1, Shuo Wang1, 

Yangchun Xu1, Qirong Shen1, Ville-Petri Friman1,2,3* and Zhong Wei1* 

Abstract 

Background Bacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosys-

tems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are 

poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere 

phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by 

plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants 

are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. ‘primary phages’) 

and (2) that ‘secondary phages’ that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizos-

phere microbiomes by indirectly ‘helping’ the pathogen.

Results Using a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated 

with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that 

exert strong top-down pathogen density control. Moreover, ‘secondary phages’ that targeted pathogen-inhibiting 

bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and ‘secondary 

phages’ were directly validated in separate greenhouse experiments where we causally show that phages can reduce 

soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating inter-

ference competition between pathogen-inhibiting bacteria and the pathogen.

Conclusions Together, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, 

could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of inter-

ference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be 

important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields.

Keywords Phage community ecology, Viral metagenomics, Rhizosphere virome, Trophic interactions, Bacterial wilt 

disease, Ralstonia solanacearum
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Background
Plant rhizosphere-associated bacterial communities 

play a key role in plant health and form the first line of 

defence against invading pathogens through competition 

for space and nutrients [1–3]. Invasion-resistant bacterial 

communities are often characterised by high phyloge-

netic and functional diversity, which can be linked with 

high niche occupancy [4] and the presence of ‘inhibitor’ 

bacteria that can suppress pathogens via the production 

of antimicrobials or iron-scavenging siderophores [5–7]. 

While it has been shown that plants can directly select 

for suppressive microbiota by favouring certain bacterial 

taxa through ‘host-filtering’ [8], competitive interactions 

between rhizosphere bacteria can also drive the assembly 

of suppressive microbiomes [9]. While other groups of 

microbes, such as fungi or protists, have been associated 

with suppressive soils [10, 11], the role of the most abun-

dant soil organisms, phages, has been mostly neglected.

Phages are viruses of bacteria and are highly abundant 

in aquatic and terrestrial ecosystems [12]. They drive the 

turnover of bacterial biomass through recurrent infec-

tions [13] and have several ecosystem-level impacts, 

affecting soil nitrogen availability [14], carbon cycling 

[15] and breakdown of pollutants [16]. Previous stud-

ies have demonstrated long-term persistence and den-

sity fluctuations of phages and their host bacteria in the 

phytosphere of sugar beets [17, 18], phyllosphere of horse 

chestnut trees [19–21] and the rhizosphere of tomato 

plants [22, 23]. Moreover, phages have been shown to 

drive changes in the diversity and composition of tomato 

leaf [24] and rhizosphere [22] microbiota and follow tem-

poral changes in bacterial community composition in 

agricultural soils [25]. Interestingly, in an earlier study, 

the application of phages also increased the suppressive-

ness of the rhizosphere microbiota to phytopathogenic 

Ralstonia solanacearum bacterium, likely due to the kill-

ing of the pathogen and subsequent release of niche space 

for antibiotics-producing bacteria [22]. Phages could 

hence play an important role not only in the composi-

tion but also in the functioning of rhizosphere bacterial 

communities by promoting soil suppressiveness. While it 

has previously been suggested that healthy and diseased 

plants might harbour distinct phage communities [26] 

similar to gut viromes of diseased and healthy humans 

[27–29], this idea has not been tested experimentally.

Here, we combined metagenomics and direct experi-

mentation to link rhizosphere phage communities with 

bacterial wilt disease outcomes in a tomato field—a 

globally important plant disease of potato, tomato and 

banana caused by R. solanacearum bacterial pathogen 

[30, 31]. Specifically, we hypothesised that healthy plants 

could be associated with stronger top-down control by 

R. solanacearum-specific phages (i.e. ‘primary phages’), 

resulting in lower pathogen densities [22]. Moreover, 

we wanted to explore how the phage community might 

indirectly affect R. solanacearum densities via the lysis of 

bacteria that show ‘inhibitory’ interactions with the path-

ogen [32, 33]. We hence hypothesised that ‘secondary 

phages’ that target ‘inhibitory’ bacteria could play a rela-

tively more important role in diseased plant rhizosphere 

microbiomes. To test these hypotheses, we first used 

metagenomics to track down changes in phage-bacteria 

population and community dynamics in the rhizosphere 

microbiomes of healthy and diseased tomatoes infected 

by the R. solanacearum pathogen. The samples were 

derived from a field experiment, which used a rhizobox 

system embedded in the field [33] to study the assem-

bly and development of rhizosphere microbiomes using 

non-destructive sampling of tomato plants (Fig. 1). This 

approach allowed repeated sampling of the same plant 

individuals in natural conditions from seedling to fruit-

ing stage and choosing a subset of plants that remained 

healthy or succumbed to disease for further analysis. To 

this end, four healthy and four diseased plants were cho-

sen at the end of the experiment, and their past rhizo-

sphere samples collected at weeks 0, 3, 4, 5 and 6 were 

sequenced to study the underlying differences in bacte-

rial and phage communities using metagenomics (total 

of 40 metagenomic samples). Further lab and green-

house experiments were conducted to causally test the 

direct and indirect effects of R. solanacearum-specific 

and ‘secondary phages’ on the soil suppressiveness by 

determining their effects on pathogen densities and the 

interference competition between pathogen-inhibiting 

bacteria and the pathogen, respectively.

Results
Healthy and diseased rhizosphere microbiomes harbour 

distinct phage communities

We first compared the differences in the overall bacterial 

and phage communities between healthy and diseased 

rhizosphere microbiome samples. While the bacte-

rial community alpha diversity varied in time (Shannon 

index: F4,24 = 90.4470, P < 0.001, Additional file 1: Sup-

plementary Data S1), no significant difference between 

healthy and diseased plant microbiomes was observed 

(Additional file 2: Fig. 1 a P = 0.17, Additional file 1: Sup-

plementary Data S1). Overall, the bacterial community 

consisted of 45% of Proteobacteria (n = 3895), 22% of 

Actinobacteria (n = 1952), 20% of Firmicutes (n = 1711) 

and 8% Bacteroidetes (n = 733, Additional file 2: Fig. 1 b). 

Moreover, bacterial community composition of healthy 

and diseased plant microbiomes was significantly differ-

ent and remained dissimilar from the beginning to the 

end of the experiment (Additional file 2: Fig. 1 c-h).
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In the case of the viral community, we identified 79 

viral operational taxonomic units (vOTUs) with a crite-

rion of 85% coverage and 95% similarity recommended 

by MIUViG [34] (Additional file 1: Supplementary Data 

S2). Of all the vOTUs, 26.58% were classified as Myovir-

idae (n = 21), 18.99% as Podoviridae (n = 15), 43.04% 

as Siphoviridae (n = 34) and 11.39% as unclassified (n 

= 9, Additional file  1: Supplementary Data S2). Fur-

thermore, we predicted bacterial hosts for all identified 

vOTUs using VPF-Class [35]: 33.96% of vOTUs were 

predicted to be linked with Actinobacteria (n = 18), 

3.77% with Bacteroidetes (n = 2), 3.77% with Cyano-

bacteria (n = 2), 13.21% with Firmicutes (n = 7) and 

45.28% with Proteobacteria (n = 24, Additional file  2: 

Fig.  2 a). The relative abundance of Podoviridae fam-

ily was generally higher in the healthy plant microbi-

omes, while Siphoviridae family had higher abundances 

in diseased plant microbiomes when analysed over 

the whole data (Podoviridae: F1,6 = 17.64, P = 0.006; 

Siphoviridae: F1,6 = 11.63, P = 0.014, Fig.  2 a, Addi-

tional file 1: Supplementary Data S1). Phage communi-

ties were generally more diverse in the diseased plant 

microbiomes, and this difference was especially clear 

during weeks 5 and 6 (Shannon alpha diversity index 

considering both richness and evenness: F1,6 = 37.15, 

P < 0.001, Fig.  2 b, Additional file  1: Supplementary 

Data S1, S3). Moreover, phage and bacterial commu-

nity alpha diversities were negatively correlated in the 

healthy but positively correlated in the diseased plant 

microbiomes (Fig. 2 c). Similar to bacteria, phage com-

munity composition was consistently different between 

healthy and diseased plant microbiome samples (Fig. 2 

c, d), and while this difference was clearest in initial soil 

samples, it increased between weeks 3 and 6 (Addi-

tional file  2: Fig.  2 b). We also compared the effect of 

physicochemical soil properties between healthy and 

diseased samples at the beginning of the experiment. 

