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Abstract— The flooding of packed columns is accompanied by a 

steep increase in liquid hold-up and pressure drop, resulting in 

lower mass transfer efficiency and potential damage to equipment. 

This study aims to investigate, for the first time, the feasibility of 

Electrical Capacitance Tomography aided by Convolutional 

Neural Networks as an intensified alternative to conventional 

flooding prediction methods. Electrical Capacitance Tomography 

allows variations in the predominant characteristics of flooding 

events to be investigated in greater detail than in previous 

research. Aided by Convolutional Neural Networks, the Electrical 

Capacitance Tomography sensor enables high accuracy on liquid 

hold-up calculation and strong robustness against noise-

contaminated measurements. In this work, a detailed comparison 

is made between liquid hold-up results using Convolutional Neural 

Networks and a more conventional Electrical Capacitance 

Tomography method based on Maxwell equation. Both methods 

can accurately calculate the liquid hold-up at low gas flow rates. 

The liquid hold-up predicted according to Maxwell equation did 

not match the measured values at high gas flow rates, showing 

discrepancies of up to 68%. In contrast, Convolutional Neural 

Networks is much superior to the Maxwell equation method at 

high gas flow rates, giving only 1% mean of difference than the 

reference liquid hold-up. Electrical Capacitance Tomography 

supported by Convolutional Neural Networks shows great fidelity 

for non-invasive monitoring of local liquid hold-up, allowing for 

more accurate, localized prediction of loading point and flooding 

point in packed columns. 

 
Index Terms—Electrical Capacitance Tomography (ECT); 

Flooding; Convolutional Neural Network (CNN); packed column; 

counter-current flow. 

I. INTRODUCTION 

ost-combustion carbon capture technology has the 

important advantage of the ease of retrofitting onto existing 

power plants to enhance their efficiency with simultaneous 

carbon capture [1]. A major drawback of post-combustion 

carbon capture using chemical solutions is that the process 

requires extremely large equipment with difficulties in scaling 

down economically for industrial applications, such as 

refineries, steel making and fertilizers [2, 3]. Among the 
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existing post-combustion carbon capture technologies, few 

focus on column design optimization that is essential for 

reducing the cost of investment in the capture process. It can be 

achieved either by developing new high-performance packing 

or an adequate design of packed columns [4].  

A packed column is the critical equipment used for post-

combustion technologies. It has received much attention due to 

its high capacity, lower cost and high efficiency. Random and 

structured packings are commonly used in industry to improve 

contact surface area between two phases, i.e., gas and liquid, in 

the absorption process to maximize separation efficiency. 

However, flooding occurs in packed columns when either the 

gas or liquid flow is increased beyond the capacity of the 

column, accompanied by a sharp increase of the pressure drop, 

loss of mass transfer efficiency, and heavy entrainment [5].  

Terms used for explaining flooding mechanisms: 

1) Loading point: At the loading point of a column the gas 

velocity is high enough to destabilize the liquid film and 

influence the liquid flow. After this point, the liquid will 

accumulate in the column and lead to higher liquid hold-up 

and higher pressure drop until flooding happens. 

2) Flooding point: Flooding point is the upper limit of the 

packed column operation. At this point, there is an 

excessive accumulation of liquid in the entire packed 

column. 

3) Liquid hold-up: Liquid holdup is a hydrodynamic property 

and is defined as the ratio of the volume of a packed 

column occupied by the liquid to the total volume of the 

packed column. 

4) Local liquid hold-up: In this paper, the local liquid hold-up 

is defined as the liquid hold-up at ECT measured area. 

Flooding points, as an indication of the upper capacity limit of 

a packed column, will affect packed column design. In a 

counter-current packed column, operating in the loading zone 

between the loading and flooding points is recommended, to 

achieve a good mass transfer rate [6]. Therefore, a counter-

current packed column is generally designed to 70-80% of the 

flooding point velocity [6-8], a lower boundary of 60% was also 

proposed for safety concerns [9]. This practice provides 
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sufficient margin to (a) allow uncertainties associated with the 

prediction of the flooding point and (b) to keep the designed 

point away from the region where efficiency rapidly diminishes 

(just below the flooding point). However, this practice results 

in the oversizing of packed column diameters, and thus a 

decrease in efficiency. In the past decade, several empirical or 

semi-empirical correlations have been developed to determine 

the loading and flooding points and liquid hold-up and pressure 

drop in the pre-loading and loading zones for either random or 

structured packing [10-13]. However, these authors have 

identified a wide variation between various correlations. 

To take advantage of the improved performance of these 

packings, accurate prediction of the hydrodynamic capacity 

would allow operation closer to flooding velocity and thus 

reduce the capital costs of the packed column. Two major 

process variables can be measured in a packed column for 

online flooding prognosis, i.e., pressure drop and liquid hold-

up. A majority of the state-of-the-art methods measure pressure 

drop, which shows a significant increase when flooding is about 

to happen. However, online flooding detection by intrusive 

pressure transducers can cause a delay in reaction as a complete 

curve of pressure drop is required to identify accurately the 

loading point and flooding point. The alternative to identify 

flooding is to monitor the increase in liquid hold-up in the 

packed column [14]. In previous studies on packed column 

flooding, only the global pressure drop or global liquid hold-up 

has been measured, between the packed column liquid inlet and 

outlet. Since measurement of global liquid hold-up by draining 

the packed column is unrealistic, visualization of the reactive 

process in the packed column has been used for online packing 

monitoring [15]. To implement this visualization technique, a 

packed column with a transparent pipe is applied for the safe 

operation of the packed column close to the flooding point. 

Radiation-based tomographic techniques can image the 

cross-sections of the packed column at different axial positions 

[16], providing information on liquid hold-up, hydrodynamic 

liquid spreading patterns of rotating packed beds [17, 18], 

bubbling fluidized beds [19] and counter-current flow 

distillation columns [16]. However, the shortcomings in 

radiation-based tomography include radiation hazards and 

expensive equipment. Therefore, this method cannot be used in 

a normal industrial environment. As a non-radiative, non-

invasive, fast and low-cost tomographic modality, the 

application of electrical capacitance tomography (ECT) has 

been recently initialized to study the multiphase flow [20, 21]. 

