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ABSTRACT
This article presents an infill topology optimization procedure to generate
lightweight porous structures. The proposed method is based on discrete
variables and builds upon the sequential element rejection and admis-
sion method, extending previous work on topology optimization for infill
structures. Local volume constraints are introduced in the conventional
formulation of the topology optimization problem for maximum stiffness
design instead of the global volume constraint. The local constraints are
applied, dividing the interior of a given design shape into quadrangular
subdomains with variable aspect ratios. The localizedmaterial within these
subordinate cells is allowed to flow between two discrete material mod-
els, ‘real’ and ‘virtual’, where two separate criteria are considered for the
rejection and admission of elements. The results demonstrate the effective-
ness of the method, showing that detailed porous designs are efficiently
achievedwith theproposed strategy. Numerical examples demonstrate the
effects of the different design parameters.
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1. Introduction

Topology optimization has been extensively studied over the past few decades, and it can now be
considered a mature structural design method. This optimization strategy has widely penetrated the
engineering community, particularly in the aerospace and automotive industries, and designers have
benefited from these investigations to find optimized material distributions that maximize the struc-
tural performance under given boundary conditions and constraints. Comprehensive summaries
on topology optimization can be found in Bendsøe and Sigmund (2004) and in dedicated review
articles (Rozvany 2009; Sigmund and Maute 2013; Deaton and Grandhi 2014). The increased avail-
ability of additive manufacturing processes andmaterials has provided new possibilities compared to
traditional methods, including design freedom and manufacturing of intricate shapes predicted by
topology optimization (Gibson, Rosen, and Stucker 2010).

To exploit additive manufacturing capabilities, it is usual to form lightweight structures by intro-
ducing lattice substructures with repetitive cell patterns in the interior of the outer shell of the original
model as an integrated part of the manufacturing process. Lattice structures represent an essential
structural design feature and are frequently used for lightweight designs (Helou and Kara 2018). This
practice favours porous designs, reducing the total material volume and improving the performance
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of structures (Gao et al. 2015). Compared to solid structures obtained by conventional topology opti-
mization, coated structures with porous infill show better performance concerning variable loading
and local material deficiencies, although compliance values usually increase. Furthermore, compared
to their solid counterparts, coated porous structures can achieve higher strength-to-weight ratios
(Lu et al. 2014) and increased buckling stability (Clausen, Aage, and Sigmund 2016). Their ability to
dissipate heat energy and vibrations is also of interest for advanced structural design (Cheng et al.
2018). However, the optimum design of these patterns has only been exploited to a minor degree by
topology optimization approaches (Plocher and Panesar 2019).

The interior structure of an element printed using additive manufacturing is known as ‘infill’ and
often presents an anisotropic regular structure previously selected by the user (Wu et al. 2016). The
infill pattern can also be conceived through visual postprocessing of the previously topologically
optimized designs, but this procedure does not guarantee the optimality of the infill configuration,
thereby wasting the efforts of the numerical topology optimization step. In this context, recent devel-
opments include the redesign and optimization of the infill part, which has become of great interest
for developing procedures that include infill design directly in the topology optimization subroutines.
Most of these developments extend the well-known density-based topology optimization method
called solid isotropic material with penalization (SIMP) to address the infill optimum design prob-
lem (Bendsøe 1989; Rozvany, Zhou, and Birker 1992). One of the referring methods (Wu et al. 2018)
proposed introducing a grouped set of local volume constraints to design porous infill structures
within a fixed domain. In other approaches, the optimization of both the exterior shell and the inte-
rior infill is considered. A novel method was presented by Clausen, Aage, and Sigmund (2015) to
design coated structures where the base material was interpreted as a uniform fill, and the base struc-
ture and the coating were separated by introducing a two-step projection strategy. This approach was
extended by Wu, Clausen, and Sigmund (2017), who moved a step further and presented a com-
bined solution by concurrently evolving the shell contour and the infill microstructure. Alternative
two-scale concurrent topology optimization formulations have also been proposed (Zhang, Wang,
and Kang 2019; Kang andWang 2011), where the local porosity ratio and the global volume ratio are
controlled.