No significant differences were found except for healthy 

plants having higher levels of total organic carbon 

(F1,6 = 9.348, P = 0.0223, Additional file  2: Fig. S3). 

Together, these data suggest that healthy and diseased 

plants were associated with distinct bacterial and phage 

rhizosphere communities, while no clear differences in 

soil physicochemical properties were found.

Fig. 1 Schematic diagram for experimental design, rhizosphere sample collection and following validation experiments. a A semi-natural rhizobox 

sampling system was embedded in natural tomato field soil to repeatedly sample rhizosphere soil for each plant by removing individual nylon 

mesh bags inserted in the ‘middle’ layer of the rhizobox, which were immediately stored at − 80 °C. b Bacterial wilt disease development was 

quantified through time within one field plot where red and blue circles denote diseased and healthy plants, respectively. c Sample processing 

flow where four healthy and diseased plants were selected for further temporal analysis and their respective samples from earlier time points were 

sequenced using shotgun metagenomics. d Validation pipeline where bacterial and phage species were isolated from the same field and their 

effects on the pathogen and bacterial wilt disease outcomes measured in vitro and in planta. All panels were created with BioRe nder. com

http://biorender.com
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Healthy rhizosphere microbiomes contain a relatively 

higher abundance of R. solanacearum‑specific phages

To investigate if contrasting disease outcomes could 

potentially be explained by phage-mediated density 

regulation of the pathogen [22], we quantified R. solan-

acearum densities using quantitative PCR [33] and R. 

solanacearum-specific phage ‘marker’ gene counts as 

the vOTU approach failed to assemble R. solanacearum 

phage contigs. Specifically, we chose the relatively most 

abundant gene per phage species per time point as the 

marker gene to control for bias due to phage species 

genome size differences. We found that while pathogen 

densities did not initially differ between healthy and dis-

eased plants, they increased to much higher levels in the 

diseased plant microbiomes during weeks 5 and 6 (Fig. 3 

a, F1,6 = 24.8, P = 0.002, Additional file  1: Supplemen-

tary Data S1, S3). In contrast, R. solanacearum-specific 

phages were relatively more abundant in healthy plant 

microbiomes especially at the beginning of the sampling 

(F1,6 = 90.27, P < 0.001, Fig. 3 b, Additional file 1: Supple-

mentary Data S1, S3). A total of eight R. solanacearum-

specific phages could be identified in both healthy and 

diseased samples (Fig.  3 c), which included three Myo-

viridae phages (RSL2, RSF1 and RSL1), three Podoviri-

dae phages (RSK1, RSB3 and RSJ5), one Siphoviridae 

phage (RS138) and one unclassified phage (P4282; Addi-

tional file 2: Table S1). Phages P4282 (64.72%) and RSL1 

(15.02%) were the most abundant phages overall (Fig.  3 

c), while phages RSF1, RSL1 and P4282 showed relatively 

higher abundances in the healthy plant microbiomes 

Fig. 2 Comparison of phage community composition and diversity between healthy and diseased plant rhizosphere microbiome samples. 

a Comparison of relative phage abundances at the viral family level between healthy (H) and diseased (D) plant rhizosphere microbiome 

samples (stacked bars show the summed differences of four replicates). b Comparison of phage community diversity (Shannon alpha diversity 

index) between healthy and diseased rhizosphere microbiome samples based on vOTUs. Significances are shown as *P < 0.05, **P < 0.01. n.s., 

non-significant. One-way ANOVA for each time point (see Additional file 1: Supplementary Data S3 for details). c Linear correlations comparing 

Shannon diversity between bacterial and viral communities in healthy (blue circles) and diseased (red circles) plant rhizosphere microbiomes 

from weeks 3 to 6. d Comparison of viral community composition between healthy (blue circles) and diseased (red circles) plant rhizosphere 

microbiomes at different sampling time points based on vOTUs (PCA; pairwise comparisons based on PERMANOVA). In all panels, data shows four 

biological replicates per healthy and diseased plant group

(See figure on next page.)

Fig. 3 The density dynamics of R. solanacearum bacterium and R. solanacearum-specific phages in healthy and diseased plant rhizosphere 

microbiome samples and during a greenhouse validation experiment. a, b The mean (± SD) density dynamics of R. solanacearum bacterium (a) and 

its phages (b) in healthy (blue) and diseased (red) plant rhizosphere microbiome samples over time. c The average density dynamics of different 

R. solanacearum-specific phage species in healthy (H) and diseased (D) plant rhizosphere microbiome samples over time. d Comparison of R. 

solanacearum virus-to-host ratio between healthy (blue line) and diseased (red line) plant samples across time. e Bacterial wilt disease development 

in tomato in the absence (red) and presence (blue) of phages during validation greenhouse experiment. f The R. solanacearum density dynamics 

in the absence (red) and presence (blue) of phages (left Y-axis); the density of R. solanacearum-specific phages is shown on dashed light blue 

line (right Y-axis). In panels a, b, and d, data shows four biological replicates per healthy and diseased plant group, while each line represents an 

individual biological replicate in c (significances are shown as *P < 0.05, **P < 0.01, and ***P < 0.001; n.s., non-significant, one-way ANOVA, see 

Additional file 1: Supplementary Data S3 for details). In e and f, data shows four biological replicates per treatment



Page 5 of 18Yang et al. Microbiome           (2023) 11:16  

Fig. 3 (See legend on previous page.)
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(RSF1: P = 0.004, F1,6 = 18.92; RSL1: P = 0.008, F1,6 = 

14.77; P4282: P < 0.001, F1,6 = 121.65, Additional file 2: 

Fig. S4, Additional file 1: Supplementary Data S1, S3). R. 

solanacearum-specific phage species also showed tem-

poral variation in their peak densities, suggesting that 

different phages might have been relatively more active 

during different stages of tomato growth and develop-

ment (Additional file 2: Fig. S4).

To estimate the potential top-down control of R. sola-

nacearum by phages, we compared the phage-bacteria 

ratio between healthy and diseased samples based on 

relative abundances derived from the metagenomics 

dataset (total gene counts for R. solanacearum and R. 

solanacearum-specific phages per sample). We found 

that the phage-bacteria ratio was higher in healthy plant 

samples over time (F1,6 = 213.56, P < 0.001, Fig.  3 d, 

Additional file 1: Supplementary Data S1, S3), indicating 

a higher phage production and potentially stronger top-

down density control of the pathogen [36]. To validate 

this causally, we conducted an additional greenhouse 

experiment where we compared R. solanacearum cell and 

phage particle densities over time. We found that inocu-

lation of a four-phage combination [22] clearly reduced 

both disease symptoms (53.13%, Fig.  3 e) and pathogen 

densities (25.83%, Fig.  3 f ) relative to the control treat-

ment without phages. Interestingly, while pathogen 

density reduction remained stable throughout the experi-

ment, phage densities declined towards the end of the 

experiment similar to what was observed in the metagen-

omic field experiment data (Fig.  3 b, f ). Together, these 

results show that healthy tomato microbiomes were asso-

ciated with a relatively higher abundance of pathogen-

specific phages, which likely exerted relatively stronger 

top-down density regulation on R. solanacearum.

Phage communities can indirectly drive bacterial 

wilt disease outcomes by alleviating competition 

between the pathogen and ‘inhibitor bacteria’

Indirect evidence based on correlations and co‑occurrence 

analysis

As R. solanacearum invasion success is heavily modu-

lated by the presence of antagonistic and facilitative 

rhizosphere bacteria [4, 6, 32, 33, 37, 38], we next tested if 

the phage community could have indirectly affected path-

ogen densities by infecting bacteria that are positively 

(‘facilitator bacteria’) or negatively (‘inhibitor bacteria’) 

associated with the R. solanacearum (see the ‘Materi-

als and methods’ section). To this end, we compared the 

non-redundant bacterial and phage gene counts between 

the healthy and diseased plant samples across time. A 

total of 606 phage species and 568 phage-bacteria pairs 

could be established at the species level using Virus-Host 

DB [39] (Additional file  1: Supplementary Data S4). To 

focus on potential top-down density regulation via lysis, 

only phage-bacteria associations predicted to be lytic 

based on phageAI [40] were included in these analyses. 

The R. solanacearum-specific phages showed significant 

negative correlations with the pathogen in both healthy 

and diseased plant microbiome samples (SparCC P-value 

< 0.05, Additional file  1: Supplementary Data S5) and 

were classified as ‘primary phages’. We then established 

associations between R. solanacearum and inhibitor 

(SparCC P-value < 0.05, cov < 0, Additional file  1: Sup-

plementary Data S5) and facilitator bacteria (SparCC 

P-value < 0.05, cov > 0, Additional file 1: Supplementary 

Data S5; also designated as direct ‘primary’ effects) and 

finally determined correlations between ‘inhibitor’ and 

‘facilitator’ bacteria and their predicted phages (SparCC 

P-value < 0.05, Additional file 1: Supplementary Data S5; 

classified as ‘secondary effects’).