For example, ECT was employed by Wongkia et al. [22] to 

study the flooding capacity of counter-current flow in inclined 

packed columns filled with random packings. Strazza et al. [23] 

used a simple 2-electrode capacitance sensor for liquid hold-up 

measurement in core-annular flows. Various recent studies 

have shown that an ECT system can measure the liquid flow 

distribution and thus obtain the velocity measurement of two-

phase flows [24, 25]. Several studies have used ECT to better 

understand the hydrodynamics of co-current flow in packed 

columns [26], dynamic liquid distribution in a fixed bed column 

[27] and monitor gas voids in a packed bed column [28]. 

Recently, Li et al. [29] used ECT to demonstrate a new flooding 

index for packed column flooding monitoring that enabled 

timely warning of the occurrence of flooding.  

With the rapid development of machine learning algorithms, 

data driven ECT techniques have been validated for the analysis 

of multiphase flow in many applications. For example, Jin et al. 

[30] used a deep learning-based method to accomplish image 

reconstruction in ECT. Chen et al. [31] used a multiple 

measurement vector model-based learning algorithm to solve 

the multifrequency electrical impedance tomography image 

reconstruction problem. Grzegorz et al. [32] used the long 

short-term memory network to intelligent selection of the best 

image reconstruction methods depending on the reconstructed 

case. Compared with traditionally computational image 

reconstructions, machine learning algorithms could take 

advantage of multiple input parameters and massive data. 

However, ECT sensor suffers a nonlinear behavior, particularly 

for high permittivity media such as water and a thick pipe wall 

[33]. The image reconstruction procedure may suppress quite a 

good amount of information from the capacitance data and lead 

to unreliable results. Therefore, many researchers have tried 

machine learning aided ECT methods to directly mapping the 

relationship between ECT measurements and multiphase flow 

hydrodynamic parameters to bypass the image reconstruction. 

Zainal-Mokhtar and Mohamad-Saleh [34] used a multilayer 

perceptron artificial neural network to directly estimate oil 

fraction in a pipe with normalized capacitance measurements. 

Wang and Zhang [35] used support vector machines (SVM) to 

identify the flow regime of two-phase flows. Hasan et al. [36] 

concluded that the Convolutional Neural Network (CNN) 

outperformed the SVM classifier in terms of testing accuracy. 

These works indicated that machine learning possibly used to 

the online measurement for liquid hold-up estimation without 

image reconstruction. To date, a CNN has been employed to 

explore the relationship between ECT measurements and the 

permittivity distribution [37]. Compared with conventional 

method the main advantage of CNN is that it automatically 

detects the important features from capacitance measurements 

without any empirical parameter and selection of the 

measurement path. They also show strong robustness when 

addressing the ECT inverse problems that are inherently 

nonlinear and ill-posed [33, 38, 39]. 

Built on our previous ECT research on flooding monitoring 

[29], a novel CNN-based ECT technique is developed in this 

work and, for the first time, applied to the characterization of 

flooding prognostic against experimental data. Instead of 

monitoring the global variables such as global liquid hold-up 

and global pressure drop, this development enables accurate 

monitoring of the local variations of liquid hold-up under 

flooding conditions, thus indicating quantitatively the 

dependence of local liquid hold-up in a packed column on the 

process parameters, such as the gas superficial velocity. 
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Measurement of the local liquid hold-up in a flooded packed 

column using the ECT sensor has two challenges: The first 

challenge is the flow regime transition involved in the flooding 

phenomenon. The gas phase dominant laminar flow is expected 

to become liquid phase dominant turbulence flow at a high gas 

flow rate. Therefore, ECT must operate with a liquid phase 

dominant absorption mass transfer operation to monitor 

flooding. However, ECT remains unreliable for measuring 

liquid phase dominant absorption mass transfer operation as the 

error for the ECT modality starts to increase sharply at 60% 

liquid hold-up [40]. Secondly, the position of the ECT sensor 

must be adjusted appropriately to monitor the relationship 

between local liquid hold-up and flooding. 

To address these challenges, a flooding monitoring strategy 

using CNN-aided ECT is proposed. A portable ECT sensor is 

employed for free movement in the longitudinal direction of the 

packed column. At each axial position, all pressure drop, liquid 

hold-up and flow information data are simultaneously recorded 

at the same sampling rate using LabVIEW program at the lab-

scale test rig. This study shows that the flooding can be earlier 

measured by local liquid hold-up than global liquid hold-up or 

pressure drop. Compared with the conventional liquid hold-up 

calculation model, the newly introduced CNN-aided method is 

more accurate, especially for data from high gas flow rates. 

In the rest of this paper, the ECT system and a conventional 

liquid hold-up calculation model are introduced in Section II A 

and Section II B. Subsequently, CNN architecture is established 

using the ECT and reference liquid hold-up in Section III. Then, 

the experimental setup and campaign are described in Section 

IV. Predicted liquid hold-up obtained from ECT as well as 

loading points and flooding points derived from the CNN-aided 

method are presented, with the accuracy of the model discussed 

in Section V. Finally, a brief conclusion is presented in Section 

VI. 

II. METHODOLOGY 

A. Fundamentals of Electrical Capacitance Tomography 

In our study, capacitances are recorded using an eight-

electrode ECT sensor, which is installed at a packed column. 

The measured capacitances are used to retrieve the cross-

sectional permittivity distribution within the sensing area based 

on a pre-calculated sensitivity map. For the forward problem of 

ECT, the linearized model describing the relationship between 

normalized capacitance data Cnorm and the normalized 

permittivity change g is given by: 

𝐶𝑛𝑜𝑟𝑚 =  𝑆𝑔 (1)  

where S is the matrix giving a sensitivity map for each electrode 

pair. Therefore, the inverse problem of ECT is to calculate the 

relative permittivity distribution from the measured 

capacitances. Common image reconstruction algorithms can be 

referred to in Yang and Peng [41]. Modified Sensitivity Back-

Projection (MSBP) algorithm is used for ECT image 

reconstruction [42]. 