Homogenization-based topology optimization has also been examined (Groen,Wu, and Sigmund
2019) for coated structure design with orthotropic infill material. Here, the conventional square
unit-cell with a rectangular hole (Bendsøe and Kikuchi 1988) was used to describe the periodic
infill, and the projected microstructure was aligned with the directions of lamination. The level-set
method has also been used to design the infill region within a previously optimized external contour
(Wang and Kang 2018; Dapogny et al. 2019). Other emerging topics for topologically optimized and
variable-density lattices are multi-scale and multi-material structures, where two different materials
are distributed in a combined optimization of macro-scale and micro-scale lattices (Long, Han, and
Gu 2017; Da et al. 2017).

This article aims to extend the sequential element rejection and admission (SERA) method
(Rozvany and Querin 2002) to the field of infill optimization. The authors’ preliminary and rough
first approximation can be found in Garaigordobil et al. (2020), but that content is widely extended
and further developed in this article. The control of the porosity level of the structures is studied,
including an investigation of the impact of different subdomain sizes and material volume fractions.
The influence of subdomain aspect ratios that differ from the conventional 1× 1 ratio is also anal-
ysed, which permits the development of a novel anisotropic filter that avoids unidirectional material
growth. This article also extends to the study and use of multiple subdomain ratios in the same
optimization problem.

In summary, the specific contributions of the present article include a topology optimization
procedure for porous structures based on the discrete SERA method and an adapted local element
rejection and admission process. The procedure can simultaneously work with subdomains of differ-
ent size and aspect ratios, and features an alternative anisotropic filter that prevents the unidirectional
growth of solid members provoked by uniaxial stress regions.
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2. Local volume constraint

Two main features characterize porous structures: first, they are composed of intertwined and con-
nected substructures, and secondly, the material is very evenly distributed within the given design
domain, as can be seen in Figure 1. The conventional topology optimization problem with a global
volume constraint does not lead to structures of this type since material layouts generally describe
thick solid regions and large voids. A simple strategy to form porous patterns with topology optimiza-
tion is to replace the conventional global volume constraint with a set of local volume constraints that
control the presence of solid material in small neighbourhoods Ne, as given in Equation (1):

gNe = VNe

VNeTot
− VFLimNe =

∑
e∈Ne ρe∑
e∈Ne 1

− VFLimNe ≤ 0 (1)

whereVNe andVNeTot are thematerial volume and the total volume in the neighbourhoodNe, respec-
tively, and ρe is the density of the element e inside Ne. The term VFLimNe refers to the upper bound of
the volume fraction in the neighbourhood Ne.

Togetherwith the SIMPmaterial interpolationmodel, the latter constraint was successfully applied
to overlapping neighbourhoods (Wu et al. 2018). The article resorted to a consolidated high-degree
p-norm and aggregated all these constraints into one to prevent the high computational cost that such
a strategy would require. In the SERAmethod, the update rule of the design variables is performed by
an evolutionary method, making it manageable to enforce a volume constraint to each subdomain.

In the present work, the original domain�, which is discretized with unit square finite elements, is
split into a finite number of non-overlapping rectangular subdomains �S of size Rs1 × Rs2 (Figure 2).
The volume fraction is constrained in these smaller regions, favouring the formation of substructures
and driving the optimization problem towards a more even material distribution.

The local constraint that restricts the presence of material volume in a subdomain is given in
Equations (2) and (3):

gs = VFs − VFLims ≤ 0 / s = 1, . . . , S (2)

VFs = Vs

VsTot
=

∑
e∈s ρe

Rs1 · Rs2
/ s = 1, . . . , S (3)

The term VFs is the volume fraction of the sth subdomain, computed as the ratio of its material
volumeVs to its total volumeVsTot .VFLims is the upper bound volume fraction for the sth subdomain,
and S is the total number of subdomains. The size and aspect ratio can be similar for all subdomains,

Figure 1. Infill design of a porous structure.
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Figure 2. Division of the design region into subdomains.

although subdomains of different sizes can be used to (1) deal with highly anisotropic stress fields,
(2) avoid poorly connected regions, and (3) avoid weak regions.