When visualised as networks, where line colours and 

thickness denote the direction and strength of correla-

tions (Fig.  4 a, b), only a few structural differences were 

found: healthy and diseased plant co-occurrence net-

works contained 139 and 137 nodes and 140 and 138 

edges, respectively, and had the same connectivity of 1 

(Additional file 2: Table S2). However, the relative abun-

dances of different functional groups within each network 

were different. Specifically, the diseased plant microbiome 

networks contained a higher proportion of ‘inhibitor’ bac-

teria (88.37% vs 78.26%, P < 0.001, Fig. 4 a–c, Additional 

file 2: Fig. S4a-b) and ‘inhibitor-associated’ phages (92.05% 

vs 83.15%, P < 0.001, Fig.  4 a–c, Additional file  2: Fig. 

S4a-b), while healthy plant networks contained a higher 

proportion of facilitator bacteria (21.74% vs 11.63%, P < 

0.001, Fig. 4 a–c, Additional file 2: Fig. S5a-b) and ‘facili-

tator-associated’ phages (16.85% vs 7.95%, P < 0.001, Fig. 4 

a–c, Additional file 2: Fig. S5a-b).

To analyse the relative importance of these ‘primary’ 

and ‘secondary’ effects on R. solanacearum abundances, 

two-step piecewise structural equation (SEM) mod-

els were constructed. Based on model fitting, the Shan-

non diversity index was used due to the best fit (high 

P-value and low Akaike Information Criterion; Addi-

tional file 2: Fig. S5c–e, Table S3) and because it captured 

both diversity and evenness effects of species correlations 

within each functional group. At this stage, the ‘facilita-

tor bacteria’ and ‘facilitator-associated phages’ groups 

were removed from the final models due to non-signif-

icant effects with R. solanacearum (Additional file  2: 

Fig. S5c, Table S4). According to the final SEM models, 

R. solanacearum-specific phages and ‘inhibitor bacte-

ria’ had negative associations with pathogen abundances 

only in the healthy plant microbiome (Fig.  5 d, Addi-

tional file  2: Table  S5). In contrast, the negative effect 
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of ‘inhibitor-associated phages’ was only significant in 

the diseased plant microbiome, indicative of relatively 

stronger top-down regulation on ‘inhibitor bacteria’ 

(Fig. 5 d; also supported by a separate linear model: Addi-

tional file  2: Table  S6). In support of this, the relative 

abundance of bacterial genes associated with second-

ary metabolism and antibiosis [33] was much higher in 

healthy compared to diseased microbiomes samples at 

week 6 (nonribosomal peptides: COG1020, P = 0.008, 

F1,6 = 15.1580; polyketide synthase: COG3321, P = 0.03, 

F1,6 = 7.8523; amino acid adenylation: NOG01415, P = 

0.003, F1,6 = 20.6590, one-way ANOVA, Additional file 1: 

Supplementary Data S3, Additional file  2: Fig. S6). The 

relative importance of ‘primary’ and ‘secondary’ effects 

on pathogen abundances was also compared based on 

the explanatory power of constructed linear models. In 

line with the SEM, both the ‘inhibitor bacteria’ and ‘pri-

mary phages’ had a relatively higher explanatory power 

in healthy plant microbiome (Fig.  4 e; Additional file  2: 

Table  S7), while ‘inhibitor-associated phages’ explained 

relatively more of the pathogen density variation in dis-

eased plant microbiome. Together, these results suggest 

Fig. 4 Community co-occurrence model showing correlations between R. solanacearum, bacteria and phages in healthy and diseased plant 

rhizosphere microbiome samples. a, b Radial co-occurrence networks showing significant correlations between R. solanacearum (RS; middle), 

inhibitor (blue circles) and facilitator (beige circles) bacteria and ‘R. solanacearum-specific’ phages (red diamond) and ‘inhibitor-associated’ (blue 

diamonds) or ‘facilitator-associated’ (beige diamonds) phages. Light blue and light brown lines denote negative and positive correlations, 

respectively, while line thickness represents the absolute sparcc-cov-values (Additional file 1: Supplementary Data S5). c Comparison of the 

proportion of different ‘functional groups’ between healthy (blue) and diseased (red) rhizosphere microbiome samples (n = 4, statistical analysis 

based on Wilcoxon non-parametric test). d Structural equation model illustrating significant links between R. solanacearum, ‘inhibitor bacteria’, 

‘inhibitor-associated phages’ and ‘R. solanacearum phages’ in healthy and diseased plant rhizosphere samples. e The partition of explanatory power 

of linear models predicting R. solanacearum densities with ‘R. solanacearum phages’, ‘inhibitor bacteria’ and ‘inhibitor-associated phages’ in healthy 

and diseased plant rhizosphere microbiome samples (R2 shows the total variance explained by the linear models)



Page 8 of 18Yang et al. Microbiome           (2023) 11:16 

that pathogen densities might have been regulated by 

direct and indirect interactions by bacterial and phage 

communities.

Direct evidence based on experiments conducted in the lab 

and in planta

To experimentally validate the importance of ‘second-

ary phages’ on bacterial wilt disease severity, we isolated 

three ‘inhibitor bacteria’ and their associated phages 

from the field soil where the original experiment was 

conducted (Qilin, Nanjing, China; see the ‘Materials and 

methods’ section). Based on 16S rRNA Sanger sequenc-

ing, isolated bacteria were classified as Stenotrophomonas 

maltophilia YL-Ste-01, Bacillus tequilensis YL-Bac-29 

and Enterobacter ludwigii YL-Ent-31 (Additional file  2: 

Fig. S7a-c). Of these strains, S. maltophilia was identi-

fied as an ‘inhibitor bacterium’ in our metagenomic data-

set, while B. tequilensis was closely related to another 

‘inhibitor bacteria’, B. subtilis, identified in the healthy 

plant microbiome metagenomes (99% similarity). All 

isolated phages formed clear plaques on soft agar over-

lays, suggesting that they were lytic (Fig. 5 a–c) and likely 

belonged to Siphoviridae and Myoviridae families based 

on TEM images (Additional file  2: Fig. S7d-f ). Phages 

were also specific to each ‘inhibitor bacteria’ species that 

could not infect R. solanacearum QL-Rs1115 type strain 

[41] (Fig. 5 d–f, Additional file 2: Fig. S8, Tables S8-S9). 

We first used simple lab assays to show that all ‘inhibitor 

Fig. 5 Experimental validation of the effects of ‘secondary phages’ on pathogen abundances and bacterial wilt disease incidence. a–c Examples 

of colony and plaque morphologies of three ‘inhibitor bacteria’ and ‘inhibitor-associated phages’. d–f The effect of three ‘inhibitor bacteria’ and 

‘inhibitor-associated phages’ on R. solanacearum density (red fluorescence intensity (RFI)) in all possible combinations, n = 8 for all treatments. 

g–l The effect of three ‘inhibitor bacteria’ on bacterial wilt disease incidence (g–i, n = 5 for all treatments) and pathogen density (j–l, n = 6 for all 

treatments) when applied alone or co-inoculated with ‘inhibitor-associated phages’ during tomato greenhouse experiments. In d–l, dashed lines 

and shading indicate the mean and standard deviation of pathogen-only control treatments, respectively, and statistical significances between 

treatments were determined by one-way ANOVA where *P < 0.05, **P < 0.01, ***P < 0.001. n.s., non-significant (see Additional file 2: Tables S8–S11 

for details; all error bars show standard deviation)
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bacteria’ had highly negative effects on the pathogen 

densities (S. maltophilia: P < 0.001, F1,14 = 1652, B. teq-

uilensis: P < 0.001, F1,14 = 875.9, E. ludwigii: P < 0.001, 

F1,14 = 1291, one-way ANOVA, Fig.  5 d–f, Additional 

file  2: Table  S9). Crucially, pathogen suppression by the 

‘inhibitor bacteria’ was clearly reduced in the presence 

of ‘inhibitor-associated phages’ with all species (S. malt-

ophilia: P < 0.001, F1,14 = 145.4, B. tequilensis: P < 0.001, 

F1,14 = 17.8, E. ludwigii: P < 0.001, F1,14 = 99.9, one-way 

ANOVA, Fig. 5 d–f, Additional file 2: Table S9).

