
This is a repository copy of The Semantics of Graph Programs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/195074/

Version: Published Version

Proceedings Paper:
Plump, Detlef orcid.org/0000-0002-1148-822X and Steinert, Sandra (2010) The Semantics
of Graph Programs. In: Mackie, Ian and Martins Moreira, Anamaria, (eds.) Proceedings
10th International Workshop on Rule-Based Programming (RULE 2009). Tenth
International Workshop on Rule-Based Programming (RULE 2009), 28 Jun 2009
Electronic Proceedings in Theoretical Computer Science . Open Publishing Association ,
BRA , pp. 27-38.

https://doi.org/10.4204/EPTCS.21.3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

I. Mackie and A. Martins Moreira (Eds.): Tenth International

Workshop on Rule-Based Programming (RULE 2009)

EPTCS 21, 2010, pp. 27–38, doi:10.4204/EPTCS.21.3

c© D. Plump & S. Steinert

The Semantics of Graph Programs

Detlef Plump

Department of Computer Science
The University of York, UK

Sandra Steinert

Department of Computer Science
The University of York, UK

GP (for Graph Programs) is a rule-based, nondeterministic programming language for solving graph

problems at a high level of abstraction, freeing programmers from handling low-level data structures.

The core of GP consists of four constructs: single-step application of a set of conditional graph-

transformation rules, sequential composition, branching and iteration. We present a formal semantics

for GP in the style of structural operational semantics. A special feature of our semantics is the use

of finitely failing programs to define GP’s powerful branching and iteration commands.

1 Introduction

This paper defines the semantics of GP, an experimental nondeterministic programming language for

high-level problem solving in the domain of graphs. The language is based on conditional rule schemata

for graph transformation (introduced in [16]) and thereby frees programmers from handling low-level

data structures for graphs. The prototype implementation of GP compiles graph programs into bytecode

for the York abstract machine, and comes with a graphical editor for programs and graphs [11].

GP has a simple syntax as its core contains only four commands: single-step application of a set of

rule schemata, sequential composition, branching and as-long-as-possible iteration. Despite its simplic-

ity, GP is computationally complete in that every computable function on graphs can be programmed

[8]. A major goal of the GP project is the development of a practical graph-transformation language that

comes with a concise formal semantics, to facilitate program verification and other formal reasoning on

programs. Also, a formal semantics provides implementors with a rigorous definition of the language

that does not depend on a compiler or machine.

To define the meaning of GP programs, we adopt Plotkin’s method of structural operational semantics

[14]. This approach is well established for imperative programming languages [13] but is novel in the

field of graph transformation. In brief, the method consists in devising inference rules which inductively

define the effect of commands on program states. Whereas a classic state consists of the values of all

program variables at a certain point in time, the analogue for graph transformation is the graph on which

the rules of a program operate.

As GP is nondeterministic, our semantics assigns to a program P and an input graph G all graphs that

can result from executing P on G. A special feature of the semantics is the use of failing computations

to define powerful branching and iteration constructs. (Failure occurs when a set of rule schemata to

be executed is not applicable to the current graph.) While the conditions of branching commands in

traditional programming languages are boolean expressions, GP uses arbitrary programs as conditions.

The evaluation of a condition C succeeds if there exists an execution of C on the current graph that

produces a graph. On the other hand, the evaluation of C is unsuccessful if all executions of C on the

current graph result in failure. In this case C finitely fails on the current graph.

In logic programming, finite failure (of SLD resolution) is used to define negation [4]. In the case

of GP, it allows to “hide” destructive executions of the condition C of a statement ifC then P else Q.

This is because after evaluating C, the resulting graph is discarded and either P or Q is executed on the

28 Semantics of Graph Programs

graph with which the branching statement was entered. Finite failure also allows to elegantly lift the

application of as-long-as-possible iteration from sets of rule schemata (as in [16]) to arbitrary programs:

the body of a loop can no longer be applied if it finitely fails on the current graph.

Control constructs which allow programmers to write “strategies” for applying rewrite rules have

long been present in term-rewriting languages such as Elan [2] and Stratego [3]. These languages allow

recursive definitions of strategies whereas GP is based on a small set of built-in, non-recursive constructs.

(See [19] for an extension of GP with recursive procedures.)

