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Likelihood empirical results suggest that no significant spatial interaction was evident in
earlier seasons (2001–2013), but modest spatial spillover was in play from 2013 to 2016.
In addition, cross-quality spillover exists only locally in the same cities. We use numerical
simulations to examine the potential impact of such spillover on attendance distribution
and then competitive balance; spillover implies an interaction between the two exclusive
markets that are the principal sources of competitive imbalance. Our numerical simulations
suggest that spatial spillover may create attendance variations across member teams. The
final outcome depends on the spillover sign, the network structure, and the market size
distribution. Combining the empirical results with numerical simulations, we find that a
recent, slightly positive spillover may modestly reduce attendance disparity.
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Introduction

Empirical studies on fans’ demand for sporting matches have tested the uncertainty
of outcome hypothesis, and evaluated inelastic pricing, fan loyalty, and stadium
effects (see the review by Krautmann and Hadley (2006), Johnson and Fort (2022),
Schreyer and Ansari (2022)). Recently, the research topics have diversified some-
what. Several studies have analysed the competition for fan demand among teams
within and across leagues (see for example Winfree et al. (2004), Winfree and
Fort (2008), Mills et al. (2015), Mills et al. (2016) and Mondello et al. (2017)).
Mills et al. (2016) considered the importance of among-firm competition based on
the product quality. They explored the television viewership of North American
major league baseball (MLB), particularly teams in shared markets focusing on
cross-quality elasticity. The empirical evidence suggests that teams within shared
markets are complementary in terms of high quality, but substitutable in terms of
large disparities in quality. Winfree et al. (2004) linked space to MLB attendance,
and found that the neighbour teams influence the fans’ demand for a local team.
For example, incumbent team attendance fell when a new (expanded) team moved
into the area of the existing team. Such empirical results imply that fans’ demand
may be affected by the neighbours’ effects. Since information and communication
technologies, and transportation, have developed rapidly, fans may consider not
only the home team characteristics but also those of neighbouring or visiting teams
when formulating their demands for home matches.

Here, we use spatial panel data models to study the neighbour and spatial depen-
dence of attendance. Markets that are mutually proximate may share historical and
economic ties. Consumer preference tends to be spatially correlated (e.g. Müller and
Haase, 2015). Spatial panel data models have been developed to address endogenous
spatial spillover or network effects (see Yu et al., 2008). The fact that spatial econo-
metric models capture co-dependency across a known network has been invaluable
to economists and regional scientists (Baltagi, 2005). Henrickson (2012) applied
spatial models on four major team sports of the North American Leagues (NALs),
and found that the spatial spillover in terms of ticket price (a positive relationship
between local ticket prices and those of neighbouring games) was significant for all
four NALs. However, no prior empirical study had used spatial models to evaluate
the attendance data.

In this paper, we apply the spatial panel-data models to analyse the spatial atten-
dance spillover of a professional sports league. As Italian Football League, Serie A,
has relatively low sold-out matches than other European football leagues, we anal-
ysed Serie A from 2001/2002 to 2016/2017. We found that no significant spatial
interaction was evident in earlier seasons (2001–2013), but modest spatial spillover
was in play from 2013 to 2016. These findings are robust across the three different
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weight matrices employed, the inverse distance-based, the dynasty-based, and the
shared market-based spatial weight matrices.

Next, we aim to examine the potentially important issue of whether spa-
tial attendance spillover enhances or worsens attendance disparity and eventually
the competitive imbalance (CIB). Professional sports teams generally enjoy local
monopolies or oligopolies given their exclusive territories; the resulting revenue
disparities are the principal sources of CIB. Spatial attendance spillover implies
an interaction between two exclusive markets, suggesting that the mere existence
of, or changes in, such spillover may affect attendance disparity. We find that the
final outcome depends on the direction of spillover, the network structure, and the
territory market size. Combining these numerical simulations with the empirical
results, we may deduce that a recent, slightly positive spillover, estimated at about
0.1, may modestly reduce variations in attendance across member teams by about
10% of standard deviation. This is the first study to conduct numerical simulations
and investigate the effect of spatial spillover on attendance disparity.

The paper is structured as follows: The second section presents the econometric
models used. The third section describes the sample data and specifies the attendance
regression employed. The fourth section presents the principal empirical results. The
fifth section presents the numerical simulations. Finally, the sixth section offers
conclusions and mentions our planned future work.

Spatial Panel-Data Models

Consider the following spatial autoregressive (SAR) panel-data model:

yi j t = ρy∗i j t + x ′i j tβ + ui j t , ui j t = αi + γ j + λt + εi j t , (1)

for i, j = 1, . . . , N , j 6= i and t = 1, . . . , T , where yi j t is the scalar-dependent
variable given by the logged daily game attendance of a home team i against a
visiting team j in season t . The xi j t = (x1

i j t , . . . , x K
i j t)
′ is a K×1 vector of exogenous

regressors with a K × 1 vector of parameters, β = (β1, . . . , βK )
′. The SAR model

captures spatial correlation within a system via the dependence imposed on the
spatially-dependent variable y∗i j t defined as

y∗i j t ≡

N∑
j=1

wi j yi j t = wi yi t with yi t
N×1
= (yi1 t , . . . , yi N t)

′,

where wi (wi1, . . . , wi N ) denotes a 1× N vector of (non-stochastic) predetermined
spatial weights with wi i = 0 to prevent self-influence. The N × N spatial weight
matrix, W , is row-standardized (the row sum is one). As y∗i j t is correlated with εi j t ,
the parameter ρis endogenous. We control for the home team-specific effect αi ,
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the visiting team-specific effect γ j , and season effects λt ; all are unobserved but
possibly correlated with y∗i j t and xi j t .