To validate these findings in planta, we conducted a 

greenhouse experiment with tomatoes using a sterile 

planting substrate and the same experimental treatments 

as in the lab assays. In addition to quantifying patho-

gen densities using qPCR, we also analysed the effects 

of ‘inhibitor bacteria’ and ‘inhibitor-associated phages’ 

on bacterial wilt disease incidence. R. solanacearum-

mono control treatment showed approximately 70% dis-

ease incidence by the end of the experiment. In contrast, 

tomato plants inoculated with both the pathogen and 

‘inhibitor bacteria’ showed clear percentage reductions in 

disease symptoms (S. maltophilia, 57.14%; B. tequilensis, 

61.90%; E. ludwigii, 66.67%, Fig. 5 g–i, Additional file 2: 

Fig. S9, Table S10) and pathogen densities (S. maltophilia, 

31.27%; B. tequilensis, 35.18%; E. ludwigii, 34.43%, Fig. 5 

j–l, Additional file  2: Table  S11). These effects how-

ever vanished in the presence of ‘inhibitor-associated 

phages’, leading to even higher disease symptoms com-

pared to R. solanacearum-mono control treatment with 

S. maltophilia and B. tequilensis (166.67% and 150.09% 

percentage increases, respectively), while a similar but 

statistically non-significant trend was observed with E. 

ludwigii (57.51% increase, one-way ANOVA, Fig.  5 g–i, 

Additional file 2: Fig. S9, Table S10). In line with the dis-

ease incidence data, pathogen densities increased in the 

presence of ‘inhibitor-associated phages’ (S. maltophilia, 

18.04%; B. tequilensis, 23.02%; E. ludwigii, 16.75%, Fig. 5 

j–l, Additional file 2: Table S11). Together, this data dem-

onstrates that ‘secondary phages’ can indirectly promote 

bacterial wilt disease by alleviating competition between 

the pathogen and ‘inhibitor bacteria’.

Discussion
While it has been suggested that differences in phage 

communities could be associated with bacterial plant dis-

ease [26], experimental evidence has been lacking. Here, 

we combined metagenomics and direct experimentation 

to test two hypotheses: (1) that healthy plants are associ-

ated with stronger top-down control by R. solanacearum-

specific phages (i.e. ‘primary phages’) and (2) that 

‘secondary phages’ that target pathogen-inhibiting bacte-

ria could play a relatively more important role in diseased 

plant rhizosphere microbiomes. We found support for 

both hypotheses. First, healthy plant phage communities 

contained a relatively higher total abundance of ‘primary 

phages’ that could directly infect the R. solanacearum 

plant pathogenic bacterium. Three phage species were 

relatively more abundant in healthy plant microbiomes. 

Of these, RSL1 is a jumbo phage, which belongs to the 

Myoviridae family and has previously been shown to be 

highly effective at controlling R. solanacearum densities 

and bacterial wilt disease in the lab and greenhouse con-

ditions [42]. Similarly, phages RSF1 and P4282 that had 

relatively higher abundances in the healthy plant rhizos-

phere have previously been shown to be capable of inhib-

iting bacterial wilt progression in tomato and tobacco, 

respectively [43, 44], while phage RSK1 has high similar-

ity with previously characterised Chinese phages capable 

at infecting R. solanacearum [22]. We have also previ-

ously isolated R. solanacearum-specific phages from the 

same and three other tomato fields and demonstrated 

that they are together highly effective at controlling R. 

solanacearum densities and bacterial wilt disease inci-

dence both in greenhouse and field experiments [22, 23]. 

To validate these metagenomic results, we used a phage 

cocktail consisting of these four phages [22] to causally 

show that phages can keep the pathogen densities and 

bacterial wilt disease incidence in check. Interestingly, we 

also observed a clear decrease in total phage densities in 

time without a concomitant decrease in R. solanacearum 

abundances similar to metagenomic data. One reason for 

this discrepancy could be that phage-bacteria population 

dynamics are much faster than our sampling interval of 

1 week (or few days in the validation experiment), which 

could explain why phage-bacteria dynamics appeared to 

be uncoupled. Furthermore, it is possible that bacteria 

could have evolved phage resistance as observed previ-

ously [22, 23], which could have decoupled population 

dynamics, leading to a reduction in phage but not in bac-

terial abundances due to them being resistant. Together, 

these findings suggest that R. solanacearum-specific 

phages exerted relatively stronger top-down regulation in 

healthy tomato rhizosphere microbiomes, similar to the 

phage-mediated top-down control of bacteria in aquatic 

[45, 46], plant phyllosphere [24] and other terrestrial 

environments [25, 47].

We also found that phage communities had an impor-

tant indirect role in bacterial wilt disease progression by 

affecting the strength of competitive interactions between 

pathogen-inhibiting bacteria and R. solanacearum. Sev-

eral inhibitory bacteria have been linked to a reduction 

in bacterial wilt disease incidence [4, 6, 37], and we have 

previously shown that Bacillus and Pseudomonas bacte-

ria isolated from the same field showed a higher R. sola-

nacearum inhibition in vitro when they originated from 

healthy versus diseased plant rhizosphere microbiomes 
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[33]. In line with this, also the isolated B. tequilensis 

bacterium showed a clear R. solanacearum growth inhi-

bition both in  vitro and in planta, in addition to two 

other inhibitory bacteria, S. maltophilia and E. ludwigii. 

While the mechanism of inhibition remains unclear, we 

found that healthy plant microbiomes contained a rela-

tively higher abundance of bacterial genes associated 

with secondary metabolism and antibiosis [33]. In com-

bination with inhibition assay data, pathogen growth 

suppression via secretion of antimicrobial compounds 

is hence the most plausible explanation for our results, 

even though we cannot exclude the potential importance 

of other factors, such as iron-scavenging siderophores 

[6] or resource competition [4]. Interestingly, we have 

previously demonstrated that R. solanacearum-specific 

phages can increase the relative abundance of inhibitory 

bacteria in the rhizosphere [22] and that application of B. 

amyloliquefaciens inhibitory bacterium together with R. 

solanacearum-specific phage can lead to increased path-

ogen suppression [23]. It is hence possible that ‘primary’ 

and ‘secondary’ phages could have interacted synergisti-

cally via the direct killing of the pathogen and by mag-

nifying the suppressive effect of inhibitory bacteria. It is 

however important to note that ‘secondary’ phages could 

also have negative effects on plant health if they target 

plant growth-promoting bacteria as observed previously 

[48]. Moreover, it has been recently shown that R. sola-

nacearum can benefit from the presence of ‘facilitative’ 

bacteria during infections [32, 37]. While we also iden-

tified potential facilitative associations between certain 

bacteria and R. solanacearum, their relative importance 

in explaining bacterial wilt disease outcomes was much 

smaller compared to ‘inhibitory bacteria’.

Further compositional differences were also observed 

between healthy and diseased plant rhizosphere phage 

communities, and overall, phage diversity was higher in 

diseased plant microbiomes, especially with the last two 

sampling points. This diversity difference was unlikely 

explained by the relatively higher bacterial diversity, 

which did not differ between healthy and diseased sam-

ples at these sampling time points. Also, differences 

in phage community composition and diversity were 

unlikely explained by differences in soil physicochemical 

properties, such as pH [49], as only the total organic mat-

ter content was found to be initially higher in the healthy 

plant rhizosphere. Likely more frequent temporal sam-

pling and quantification of biotic and abiotic soil prop-

erties are required to better understand the fluctuations 

in rhizosphere microbiome diversity and composition in 

time. Together, our findings demonstrate that soil sup-

pressiveness, which is most often attributed to bacteria, 

could be determined by the top-down density regulation 

by both antagonistic bacteria and the phage community.