Another difference between GP and languages such as Elan and Stratego is that strategies in the

latter languages rely on the structure of the objects that they manipulate, that is, on the tree structure of

terms. In both languages, term-rewrite rules are applied at the root of a term so that traversal operations

are needed to apply rules and strategies deep inside terms. In contrast, the semantics of GP’s control

constructs does not depend on the structure of graphs and is completely orthogonal to the semantics

of rule schemata. This provides a clear separation of concerns between rules and the control of rules,

making it easy to adapt GP’s semantics to different formats of rules or graphs.1

The contributions of this paper can be summarised as follows:

• A graph-transformation language with simple syntax and semantics, facilitating understanding by

programmers and formal reasoning on programs. Our experience so far is that very often short

and easy to understand programs can be written to solve problems on graphs (see [15] for various

small case studies).

• The first formal operational semantics for a graph-transformation language (to the best of our

knowledge). Well-known languages such as AGG [6], Fujaba [12] and GrGen [7] have no formal

semantics. The only graph-transformation language with a complete formal semantics that we

are aware of is PROGRES [18]. Its semantics, given by Schürr in his dissertation [17], translates

programs into control-flow diagrams and consists of more than 300 rules (including the definition

of the static semantics) .

• A powerful branching construct based on the concept of finite failure, allowing to conveniently

express complex destructive tests on input graphs. In addition, finite failure enables an elegant

definition of as-long-as-possible iteration. These definitions do not depend on the structure of

graphs and can be used for string- or term-based rewriting languages, too.

The rest of this paper is structured as follows. The next section reviews the graph-transformation

formalism underlying GP, the so-called double-pushout approach with relabelling. Section 3 introduces

conditional rule schemata as the building blocks of GP programs. In Section 4, we discuss an example

program for graph colouring and define the abstract syntax of graph programs. Section 5 presents our

formal semantics of GP in the style of structural operational semantics. In Section 6, we conclude and

mention some topics for future work.

2 Graph Transformation

We briefly review the model of graph transformation underlying GP, the double-pushout approach with

relabelling [9]. Our presentation is tailored to GP in that we consider graphs over a fixed label alphabet,

and rules in which only the interface may contain unlabelled nodes.

GP programs operate on graphs labelled with sequences of integers and strings. (The reason for using

sequences will become clear in Section 4.) To formalise this, let Z be the set of integers and Char be a

1In the extreme, one could even replace the underlying formalism of graph-transformation with some other rule-based

framework, such as string or term rewriting.

D. Plump & S. Steinert 29

finite set of characters—we may think of Char as the characters that can be typed on a keyboard. We fix

the label alphabet L = (Z∪Char∗)+ consisting of all nonempty sequences made up from integers and

character strings.

A partially labelled graph over L (or graph for short) is a system G = (VG,EG,sG, tG, lG,mG), where

VG and EG are finite sets of nodes (or vertices) and edges, sG, tG : EG → VG are the source and target

functions for edges, lG : VG →L is the partial node labelling function and mG : EG→L is the (total)

edge labelling function. Given a node v, we write lG(v) =⊥ to express that lG(v) is undefined. Graph G

is totally labelled if lG is a total function.

The set of all totally labelled graphs over L is denoted by G . GP programs operate on the graphs

in G , unlabelled nodes occur only in the interfaces of rules (see below) and are necessary in the double-

pushout approach to relabel nodes. There is no need to relabel edges as they can always be deleted and

reinserted with changed labels.

A graph morphism g : G→ H between graphs G and H consists of two functions gV : VG → VH

and gE : EG→ EH that preserve sources, targets and labels (that is, sH ◦gE = gV ◦ sG, tH ◦gE = gV ◦ tG,

mH ◦gE = mG, and lH(g(v)) = lG(v) for all v such that lG(v) 6=⊥). Morphism g is an inclusion if g(x) = x

for all nodes and edges x. It is injective if gV and gE are injective.

A rule r = (L← K → R) consists of two inclusions K → L and K → R where L and R are totally

labelled graphs. Graph K is the interface of r. Intuitively, an application of r to a graph will remove the

items in L−K, preserve K, add the items in R−K, and relabel the unlabelled nodes in K. Given a graph

G in G , an injective graph morphism g : L→ G is a match for r if it satisfies the dangling condition: no

node in g(L)−g(K) is incident to an edge in G−g(L). In this case G directly derives the graph H in G

that is constructed from G as follows:2

1. Remove all nodes and edges in g(L)−g(K).

2. Add disjointly all nodes and edges from R−K, keeping their labels. For e ∈ ER−EK, sH(e) is

sR(e) if sR(e) ∈VR−VK , otherwise gV (sR(e)). Targets are defined analogously.