The spatial Durbin model (SDM) allows the explanatory variables of one unit
to impact the dependent variable of another unit both directly and indirectly via
their spatial impacts on the dependent variable. For example, an improvement in
school quality in one area directly improves house prices in neighbouring areas
whose residents may access the newly improved schools. Also, an indirect effect
is in play; rising house prices in one area increase prices in neighbouring areas.
Hence, we also consider the SDM:

yi j t = ρy∗i j t + x ′i j tβ + x∗i j t
′δ + ui j t , ui j t = αi + γ j + λt + εi j t , (2)

where

x∗i j t
K×1

= (x1∗
i j t , . . . , x K∗

i j t )
′
≡

 N∑
j=1

wi j x1
i j t , . . . ,

N∑
j=1

wi j x K
i j t

′ .
By applying the appropriate three-way within-transformation to Eqs. (1) and (2),
we can remove all of αi , γ j , and λt . Next, to deal with the endogeneity of the spatial
lagged variable y∗i j t , we use the quasi-maximum likelihood (QML) technique to
obtain consistent estimators of ρ and β.

The Data and the Attendance Regression Specifications

We collect attendance and performance data for Serie A league from the ‘trans-
fermarkt’ website (www.transfermarkt.co.uk) and betting odds from the Football-
Data website (http://www.football-data.co.uk).Although the latter website contains
a great deal of European football league (EFL) betting data, we use the fixed decimal
betting odds provided by William Hill only because they include historical data for
Serie A. As our data access was limited, we collect information from 2001/2002
to 2016/2017 (16 seasons). We retrieve information on 5,544 matches among 42
teams in Serie A first division. The summary of the sample is revealed in Table 1.
As Serie A is characterized by relatively few sold-out matches (unlike other major
European football leagues), censoring is not a serious problem in this data set.
Because of relegation and promotion, several (i, j) pairs may be observed only
once or a few times. We then construct balanced panel data; there was a possibil-
ity that we would lose a great deal of information because only a few teams may
have remained in the first division for all 16 seasons. To mitigate this concern, we
construct five sets of balanced panel data for 2001/02–2003/04, 2004/05–2006/07,
2007/08–2009/10, 2010/11–2012/13, and 2013/14–2016/17 (each sample covers
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Table 1. Descriptive statistics.

Variable Mean Std. Dev. Min Max

Attendance 23,663 15,203 100.0 81,955
GU 0.141 0.097 0.000 0.500
CLQU 1.912 4.597 0.000 61.000
RU 1.527 4.321 0.000 85.000
HGOAL 1.283 0.456 0.000 4.000
HWIN 0.497 0.174 0.000 1.000
HOLIDAY 0.872 0.334 0.000 1.000
NIGHT 0.289 0.453 0.000 1.000

Note: The total number of observations was 5,544.

three or four seasons).1 There have been a few literatures analysing stadium atten-
dance demand for Serie A (Bond and Addesa, 2020; Jang and Lee, 2021) and to
the best of our knowledge, this is the first study that explore attendance spillover
effects in Serie A.

The dependent variable is the logged attendance at individual matches. We
include outcome uncertainties and other control variables as regressors. We consider
three different types of match uncertainty, denoted game uncertainty (GU), Cham-
pions League qualification uncertainty (CLU), and relegation uncertainty (RU). GU
is the absolute difference in win probability between the home and visiting teams.
This is identical to the absolute distance of the probability of a home team win from
0.5 given by

GUi j t = |pi j t − 0.5|, (3)

where pi j t is the probability that a home team i wins against a visiting team j in
season t (see Berkowitz et al. (2011)) for various measures of GU). We use betting
odds to obtain an estimate of pi j t . We convert the odds to implied probabilities.2 As
a robustness check, we also include pi j t and its square instead of GU. In all seasons,
Serie A teams compete not only for a league championship but also to qualify for an
international Champions League (CL). Thus, the fan demand for individual matches
may be influenced by the CL. In this context, any uncertainty in terms of eventual
CL qualification (CLU) may be an important demand determinant, especially if a
team ranks fourth near at the end of a season (and is thus almost out of contention for
the CL). Fans pay more attention to team performance if the team is in a tight race
for CL qualification. We measure CLU as the absolute difference in points (pointi t )

1Clubs not survived consecutive three or four years were dropped for balanced data.
2We calculated implied probability as pi = (1/di )/(1/d1 + 1/d2 + 1/d3), here, (d1, d2, d3) and
(p1, p2, p3) are the odds and probabilities of a home win, a home loss, and a draw, respectively.
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gained by a home team in a match and the points (pointCt ) gained by the lowest-
ranked CL-qualified teams on each game day: |pointit − pointCt|. As the top three
Serie A teams proceeded to the CL in 2012/2013, pointCt represents the points of
the third-ranked team prior to a game. Thus, CLUi j t is absolute difference between
team i and third-ranked team in 2012/2013 season. CLUi j t represents the status of
team i in terms of CL qualification prior to the game between home team i and
visiting team j in season t . As discussed by Jang and Lee (2021), CLUi j t may be
local in the sense that it is relevant only to the top teams that may possibly advance
to the CL. We construct a dummy variable: CL contention (CLDUM), which is 1
if a team is ranked higher than eighth (seventh from the 2011/2012 season), and
otherwise 0. Thus, we construct CLQUi j t = |pointi t − pointCt | · CLDUMi t .