The ECT system used in this work, as shown in Fig. 1, 

includes an ECT sensor, a data acquisition system and a 

computer with ECT imaging software [43]. The ECT sensor 

contains 8 electrodes of 7.5 cm width and 10 cm length made 

from copper foil. They are mounted on the outer surface of the 

packed column and covered by an earthed shield electrode. The 

excitation signal is a sinusoidal wave with 14 Vp-p at 200 kHz. 

The data acquisition system digitizes the voltage signals 

sampled from the electrodes, which are then transferred to the 

computer through USB communication. The data collected by 

the proposed measurement system can be used for real-time 

imaging at a frame rate of 714 frames per second (fps). 

B. Electrical Capacitance Tomography sensor calibration 

and liquid hold-up calculation 

Recent studies have shown that either the two-end or the 

single-end calibration methods can be used for normalizing the 

measured capacitances [44]. For the two-end calibration 

method, the ECT was calibrated between the lowest and the 

highest permittivity limits. The intermediate pre-pixel 

normalized capacitance at each measured projection under the 

condition of gas-liquid flow is given by: 𝐶𝑛𝑜𝑟𝑚 = 𝐶𝑚𝑒𝑎(𝑗)−𝐶𝑙(𝑗)𝐶𝐻(𝑗)−𝐶𝑙(𝑗) , 𝑗 = 1,2, … , 𝑁 (2)  

where j is the electrode pair, N is the maximum number of 

measurements. Cmea(j) is the measured capacitance at the jth 

location. Cl(j) and CH(j) are the reference capacitances at the jth 

location when the sensing field is full of low permittivity media 

(air) and high permittivity media (water), respectively. For the 

two-end calibration method, the full calibration with high 

permittivity media is impractical in industrial applications as it 

requires the column cross-section to be filled with water. 

Therefore, the single-end calibration method is used in this 

work, in which single reference media is only needed [44]. The 

single-end normalization model is expressed as: 𝐶𝑛𝑜𝑟𝑚 = 𝐶𝑚𝑒𝑎(𝑗)𝐶𝑟𝑒𝑓(𝑗) , 𝑗 = 1,2, … , 𝑁 (3)  

 
Fig. 1.  Schematic diagram of the ECT system 
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where Cref(j) is the reference capacitance when the packed 

column is full of low permittivity media, i.e., air with packing. 

However, this reference capacitance is not constant: it is 

affected by the wetting and pre-flooding of the packing. 

Under a linear approximation, the relationship between 

permittivity distribution and the measured capacitance is 

expressed as: 𝐶𝑚𝑒𝑎(𝑗)𝐶𝑟𝑒𝑓(𝑗) ≈ ∑ 𝜀𝑚𝑒𝑎(𝑘)𝑠𝑗,𝑘(𝜀𝑚𝑒𝑎(𝑘))𝑤𝑘=1∑ 𝜀𝑟𝑒𝑓(𝑘)𝑠𝑗,𝑘(𝜀𝑟𝑒𝑓(𝑘))𝑤𝑘=1 (4)  

where k is the pixel number of the sensitive field and w is the 

maximum number of pixels. The measured and reference 

permittivity at the kth pixel is represented by 𝜀𝑚𝑒𝑎(𝑘) and 𝜀𝑟𝑒𝑓(𝑘), 
respectively. The sensitivity matrix S can be calculated using 

the finite element method (FEM) in advance. The element 𝑠𝑗,𝑘 

of the normalized sensitivity matrix denotes the mapping 

relationship between the jth projection and the kth pixel in the 

image. The ratio between 𝜀𝑚𝑒𝑎(𝑘)  and 𝜀𝑟𝑒𝑓(𝑘)  can be 

approximated as follows: 𝜀𝑚𝑒𝑎(𝑘)𝜀𝑟𝑒𝑓(𝑘) ≈ ∑ 𝐶𝑚𝑒𝑎(𝑗)𝐶𝑟𝑒𝑓(𝑗) 𝑠𝑗,𝑘(𝜀𝑚𝑒𝑎(𝑘))𝑁𝑗=1∑ 𝑠𝑗,𝑘(𝜀𝑟𝑒𝑓(𝑗))𝑁𝑗=1 (5)  

The phase permittivity variations due to phase fraction 

change are given by Ramu-Rao mixing law [45]. This 

correlation can be applied when an immiscible two-phase flow 

is homogeneous, and the low permittivity phase is continuous 

[46]. Thus, the permittivity of the two-phase mixture 𝜀𝑚𝑖𝑥𝑡𝑢𝑟𝑒 

can be obtained from the high permittivity phase in mixture 

ratio (HMR): 𝜀𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝜀𝑔𝑎𝑠 1+2𝐻𝑀𝑅1−𝐻𝑀𝑅 (6)  

where 𝜀𝑔𝑎𝑠  is the permittivity of gas phase. There are three 

media in the packed column, i.e., air, water and plastic packing. 

The relative permittivity of water is approx. 80, which is much 

larger than that of plastic packing approx. 2, that of air approx. 

1. Based on Maxwell equations [44], the liquid hold-up ℎ𝐿 in 

the homogeneous flow with the three media can be obtained by: ℎ𝐿 ≈ 𝜀𝑚𝑒𝑎(𝑘)−𝜀𝑟𝑒𝑓(𝑘)𝜀𝑚𝑒𝑎(𝑘)+2𝜀𝑟𝑒𝑓(𝑘) ≈ 𝜀𝑚𝑒𝑎(𝑘) 𝜀𝑟𝑒𝑓(𝑘)⁄ −1𝜀𝑚𝑒𝑎(𝑘) 𝜀𝑟𝑒𝑓(𝑘)⁄ +2 (7)  

The method for liquid hold-up calculation can be used across 

different packed column zones with different flow patterns. 

However, it has previously been reported that the error of ECT 

starts to increase sharply at 60% liquid hold-up [40]. We expect 

this Maxwell equation-based method to be appropriate with gas 

phase dominant flow at low gas flow rates, but that it will 

inevitably cause large errors when the packed column is 

flooding. 