3. For each node v in K with lK(v) =⊥, lH(gV (v)) becomes lR(v).

We write G⇒r,g H (or just G⇒r H) if G directly derives H as above.

Figure 1 shows an example of a direct derivation. The rule in the upper row is applied to the left

graph of the lower row, resulting in the right graph of the lower row. For simplicity, we do not depict

edge labels and assume that they are all the same. The node identifiers 1 and 2 in the rule specify the

inclusions of the interface. The middle graph of the lower row is an intermediate result (omitted in

the above construction). This diagram represents a double-pushout in the category of partially labelled

graphs over L .

To define conditional rules, we equip rules with predicates that restrict sets of matches. A conditional

rule q = (r,P) consists of a rule r and a predicate P on graph morphisms. Given totally labelled graphs

G, H and a match g : L→ G for q, we write G⇒q,g H (or just G⇒q H) if P(g) holds and G⇒r,g H . For

a set of conditional rules R, we write G⇒R H if there is some q in R such that G⇒q H .

3 Conditional Rule Schemata

A GP program is essentially a list of declarations of conditional rule schemata together with a command

sequence for controlling the application of the schemata. Rule schemata generalise rules in that labels

can contain expressions over parameters of type integer or string. In this section, we give an abstract

2See [9] for an equivalent definition by graph pushouts.

30 Semantics of Graph Programs

1

1

1 1

2

←

1 2

→ 2

1

3

2

↓ ↓ ↓

1

1

1

1

←

1

→ 2 3

1

Figure 1: A direct derivation

syntax for the textual components of conditional rule schemata and interpret them as sets of conditional

rules.

Figure 2 shows an example for the declaration of a conditional rule schema. It consists of the iden-

tifier bridge followed by the declaration of formal parameters, the left and right graphs of the schema

which are labelled with expressions over the parameters, the node identifiers 1, 2, 3 determining the

interface of the schema, and the keyword where followed by the condition.

bridge(a,b,x,y,z : int)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a+b

a b

where a>= 0 and b>= 0 and notedge(1,3)

Figure 2: A conditional rule schema

In the GP programming system [11], rule schemata are constructed with a graphical editor. Figure

3 gives a grammar in Extended Backus-Naur Form for node and edge labels in the left and right graph

of a rule schema (categories LeftLabel and RightLabel).3 Labels can be sequences of expressions sepa-

rated by underscores, as will be demonstrated by Example 1 in Section 4. We require that labels in the

left graph must be simple expressions because their values at execution time are determined by graph

matching. All variable identifiers in the right graph must also occur in the left graph. Every expression

in category Exp has type int or string, where arithmetical operators expect arguments of type int and

the type of variable identifiers is determined by their declarations.

The condition of a rule schema is a boolean expression built from expressions of category Exp and

the special predicate edge, see Figure 4. Again, all variable identifiers occurring in the condition must

3The grammars in Figure 3 and Figure 4 are ambiguous, we use parentheses to disambiguate expressions where necessary.

D. Plump & S. Steinert 31

LeftLabel ::= SimpleExp [’ ’ LeftLabel]

RightLabel ::= Exp [’ ’ RightLabel]

SimpleExp ::= [’-’] Num | String | VarId

Exp ::= SimpleExp | Exp ArithOp Exp

ArithOp ::= ’+’ | ’-’ | ’∗’ | ’/’

Num ::= Digit {Digit}

String ::= ’ ” ’ {Char} ’ ” ’

Figure 3: Syntax of node and edge labels

BoolExp ::= edge ’(’ Node ’,’ Node ’)’ | Exp RelOp Exp

| not BoolExp | BoolExp BoolOp BoolExp

Node ::= Digit {Digit}

RelOp ::= ’=’ | ’\=’ | ’>’ | ’<’ | ’>=’ | ’<=’

BoolOp ::= and | or

Figure 4: Syntax of conditions

also occur in the left graph of the schema. The predicate edge demands the (non-)existence of an

edge between two nodes in the graph to which the rule schema is applied. For example, the expression

notedge(1,3) in the condition of Figure 2 forbids an edge from node 1 to node 3 when the left graph is

matched.

We interpret a conditional rule schema as the (possibly infinite) set of conditional rules that is ob-

tained by instantiating variables with any values and evaluating expressions. To define this, consider a

declaration D of a conditional rule-schema. Let L and R be the left and right graphs of D, and c the

condition. We write Var(D) for the set of variable identifiers occurring in D. Given x in Var(D), type(x)
denotes the type associated with x. An assignment is a mapping α : Var(D)→ (Z∪Char∗) such that for

each x in Var(D), type(x) = int implies α (x) ∈ Z, and type(x) = string implies α (x) ∈ Char∗.