Relegation/promotion is another distinctive characteristic of open leagues such
as Serie A. Although fans of weaker teams may not expect those teams to win the
league championship or qualify for the CL, they are concerned that their team remain
in the first division; this is an important demand determinant. We measure relegation
uncertainty (RU) similarly to CLQU. We calculate the absolute difference between
the points of a home team and the points (pointRt ) of the highest-ranked team of the
relegated contenders: |pointi t − pointRt |. As the bottom three teams in Serie A are
relegated to Serie B, pointRt represents the points of the 18th-ranked team before
the match. RU is also local, being relevant to the fan demand of the bottom teams.
RDUM3 is 1 if a team is ranked lower than 17th and 0 otherwise. RUi j t represents the
status of team i (in terms of RU) before the game between the home team i and the
visiting team j in season t (RUi j t = |pointi t − pointRt | ·RDUMi t). We also include
other control variables used in previous studies, such as the winning record and
the goals per game. The team-specific winning percentage (HWIN) captures home
team quality whereas goals per game for home teams (HGOAL) measure offensive
quality. We also control holiday and night matches. To control for team-specific
effects such as stadium capacity and the local population, we allow the existence
of unobserved individual team and time effects. Specific descriptions for variables
used in spatial regression are presented in Table 1.

Empirical Results

We first test for cross-sectional dependence (CSD) using the residuals from fixed-
effects regression; we apply the CD statistic of Pesaran (2004, 2015). The test results
(Table 2) reveal that the null hypothesis of no or weak CSD is strongly rejected
except for the 2007–2009 seasons, suggesting that CSD is pervasive in terms of

3Although the dummies CLDUM and RDUM are ad-hoc, Jang and Lee (2021) found that estimations
derived using these dummies were qualitatively robust even when the dummies differed somewhat.
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Table 2. Pesaran’s test for cross-sectional dependence.

Period Teams Test Statistics p-value

2001–2003 11 2.202 0.028
2004–2006 15 2.240 0.025
2007–2009 15 −0.640 0.522
2010–2012 15 3.249 0.001
2013–2016 14 1.937 0.053

individual Serie A team attendance. We use three different spatial weight matrices
to capture potentially complex spatial interactions. The first is the distance between
the two teams. This popular measure4 assumes that the strengths of neighbouring
effects depend on the inverse distance. We use row-sum normalization (sum of
one). Therefore, the weight decreases as the distance between the two clubs is far.
Figure 1 shows the locations of Serie A teams. For example, the distance-based
weighting implies that Inter-Milan (located in the North) lacks any strong ties with
Bari (located in the South). If a spatial lag parameter is positive, attendance between
the two clubs is positively correlated and the correlation increases as the distance
between the two clubs is closer.

Next, we select a “dynasty” of the top four teams: Juventus, Milan, Inter, and
Roma. Table 3 lists the number of seasons for which these teams were in the top two
from 1930 to 1999. This selection may be ad-hoc, but we find that the estimations
are qualitatively similar when we choose different dynasties. Dynasty weight matrix
express connectivity between two teams. The element of dynasty weight matrix is
set as wi j = 1 if j club belongs to dynasty clubs. This weight matrix assumed that
matches between two clubs are connected to matches of dynasty clubs in a certain
round. If ρ shows a negative sign, it indicates that attendance of a club is affected
by the attendance of a dynasty club negatively.

The third sets of weights, shared market weight matrix, also indicates spatial
connectivity of the clubs. We assigned neighbour effects to only multiple teams
located within the same cities. Table 4 shows that five cities (Genoa, Milan, Rome,
Turin, and Verona) host two teams each. The element of shared market weight
matrix is defined as wi j = 1 if i 6= j , and i and j clubs are located in the same city.
This weight matrix considered that only clubs within the same city affect each other.
Positive spatial autoregression coefficient presents that attendance of two clubs in
the same city is positively related.

4Blonigen et al. (2007) used distance between two countries as a weight matrix to find out spatial
interdependence of FDI activity. You and Lv (2018) also used distance between two countries as a
weight matrix and they analysed the neighbouring effects in CO2 emission.
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Fig. 1. Locations of individual teams in Italian Football League (Seria A).

Table 3. The number of seasons ranked at Top 2 over the period 1930–1999.

Teams Freq. Teams Freq.

Juventus 51 Torino 9
Milan 27 Bologna 8
Inter 23 Fiorentina 7
Roma 17 Ambrosiana-Inter 6
Napoli 11 Lazio 4
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Table 4. Teams sharing a city.