Note that the inequality constraint given in Equation (2) explicitly implies that the sth sub-
domain must retain a material volume fraction no greater than the local volume fraction upper
bound. Then, the set of local volume constraints implicitly imposes an upper bound on the total
volume, i.e. if all local material volume upper bounds are equal to the desired global counterpart,
VFLims = VFLimfor all s; the global constraint is implicitly included in the problem, which eliminates
the necessity of adding it to the formulation.

3. Problem formulation

In this work, the problem of determining the optimum design of porous structures is formulated as
a maximum stiffness problem. The objective is to find the material distribution that minimizes the
structure’s compliance under prescribed support and loading conditions. This formulation is based
on a finite element discretization of the design domain �, as in Equations (4)–(7):

Minimize:
ρ

c(ρ) = UT · K · U (4)

Subject to : K · U = F (5)

gs(ρ) ≤ 0 / s = 1, . . . , S (6)

ρe = {ρmin, 1} (7)

where c(ρ) is the structure’s compliance, ρ is the vector of design variables (elemental densities),
U andK are the displacement vector and the global stiffness matrix, respectively, and F is the applied
load vector. The set of local volume constraints in Equation (6) prevents the formation of thick
solid regions and large voids. In addition, as in conventional topology optimization problems, the
algorithm is expected to use the maximum allowable material volume in each subdomain. Finally,
the parameter ρmin is the minimum elemental density, given a value of 10−9. Since SERA is a discrete
method, the elemental density values (ρe) are either ρmin or 1, representing void (virtual) or solid
(real) material, respectively.
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4. Material rejection and admission process for infill optimization

Section 2 introduced the subdomain level material volume evaluation, and such computations
ultimately proceed to a local procedure for rejecting and admitting the material. The following sub-
sections describe the conventional SERA and how the optimization process in Ansola Loyola et al.
(2018) is adapted to the infill optimization to form porous structures.

4.1. Conventional SERA optimization process

The SERA method is a bidirectional evolutionary method and works with two separate criteria for
adding and removing material from the design domain. Solid or ‘real’ material is removed (turned
void) while void or ‘virtual’ material is added (turned solid). The conventional procedure that gen-
erally starts from a fully filled domain simultaneously classifies the finite elements into two lists, one
for all of the solid material and one for all of the void material. The two lists are ordered in an ascen-
dant way according to the element sensitivity number or driving criterion number (Cv). The latter
is the main novelty of the SERA method compared to other evolutionary methods such as bidirec-
tional evolutionary structural optimization (BESO) (Querin, Steven, and Xie 1998), which do not
differentiate between the sensitivities of solid and void material.

In the conventional method, the material rejection and admission process is a two-stage process.
First, different amounts of material are added and removed in each iteration until the target volume
fractionVFLim is reached. The second stage starts when the objective volume fraction is met, and the
material is redistributed by adding and removing the same amount until the problem converges.

During the first stage of the optimization problem, the iteration-wise target volume fractionVF(i)
is calculated using Equation (8). This value sets the volume fraction that must be reached in the fol-
lowing iteration of the optimization problem. The total fraction of material volume to be removed in
the ith iteration is given by Equation (9). The latter amount is separated into the volume fraction to be
added, �VAdd(i), and the volume fraction to be removed �VRem(i), using Equations (10) and (11),
respectively (Figure 3a, b). As seen in Figure 3, the iteration-wise material rejection and admission
process consists of two substeps. For a full initial design domain, to decrease the global volume frac-
tion, more material is removed than is added during the first stage of the optimization process. On
the other hand, the second stage adds and removes the same amount of material, so that the volume
of material remains constant (Equation 12).

VF(i) = max((VF(i − 1) · (1 − PR)),VLim) (8)

�V(i) = |VF(i) − VF(i − 1)| (9)

�VAdd(i) = �V(i) · (SR − 1) (10)

�VRem(i) = �V(i) · SR (11)

�VAdd(i) = �VRem(i) = β · VLim (12)

Finally, the procedure used by the algorithm to reject and add elements is performed according to
their elemental driving criterion value (Cve) relative to two global threshold driving criterion values,
CvthrR and CvthrV , respectively (Figure 3c).