Our findings bear similarities with gut microbiome 

research in humans. For example, research on type 2 dia-

betes suggests that gut phages show a strong connection 

with human health via interactions with a particular host 

bacterial taxa [50], while another study on inflamma-

tory bowel disease observed disease-specific changes in 

virome (mostly phage community) but not with bacterial 

communities [51]. Recent direct experimental evidence 

further suggests that beneficial effects of phages can be 

transferred from donor to hosts to increase protection 

against necrotising enterocolitis in piglets [52] and to 

improve memory in flies, mice and humans [53]. Similar 

to this study, we previously demonstrated that the sup-

pressive effect of a healthy tomato rhizosphere micro-

biome could be transferred to the next plant generation 

via soil transplantation [33]. While this effect was attrib-

uted to the presence of suppressive bacteria, our current 

results suggest that it could also have been driven by the 

difference in the rhizosphere phage community. In addi-

tion to phages, predatory protists have recently been 

linked to healthy plants and lower bacterial wilt disease 

incidence [54] and studies focusing on microbial inter-

actions across multi-level trophic networks are hence 

required to better understand the key drivers behind 

suppressive soils at the community level. We also must 

note that we likely undersampled the viral diversity in our 

field experiment due to the small volume of the sampled 

filter bags and lack of phage enriching. Hence, we likely 

missed some rare viral taxa in our analysis. However, the 

fact that we could still discern clear differences in viral 

community composition between healthy and diseased 

plants suggests that we could capture the representa-

tive variation of more common viral taxa. Resuspending 

and enriching phages in soil samples before isolation and 

sequencing of phage metagenome libraries can be used 

to increase the viral taxonomic resolution to assess the 

role of rarer viral taxa and to assemble larger viral contigs 

for the identification of viral auxiliary metabolism genes 

[16, 25, 55]. This will also enable clearer identification of 

prophages and lysogenic phages from bacterial metagen-

omes to assess their role in bacteria-phage interactions in 

rhizosphere microbiomes.

Conclusion
Our study demonstrates that soil suppressiveness, which 

is most often attributed to bacteria, could be driven by 

rhizosphere phage communities. First, we find that 

healthy plants are associated with stronger top-down 

control by R. solanacearum-specific phages. Second, we 

show that ‘secondary phages’ have a stronger effect in 

the diseased plant rhizosphere, alleviating interference 

competition between the R. solanacearum and pathogen-

suppressing bacteria. In the future, it will be important 
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to consider the potential role of bacteria-phage evolu-

tion and coevolution for these interactions, which have 

previously been shown to take place within one tomato 

growth cycle in the rhizosphere [22, 23] or over seasons 

in the phyllosphere of horse chestnut trees [19–21]. This 

could be achieved in longer-term selection experiments 

that take advantage of the ‘mark-recapture’ approach to 

retrieve back the evolved focal pathogen species for fit-

ness assays and genome resequencing [56]. From the 

applied perspective, our results suggest that soil sup-

pressiveness is an emergent, microbiome-level property, 

determined by both bacterial and phage interactions. 

Phage-mediated biocontrol of plant bacterial diseases 

could thus be achieved by targeting the pathogen or sur-

rounding microbiota to indirectly constrain pathogen 

invasions.

Materials and methods
Experimental design and collection of soil samples

The experimental design, collection of samples and 

measurements for soil physicochemical properties have 

been described in detail in a previous publication [33] 

where we studied the role of initial bacterial community 

composition for the dynamics and outcomes of bacte-

rial wilt disease. Briefly, we used a semi-natural rhizobox 

sampling system embedded in natural tomato field soil, 

allowing repeated sampling of the same tomato plants 

during one crop season by removing individual nylon 

mesh bags inserted in the ‘middle’ layer of the rhizobox 

(for more details of the system, please see [33]). Each 

studied tomato plant (Solanum lycopersicum cv. ‘Jipin’) 

was grown individually in its own rhizobox using the 

local soil from the tomato field in Qilin, Nanjing, China. 

The first soil samples were collected from the field soil. 

The same soil samples were subsequently used for setting 

up rhizoboxes with tomatoes, which were transplanted to 

the field at the same locations where the original samples 

were collected (three blocks; 16 plants per block; each 

plant located 30 cm from each other). This allowed us 

to compare the initial bulk soils with samples collected 

from the rhizoboxes at weeks 3, 4, 5 and 6 after the trans-

plantation of tomatoes to the field. At every sampling, 

four individual nylon bags per plant were collected, and 

their contents homogenised and pooled together for the 

microbiome analysis (immediately stored at − 80 °C for 

further analysis; see below). The nylon bags were located 

in close proximity to the plant roots and could hence 

be considered as rhizosphere communities affected by 

tomato root exudates (Fig. 1 a). At the end of the experi-

ment, we randomly chose four plants that remained 

healthy throughout the experiment and four plants 

that succumbed to bacterial wilt disease. The five past 

rhizosphere samples of these selected plants were then 

processed (a total of 40 samples) to compare the initial 

and temporal changes in microbiome assembly [33] using 

metagenomic sequencing (Fig. 1 b, c).

Sample preparation, Illumina Hiseq sequencing 

and identification of bacteria and phages in metagenomic 

samples

The total microbial DNA from all 40 samples was 

extracted using the E.Z.N.A.® stool DNA Kit (Omega 

Bio-Tek, Norcross, GA, USA) according to the manufac-

turer’s protocols. DNA quality was tested by NanoDrop 

2000 Spectrophotometer (Thermo Scientific, DE, USA, 

Additional file  1: Supplementary Data S6). Metagen-

omic sequencing was performed using Illumina HiSeq X 

instrument with pair-end 150 bp (PE150) mode at Shang-

hai Biozeron Biological Technology Co. Ltd. (Shang-

hai, China) [33]. We next followed up a standard library 

preparation protocol without enrichment [57] where 1 

μg of genomic DNA was sheared for each sample using 

Covaris S220 Focused-ultrasonicator (Woburn, MA, 

USA). Sequencing libraries were then prepared with a 

fragment length of approximately 450 bp (Additional 

file  1: Supplementary Data S7). Trimmomatic [58] was 

used to remove adaptors, contaminants and low-quality 

reads (version: 0.36, settings: ILLUMINACLIP:adapters.

fa:2:30:10 SLIDINGWINDOW:4:15 MINLEN:75, Addi-

tional file  1: Supplementary Data S8). Clean sequence 

reads were assembled into a set of contigs for each sam-

ple using MegaHit (version: 1.1.1-2-g02102e1, settings: 

--min-contig-len 500) [59] (Additional file 1: Supplemen-

tary Data S9).

As vOTU contig sizes ranged from 5 to 110.2 kb with 

an average size of 19.7 kb in our dataset, the VirSorter2 

pipeline was chosen for the analysis as it works well with 

relatively longer contigs (> 10 kb) [60]. We first pre-

dicted viral contigs by VirSorter2 (version: 2.2.3, contig 

length > 5 kb, score > 0.9, p-value < 0.05, hallmark > 2) 

and clustered into 79 viral operational taxonomic units 

(vOTUs) with a criterion of 85% coverage and 95% simi-

larity. We next calculated the read counts of each vOTU 

and normalised their abundances following transcripts 

per million (TPM) method [61], which corrects data for 

variation in contig length and mapped reads per sample. 

Finally, we used vpf-class [35] (version: 15 July 2022) to 

annotate the viral taxa (confidence score > 0.36) and pre-

dict their host bacteria (confidence score > 0.5 and mem-

bership ratio > 0.3).

We also created a non-redundant gene catalogue 

based on all sequence data for analysing community 

co-occurrence patterns between healthy and diseased 

plant samples. A total of 42,959,757 open reading frames 

(ORFs) were predicted using Prodigal (v2.6.3, default set-

tings) [62] using all assembled contigs (Additional file 1: 
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Supplementary Data S10). These ORFs were then used to 

create a non-redundant gene catalogue, which included 

12,800,400 unique genes after clustering using CD-HIT 

[63] (version: 4.8.1, 95% identity, 90% coverage). All 

the genes included in the catalogue were annotated by 

their taxonomy using the best hits in NCBI RefSeq NR 

database (diamond, version: 0.9.22.123, setting: blastp 

--evalue 0.00001, release number: 90) and functions by 

eggNOG database [64] (version: v4.5, default settings). 

At the end, our metagenomic sequences contained a total 

of 12,847 unique phage and 6,977,753 bacterial genes. 

Based on BLASTp, we could identify a total of 14,651 

microorganisms, which included 11,732 bacteria, 1311 

eukaryotes, 907 archaea and 701 viruses at the species 

level (e-value < 0.00001). SOAPaligner [65] (version: 

r242, default settings) was then used to map and stand-

ardise clean read counts in total reads back to the total 

non-redundant gene catalogue counts per sample based 

on a 95% sequence identity threshold to calculate each 

annotated gene abundances, which were corrected for 

variation in gene length [66]. The abundances of genes 

annotated to the same taxonomy were then summed up 

as the taxonomic abundances per sample.

Of the viral sequence data, a total of 606 phages could 

be assigned to Caudovirales, Microviridae, Tectiviri-

dae, and ‘unclassified’ phage groups. Furthermore, to 

determine the proportion of prophages of all phage 

sequences, all identified phage genes were run through 

the PHASTER [67] prophage protein database (version: 

December 22, 2020), resulting in 320 prophage hits (iden-

tity ≥ 90%, alignment length ≥ 30 bp, e-value < 0.00001).