City Teams Teams

Verona Chievo Verona Hellas Verona
Milan Inter Milan AC Milan
Rome Roma Lazio
Turin Jeventus Torino
Genoa Genoa Sampdoria

In Tables 5–7, we present the estimations of the non-spatial fixed-effect model
(FEM), and the SAR and SDM with three different weights.5 In all estimations,
we control for unobserved home team, visiting team, and time effects, estimated
using the QML method. Table 5 presents the estimations derived using the distance-
based spatial weight matrix. As a benchmark comparison, we also include the FEM
estimations, which are both statistically significant and consistent with a priori
expectations. The impacts of GU on attendance are significant and positive in the
earlier periods, but the magnitude thereof declines from 0.59 in 2001/02–2003/04 to
0.21 in 2007/08–2009/10 and becomes insignificant from 2010 onwards.6 CLQU is
not a significant determinant of attendance in any sub-period; RU became significant
only recently (2013/14–2016/17). HWIN boosts attendance significantly in almost
all periods except 2001/02–2003/04.

We now turn to the estimations of the SAR and SDM; we use distance-based
weights to construct spatial lagged variables and regressors. The SAR coefficients
are insignificant and negligible in most sub-periods, except for 2013–2016, when
the spillover impacts were modest (0.11 and 0.10, respectively). However, the SDM
coefficients are insignificant and negligible in all seasons. Thus, the impacts of GU,
CLQU, RU, and HWIN are similar to those estimated by the FEM.

Tables 6 and 7 present the estimations derived using the dynasty-based and shared
market-based spatial weight matrices. Both sets of results are qualitatively and
quantitatively similar to those of Table 5. In particular, the SAR coefficients became
significant and positive only recently (2013–2016), with modest spillover impacts
of 0.09–0.11. Overall, spatial attendance spillover was historically insignificant in
Serie A, becoming significant only recently. This may reflect strong fan loyalty.
However, there is a noticeable finding in Table 7. The Durbin model is significant

5To save space, we do not report our estimates of other control variables. However, the signs of their
impacts are generally consistent with our a priori expectations.
6This result is consistent with Johnson and Fort (2022). They reviewed empirical works analyzing
uncertainty outcome hypothesis (UOH) and found that most empirical works with soccer leagues
have not supported UOH.
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only in Table 7 and this implies that the performance of individual teams influences
their neighbours’ attendance directly. Comparing the weight matrices that are based
on shared market in Table 7 but are based on distance in Table 5 and dynasty in
Table 6, it may be that the Durbin spillover is more localized and it may occur only
statistically significantly between teams in the same city. Our Durbin coefficient is
related to cross-quality elasticity in shared markets that was analysed with MLB
television viewership by Mills et al. (2016). Its estimate is negative and then it
implies substitutable in terms of performance quality.

Next, we present the spatial estimations in terms of direct, indirect, and total
effects (see LeSage and Pace, 2014). We rewrite Eqs. (1) and (2) as their spatial
system representations:

yt = ρW yt + X tβ + ut , (4)

yt = ρW yt + X tβ +W X tδ + ut , (5)

where W = {wi j }
N
i, j=1 is the N × N spatial weight matrix. Then, Eqs. (4) and (5)

can be expressed as follows:

yt = (IN − ρW )−1(X tβ + ut)

=

K∑
k=1

(IN − ρW )−1βk xkt + (IN − ρW )−1ut , (6)

yt = (IN − ρW )−1(X tβ +W X tδ + ut)

=

K∑
k=1

(IN − ρW )−1βk xkt + (IN − ρW )−1Wδk xkt + (IN − ρW )−1ut . (7)

The impacts of a change in the kth time-varying regressor are given by the N × N
matrices of the partial derivatives:

∂yt

∂xkt
= (IN − ρW )−1βk, k = 1, . . . , K , (8)

∂yt

∂xkt
= {(IN − ρW )−1βk + (IN − ρW )−1Wδk}, k = 1, . . . , K . (9)

Note that the diagonal elements of Eqs. (8) and (9) are direct impacts that differ
across the cross-sectional units; the off-diagonal terms (indirect impacts) are not
zero, and the matrices are not symmetric. We thus have N direct effects and N (N−1)
indirect effects. LeSage and Pace (2014) suggest reporting only three summary
measures: The average of the N diagonal elements (a measure of the direct effect);
the average of the N (N−1) off-diagonal elements (the average indirect effect); and
the average total effect (the sum of the direct and indirect effects). In spatial models,
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the coefficient of an explanatory variable cannot be interpreted as a marginal effect
that is also a function of the spatial parameter. A team in a spatial model is thus
simultaneously exporting spillovers to and importing spillovers from its neighbours.
The indirect effects measure the magnitude of the spillovers that are simultaneously
imported and exported. An indirect effect can be interpreted as the spillover exported
by a team, and is the average change in the dependent variable of all other teams,
following a change in the independent variable of one particular team. This may
be interpreted as the magnitude of spillover imported by a unit, thus the average
change in the dependent variable for a particular team follows the changes in the
independent variables of all other teams.