Equation (8) and (9) are used for the reference liquid hold-up 

calculation. In the pre-loading zone, the local liquid hold-up ℎ𝐿,𝑙𝑜𝑐𝑎𝑙 can be derived from (8), by assuming homogeneous and 

equal velocities at packing sections. ℎ𝐿,𝑙𝑜𝑐𝑎𝑙 ≈ ℎ𝐿,𝑔𝑙𝑜𝑏𝑎𝑙 ≈ 𝑉𝑟𝑒𝑓−𝑉𝑚𝑒𝑎𝑉 (8)  

where ℎ𝐿,𝑔𝑙𝑜𝑏𝑎𝑙  is the global liquid hold-up derived from the 

level meter. 𝑉𝑟𝑒𝑓 and 𝑉𝑚𝑒𝑎 are the reference liquid volume and 

the online measured liquid volume at the water tank. 𝑉 is the 

volume of the whole packed column. 

In the loading zone, it can also be reasonably assumed that 

the liquid starts to accumulate at the bottom section only and 

there is no obvious change of liquid hold-up at the rest of the 

packing sections. The local liquid hold-up at the loading zone 

can be derived from (9). ℎ𝐿,𝑙𝑜𝑐𝑎𝑙 ≈ ℎ𝐿,𝑙𝑜𝑎𝑑𝑖𝑛𝑔 + 𝑉𝑚𝑒𝑎−𝑉𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑉𝐸𝐶𝑇 (9)  

where ℎ𝐿,𝑙𝑜𝑎𝑑𝑖𝑛𝑔 is the local liquid hold-up at the loading point. 𝑉𝑙𝑜𝑎𝑑𝑖𝑛𝑔 is the level meter measured liquid volume at the water 

tank and 𝑉𝐸𝐶𝑇  is the volume of a section of packed column 

covered by ECT. 

III. CONVOLUTIONAL NEURAL NETWORKS-AIDED ELECTRICAL 

CAPACITANCE TOMOGRAPHY FOR FLOODING PROGNOSTIC 

For more accurate and faster predictions of flooding, we 

developed a CNN-based model to map the relationship between 

ECT data and liquid hold-up directly. CNN has some distinct 

advantages in image processing: Local connections and shared 

weights enable CNN to detect useful feature patterns with less 

pre-processing than other image classification algorithms [39]. 

This means CNN can learn to optimize its internal parameters 

or kernels through automated learning [47]. This subsection 

uses the CNN-aided ECT method for local liquid hold-up 

calculation and, hence, flooding prediction. 

A. Dataset Construction 

The first step in the dataset construction is to collect the 

flooding data for all the packed column experiments. The data 

from two scenarios, i.e., ECT installed on the bottom and top 

sections, are collected. When the flow pattern of the process is 

stable, a large amount of repeated data will be collected, which 

will possibly lead to overfitting. Only the most important 

section containing information about transients in the process is 

used [48]. The second step is to identify appropriate flooding 

indicators. Based on a previous study by some of the authors, 

 
 

Fig. 2.  An example of Electrical Capacitance Image obtained from the 8-

electrode ECT sensor. 



TIM-22-00156 5 

the ECT measured capacitance can be a good indicator of 

flooding for the packed column [29]. Other variables, e.g., 

pressure drop and global liquid hold-up, measured during the 

process will be used for comparison.  

An operating liquid load of 21.17 m3/m2h is used for all test 

conditions. The operating temperature is approximately 20 oC 

at 1.01 bar. Gas flow velocities from a minimum value of 1.11 

m/s up to 6.89 m/s are tested to collect the data from the full 

range of available conditions to avoid data selection bias. The 

liquid hold-up will constantly change as the gas flow velocities 

increase incrementally at ECT measured location. The liquid 

hold-up data are collected over 30 seconds at a rate of 10 Hz. 

For each scenario, a total of 35 sets of different air flow rates 

are generated, each set with 300 samples. Therefore, a dataset 

with a total of 10,500 samples is created. We adopt the basic 

ECT measurement strategy [49] and a completed measurement 

cycle containing 28 capacitance measurements. Each sample 

contains an 8*8 Electrical Capacitance Image (ECI) which 

represents capacitance measurements and a true local liquid 

hold-up derived from level meter measurements using (8) and 

(9). Fig. 2 shows an ECI of capacitance distribution. Each ECI 

is mapped by the normalized 56 capacitance measurement with 

the rest padded with 0 [39]. For each capacitance value, the left 

number on subscript corresponds to the excitation electrode, 

while the right one corresponds to the measurement electrode. 

Capacitance measurement C1-2 is assumed to be the same as C2-

1. Therefore, the 28 capacitance measurements are doubled to 

56 capacitance measurements. Cells with the same number on 

subscript are padded with 0, e.g., C1-1, because an electrode is 

not possible to work as an excitation electrode and 

measurement electrode at the same time. The data from each 

scenario is randomly divided into a training set with 8,925 

samples and a test set with 1,575 samples. The training data set 

is used to develop the CNN-aided liquid hold-up predictors 

while the test data set is used to evaluate the predictors. 

B. Network architecture 

Then, CNN is established to predict the local liquid hold-up 

using the network structure shown in Fig. 3. The CNN contains 

four convolution layers, four average pooling layers and a fully 

connected layer. The input is the capacitance measurements 

with dimensions of 8*8*1. The real-time local liquid hold-up 

values are calculated as reference labels. ECT training data with 

liquid hold-up labels is pretreated by using the average method 

because capacitance and liquid hold-up is collected at different 

frequencies. The weight matrix size of the kernel function is 

chosen as 2*2 due to the small size of the input data. The depth 

of the convolution layer increases from 32 and ends up with 

128. Finally, a regression layer is connected to the output of the 

 
Fig. 3.  Schematic of a CNN structure for flooding prediction 

 
TABLE I: UNITS FOR MAGNETIC PROPERTIES HYPERPARAMETERS OF CNN IMPLEMENTED IN THIS WORK 

Layer Input dimension Output dimension weight matrix size Stride Padding 

Conv1 8×8×1 5×5×32 4×4 (1,1) 0 

Average pool 1 5×5×32 2×2×32 2×2 (2,2) 0 

Conv 2 2×2×32 2×2×64 2×2 (1,1) 0 

Average pool 2 2×2×64 2×2×64 2×2 (2,2) 0 

Conv 3 2×2×64 2×2×128 2×2 (1,1) 0 

Average pool 3 2×2×128 2×2×128 2×2 (2,2) 0 

Conv 4 2×2×128 2×2×128 2×2 (1,1) 0 

Average pool 4 2×2×128 2×2×128 2×2 (2,2) 0 

Fc 1 512 1 2×2 - - 
 

 
Fig. 4.  Training and validation curves. 
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fully connected layer, performing as the final output layer of the 

CNN, that is, the predicted liquid hold-up. Detailed 

hyperparameters of the CNN is shown in Table 1. 