Analysis of metagenomic data

Comparing the viral and bacterial community composition 

between healthy and diseased tomato soil samples

With viral community analysis, vOTUs were combined 

at the family level (Myoviridae, Podoviridae, Siphoviri-

dae and ‘others’) to calculate relative (percentage) abun-

dances, which were compared between healthy and 

diseased microbiomes over time. The raw vOTU data-

set was used to compare both alpha (Shannon diversity 

index) and beta (PCA) diversity between microbiome 

samples. This dataset was also used to calculate the Bray-

Curtis dissimilarity distance between healthy and dis-

eased plant microbiome composition at each time point. 

Finally, vOTUs that were predicted to infect the same 

host bacteria were pooled together and visualised using 

the Krona plot (version: v2.8) [68].

With bacterial community analysis, a non-redundant 

gene catalogue dataset was used for community com-

position and diversity analyses. Species-level data was 

used to compare both alpha (Shannon diversity index) 

and beta (PCA) diversities between microbiome samples 

and to calculate the Bray-Curtis dissimilarity distance 

between healthy and diseased plant microbiomes at each 

time point. We also combined bacterial species at the 

phylum level to compare the relative (percentage) abun-

dances between healthy and diseased microbiomes.

Quantifying the abundances of R. solanacearum and R. 

solanacearum‑specific phages during the experiment

R. solanacearum pathogen abundances were determined 

using qPCR from the same soil DNA samples that were 

also used for metagenomic sequencing [33]. In the case of 

R. solanacearum phages, we used a non-redundant gene 

catalogue approach where we used the most abundant 

gene for each phage as the metagenomic ‘marker gene’ 

due to relatively short R. solanacearum phage contig 

length (on average 724 bp, which is too short for vOTU 

approach). To attain relative phage species abundances 

relative to all detected R. solanacearum-specific phages, 

read counts of these genes were normalised with marker 

gene sizes and the number of total clean reads per each 

sample to prevent bias due to different marker genes used 

during different sampling weeks [66] (the marker genes 

per phage species at different weeks and sample repli-

cates are listed in Additional file 1: Supplementary Data 

S11). Phage species abundances were further summed up 

as the total R. solanacearum-specific phage abundances. 

Moreover, R. solanacearum densities were also estimated 

based on the metagenomic data using the gene catalogue 

approach when comparing the virus-to-host ratio with R. 

solanacearum-specific phages.

Construction of phage‑bacterium co‑occurrence model 

based on SparCC correlations

First, to explore the potential competitive and facilitative 

interactions between R. solanacearum and the members 

of rhizosphere bacteria, we established links between 

the pathogen and all identified rhizosphere bacteria and 

their predicted phages using Virus-Host DB [39] pipeline 

(Release202) and SparCC algorithm [69], which is capa-

ble of estimating correlation values from compositional 

data (Additional file 1: Supplementary Data S5). To ana-

lyse the correlations between bacteria, we used relative 

bacterial abundance data (%) to normalise between sam-

ple variation [70]. To analyse bacteria-phage correlations, 

we used bacterial and phage abundance data normal-

ised with the total number of gene catalogue counts per 

sample. The lifecycle of each phage was predicted using 

phageAI [40] (version: June 2021, default settings, Addi-

tional file  1: Supplementary Data S4), and it was found 

that 37.0% (n = 210) of phages were classified as temper-

ate and 42.6% (n = 242) lytic, while 20.4% (n = 116) of 

phages could not be clearly classified to either lifestyle. 

To focus on potential top-down density regulation via 



Page 13 of 18Yang et al. Microbiome           (2023) 11:16  

lysis, only predicted lytic phage-bacteria associations 

were included in downstream analysis.

Significant correlations (two-sided pseudo-P-value < 

0.05 with 999 permutations) between R. solanacearum 

and lytic R. solanacearum-specific phages were classi-

fied as ‘primary phage effects’, while significant correla-

tions between R. solanacearum and other bacteria were 

determined as ‘primary bacterial effects’. Significant cor-

relations between non-R. solanacearum-specific phages 

and other bacteria were determined as ‘secondary phage 

effects’. The significance of these three ‘functional groups’ 

on R. solanacearum abundances was explored using net-

works, which were visualised in Cytoscape [71] (v3.6.0) 

and the proportion of significant correlations per each 

functional group was compared between healthy and 

diseased correlation networks. Network properties were 

calculated by R package ‘igraph’ [72]. Furthermore, we 

calculated the Shannon index, Simpson index and aver-

age abundance per sample based on the species abun-

dance matrix for each functional group based on SparCC 

correlations. We then conducted two linear piecewise 

structural equation models (PSEM) [73] to explore the 

‘primary phage effects’, ‘primary bacterial effects’ and 

‘secondary phage effects’ on R. solanacearum abundances 

in healthy and diseased rhizosphere microbiome sam-

ples. After model fitting, the Shannon diversity index was 

chosen for further analysis due to best fit (high P-value 

and low Akaike Information Criterion; Additional file 2: 

Fig. S4c-e, Table  S3). Furthermore, ‘facilitator bacteria’ 

and ‘facilitator-associated phages’ were removed from 

the final models due to non-significant effects (Addi-

tional file 2: Fig. S4c, Table S4). Finally, we conducted an 

independent linear model to explain the effect of ‘inhib-

itor-associated phage’ on ‘inhibitor-bacteria’ directly. In 

addition, these linear models were used to compare the 

explanatory power of each ‘functional group’ on R. sola-

nacearum abundances in healthy and diseased plants 

using the ‘relaimpo’ package [74].

Culture‑based validation testing the effect of R. 

solanacearum‑specific phages on bacterial wilt 

disease incidence and top‑down density control of R. 

solanacearum

We conducted an additional greenhouse experiment to 

directly validate the effects of R. solanacearum-specific 

phages on the pathogen density and bacterial wilt dis-

ease incidence, while also temporally tracking changes in 

phage abundances. At the three-leaf stage, tomato plants 

(Lycopersicon esculentum, cultivar ‘Micro-Tom’) were 

transplanted into 6-cell trays with 50 g of thoroughly 

mixed topsoil per cell, which was collected from the same 

tomato field as in the rhizobox experiment (Qilin, Nan-

jing, China). After 1 week from transplantation, plant 

roots were inoculated with R. solanacearum QL-Rs1115 

type strain (also isolated from Qilin, Nanjing) at a final 

concentration of  106~107 CFU  g−1 soil. Two days later, a 

phage cocktail consisting of four R. solanacearum-spe-

cific phages at equal frequencies of 25% (NJ-P3, NB-P21, 

NC-P34, NN-P42; previously described in [22]) was 

applied to plant roots with a final density of approxi-

mately  106~107 PFU  g−1 soil. One of these phages (NJ-P3) 

was also isolated from Qilin, Nanjing, while others were 

isolated from tomato fields in Ningbo, Nanchang and 

Nanning [22]. Four biological replicates were used per 

‘no-phage’ and ‘phage’ treatments, and one replicate con-

sisted of 6 plants grown on one plant tray (48 plants in 

total). Plants were grown in a greenhouse with a natural 

temperature variation ranging between 25 and 35 °C for a 

total of 25 days post-infection, and trays were randomly 

rearranged every 3 days. Disease incidence was recorded 

every day post-pathogen using disease index [22].

To quantify the changes in pathogen and total phage 

densities, we collected rhizosphere soil samples 3, 8, 10, 

15 and 25 days post-pathogen inoculation. For density 

calculations, 1 g of rhizosphere soil was mixed with 9 mL 

of sterile water to create a soil wash. The R. solanacearum 

densities were detected with a serial dilution method 

on SMSA medium [75] based on colony forming units 

(CFU) after incubation at 30 °C for 2 days. The remain-

ing soil suspensions were centrifuged and filtered (0.22 

μm) to spot phage dilutions on soft agar overlays of stock 

R. solanacearum QL-Rs1115 strain. After 24 h of growth 

at 30 °C, phage densities were calculated by counting 

plaques forming units (PFU).

Culture‑based validation of the effects of ‘inhibitor 

bacteria’ and ‘inhibitor‑associated phages’ on R. 

solanacearum densities and bacterial wilt disease 

incidence in planta

Isolation of ‘inhibitor’ bacteria and ‘inhibitor‑associated 

phages’

To validate a subset of primary and secondary phage-bac-

teria-pathogen interactions identified in metagenomic-

based correlation analysis, we isolated non-pathogenic 

bacterial strains and their phages from the same field 

where the original rhizobox study [33] was conducted 

(Qilin, Nanjing, China) in July 2019 before the autumn 

crop season (4 years after the original rhizobox study). 