Given a label l of category RightLabel occuring in D and an assignment α , the value lα ∈ L is

inductively defined. If l is a numeral or a sequence of characters, then lα is the integer or character string

represented by l (which is independent of α). If l is a variable identifier, then lα = α (l). Otherwise, lα

is obtained from the values of l’s components. If l has the form e1⊕ e2 with ⊕ in ArithOp and e1,e2 in

Exp, then lα = eα
1 ⊕Z eα

2 where ⊕Z is the integer operation represented by ⊕.4 If l has the form e m with

e in Exp and m in RightLabel, then lα = eα mα (the concatenation of eα and mα). Note that our definition

of lα covers all labels in D since LeftLabel is a subcategory of RightLabel.

The value of the condition c in D not only depends on an assignment but also on a graph morphism.

For, if c contains the predicate edge, we need to consider the structure of the graph to which we want to

apply the rule schema. Consider an assignment α and let Lα be obtained from L by replacing each label

l with lα . Let g : Lα → G be a graph morphism with G ∈ G . Then for each Boolean subexpression b of

c, the value bα ,g in B = {tt,ff} is inductively defined. If b has the form e1 ⊲⊳ e2 with ⊲⊳ in RelOp and

e1,e2 in Exp, then bα ,g = tt if and only if eα
1 ⊲⊳Z eα

2 where ⊲⊳Z is the relation on integers represented by

4For simplicity, we consider division by zero as an implementation-level issue.

32 Semantics of Graph Programs

⊲⊳. If b has the form notb1 with b1 in BoolExp, then bα ,g = tt if and only if b
α ,g
1 = ff. If b has the

form b1⊕b2 with ⊕ in BoolOp and b1,b2 in BoolExp, then bα ,g = b
α ,g
1 ⊕B b

α ,g
2 where ⊕B is the Boolean

operation on B represented by ⊕. A special case is given if b has the form edge(v,w) where v,w are

identifiers of interface nodes in D. We then have

bα ,g =

{

tt if there is an edge from g(v) to g(w),
ff otherwise.

Let now r be the rule-schema identifier associated with declaration D. For every assignment α , let

rα = (Lα ← K→ Rα , Pα) be the conditional rule given as follows:

• Lα and Rα are obtained from L and R by replacing each label l with lα .

• K is the discrete subgraph of L and R determined by the node identifiers for the interface, where

all nodes are unlabelled.

• Pα is defined by: Pα (g) if and only if g is a graph morphism Lα → G such that G ∈ G and

cα ,g = tt.

The interpretation of r is the rule set I(r) = {rα | α is an assignment}. For notational convenience, we

sometimes denote the relation⇒I(r) by⇒r. Note that I(r) is a (possibly infinite) set of conditional rules

in the sense of Section 2, grounding rule schemata in the theory of the double-pushout approach with

relabelling [9].

For example, the upper rows of Figure 5 show the rule schema bridge of Figure 2 (without con-

dition) and its instance bridgeα , where α (x) = 0, α (y) = α (z) = 1, α (a) = 3 and α (b) = 2. The

condition c of bridge evaluates to the predicate Pα which is true for a match g of the left-hand graph

if and only if there is no edge from g(1) to g(3). (The subexpressions a>= 0 and b>= 0 evaluate to

tt and hence can be ignored.) The lower rows of Figure 5 show an application of bridgeα by a graph

morphism satisfying Pα .

Schema: x

1

y

2

z

3

a b
⇒ x

1

y

2

z

3

a b

a+b

↓α ↓α

Instance: 0

1

1

2

1

3

3 2
⇒ 0

1

1

2

1

3

3 2

5

↓ ↓

0 1

2

1
3 2

01

⇒ 0 1

2

1
3 2

5

01

Figure 5: Application of a rule schema using instantiation

D. Plump & S. Steinert 33

4 Graph Programs

We start by discussing an example program for graph colouring.