The three parameters governing the problem are described as follows:

• The progression rate (PR) controls how SERA removesmaterial from and introducesmaterial into
the design domain.

• The smoothing ratio (SR) controls the net level of excess material to be either introduced into or
removed from the design domain.

• Thematerial redistribution fraction (β), used only when the target volume is reached, controls the
small constant amount of material that is redistributed until the criterion distribution converges.
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Figure 3. Material rejection and admission process: (a) first stage of the process; (b) second stage of the process; (c) material status
updating process.

In the optimization of structures, typical ranges for values of these parameters are: 0.01 ≤ PR ≤
0.09, 1.2 ≤ SR ≤ 1.9 and 0.001 ≤ β ≤ 0.005.

In infill optimization, the local optimization of the subdomains requires a modification of the
above summarized global procedure. In fact, in the adapted version, the iteration-wise number of
elements to be rearranged is defined at the subdomain level, and thematerial rejection and admission
process is performed locally.

4.2. Determination of the local volume fraction to be rearranged

Note that Equations (8)–(12) perform global volume computations, and the volume fractions given
by Equations (10)–(12) refer to the material volume fractions that must be both rejected from and
added to the whole design domain. To obtain porous designs, the process described in Figure 3 must
be performed locally at the subdomain level. The necessary changes to adapt the conventional process
to infill design optimization are introduced in the following.

First, to operate at the subdomain level, it becomes essential to know howmuch material needs to
be rearranged in each subdomain and the number of elements to add and remove. One straightfor-
wardway of determining the local volume fractions to be added and removed is to distribute�VAdd(i)
and �VRem(i) along the different subdomains. In that case, each subdomain will add a proportion
of material �VAdd(i) and remove a proportion of material �VRem(i), distributing the material vol-
ume variation among all the subdomains. This strategy is demonstrated in Equations (13)–(15) to
maintain compliance with the volume fraction:

�V(i) · VTot = �V(i) ·
∑

s∈�

VsTot = �V(i) · V1Tot + . . . + �V(i) · VSTot (13)

�VAdd(i) · VTot = �VAdd(i) ·
∑

s∈�

VsTot = �VAdd(i) · V1Tot + . . . + �VAdd(i) · VSTot (14)
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�VRem(i) · VTot = �VRem(i) ·
∑

s∈�

VsTot = �VRem(i) · V1Tot + . . . + �VRem(i) · VSTot (15)

where VTot is the total volume of the design domain, and VsTot is the total volume of the sth
subdomain.

Once the volume fractions to be added and removed are known for each subdomain, the number of
elements to which they correspond can be calculated by Equations (16) and (17). Since the presented
formulation allows subdomains of unlike sizes and aspect ratios, the different subdomains can trade
with different amounts of elements.

�EsRem(i) = �VRem(i) · Rs1 · Rs2 (16)

�EsAdd(i) = �VAdd(i) · Rs1 · Rs2 (17)

4.3. Local material rejection and admission process

As introduced in Section 4.1, the conventional procedure considers the global sensitivity matrix to
perform the material rejection and admission process, and rejects and adds elements according to
their elemental driving criterion value (Cve) relative to two global threshold driving criterion values,
CvthrR and CvthrV , respectively. On the other hand, the adapted procedure considers only the driving
criterion values of the elements within the same subdomain. A pair of sensitivity lists per subdomain
contains the sensitivity values of Rs1 · Rs2 elements ordered in an ascendant way, and a local material
rejection and admission process is performed for each pair (Figure 4).

Since the optimization problem is defined as the minimization of the compliance of the design
domain, the switching elements are those located at the bottom of the lists; therefore, the solid ele-
ments with a driving criterion value below CvsThR turn void, and void elements below CvsThV turn
solid.

The local threshold driving criterion values for solid (CvThsR) and void (CvThsV ) elements are cal-
culated using Equations (18) and (19), and they respond to the�EsRem(i)th and�EsAdd(i)th elements

Figure 4. Local material rejection and admission process.
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Figure 5. Flowchart for infill optimization. SERA = sequential element rejection and admission.

at the bottom of the corresponding list.