C. Training 

We represent the input ECI as 𝑐, the output liquid hold-up as ℎ�̂�, and the network CNN-ECI as 𝑓 (·; 𝜃), where 𝜃 denotes the 

hyperparameters of CNN-ECI. 𝑐  can be mapped to ℎ�̂�  by 𝑓 (·; 𝜃): ℎ�̂� = 𝑓 (𝑐; 𝜃) (10)  ℎ�̂�  is expected to be as close as possible to the reference 

liquid hold-up ℎ𝐿. This purpose can be achieved by adjusting 𝜃 

to minimize the loss function 𝐸(𝑐, ℎ𝐿; 𝜃): 𝐸(𝑐, ℎ𝐿; 𝜃) =  𝐸‖ℎ𝐿 − 𝑓 (𝑐; 𝜃)‖22 (11)  

To avoid overfitting, an 𝐿2 regularization term is added as a 

weight to the loss function 𝐸(𝑐, ℎ𝐿; 𝜃) [50]. The weighted loss 

function with the 𝐿2  regularization term is derived from the 

equation: 𝐸𝑅(𝑐, ℎ𝐿; 𝜃) = 𝐸(𝑐, ℎ𝐿; 𝜃) + 𝜆𝛺(𝑤) (12)  

where 𝑤 is weight vector, 𝜆 is regularization coefficient. The 

regularization function 𝛺(𝑤) is given by: 𝛺(𝑤) = 12 𝑤𝑇𝑤 (13)  

Stochastic gradient descent with a momentum (SGDM) 

algorithm [50] is employed to optimize the networks in this 

work. The initial learning rate is 10-5. L2 regularization is 

employed to prevent the networks from overfitting with the 

penalty factor set as 10-5. The training and validation loss curves 

are shown in Fig. 4, where RMSE is the root mean square error 

of the predicted liquid hold-up. The number of training epochs 

depends on the degree of complexity of experiments. In this 

experiment, the number of epochs is set as 30 for adequate 

convergence. The batch size of each update is 128. The smallest 

validation loss appears at the 8th epoch. When trained with more 

epochs, the validation loss converges at a slightly higher value, 

meaning that the network is overfitted. The network is 

implemented with Deep Learning Toolbox (14.1) in Matlab 

(R2020b) on a computer with an Nvidia 1660 Ti GPU. 

IV. EXPERIMENTAL SETUP AND CAMPAIGN 

The packed column test rig shown in Fig. 5 is used to 

simulate a lab-scale counter-current absorption carbon capture 

application. The experimental rig is made of a transparent glass 

pipe to visually observe the flooding phenomenon in the 

column [51]. The packed column dimensions were internal 

diameter ri = 190 mm; external diameter re = 200 mm, height h 

= 1130 mm. The packed column has been tested using 

polypropylene structured packings Mellapak 250.Y from 

Sulzer Chemtech Ltd. Four sections of 180 mm diameter 

packing with height equal to 315.0 mm, 157.5 mm, 157.5 mm 

and 315.0 mm were equipped in the packed column from 

bottom to top. As specified by the manufacturer, the packings 

have a low volume fraction, approximately 12%, in the column. 

The column is operated in a counter-current flow 

configuration. The liquid from a water tank is supplied to the 

liquid distributor using a pump with an electronic controller and 

an OMEGA FMG71B-A-BSP magnetic inductive flow meter 

with an accuracy of ± 2.0%. Air from two Windjammer 119153 

air blowers is injected into the column filled with structured 

packing through an air distributor at the bottom of the column 

to allow gas to flow into the column uniformly. The air flow 

rate is regulated by a voltage controller and measured by a TSI 

AIRFLOW TA465 MULTIFUNCTION ANEMOMETER with 

an accuracy of ± 3.0%. For a given liquid flow rate, the gas flow 

increases incrementally from a minimum value of 1.11 m/s up 

                          
                                              (a)                                                                                    (b) 

Fig. 5.  Counter-current packed column experimental set up (a) photo and (b) schematic diagram reprinted from [36] 

Copyright © (2018) Elsevier. Reprinted with permission. 
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to 6.89 m/s. Two Cole-Parmer T-68075-10 pressure 

transducers, with a precision of ± 0.25%, are placed at the top 

and bottom of the column where the gas flow and liquid flow 

are introduced to the packed column. A WIKA FLM-S 

Magneto strictive level transmitter with an accuracy of ± 0.5 

mm is used to monitor the amount of liquid inside the water 

tank. By accounting for the liquid inventory staying in the 

piping of the system, the global liquid hold-up can be 

calculated. The measured liquid hold-up is then used to verify 

the liquid hold-up calculated by Maxwell equations. 

Before the experiments, the ECT sensor is calibrated with an 

empty pipe. In the experiments, the ECT sensor is positioned 

firstly at the bottom and then at the top of the column, as shown 

in Fig. 9 (a) and Fig. 14 (a), respectively. Pressure differential 

readings are taken using the two pressure transducers placed at 

the top and bottom of the column, respectively. The level 

transmitter placed in the water tank is used to estimate the 

global liquid hold-up within the region where the ECT sensor 

is mounted. In all experiments, the packed column is operated 

at a constant liquid flow rate (21.17 m3/m2h) whereas the gas 

flow rate is increased in the minimum increment until the 

column is flooded. The gas flow rate is changed every 3 minutes 

to ensure the flow pattern is stabilized after the change of the 

gas flow rate. Therefore, the data are acquired simultaneously 

using the ECT sensor, the pressure sensor, and the level meter 

for both unsteady-state and steady-state flows. The sampling 

frequencies of ECT is 714 fps. The sampling frequencies of 

pressure sensors, flow meters and the level meter are 10 Hz. 