Tables 8–10 report the direct, indirect, and total effects of regressors on atten-
dance for the 2013–2016 seasons, but only when the SAR coefficient is significant.
From Table 8 (derived using the inverse distance-based spatial weight matrix), we
find that both the direct and indirect effects are always positive, but the former is
substantially larger than the latter. Thus, the estimated total effects are slightly larger
than those reported in Table 5. Further, the impacts of HWIN and RU are statisti-
cally significant. An increase in the HWIN of a team directly improves attendance;
fans are drawn to high-quality home teams. In addition, the outward spillover effect

Table 8. Marginal effects in 2013–2016: SAR with distance weight.

Direct Indirect Total

Coeff. t-stat Coeff. t-stat Coeff. t-stat

GU 0.066 0.640 0.008 0.590 0.074 0.640
CLQU 0.002 1.160 0.000 1.000 0.003 1.160
RU 0.008 2.630 0.001 1.480 0.009 2.610
HGOAL 0.016 0.620 0.002 0.590 0.018 0.620
HWIN 0.295 3.660 0.035 1.570 0.330 3.560

Table 9. Marginal effects in 2013–2016: SAR with dynasty weight.

Direct Indirect Total

Coeff. t-stat Coeff. t-stat Coeff. t-stat

GU 0.060 0.580 0.006 0.550 0.066 0.580
CLQU 0.002 1.140 0.000 0.960 0.002 1.140
RU 0.008 2.660 0.001 1.350 0.009 2.640
HGOAL 0.014 0.540 0.001 0.510 0.015 0.540
HWIN 0.299 3.710 0.029 1.410 0.328 3.590
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Table 10. Marginal effects in 2013–2016: SAR and SDM with shared market weight.

Direct Indirect Total

Coeff. t-stat Coeff. t-stat Coeff. t-stat

SAR

GU 0.057 0.550 0.003 0.550 0.061 0.550
CLQU 0.002 1.110 0.000 1.070 0.002 1.110
RU 0.008 2.720 0.000 2.170 0.009 2.720
HGOAL 0.021 0.830 0.001 0.800 0.023 0.830
HWIN 0.287 3.570 0.017 2.560 0.304 3.560

SDM

GU 0.060 0.580 0.004 0.570 0.064 0.580
CLQU 0.002 1.050 0.000 1.030 0.002 1.050
RU 0.008 2.630 0.001 2.170 0.009 2.630
HGOAL 0.024 0.920 −0.037 −2.420 −0.013 −0.420
HWIN 0.259 3.200 0.016 2.500 0.275 3.200

on the attendances of other teams is accompanied by an inward spillover effect.
Hence, the effect of HWIN (home team quality) on attendance is greater than any
neighbour effect. The estimation results of Table 9 (derived using the dynasty-based
weight matrices) are qualitatively similar to those reported above. However, those
of Table 10 (derived using shared market-based weight matrices) are somewhat dif-
ferent. The negative and significant Durbin estimate of HGOAL in Table 7 results
in lesser effect of performance on attendance. The indirect effect of HWIN on atten-
dance is only 0.013 in Table 10 while it is 0.034 in Tables 8 or 9. One unit increase
in the win of a team draws more of its attendance and there is a positive outward
spillover effect which comes back to increase its attendance because of positive
inward spillover effect. This is common in Tables 8–10. However, the significant
Durbin estimate leads to another spillover result. One unit increase in goals of a
team draws more of its attendance and simultaneously it causes to decrease its
neighbour’s attendance in a shared market. The decrease comes back to decrease
its attendance because of inward spillover effect.

Numerical Analyses of the Effect of Spatial Spillover
on Competitive Balance

The spatial spillover effect may influence the distributions of attendance. Under the
profit-maximization hypothesis, the principal source of competitive balance (CB)
is the disparity of marginal revenue across member teams attributable to territorial
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market disparity.7 Given a certain level of such disparity, the emergence of spa-
tial spillover may change the attendance distribution and thus the distribution of
marginal revenue. We address the important issue of whether spatial attendance
spillover improves or worsens attendance disparity and eventually, CB. The final
outcome depends on the sign of the SAR coefficient, the network structure (proxied
by the spatial weights), and the distribution of territorial market sizes. To investi-
gate the effect of spatial spillover on attendance disparity, we perform a numerical
simulation comparing the non-spatial model and the SAR as follows:

The non-spatial model: yi = α + ui . (10)

The spatial model (SAR): yi = ρy∗i j + α + ui → y = (IN − ρW )−1(α + u).

(11)

For simplicity, we do not include any regressor other than a constant term. We then
compare attendance variations with and without spatial dependence using Eqs. (10)
and (11). We set α = 20,000 and generate a ui that is normally distributed with a
zero mean and a standard deviation of 10,000. We set the range of the SAR parameter
to ρ = (−0.5,−0.3,−0.1, 0.1, 0.3, 0.5) and the numbers of teams, N to 10 or 20.
The number of replications is 100,000.