Nonselective agar media (NA, tryptone 5 g  l−1, glucose 

10 g  l−1, yeast extract 0.5 g  l−1, beef extract 3 g  l−1, agar 

25 g  l−1, pH 7.0) were used to isolate a random selec-

tion of culturable rhizobacteria, and serial diluted soil 

suspensions were spread on agar plates and incubated 

at 30 °C for 24 h. A total of 40 bacterial colonies (candi-

date non-pathogen strains) were randomly selected and 

purified by re-streaking on new agar plates. A standard 
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phage enrichment assay was used to isolate phages for 

all candidate bacteria as follows. First, all 40 candidate 

non-pathogen bacteria, were inoculated into NB (liquid 

NA) medium as monocultures and grown for 24 h with 

shaking at 170 rpm at 30 °C. Aliquots of bacterial cultures 

were then mixed independently with filtered soil suspen-

sions (0.22 μm) containing potential phages and grown in 

NA media for an additional 96 h. Enriched phage-bacte-

ria suspensions were centrifuged and filtered (0.22 μm) 

to remove bacteria, after soft agar overlays of individual 

host bacteria (1:10 mix of bacterial culture and 1% soft 

NA agar at 45 °C poured on top of 15% NB agar plate) 

were prepared and 20 μL of enriched phage suspen-

sions spotted on top of each overlay to identify plaques 

of potential host-specific phages after 24 h incubation. 

In the end, three phages were selected due to high lytic 

activity and clear plaque formation on three bacterial 

strains that were also tested to inhibit R. solanacearum 

(see the next paragraph) and purified by streaking three 

times for further assays (Fig.  4 a–c). Furthermore, we 

selected clear plaques and examined them under a trans-

mission electron microscope for phage (80 kV, HC-1 

Hitachi TEM system, Additional file 2: Fig. S6d-f ).

Taxonomic identification of ‘inhibitor bacteria’

The three ‘inhibitor bacteria’ were identified by Sanger 

sequencing the whole 16S rRNA gene using the following 

primer pair: 27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) 

and 1,492R (5′-GGT TAC CTT GTT ACG ACT T-3′). Bac-

terial sequences were blasted against 16S ribosomal RNA 

sequences (bacteria and archaea) in NCBI (https:// blast. 

ncbi. nlm. nih. gov/) to identify closely related type strains. 

The 16S sequences of isolated bacteria and type strains 

were aligned using MUSCLE [76] (UPGMB method) 

algorithm and relatedness visualised in the phyloge-

netic tree in MEGA-X (version: 10.2.2 build 10201106) 

[77] using the neighbour-joining method with boot-

strapping (999 replicates). To determine their poten-

tial pathogenicity against tomato plants, we conducted 

a 7-week-long greenhouse experiment using a tomato 

host. We first grew a commercially available ‘Red Dwarf ’ 

tomato cultivar (Lycopersicon esculentum, Shouguang-

xuran Agricultural Technology Co., Ltd.) in 6-well trays 

filled with growth substrate (80 g substrate per well; 

Jiangsu-Xingnong Substrate Technology Co., Ltd., steri-

lised with gamma radiation before experimentation) for 

a week until tomatoes had reached the three-leaf stage. 

Seven days after planting the tomatoes, each bacterium 

was inoculated to the rhizosphere of 12 plant replicates 

using the soil drenching method at a final concentra-

tion of  106~107 CFU  g−1 of substrate. All plants were 

grown in a greenhouse facility with a natural tempera-

ture variation ranging between 25 and 35 °C. None of the 

inoculated plants showed any disease symptoms at the 

end of the experiment (Additional file 2: Fig. S8f-h), and 

these ‘inhibitor bacteria’ strains were hence deemed as 

non-pathogenic.

Determining interactions between ‘inhibitor bacteria’, 

‘inhibitor‑associated phages’ and R. solanacearum pathogen 

in vitro

We used Ralstonia solanacearum QL-Rs1115 type strain 

tagged with the pYC12-mCherry plasmid [41] to meas-

ure how ‘inhibitor bacteria’ and their phages interacted 

with the pathogen in pairwise co-cultures in standard lab 

media (NB). To this end, we used a factorial design where 

we measured changes in the pathogen density when cul-

tured in the absence and presence of each ‘inhibitor bac-

terium’, their phages or both (three-species co-cultures) 

with eight biological replicates each. Before the assays, 

all bacterial and phage species were adjusted to  106~107 

CFU and PFU, respectively. Growth effects were quanti-

fied in 96-well microplates in 176 μL of liquid NB media 

at 30 °C with shaking (170 rpm). All wells were inocu-

lated with 2 μL of R. solanacearum. In addition, subsets 

of replicates were also inoculated with 2 μL of each of the 

non-pathogenic bacterium both in the absence (20 μL 

of sterilised water; control) and presence of their phage 

(20 μL of phage; M.O.I = 10 where phages showed very 

high bacterial biomass reduction; Additional file  2: Fig. 

S10). The effects of non-pathogenic bacteria and their 

phages on R. solanacearum were measured using red flu-

orescence signal intensity (mCherry, excitation, 587 nm; 

emission, 610 nm) after 24 h of co-culturing using Spec-

traMax M5 Plate reader (Molecular Devices, Sunnyvale, 

CA).

Quantifying the effect of ‘inhibitor bacteria’ and their phages 

on R. solanacearum densities and bacterial wilt disease 

incidence in a greenhouse experiment

To determine if ‘inhibitor bacteria’ and their phages 

affected the R. solanacearum growth or bacterial wilt 

disease incidence in planta, we carried a separate green-

house experiment using the same treatments as in our 

in vitro lab experiments using the same tomato cultivar 

as when determining the pathogenicity of ‘inhibitor bac-

teria’. Six plants per tray were considered as one biologi-

cal replicate, and five replicate trays were used for each 

treatment, where plants were inoculated with the path-

ogen only, with the pathogen and each of the ‘inhibitor 

bacteria’, or with the pathogen and each of the ‘inhibi-

tor bacteria’ strain and their phages, and sterile water 

as blank control. The pathogen was inoculated into all 

treatments seven days after planting tomatoes at a final 

concentration of  106~107 CFU  g−1 of substrate. After 2 

days of pathogen inoculation, non-pathogenic bacteria 

https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
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as well as their phages were introduced to given treat-

ments at a final concentration of  106~107 CFU and 

 107~108 PFU  g−1 (M.O.I = 10) of substrate, respectively. 

The position of trays was randomly rearranged twice a 

week and plants watered regularly using sterile water at 

a temperature that followed natural ambient tempera-

ture variation (25–35 °C). The experiment was finished 

6 weeks after the inoculation of the pathogen, after the 

stabilisation of disease progression. The disease inci-

dence was calculated as the percentage of wilted plants 

per replicate tray. At the end of the experiment, six 

plants (including three healthy and diseased per treat-

ment) were randomly chosen and their rhizosphere 

soils sampled, and pathogen densities determined using 

qPCR as described previously [22].

Statistical analysis

We used the one-way-ANOVA test to compare the 

abundance differences between treatments in both 

metagenomic and culture-dependent experiments. 

Repeated measures ANOVA was used with time-

dependent data. Normal distribution and homoge-

neity test were tested using the Shapiro-Wilk and 

Bartlett tests, and log-transformed data was used 

when required to meet the assumptions of ANOVA 

[78]. In case of non-parametric data, the Wilcoxon 

test was used. Differences in community composi-

tion were compared using the PERMANOVA test, 

while the Shannon index and Bray-Curtis distances 

were calculated using the ‘diversity’ and ‘vegdist’ func-

tion in the vegan package based on the absolute taxa 

abundance matrix. The significance of Bray-Curtis 

distances between treatments was tested using Tuk-

ey’s multiple comparisons. For the co-occurrence 

analysis, data was first resampled for 1000 bootstraps 

before constructing computed correlation covari-

ances based on the SparCC method [69] (two-sided 

pseudo-P-values were used to determine significant 

correlations). Piecewise structural equation model 

was conducted using the ‘psem’ function in the piece-

wiseSEM package. We also used the ‘calc.relimp’ func-

tion in the relaimpo package to calculate the relative 

importance of the three ‘functional groups’ for R. 

solanacearum density by multiple regression of linear 

model. SparCC analysis was conducted with python 

(v3.82), while all other statistical analyses were con-

ducted using R [79] (v3.5.3) with packages and func-

tions described in Additional file  2: Table  S12. All 

metagenomics reads are publicly available in the SRA 

database under the accession number PRJNA492172 

(Additional file  2: Supplementary Data 12). All code 

used in the analyses can be found at https:// github. 

com/ ykm77 88/ Micro biome 2022.
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solanacearum phages. Table S2. Comparison of community network 

properties between healthy and diseased plant microbiomes. Table S3. 