V. RESULTS AND DISCUSSION 

ECT measurements are first used to reconstruct the liquid 

distributions. Then, the reconstructed distributions are used to 

compute the local liquid hold-up by using the Maxwell 

equation. The benefit of the CNN method is that it could 

directly predict the local liquid hold-up without image 

reconstruction. Reference measurements of liquid hold-up are 

available at the test rig. This allows the liquid hold-up 

calculated by the Maxwell equation and the CNN method to be 

compared with the true liquid hold-up. The effect of gas flow 

on the pressure drop and liquid hold-up can be analyzed based 

on experiment results. The ECT is installed on the top and 

bottom to measure the local loading point. Local loading points 

and local flooding points obtained in the ECT experiments are 

compared to global loading points and global flooding points 

obtained by measuring pressure drop and liquid hold-up to 

assess the CNN-aided ECT method performance. 

A. Bottom section of packed column flooding experiment 

1) Real-time measurement of local liquid hold-up 

Real-time liquid distribution of structured packing obtained 

in previous studies using an ultrafast electron beam X-ray 

tomography technology indicated that the presence of packing 

in counter-current flow resulted in different scales of liquid 

maldistribution [16, 52]. Fig. 6 shows the ECT reconstructed 

images of the liquid distributions for the given gas flow rates. 

The maximum hold-up value in the liquid hold-up map is set to 

100% for all results in order to have good contrast on pictures. 

Fig. 6 shows that the images at the bottom section clearly show 

liquid accumulation for gas superficial velocities higher than 

4.49 m/s due to the liquid loading at the bottom of the column. 

The ECT could monitor local liquid hold-up online without 

disrupting process operations and is, therefore, a preferable 

method to monitoring flooding. The local liquid hold-up values 

computed using the Maxwell equation are plotted against those 

measured using the level meter, as shown in Fig. 7. With a 

relative lower liquid hold-up (<13%), the Maxwell equation 

method predictions agreed with measurements to within 4%. 

With the increase of liquid hold-up, the Maxwell equation 

method suffers from large errors, showing an increasement in 

maximum error from 4% to 68% compared to the reference 

liquid hold-up. This level of agreement is likely not going to be 

satisfactory for packed column design. Those errors mainly 

come from the following two aspects: (a) linear simplification 

of Maxwell equation does not fit for the high liquid hold-up, 

and (b) high turbulent flow under flooding produces larger 

signal fluctuations. Therefore, a more accurate prediction 

method is desirable because adjustments of packings and 

solvents can lead to a higher value of liquid hold-up. In the 

following context, the proposed CNN-aided ECT technique is 

examined to acquire accurate liquid hold-up.  

2) Convolutional Neural Networks predicted local liquid 

hold-up  

In this subsection, the local liquid hold-up predicted by CNN 

is validated in the same way as the local liquid hold-up derived 

by the Maxwell equation, by comparing the reference local 

liquid hold-up measured with the level meter. Fig. 8 explicitly 

shows the results exhibit general linear relationships between 

the predicted liquid hold-up and the reference. By comparing 

Figs. 7 and 8, it is obvious that a significant improvement is 

obtained in the majority of cases, and such improvement 

becomes more obvious with liquid hold-up higher than 13%. 
 

Gas superficial 

velocity (m/s) 

1.11 4.43 4.49 4.62 4.75 5.06 5.26 5.34 6.90 

Reconstructed 

liquid 

distribution 

         
Local liquid 

hold-up (m3/m3) 

0.099 0.128 0.187 0.244 0.273 0.367 0.471 0.489 0.437 

Lqiuid hold-up 

map  
0               0.1              0.2             0.3             0.4             0.5             0.6             0.7             0.8              0.9              1 

Fig. 6:  Reconstructions of permittivity in a representative liquid hold-up distribution. Cross‑sections of conductivity changes at the bottom (0 mm) of the packed 
column at given gas superficial velocities. 
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The mean of difference and standard deviation of CNN 

predicted results is found to be 1% and 1.3% respectively, 

whereas for the Maxwell predicted results 5% and 13.1% 

respectively. The difference between the CNN estimates and 

the reference liquid hold-up shown in Fig. 8 (b) indicates that 

prediction results at low liquid hold-up are relatively more 

stable than results with high liquid hold-up. The divergence of 

the data from the expected linear relationship for a higher value 

of liquid hold-up (>13%) may be due to the high turbulent flow 

under flooding producing larger signal fluctuations. 

3) Determination of Flooding 

According to previous studies [53], loading points are 

established by a rapid increase in pressure drop and liquid hold-

up. Loading could be identified visually through the transparent 

glass pipe, indicated by a turbulent layer of liquid accumulating 

at the bottom of the column, as shown in Fig. 9 (d). Flooding 

could also be identified visually through the transparent glass 

pipe, indicated by the entire column is filled with liquid and the 

high turbulent flow with a large amount of bubble going 

through the packing voids, as shown in Fig. 14 (d). The flooding 

point is identified visually when the top of the column is 

flooded. All these physical phenomena observed in the 

experiments are in agreement with the literature [14]. However, 

the loading or flooding points determined by visual observation 

could cause large errors [53]. In this study, the local loading 

point and global loading point are determined when the gradient 

 

 
Fig. 8.  At the bottom section of packed column, (a) CNN predicted local 

liquid hold-up and reference local liquid hold-up and (b) their differences. 
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Fig. 7.  At the bottom section of packed column, (a) Maxwell equation 

predicted local liquid hold-up and reference local liquid hold-up and (b) their 

differences. 
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of each process variable reach a value above 10%. Results of 

global liquid hold-up and pressure drop are used to identify 

global loading point, whereas results of local liquid hold-up are 

used to identify local loading point. The earliest detection of the 

loading phenomenon will indicate the transition from pre-

loading zone to loading zone. In the pre-loading zone, mass 

transfer efficiency is independent of flow rate. In the loading 

zone, liquid will start to accumulate or “load” at the bottom of 
the bed. Partial flooding could occur at higher gas rates in this 

zone to achieve maximum mass transfer efficiency. 

4) Global loading point 

In Fig. 10, the global liquid hold-up measured by the level 

meter is plotted against the gas superficial velocity at a specific 

liquid load of 21.17 m3/m3h. As the gas superficial velocity 

increases, the global liquid hold-up shows continual growth. 