We consider different network structures. Cross-sectional dependence is usually
characterized by a physical measure such as distance or contiguity. The first weight
matrix (W1) assumes that all member teams are assigned an equal weight, in which
case, we have a network that might be considered complete. This spatial structure
is not entirely practical because it assumes that every combination of two paired
teams is associated with an identical spillover. For example, the spillover effect of
Manchester United on Manchester City (located in the same city) is assumed to be
the same as that imposed on Southampton (in the far south), but also all other teams
of the English Premiere League. The second weight matrix (W2) insists that each
team has only two neighbours in either direction and no ties with any other team.
Thus, each team has at least two neighbours and/or a maximum of four neighbours.
The third weight matrix (W3) is similar to W2, but assumes that a team has only
one neighbour in either direction. Assuming that space is horizontal (the earth, for
our purposes, is flat), a team in either the far east or far west has only one border
(one neighbour) and all other teams two borders (two neighbours). Therefore, W2
and W3 impose arbitrary cut-offs of neighbour numbers (in the sense that such
numbers correlate with attendances). Such cutoffs are likely to be based on borders
within shared markets. The fourth weight matrix (W4) is based on distance; we do
not impose any cutoff. Again assuming that space is horizontal, the first and last

7See Fort and Quirk (1995).
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teams are located in the far west and far east, respectively, and the other teams in the
middle. The nearest-neighbour distances are assumed to be equal (for simplicity).
The elements of W4 depend on the inverse distance between any two teams; thus,
the nearest neighbour has the largest weight. In summary, W1 and W4 assume that
all teams are neighbours, but the extent of cross-sectional dependence between any
pair of teams differs in W4 but is identical in W1.

We write the first weight matrix (W1) in Eq. (12) below. We set all diag-
onal elements to zero, and assign the same values to all other elements after
row-normalization for N = 10. Thus, wi j = 1/(N − 1) = 1/9 for all i 6= j

W1 =


0 0.111 0.111 · · · · · · 0.111

0.111 0 0.111 · · · · · · 0.111
...

0.111 0.111 · · · · · · 0.111 0

. (12)

The first row of the spatial weight matrix represents the spatial structure of team 1.
Next, W2 is given in Eq. (13), in which team 1 has only two neighbours (teams 2
and 3), but team 3 has four neighbours (teams 1, 2, 4, and 5). Similarly, W3 is given
in Eq. (14).

W2 =


0 0.5 0.5 0 · · · · · · 0

0.33 0 0.33 0.33 0 · · · · · · 0
0.25 0.25 0 0.25 0.25 0 · · · 0
...

0 0 · · · · · · 0 0.5 0.5 0

, (13)

W3 =


0 1 0 · · · · · · 0

0.5 0 0.5 0 · · · · · · 0
0 0.5 0 0.5 0 · · · 0
...

0 0 · · · · · · 0 1 0

. (14)

In Eq. (15), we construct W4 in terms of (inverse) distances. The first row measures
the spatial weights for team 1, from which we find that w12 = 0.353 is the largest
because team 2 is the nearest neighbour, whereas w110 = 0.039 is the smallest
because team 10 is the furthest neighbour.

W4 =


0 0.353 0.177 0.118 · · · 0.039

0.270 0 0.270 0.134 · · · 0.034
0.122 0.244 0 0.244 · · · 0.035
...

0.039 0.044 · · · · · · 0.353 0

. (15)
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Table 11. Comparison of standard deviations of attendance in non-spatial and spatial models.

ρ −0.5 −0.3 −0.1 0.1 0.3 0.5

N = 10

w1 1.059∗ 1.034 1.011 0.989 0.968 0.947
w2 1.135 1.061 1.014 0.992 0.998 1.044
w3 1.308 1.107 1.018 0.996 1.033 1.150
w4 1.081 1.042 1.014 0.990 0.976 0.970

N = 20

w1 1.027 1.016 1.005 0.995 0.984 0.974
w2 1.109 1.045 1.009 0.998 1.021 1.098
w3 1.273 1.090 1.013 1.002 1.054 1.197
w4 1.046 1.023 1.009 0.996 0.992 0.998

Note: ∗Standard deviation in spatial model in Eq. (6)/standard deviation in non-spatial model
in Eq. (5).

In Table 11, we compare the differences between the average standard deviations
of attendance obtained from the non-spatial model in Eq. (10) and the spatial model
in Eq. (11); we construct the ratios of the two standard deviations. If a ratio is greater
than one, the variation in attendance imposed by the spatial model is greater than
that imposed by the non-spatial model. In such a case, we would conclude that the
spatial spillover creates a competitive imbalance. On the other hand, if a ratio is less
than one, the spatial spillover tends to reduce the attendance disparity (AD). In the
upper panel of Table 11, we report the outcomes for all four weight matrices with
N = 10. When the SAR parameter ρ is negative, the ratios are greater than one in
all cases. The ratio increases as ρ becomes more negative. Hence, negative spatial
spillover tends to worsen the AD. The effects of negative spillover on the AD are
more detrimental in the models employing matrices W2 and W3 than W1 and W4.
Note that, when W2 and W3 are employed, each team is spatially dependent on
only a few teams. However, when W1 and W4 are employed, all teams experience
mutual outward and inward spillovers.

Next, if ρ > 0, the ratios are usually, but not always, less than one. For the
spatial models employing W1 and W4, the ratios are less than one and continue to
decline as ρ rises. When W2 and W3 are employed, the ratios are less than one only
if ρ is relatively small, but greater than one at larger values of ρ. The results for
N = 20 (presented in the lower panel) are qualitatively similar to those reported
for N = 10, but the impact of spillover on AD is somewhat less.