CvThsR = CveR(R
s
1 · Rs2 − �EsRem(i), 1) (18)

CvThsV = CveV (Rs1 · Rs2 − �EsAdd(i), 1) (19)

A quick overview of the whole optimization process is provided in the flowchart of Figure 5, where
the operations concerning local subdomains are highlighted separately.

5. Sensitivity analysis

After the finite element analysis, a sensitivity analysis is carried out to determine how sensitive the
objective function is to adding or removing the elements. The sensitivity or driving criterion (Cve)
computation process of the SERA is not included in this work, but the reader can find extensive
explanations in Ansola Loyola et al. (2018) and Querin et al. (2017). The expressions of the elemental
driving criterion for solid or real material (CveR) and void or virtual material (CveV ) are given by the
following equations:

CveR = αeR = UT
e · ke · Ue (20)

CveV = αeV = −UT
e · ke · Ue (21)

where Ue is the displacement vector of element e due to the applied loads and ke represents the
elemental stiffness matrix.

6. Filtering of sensitivities

To avoid any instability and chequerboard problems, a sensitivity filtering step is included in the
formulation, which is globally performed over the whole design domain. Performing global filtering
ensures that the sensitivity values of the elements in adjacent subdomain borders are similar, which
has been proven effective to guarantee the continuity of substructures in contiguous subdomains.
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The proposed procedure introduces a single filtering step and, since SERA is a discrete method, no
additional projection techniques are required tomake the density field binary. Themesh-independent
filter is based on the technique proposed by Sigmund and Petersson (1998) and modifies each
element’s sensitivity number based on a weighted average of the element sensitivities in a fixed
neighbourhood defined by a minimum radius rmin (Equation 22).

α̃e =
∑N

j=1 wj · ρj · αj

ρe · ∑N
j=1 wj

(22)

wj = max(0, rmin − dist(e, j)) (23)

where α̃e is the filtered sensitivity number of the eth element, N is the number of elements in the
domain, and ρ j and αj are, respectively, the density and the sensitivity number of the jth element.
According to Equation (23), the weighting factor wj for element j decreases linearly the further the
element j is from the element e, where dist(e, j) is the distance between the centres of the two elements.
For all elements outside the filter radius, the weighting factor is equal to zero.

7. Convergence criterion

The convergence criterion evaluates the change in the objective function in the last 10 iterations and
is given by Equation (24). This number of iterations was found to be adequate for convergence to take
place. This implies that the process will have a minimum of 10 iterations, as the convergence is not
applied until the 10th iteration.

εi =

∣∣∣
∑i−5

i−9 ci −
∑i

i−4 ci
∣∣∣

∑i
i−4 ci

< εLim (24)

where i is the current iteration number (greater than 10), ci is the objective function value from
Equation (4) in the ith iteration, εi is the convergence value of the objective function in the ith
iteration, and εLim is the convergence limit, which controls when to terminate the optimization
process.

8. Examples

This section presents four examples to demonstrate the effectiveness of the procedure for generat-
ing optimum infill designs. These are: (1) a cantilever beam, (2) the Messerschmitt–Bölkow–Blohm
(MBB) beam, (3) an axially loaded beam, and (4) an L-shaped beam. Each example studies a spe-
cific parameter of the optimization problem or introduces a new capacity of the proposed approach.
The cantilever beam is used to show the effect of varying the volume fraction and filtering radius
on the connectivity of the infill topology. The MBB beam example shows the effect of varying the
subdomain size on the emerging infill topology. Then, anisotropic stress fields are studied through
an axially loaded (traction) beam, and a strategy to deal with them is proposed, changing the aspect
ratio of the subdomains according to the orientation of the dominating principal stress. Finally, an
L-beam is presented to introduce the possibility of simultaneously working with multiple subdomain
sizes and aspect ratios inside the same domain. In the examples, Young’smodulus of the solidmaterial
is 1 and 10−9 for the void, and Poisson’s ratio is 0.3.