Example 1 (Computing a 2-colouring). A colouring for a graph is an assignment of colours (integers)

to nodes such that the source and target of each edge have different colours. A graph is 2-colourable

(or bipartite) if it possesses a colouring with at most two colours. The program 2-colouring in Fig-

ure 6 generates a 2-colouring for nonempty, connected input graphs without loops if such a colouring

exists—otherwise the input graph is returned. The program consists of five rule-schema declarations, the

macro colour representing the rule-schema set {colour1, colour2}, and the main command sequence

following the key word main.

main= choose; colour!; if illegal then undo!

colour= {colour1, colour2}

choose(x : int) illegal(a,i,x,y : int)

1

x ⇒

1

x 0 x i y i

1 2

a
⇒ x i y i

1 2

a

colour1(a,i,x,y : int) undo(i,x : int)

x i y

1 2

a
⇒ x i y 1−i

1
2

a
1

x i ⇒

1

x

colour2(a,i,x,y : int)

x i y

1 2

a
⇒ x i y 1−i

1
2

a

Figure 6: The program 2-colouring

Given an integer-labelled input graph, the program first uses the rule schema choose to pick any

node and replace its label x with x 0. The underscore operator allows to add a tag to a label, used

here to add colours to labels. In general, a tagged label consists of a sequence of expressions joined by

underscores. After the first node has been coloured, the command colour! applies the rule schemata

colour1 and colour2 nondeterministically as long as possible to colour all remaining nodes. In each

iteration of the loop, an uncoloured node adjacent to an already coloured node v gets the colour in {0,1}
that is complementary to v’s colour. If the input graph is connected, the graph resulting from colour!

is correctly coloured if and only if the rule schema illegal is not applicable. The latter is checked

by the if-statement. If illegal is applicable, then the input must contain an undirected cycle of odd

length and hence is not 2-colourable (see for example [10]). In this case the loop undo! removes all tags

to return the input graph unmodified. Note that the number of rule-schema applications performed by

2-colouring is linear in the number of input nodes.

To make 2-colouring applicable to graphs that are possibly empty or disconnected, we can insert

34 Semantics of Graph Programs

a nested loop:

main = (choose; colour!)!; if illegal then undo!.

Now if the input graph is empty, choose fails which causes the outer loop to terminate and return the

current (empty) graph. On the other hand, if the input consists of several connected components, the

body of the outer loop is repeatedly called to colour each component.

Figure 7 shows the abstract syntax of GP programs.5 A program consists of a number of declarations

of conditional rule schemata and macros, and exactly one declaration of a main command sequence. The

rule-schema identifiers (category RuleId) occurring in a call of category RuleSetCall refer to declarations

of conditional rule schemata in category RuleDecl (see Section 3). Semantically, each rule-schema

identifier r stands for the set I(r) of conditional rules induced by that identifier. A call of the form

{r1, . . . ,rn} stands for the union
⋃n

i=1 I(ri).

Prog ::= Decl {Decl}

Decl ::= RuleDecl |MacroDecl |MainDecl

MacroDecl ::= MacroId ’=’ ComSeq

MainDecl ::= main ’=’ ComSeq

ComSeq ::= Com {’;’ Com}

Com ::= RuleSetCall |MacroCall

| if ComSeq then ComSeq [else ComSeq]

| ComSeq ’!’

| skip | fail

RuleSetCall ::= RuleId | ’{’ [RuleId {’,’ RuleId}] ’}’

MacroCall ::= MacroId

Figure 7: Abstract syntax of GP

Macros are a simple means to structure programs and thereby to make them more readable. Every

program can be transformed into an equivalent macro-free program by replacing macro calls with their

associated command sequences (recursive macros are not allowed). In the next section we use the terms

“program” and “command sequence” synonymously, assuming that all macro calls have been replaced.

The commands skip and fail can be expressed through the other commands (see next section),

hence the core of GP includes only the call of a set of conditional rule schemata (RuleSetCall), sequential

composition (’;’), the if-then-else statement and as-long-as-possible iteration (’!’).

5 Semantics of Graph Programs

We present a formal semantics of GP in the style of Plotkin’s structural operational semantics [14]. As

usual for this approach, inference rules inductively define a small-step transition relation→ on configu-

rations. In our setting, a configuration is either a command sequence together with a graph, just a graph

or the special element fail:

→ ⊆ (ComSeq×G)× ((ComSeq×G)∪G ∪{fail}).

5Where necessary we use parentheses to disambiguate programs.

D. Plump & S. Steinert 35

Configurations in ComSeq×G represent unfinished computations, given by a rest program and a state in

the form of a graph, while graphs in G are proper results of computations. In addition, the element fail

represents a failure state. A configuration γ is terminal if there is no configuration δ such that γ→ δ.