In summary, the numerical simulation results presented in Table 11 suggest that
the effects of attendance spillover on CB depend on the direction of spillover, and
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the magnitude and structure thereof. If the spatial weight matrices are sparse (W2
and W3), spillover tends to compromise AD. However, if the spillover structure
lacks a cutoff (W1 and W4), the effects of spillover on AD depend on the sign of
the spillover direction.

Next, we explored how sensitively spillover affects AD in the context of the extent
of attendance heterogeneity. We compare different levels of attendance disparity
between the neighbours. We first consider the case of the minimum attendance dif-
ference (market size) between two neighbouring teams. We reset yi (= α + ui ) in
ascending order so that the difference between yi and yi+1 is minimized for any i . We
refer to this case as a “small market disparity” among neighbours. The second case
redistributes yi to maximize the attendance difference between the next two neigh-
bours; we term this a “large market disparity”. In Tables 12 and 13, we compare the
differences between the average attendance standard deviations obtained using the
non-spatial and the spatial models with N = 10 and 20, respectively in terms of the
small and large market disparities, respectively. The results differ substantially from
those of Table 11, except for the spatial model employing W1 (with equal weights);
the results are then invariant.8 The upper panel deals with homogenous neighbours
with small market disparities. A negative (positive) ρ improves (worsens) AD when
the spillover structure is sparse (W2 and W3). The spillover effects on AD are rather

Table 12. Comparison of standard deviations of attendance in non-spatial and spatial models:
Different distributions of attendance among neighbours and N = 10.

ρ −0.5 −0.3 −0.1 0.1 0.3 0.5

Small market disparity among neighbours

w1 1.059∗ 1.034 1.011 0.989 0.968 0.947
w2 0.789 0.850 0.940 1.072 1.272 1.593
w3 0.773 0.829 0.930 1.086 1.332 1.758
w4 0.874 0.916 0.940 1.034 1.115 1.215

Large market disparity among neighbours

w1 1.059 1.034 1.011 0.989 0.968 0.947
w2 0.960 0.961 0.981 1.026 1.111 1.269
w3 1.591 1.218 1.043 0.980 1.011 1.168
w4 1.080 1.037 0.981 0.995 0.996 1.015

Note: ∗Standard deviation in spatial model in Eq. (4)/standard deviation in non-spatial model
in Eq. (3).

8Note that the results obtained when employing W1 do not change because W1 assumes that all
member teams are neighbours and all paired combinations exhibit equal spillover strengths.
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Table 13. Comparison of standard deviations of attendance in non-spatial and spatial models:
Different distributions of attendance among neighbours and N = 20.

ρ −0.5 −0.3 −0.1 0.1 0.3 0.5

Small market disparity among neighbours

w1 1.027∗ 1.016 1.005 0.995 0.984 0.974
w2 0.720 0.804 0.922 1.095 1.362 1.830
w3 0.714 0.795 0.918 1.100 1.388 1.898
w4 0.811 0.875 0.922 1.052 1.180 1.351

Large market disparity among neighbours

w1 1.027 1.016 1.005 0.995 0.984 0.974
w2 0.930 0.943 0.975 1.034 1.146 1.369
w3 1.621 1.227 1.044 0.982 1.028 1.230
w4 1.035 1.011 0.975 1.005 1.029 1.082

Note: ∗Standard deviation in spatial model in Eq. (4)/standard deviation in non-spatial model
in Eq. (3).

sensitive to changes in ρ. For example, if the spillover structure is given by W3,
AD improves by 22.7% with ρ = −0.5, but worsens by 75.8% with ρ = 0.5. The
spatial model employing W4 yields a pattern similar to those of models employing
W2 and W3, but the impacts are less sensitive to changes in ρ. The results reported
in the lower panel (which deals with heterogeneous neighbours with large market
disparities) are not unlike those of Table 11. For the spatial model employing W3,
the spillover effects on AD follow a U-shape; negative spillover worsens AD more
substantially than does positive spillover.

Consider the spatial model employing W3; this assumes that there is/are only
one or two neighbours. A positive spillover between any two homogenous neigh-
bour teams (for example, the top two teams with respect to attendance) renders the
attendances of these two teams remote from the attendances of other teams. Thus,
AD worsens as ρ becomes more positive. On the other hand, a negative spillover
moves the attendances of the two teams in opposite directions; AD improves as ρ
becomes more negative. Now, deliver a positive random shock to the team with the
largest attendance whose only neighbour is the second largest team. If the spatial
spillover is positive, the shock raises the attendance of the second largest team, but
does not directly impact the attendances of other teams.9 Thus, the overall standard
deviation of league attendance increases. On the other hand, if the spatial spillover
is negative, the positive random shock to the largest team reduces the attendance of

9The random shock exerts indirect impacts; an attendance change for the second largest team would
influence the attendance of the third largest team, and this effect ripples downward.
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the second largest team, and the overall attendance standard deviation declines. In
the other spillover structures with W2 and W4, changes in AD are not as extreme
as those evident when W3 is employed. The results with N = 20 (Table 3) are
qualitatively similar, but the standard deviation ratios are slightly more sensitive to
changes in ρ.