8.1. Cantilever beam

This example tests the classical two-dimensional cantilever beamwith the geometry and loading con-
ditions described in Figure 6(a). The beam is discretized with 1200× 600 square unit finite elements,
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Figure 6. (a) Design domain for the cantilever beam; (b) conventional cantilever beam after topology optimization, c = 146.0773;
(c) optimized porous design for R1 × R2 = 20 × 20 subdomains, c = 229.289.

a downward vertical unit force is applied on the middle point of the right edge, and all degrees of
freedom are restricted in the left edge. The objective volume fraction is set to VLim = 0.4 and the
filter radius is set to rmin = 2.

The regular topology optimization result of the cantilever beam given in Figure 6(b) shows how,
without the set of local volume constraints, SERA deposits solid material forming thickmembers and
favours the nucleation of large void areas.When the same optimization problem is performedwith the
adapted SERAmethod, which includes the set of local volume constraints in substitution of the global
volume fraction constraint, the problemconverges into themore intricatematerial distribution shown
in Figure 6(c), a structure formed by intertwined and connected substructures with subdomains of
size R1 × R2 = 20 × 20.

Both results show apparent differences in the material layout and, compared to the conventional
result, the porous design describes a more uniformly distributed material layout, with tiny pores in
place of the former large voids. The local volume constraints compel the subdomains to retain a per-
centage of solidmaterial deposited along the direction of the principal stresses. In areaswith dominant
principal stress, this strategy may yield single-directional material layouts, as shown in the details of
Figure 6(c). The compliance values of these designs, given in the caption to Figure 6, are very unalike,
with the porous design being the most compliant. The decay of the stiffness is due to retention of the
same amount of solid material in every subdomain. The porous design may be more compliant, but
it is more robust concerning variations in the load case and enhances the fail-safe behaviour.

Next, the filter radius and the volume fraction are studied to gain a notion of the values that will be
used in the rest of the examples. The previously presented design domain is considered again, which
is optimized with the same SERA parameters and subdomains of size R1 × R2 = 20 × 20. Figure 7
gathers the results obtained for varying filter radius and volume fractions.

The obtained material distributions resemble porous structures for every combination of filter
radius and material volume fraction. The topologies are mainly populated by crossing substructures,
except for a few parts at the top and the bottom where elongated substructures are found. Such uni-
axial material layout agrees with the stress distribution in these areas, and the algorithm prioritizes
the dominant principal stress direction.
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Figure 7. Topologies for the porous design of a cantilever beam with different filter radii and volume constraints.



468 A. GARAIGORDOBIL ET AL.

The results in Figure 7 are accompanied by the corresponding value of the objective function,
showing the direct relationship between the filter radius and the structure’s compliance. As the filter
radius is lowered, the value of the objective function also decreases. It is also noted that large volume
fractions counteract the effect of the filter radius, and as the volume fraction approaches the unit value,
the compliances converge to a similar value. The filter radius also controls the level of detail and the
porosity of the resulting design. Looking at any two results in the same row of Figure 7, i.e. two designs
with equal volume fraction but different filter radii, it is quickly appreciated that the largest porosity
level is obtained with the lower filter radius, and although the general aspect of the two structures is
much alike, the level of detail can vary significantly. Therefore, it can be concluded that a small radius
favours the formation of thinner substructures and increases the porosity of the structure. Finally, it
should be noted that all of the results demonstrate good connectivity between any substructure and
the substructures that surround it.

8.2. MBB beam

The second example analyses the optimization case of an MBB beam and studies the use of subdo-
mains of different sizes. Taking advantage of symmetry, the design domain (Figure 8a) is discretized
using a fine mesh of 1200× 600 unit square finite elements. A vertical unit force is applied in the left
upper node, and the horizontal and vertical displacements are restricted in the nodes in the left-hand
edge and the right lower node, respectively. The objective volume fraction is set to VLim = 0.4 and,
to achieve an intermediate porosity level, the filter radius is set to rmin = 3. For the infill design in
Figure 8(b), the subdomains are of size R1 × R2 = 30 × 30 elements.

The proposed infill optimization procedure allows the definition of subdomains of different sizes,
which implicitly gives the designer the ability to control the porosity level of the final material layout.
Theoretically, the subdomains can be as small as the unit element or as big as the design domain
itself. In the following, different subdomain sizes ranging from R1 × R2 = 20 × 20 to 600 × 600 are
analysed, plus one additional case where a unique subdomain covers the whole domain. Their relative
sizes are shown in Figure 9, and the obtained optimized topologies are gathered in Figure 10.