The liquid hold-up of the entire column remains relatively 

constant until the gas flow velocity reaches 5.26 m/s. Beyond 

this point, a small increment of the gas flow results in a sharp 

increase of global liquid hold-up that reaches between 33.9% 

and 36.5% of liquid hold-up at 6.89 m/s. The global loading 

point is identified here as the gradient of global liquid hold-up 

measurements reaches 10%. In this instance, the global loading 

point occurs at a gas velocity ranging from 5.26 m/s to 5.34 m/s. 

After the global loading point, the curve maintains a clearly 

rising slope, indicating rapid accumulation of liquid in the 

column. 

Typical results of pressure drop of the whole column are also 

shown with purple squares in Fig. 10. In the figure, the abscissa 

indicates the gas superficial velocity, while the secondary 

ordinate indicates the pressure drop. It can be seen that the 

general trend of the pressure drop curve is the same as the global 

liquid hold-up curve. The pressure drop of the entire column 

remains relatively constant until the gas flow reaches 5.26 m/s. 

Then, the pressure drop increases dramatically reaching values 

between 116.2 mbar/m and 129.6 mbar/m at 6.89 m/s. In this 

case, the global loading point is identified where a rapid 

increase of gradient (>10%) occurs in the pressure drop curve. 

Green solid squares are used to indicate global loading point in 

Fig. 10. However, the loading point determined according to the 

gradient of the pressure drop and the global liquid hold-up did 

not match the observations, showing discrepancies of 19% 

slower than accumulation of liquid been observed. After the 

global loading point, the pressure drop curve maintains a 

positive slope, meaning that the accumulation of liquid reduces 

the cross-section area occupied by the gas phase and therefore 

accelerates the pressure drop rise. Green hollow squares are 

used to indicate global flooding point in Fig. 10, which was 

identified visually when top of the column is flooded. 

5) Local loading point 

Local liquid hold-up predicted by Maxwell equation and 

CNN is illustrated using the red triangle and sky blue cross lines 

on Fig. 10. Results from both methods are relatively consistent 

with global liquid hold-up in the pre-loading zone. 

Interestingly, in the pre-loading zone, the local liquid hold-up 

initially decreases from 10.9% to 9.3%, forming a minimum 

value, and then increases up to 57.8%. Prior studies also 

observed a similar phenomenon. A possible explanation is that 

the increase in gas flow breaks up the falling liquid film and 

causes liquid flow reversal [24, 45, 46]. 

The local liquid hold-up predicted with CNN remains 

relatively constant for gas velocities below 4.43 m/s, then 

increases dramatically to a plateau of 56%. The same local 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9.  Photos of bottom end packed column with (a) ECT sensor, (b) no flow, 

(c) non-flooding water flow, and (d) flooding and entrainment. 

 

Fig. 10.  Dependence of Maxwell equation and CNN predicted local liquid 

hold-up, level meter measured global liquid hold-up and pressure drop on gas 

superficial velocity. 
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loading point is identified with a rapid increase in local liquid 

hold-up calculated with Maxwell equation at 4.43 m/s gas flow, 

shown as the red solid point at 4.43 m/s. The local loading 

points determined according to the gradient of the local liquid 

hold-up matched very well with the observations. However, the 

gradient of the pressure drop and the global liquid hold-up with 

respect to gas velocity has no significant changes up to gas 

velocity of 5.26 m/s. These results indicate detection of 

localized loading can be achieved by ECT, at lower gas 

velocities than with conventional methods. After the local 

loading point, it can be seen that the plateau reaches maximum 

values between 55% and 56% with CNN and remains constant 

to the end of the experiment. The local flooding point, marked 

as red hollow point, is identified here as flooding was identified 

visually above the ECT. However, the Maxwell equation 

calculated local liquid hold-up at the plateau is very unstable at 

a range between 27.7% and 57.8%. The most important sources 

of experimental uncertainty have been discussed in Section II 

B.  

To summarize this section, the occurrence of the local 

loading point can be detected using the ECT at the bottom of 

the column. The increase in liquid accumulation in the loading 

zone corresponds to an increase in high relative permittivity 

material (water), which is detected by the ECT. The direct 

comparison with pressure drop and global liquid hold-up with 

level meter measurement shows the validity of using ECT for 

the detection of liquid loading on packing. 

B. Top section of packed column flooding experiment 

1) Real-time measurement of local liquid hold-up 

Similar to the experiments at the bottom section, Fig. 11 

shows the image reconstruction of liquid distribution for the 

selected gas flow rates at the top section of the packed column. 

Images at the top section show liquid accumulation from 6.74 

m/s gas superficial velocity due to the liquid loading from the 

base upwards. The results suggest that the distribution of liquid 

hold-up can be reconstructed, but the structural detail, such as 

small-scale maldistribution due to packing channels, cannot be 

observed in the images. 

The liquid hold-up values calculated using the Maxwell 

equation, for gas flow rates from non-flooding to flooding, are 

plotted against those measured using the level meter, as shown 

in Fig. 12. Before the red doted loading line, the measured 

liquid hold-up agreed with the estimations of liquid hold-up to 

within 2%. Fig. 12 (b) shows that Maxwell equation estimations 

have the smallest relative error on samples before the red doted  

loading line, at about 10%, but the largest relative error on 

relative high liquid hold-up, at approximately 39%. This is a 

clear drawback of using the Maxwell equation to predict local 

liquid hold-up as the predicted results with large error after 

flooding onset occurs at the top section. The larger the liquid 

hold-up value is, the more significant deviation between the two 

measurements. Possible reasons for errors have been discussed 

in section V A (1). 

2) Convolutional Neural Networks predicted liquid hold-up 

for flooding in packed column 

The CNN predicted local liquid hold-up results are shown in 

Fig. 13. The results exhibit generally linear relationships 

between the CNN estimated liquid hold-up and reference liquid 

hold-up. The difference between CNN estimates and reference 

liquid hold-up in Fig. 13 (b) shows that lower liquid hold-up 

(<10%) are relatively more stable than higher liquid hold-up 

(>10%). By comparing Figs. 12 and 13, it is evident that a 

significant improvement is obtained in most cases, and such 

improvement becomes more obvious for the higher liquid hold-

up (>10%). The mean of difference and standard deviation of 

CNN predicted results at the top section data sets was found to 

be 0.3% and 1.3%, whereas for the Maxwell predicted results 

1% and 2.4%, respectively. These results indicate that the CNN 

model better predicts local liquid hold-up in the packed column, 

especially at high liquid hold-up. 