In sum, if neighbours are homogenous in terms of market size, negative (posi-
tive) spatial spillovers improve (worsen) the AD. On the other hand, if neighbours
are heterogeneous, the impact of spatial spillover on attendance variations is signif-
icantly less. This suggests that the impact of spillover on the AD may be sensitive to
the attendance distributions among neighbours. Merging the numerical simulations
and the positive estimates of SAR coefficients allows the evaluation of the impacts
on attendance disparity. For example, the distance weight and the size of Serie A
are similar to those of W4 and N = 20, respectively. Referring to Tables 5 and 11,
the preference change causing spatial spillover in 2013–2016 mildly reduced the
attendance disparity by about 1% in standard deviation of the attendance.

Concluding Remarks

We address an important issue: Have neighbour spillover effects influenced Serie A
attendances from 2001/02 to 2016/17? We perform spatial panel-data modelling
and simulate the impact of attendance spatial spillover on the attendance disparity
and eventually CB. Our principal empirical findings are summarized as follows:
First, we find no significant spatial interaction effects during earlier seasons (2001–
2013) but modest spatial spillovers from 2013 to 2016. These findings are robust
across the three different weight matrices employed, the inverse distance-based, the
dynasty-based and the shared market-based spatial weight matrices. Second, the
estimation results suggest that the indirect effect of HWIN is positive and signifi-
cant. This implies that win performance has a (slightly) larger effect on attendance
in recent periods (2013–2016). Third, Durbin spillover of HGOAL is statistically
significant only in shared-markets and particularly, negative spillover implies sub-
stitutability with respect to cross-quality among neighbours. Fourth, spatial atten-
dance spillover may significantly affect the attendances of member teams (and thus
the distribution of attendance) either positively or negatively. The final outcome
depends on the sign of the spatial spillover, the network structure, and the market
size distribution among neighbours.

These results have several important implications. Mills et al. (2016) and Hen-
rickson (2012) present empirical evidence that multiple teams in a city, or teams
otherwise in proximity in North America, influence fan demand and ticket prices.
These are simultaneously determined and become equilibrated. Significant cross-
quality demand elasticity is apparent. Henrickson (2012) found that a neighbour
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effect increases the ticket prices. On the other hand, we find that the spatial interac-
tion within Serie A has generally been insignificant, which may reflect strong fan
loyalty. Unlike North America, where the major professional sports leagues include
baseball, football, basketball, and ice-hockey, Europe features football only. Thus,
Serie A may enjoy stronger fan loyalty than North American sports leagues; there
is no substitute for Serie A. The demand for home games of a team with strong fan
loyalty is likely to be insensitive to changes in demand determinants, including the
performance of neighbour teams. Therefore, team spillover may be both unsubstan-
tial and masked by strong fan loyalty.

However, we find empirical evidence of changes in fan preference attributable to
neighbour effects in recent seasons. The spatial parameter has become statistically
significant since 2013/14. We conjecture that the growing importance of Champion
League (CL) may be the principal reason for this preference change, suggesting that
in-depth analysis of the dynamics of fan demand would be an important topic for
future study. Given the developments in information and communication technolo-
gies and transportation, the increasing popularity of the inter-league competition
acquaints fans not only with their home teams but also other teams. We also find
empirical evidence that there are significant spillover effects of win performance
but only within the same city. That is, the cross-quality effect is localized.

These complex spillover structure may influence the attendance distribution
across member teams. We combine the SAR estimates with the numerical simula-
tion results to explore the impact of preference change (in terms of spatial spillover)
on the attendance disparity since 2013. We find that the impact is sensitive to the
market size distribution among neighbours and the direction and magnitude of spa-
tial spillover. The spatial spillover is positive and its magnitude is about 0.1. These
findings are robust across the three different weight matrices employed. In spillover
structures based on distance or borders, the closest neighbours are teams that share
the same city. In general, the market sizes and attendances of teams in the same city
are more-or-less homogenous. In this regard, changes in the attendance distribution
caused by preference changes since 2013 are apparent in the upper panel of Table 3
with N = 20. The fourth column shows that the CB may worsen by a minimum
of 5.2% or a maximum of 10%, depending on the spillover structure imparted by
the spatial weight matrices W2, W3, and W4. For example, W3 lies close to the
shared market spillover structure because any team has only one or two neighbours.
If the inward and outward spillovers of fan demand strengthen over time, sports
leagues must pay more attention to changes in attendance distribution which may
influence CB. For example, if the spillover coefficient is 0.3, the standard deviation
of attendance may increase by a minimum of 18% and a maximum of 39%.

Macdonald (2017) stresses that a new generation of panel-data models are
required by sports economists who research consumer demand; the models must
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control unobservable factors such as market competition and various match quali-
ties. Our empirical study is in line with this suggestion, in the sense that we consider
not only the absolute and relative qualities of a match but also market competition
mediated via spatial effects. Similar empirical studies on spatial spillover in other
European football leagues would be interesting. Also, it would be intriguing to
examine spatial spillover in North American team sports.
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