It can be seen that smaller subdomain sizes lead to greater porosity levels, and the resultingmaterial
distribution moves closer to the conventional result as they become larger. Therefore, the structure
becomes stiffer but loses the benefits of porous structures. When the shape and size of the subdo-
mainmatch the geometry of the whole design domain, the conventional topology optimization result
emerges. It can be said that the stiffness of the porous structure is strongly related to the size of the
subdomains, as demonstrated in the following text.

When the size is neither small enough to form highly porous structures nor large enough to
approach the classical topology optimization result, a certain amount of leftover material appears in
the upper right corner of the structure. This material lies within a single subdomain and corresponds

Figure 8. (a) Design domain of a Messerschmitt–Bölkow–Blohm (MBB) beam; (b) optimized porous design. R1 × R2 = 30 × 30,
c = 145.488.
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Figure 9. Relative sizes of the subdomains.

Figure 10. Results obtained for varying subdomains sizes.
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to the prescribed fraction of the total available volume inside that cell. The leftover material emerges
because the algorithm forces the presence of an amount of material in every cell. Therefore, some
particular subdomain sizes may lead to this sort of material supplement being inefficiently attached
to the structure’s body.

The obtained results also demonstrate that the proposed procedure guarantees the connectivity
of the substructures formed within the different subdomains. No discontinuity is appreciable, either
when the subdomains are small or when they have a considerable size. That is to say, independently
of the subdomain size, the substructure formed within a subdomain is smoothly connected with the
adjacent material.

8.3. Axially loaded beam: anisotropic filter

The third example is the optimization case of the axially loaded beam, an exercise that requires a
procedure to deal with uniaxial material distributions due to anisotropic stress fields. Figure 11(a)
shows the design domain that is discretized with a fine mesh of 1200× 600 unit square elements.
The left edge of the beam is fixed, and a horizontal and distributed force is applied on the right side
nodes with unit value. In the optimized results, the objective volume fraction is set toVLim = 0.6 and
the size of the subdomains is R1 × R2 = 30 × 30 elements. Some of the obtained results possessed
many pores; therefore, to control the porosity level and favour the visualization of the results, the filter
radius is set to rmin = 5 elements.

Once again, the regular topology optimization result (Figure 11b) shows how SERA deposits
solid material forming thick regions, while the adapted procedure leads the problem to the mate-
rial distribution shown in Figure 11(c). Nevertheless, the latter is solely composed of horizontal
bars that connect the load points with the clamp. It is a reasonable solution considering that the
subdomains are compelled to retain a certain amount of material, but it hardly complies with the
description of a porous structure. For instance, no interconnected substructures can be seen, and
the structure is weak to any vertical variation in the load. This issue is due to this particular case’s
highly anisotropic stress field, where the dominant principal direction is horizontal. Although the
structures in Figure 11(b) and (c) provide great stiffness, the aim is to achieve a porous design;
therefore, to avoid great areas with unidirectional growth, an anisotropic filtering technique is
introduced.

Figure 11. (a) Design domain of the axially loaded beam; (b) conventional topology optimization result, c = 307, 669.642;
(c) optimization with local volume constraints. R1 × R2 = 30 × 30, c = 612, 503.935).
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Figure 12. Porous design of an axially loaded beam. c = 790, 776.255.

The design domain in Figure 11(a) is considered one more time. The values of all optimization
parameters are preserved except for the subdomain size, which is set to R1 × R2 = 3 × 30 elements.
The largest side of the subdomains is parallel to the dominant principal direction. With this simple
modification, the problem converges to the material layout shown in Figure 12.

As can be seen, the resulting topology is highly porous, with, in this case, substructures of gyroid
shapes, demonstrating that the proposed anisotropic filter avoids unidirectional growth and favours
obtaining results closer to trabecular structures. This new design should provide all of the qualities
and improved robustness of a porous structure compared to the previous design in Figure 11(c). An
example is provided to demonstrate how the avoidance of the elongated substructures can improve
this feature.