3) Determination of flooding point 

Similar to the experiments at the bottom section of the 

packed column, Fig. 15 show a comparison between the process 

variables such as pressure drop and liquid hold-up used for 

flooding prognosis. According to Billet and Schulets [6], the 

phenomenon of flooding includes liquid accumulation at the top 

of the bed. Our study uses experimental data sampled from the 

top section of the packed column to determine the local loading 

point as an early warning of flooding point, as shown in Fig. 15. 

Flooding can be identified visually through the transparent 

glass pipe because of a turbulent layer of liquid upon the top of 

the column. Therefore, the experiment is stopped when the 

flooding and entrainment are spotted at the top of the column, 

as shown in Fig. 14 (d). 

Global liquid hold-up and global pressure drop are plotted for 

all the 35 air flow rates. It can be seen from Fig. 15 the overall 

trends of the pressure drop curve and global liquid hold-up 

curve are similar to those at the bottom section, under the same 

experimental conditions. Green solid square and are used to 

indicate global loading point. The global loading point is 

identified here as the gradient of global liquid hold-up and 

Gas superficial 

velocity (m/s) 

1.11 5.59 5.83 6.17 6.27 6.44 6.59 6.74 6.89 

Reconstructed 

liquid 

distribution 

         
Local liquid 

hold-up (m3/m3) 

0.099 0.128 0.187 0.244 0.273 0.367 0.471 0.489 0.437 

Lqiuid hold-up 

map  
0               0.1              0.2             0.3             0.4             0.5             0.6             0.7             0.8              0.9              1 

Fig. 11.  Reconstructions of permittivity in a representative liquid hold-up distribution. Cross‑sections of conductivity changes at the bottom (940 mm) of the 

packed column at given gas superficial velocities. 
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pressure drop measurements has achieved a value of 10%. 

However, the gradient of pressure drop increases more rapidly 

than that at the bottom section. It is most likely that the pre-

flooding causes this phenomenon by improving packing 

wetting degree. 

As shown in Fig. 15, the Maxwell equation calculated local 

liquid hold-up and the CNN estimations range from 8.4% to 

37.1% during the flooding experiment. In the pre-loading zone, 

a small change of the gradient of local liquid hold-up is 

observed at the top section of the packed column. Before the 

local loading point (marked as the red solid circle), no 

temporary accumulation of liquid at the top of the bed is 

observed. More importantly, the gas velocity does not affect the 

local liquid hold-up until the local loading point at the top is 

achieved. It can be concluded that the local liquid hold-up is 

independent of air flow rate, leading to low interfacial area and 

gas-liquid interactions at the top section [6]. The two curves 

show a very similar tendency, with a sharp rise observed when 

the flooding front has advanced up. The Maxwell equation 

predicted local liquid hold-up remains relatively constant until 

6.59 m/s gas flow, then increases to a peak at approximately 

6.89 m/s gas flow. In addition, the CNN predicted local liquid 

hold-up is relatively consistent with the Maxwell equation 

predicted ones and global liquid hold-up in the pre-flooding 

zone but increases much faster in the local flooding zone. The 

local liquid hold up may be underestimated using the Maxwell 

equation as the maximum liquid hold-up of 30.4% is much 

smaller than the global liquid hold-up, i.e., 37% at the same gas 

flow rate. In contrast, CNN estimations agree well with the 

global liquid hold-up close to the flooding point. The local 

 

Fig. 12.  At the top section of packed column, (a) Maxwell equation predicted 

local liquid hold-up and reference local liquid hold-up and (b) their 

differences. 
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Fig. 13.  At the top section of packed column (a) CNN predicted local liquid 

hold-up and reference local liquid hold-up and (b) their differences. 
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liquid hold-up profile demonstrates a rapid increase of gradient 

in Fig. 15 at around 37%, which signifies that the local loading 

point is found at approximately 6.59 m/s flow rate. Followed by 

a small increase of gas velocity, excessive entrainment at top of 

the column was observed at the experiment, which indicated 

gas velocity has also achieved global flooding point (marked as 

green hollow squares). Therefore, it can be concluded that the 

local liquid hold-up at the top section of the packed column can 

be used as the early warning of the flooding. 

VI. CONCLUSION 

This work presents the first attempt for Convolutional Neural 

Network-aided flooding prognostic in a packed column using 

Electrical Capacitance Tomography, with measurements of 

pressure drop, global liquid hold-up and Electrical Capacitance 

Tomography data. These process parameters were analysed and 

compared for flooding prognostic. The comparison among 

varying process variables shows that the local liquid hold-up 

estimated by Electrical Capacitance Tomography gives the 

earliest detection of loading point and early warning of 

flooding. The Maxwell method yields a mean of difference 5%, 

whilst the standard deviation of the mean of difference is 

13.1%, implying the agreement is not consistent across all 

measurements. The results confirm that the estimates of local 

liquid hold-up are significantly affected by flooding. In 

contrast, a well-trained Convolutional Neural Network with a 

relatively large data set can predict the local liquid hold-up 

within 1% mean of difference and 1.3% standard deviation. The 

results under flooding conditions have verified the performance 

of the Convolutional Neural Network with the largest relative 

error of 8.5%.  

These findings confirm that a local measurement of liquid 

hold-up tends to be the earliest prognostic of flooding than a 

global pressure drop or liquid hold-up. Electrical Capacitance 

Tomography with Convolutional Neural Network accurately 

predicts local liquid hold-up enabling the detection of loading 

point at the bottom of the packed column and the detection of 

the flooding point at the top of the packed column. It is therefore 

highly suitable for accurately predicting the occurrence of 

flooding and may be deployed in packed column operation to 

allow for the closer operation to the flooding point and reduce 

column size and capital costs. 
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