Comparison of significance between different SEM model fits for healthy 

and diseased plant rhizosphere microbiome samples. Table S4. Detailed 

effects of different variables included in the first-step structural equation 

model for all five ‘functional groups’ based on Shannon alpha diversity 

index in healthy and diseased plant microbiome samples. Table S5. 

Detailed effects of different variables included in the second-step 

structural equation model based on Shannon alpha diversity index in 

healthy and diseased plant microbiome samples. Table S6. Linear model 

comparing the effect of ‘inhibitor-associated phage’ on ‘inhibitor bacteria’ 

in diseased plant microbiome samples. Formular: Inhibitor bacteria ~ 

Inhibitor-associated phage. Model  R2 = 0.2909,  F1,18 = 8.795, P = 0.00828. 

Table S7. The explanatory power of linear models for predicting Ralstonia 

solanacearum densities on each ‘functional group’ in both healthy and 

diseased microbiome samples. Table S8. Comparison of ‘inhibitory’ 

bacterial biomass in the presence and absence of their phages based on 

one-way ANOVA. Table S9. Comparison of Ralstonia solanacearum biomass 

between different treatments with each pair of isolated ‘inhibitor bacteria’ 

and ‘inhibitor-associated phage’ based on one-way ANOVA. Table S10. 

Comparison of tomato plant disease incidence between different 

treatments with each pair of isolated ‘inhibitor bacteria’ and ‘inhibitor-

associated phage’ at the end of greenhouse experiment based on 

one-way ANOVA. Table S11. Comparison of R. solanacearum densities 

between different treatments with each pair of isolated ‘inhibitor bacteria’ 

and ‘inhibitor-associated phage’ at the end of greenhouse experiment 

based on one-way ANOVA. Table S12. Functions and packages used in R 

platform for statistical and bioinformatic analysis. Fig. S1. Comparison of 

bacterial community diversity and composition between healthy and 

diseased plant rhizosphere microbiome samples. a: Comparison of 

bacterial community diversity (Shannon index) between healthy (blue) 

and diseased (red) plant rhizosphere microbiome samples. Significances 

are shown as *: P < 0.05, **: P < 0.01, and ***: P < 0.001 and n.s.: no 

significance, one-way ANOVA for each time point (see Supplementary 

Data S3 for details). b: Comparison of relative bacterial abundances at the 

phylum level between healthy (H) and diseased (D) plant rhizosphere 

microbiome samples. c-g: Comparison of bacterial community 

composition between healthy (blue circles) and diseased (red triangles) 

plant rhizosphere microbiome samples at different sampling time points 

at bacterial species level (PCA; pairwise comparisons based on PER-

MANOVA). h: Bray–Curtis distances of bacterial community in healthy and 

diseased plant rhizosphere microbiome samples at each time point  (F4,75 

= 76.5, P < 0.001, Tukey’s multiple comparison after one-way ANOVA test). 

In panel a-g, n = 4 for all treatments per time point, while n = 16 in panel 

h. Fig. S2. Hierarchical composition of overall phage community based on 

predicted host bacterial lineages (all samples included) and distance 

between healthy and diseased plant microbiome. a. Circles indicate host 

bacterial taxonomic classifications from phylum (inner) to genus 

(outermost) level and percentage values show relative abundance of 

phages predicted to infect these bacterial taxa. b. Bray–Curtis distances of 

viral community in healthy and diseased plant rhizosphere microbiome 

samples at each time point  (F4,75 = 22.59, P < 0.001, Tukey’s multiple 

comparison after one-way ANOVA test) and the correlation with time 

(week 3-6, linear model). Fig. S3. Comparison of initial soil physicochemical 

properties between healthy and diseased plant samples. Significances are 

shown as *: P < 0.05 and n.s.: no significance, one-way ANOVA for each 

pair (n = 4, see Supplementary Data S3 for details). Fig. S4. Comparison of 

R. solanacearum-specific phage abundances between healthy and 

diseased plant rhizosphere microbiome sample replicates at different time 

points. Each pair of panels (a-h) show phage density dynamics for 

diseased and healthy plant rhizosphere microbiome samples and different 

line colours show individual plant replicates. Line symbols denote for 

different viral families as denoted in the legend. Phages RSF1, RSL2 and 

https://github.com/ykm7788/Microbiome2022
https://github.com/ykm7788/Microbiome2022
https://doi.org/10.1186/s40168-023-01463-8
https://doi.org/10.1186/s40168-023-01463-8
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P4282 had relatively higher abundances in early samples, while phage 

P4282 persistently decreased in abundance, phages RSF1 and RSL2 edged 

up towards the end of the experiment in both diseased and healthy plant 

microbiome samples, respectively. In contrast, phages RSB3 and RS138 

showed steady increase in their relative abundances in part of healthy 

plant microbiome samples. In addition, phages RSL1, RSK1 and RSJ5 

showed multiple peak stages in different plant rhizosphere in both 

healthy and diseased samples. Fig. S5. Comparisons of interactions 

between ‘functional groups’ and pathogen densities in healthy and 

diseased plant rhizosphere microbiomes. a-b: Difference in the proportion 

of significant correlations between ‘functional groups’ and pathogen 

densities in healthy (a) and diseased (b) plant rhizosphere microbiomes. 

Light and dark blue colours denote for ‘inhibitor bacteria’ and ‘inhibitor-

associated phages’, while light and dark green colours denote for 

‘facilitator bacteria’ and ‘facilitator-associated phages’. c-e: Structural 

equation models based on different community indexes (Shannon index, 

Simpson index and average abundance) illustrating primary-phage-effect 

(R. solanacearum-specific phage to R. solanacearum), primary-bacteria 

effects (‘inhibitor bacteria’ and ‘facilitator bacteria’ to R. solanacearum) as 

well as secondary-phage effects (‘inhibitor-associated phages’ and 

‘facilitator-associated phages’ to ‘inhibitor bacteria’ and ‘facilitator bacteria’, 

respectively and to R. solanacearum) in both healthy and diseased plant 

microbiomes. Fig. S6. Comparisons of secondary metabolism synthesis 

related gene abundances between healthy (blue) and diseased (red) 

sample pairs in week 6. Statistical significance between treatments was 

determined by one-way ANOVA test with *: P < 0.05, **: P < 0.01, n = 4 for 

all treatments (see Supplementary Data S3 for details). Fig. S7. Taxonomic 

classification of isolated ‘inhibitor bacteria’ and transmission electron 

microscope photograph of their isolated phages. a-c: Phylogenetic tree of 

three inhibitor bacterial strains based on 16s rRNA sequences using 

neighbour-joining method (on bold). The evolutionary distances were 

computed using the Maximum Composite Likelihood method and the 

scale bar indicates the average number of amino acid substitutions per 

site. d-f: TEM of representative isolates performed by HC-1 Hitachi TEM 

system at 80 kV. Fig. S8. Host bacterium abundance examined with (light 

blue) or without (dark blue) associated phage after co-culturing 24 h. 

Statistical significance between treatments was determined by one-way 

ANOVA test with ***:P < 0.001. Error bar: standard deviation. n = 8 for all 

treatments (see Supplementary Table S8 for details). Fig. S9. Photograph of 

tomato plants at the end of greenhouse experiment. a-c: Treatments with 

plants inoculated with R. solanacearum and different ‘inhibitor bacteria’ in 

the presence (right) and absence (left) of ‘inhibitor-associated phages’. d: ‘R. 

solanacearum-only’ control plants inoculated only with R. solanacearum. e: 

Blank control inoculated only with sterile water without any bacteria or 

phages. f-h: Treatments with plants inoculated with different ‘inhibitor 

bacteria’ only. In panels a-d, DI represents average disease incidence and 

diseased plants are highlighted with red flags. No disease symptoms were 

observed in e-h. Fig. S10. Comparison of the relative bacterial biomass 

reduction at different initial multiplicity of infections (M.O.I.). With 

all‘inhibitor-associated phages’, highest bacterial biomass reduction was 

observed with M.O.I = 10. Statistical significance between treatments was 

determined by one-way ANOVA test with *: P < 0.05, **: P < 0.01, ***: P < 

0.001, n = 8 for all treatments
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