Two previously optimized tensile beams are studied under the influence of a variation in their load
direction. A variation of 45° is considered, resulting in a distributed inclined load with unit value
in each node of the right side contour. The displaced configurations of the two designs are shown
in Figure 13, where it is seen that the porous design has better tolerance to the proposed variation
in the load direction. Proof of this is that the general compliance decays by 68.82% with respect to
the non-porous design.

Figure 13. Deformation under a leaned distributed load with 45° inclination of two optimized tensile beams: (a) design with
elongated substructures, c = 848, 760; (b) porous design, c = 264, 600.



472 A. GARAIGORDOBIL ET AL.

8.4. L-beam:multiple subdomain sizes

The final example is the optimization case of an L-beam, the design domain of which is shown in
Figure 14(a). The domain is discretized with 900× 900 unit square finite elements, a vertical force is
applied in the right upper node and the structure is clamped on the upper left side. A first optimization
is performed with the conventional algorithm, with VLim = 0.6 and rmin = 5. The optimization pro-
cess converges to the topology given in Figure 14(b). This topology is composed of two differentiable
regions, a vertical part that is subjected to combined axial and bending with an absent shear effort,
and a horizontal part subjected to simple bending. The combination of axial and bending efforts in
the vertical part makes it susceptible to uniaxial material growth, as proven in Figure 15(a) with the
porous design obtained for square subdomains of size R1 × R2 = 30 × 30.

To avoid the elongated substructures seen in Figure 15(a), the anisotropic filter proposed in Section
8.3 is applied, which yields the material distribution shown in Figure 15(b). As can be seen, the
stretched subdomains promote the formation of multidirectional substructures in the vertical part

Figure 14. (a) Design domain of the L-beam; (b) topology optimization result, c = 298.093.

Figure 15. (a) Local volume constraints on the L-beam, c = 418.959; (b) total porous design of the L-beam. R1 × R2 = 30 × 3,
c = 530.544.
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Figure 16. (a) Split design domain; (b) optimized porous L-beam, c = 518.897.

of the structure. On the other hand, elongated subdomains will not provide a horizontal part with
equivalent stiffness to square subdomains. Therefore, tomaximize the robustness of the ensemble, the
beam is split into two large domains, domain 1 and domain 2, as described in Figure 16(a). Continu-
ing with the usual procedure, each domain, 1 and 2, is split into smaller subdomains, and a material
redistribution process is performed in each of them.

The design domain is discretized with a unique finite element mesh, but domain 1 is split into
subdomains of size R1 × R2 = 30 × 3 that prevent the formation of elongated substructures, while
domain 2 is split into square subdomains of size R1 × R2 = 30 × 30. This aspect ratio maximizes
the freedom of the algorithm to distribute the material. The sensitivity analysis and filtering are
performed globally so that the transition from one domain to the other is smooth and continu-
ous. The porous structure resulting from the latter splitting strategy is given in Figure 16(b), and
from the value of its compliance, it can be deduced that it is a more rigid structure than the one in
Figure 15(b). This exercise demonstrates that the proposed procedure can simultaneously work with
subdomains of different size and aspect ratios, resulting in porous structures formed by smoothly
connected substructures.

9. Conclusions

This article presents a discrete variable method for infill optimization using the SERA method. It
provides an alternative approach for integrating local volume restrictions within the conventional
topology optimization formulation to encourage lattice structures that resemble porous structures, an
ideal solution for the interior of additively manufactured parts. The results obtained for the analysed
benchmark examples agreewith the lightweight porous structures generatedwith other density-based
methods. Furthermore, unidirectional growth can be controlled usingmixed rectangular subdomains
with different aspect ratios to simulate natural bone-like remodelling and generate more sparsely
distributed structures. Since the method is based on discrete variables, the obtained solutions are
solid/void topologies, and only a basic sensitivity filtering step is involved. The performance of the
proposed approach is widely studied in the article by studying different volume fractions, filter radii,
and subdomain size and aspect ratios, demonstrating the versatility of the presented technique.
Finally, and although not presented in this work, which focused on developing a two-dimensional
procedure, the authors and others are currently working on extensions of the proposed strategy to
three-dimensional and shell–infill optimization problems.
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