Each inference rule in Figure 8 consists of a premise and a conclusion separated by a horizontal

bar. Both parts contain meta-variables for command sequences and graphs, where R stands for a call in

category RuleSetCall, C,P,P′,Q stand for command sequences in category ComSeq and G,H stand for

graphs in G . Given a rule-set call R, let I(R) =
⋃

{I(r) | r is a rule-schema identifier in R} (see Section

3 for the definition of I(r)). The domain of⇒I(R), denoted by Dom(⇒I(R)), is the set of all graphs G in

G such that G⇒I(R) H for some graph H . Meta-variables are considered to be universally quantified.

For example, the rule [Call1] should be read as: “For all R in RuleSetCall and all G,H in G , G⇒I(R) H

implies 〈R, G〉 → H .”

Figure 8 shows the inference rules for the core constructs of GP. We write →+ and →∗ for the

transitive and reflexive-transitive closures of →. A command sequence C finitely fails on a graph G ∈
G if (1) there does not exist an infinite sequence 〈C, G〉 → 〈C1, G1〉 → . . . and (2) for each terminal

configuration γ such that 〈C, G〉 →∗ γ, γ = fail. In other words, C finitely fails on G if all computations

starting from (C, G) eventually end in the configuration fail.

[Call1]
G⇒I(R) H

〈R, G〉 → H
[Call2]

G 6∈ Dom(⇒I(R))
〈R, G〉 → fail

[Seq1]
〈P, G〉 → 〈P′, H〉

〈P;Q, G〉 → 〈P′;Q, H〉
[Seq2]

〈P, G〉 → H
〈P;Q, G〉 → 〈Q, H〉

[Seq3]
〈P, G〉 → fail
〈P;Q, G〉 → fail

[If1]
〈C, G〉 →+ H

〈ifC then P else Q, G〉 → 〈P, G〉
[If2]

C finitely fails on G
〈if C then P else Q, G〉 → 〈Q, G〉

[Alap1]
〈P, G〉 →+ H

〈P!, G〉 → 〈P!, H〉
[Alap2]

P finitely fails on G
〈P!, G〉 → G

Figure 8: Inference rules for core commands

The concept of finite failure stems from logic programming where it is used to define negation as

failure [4]. In the case of GP, we use it to define powerful branching and iteration constructs. In particular,

our definition of the if-then-else command allows to “hide” destructive tests.

Example 2 (Recognizing series-parallel graphs). A graph is series-parallel if it reduces to a graph con-

sisting of two nodes and an edge between them by the following two operations [1, 5]: (1) Replace a

pair of parallel edges by an edge from their source to their target. (2) Given a node v with exactly one

incoming edge e1 and exactly one outgoing edge e2 such that the source of e1 and the target of e2 are

distinct, replace e1, e2 and v by an edge from the source of e1 to the target of e2.

Suppose that we want to check whether a connected, integer-labelled graph G is series-parallel and,

depending on the result, execute either a program P or a program Q on G. We can do this with the

program

main = if {par, seq}!; base then P else Q

whose rule schemata par, seq and base are shown in Figure 9. The subprogram {par, seq}! applies

36 Semantics of Graph Programs

as long as possible the operations (1) and (2) to the input graph G, then the rule schema base checks if

the resulting graph consists of two nodes connected by an edge. Graph G is series-parallel if and only

if base is applicable to the reduced graph. (Note that {par, seq}! preserves connectedness and that, by

the dangling condition, base is applicable only if the images of its left-hand nodes have degree one.) It

is important to note that by the inference rules [If1] and [If2], the main program executes P or Q on the

input graph G whereas the graph resulting from the test is discarded.

par(a,b,x,y : int)

x y

1 2

a

b

⇒ x y

1 2

0

seq(a,b,x,y,z : int)

x y z

1 2

a b
⇒ x z

1 2

0

base(a,x,y : int)

x y
a

⇒ /0

Figure 9: Rule schemata for recognizing series-parallel graphs

The meaning of the remaining GP commands is defined in terms of the meaning of the core com-

mands, see Figure 10. We refer to these commands as derived commands.

[Skip] 〈skip, G〉 → 〈r, G〉
where r is an identifier for the rule schema /0⇒ /0

[[Fail] 〈fail, G〉 → 〈{}, G〉

[If3] 〈if C then P, G〉 → 〈if C then P else skip, G〉

Figure 10: Inference rules for derived commands

We can now summarise the meaning of GP programs by a semantic function J K which assigns to

each program P the function JPK mapping an input graph G to the set of all possible results of running P

on G. The result set may contain, besides proper results in the form of graphs, the special value ⊥ which

indicates a nonterminating or stuck computation. The semantic function J K : ComSeq→ (G → 2G∪{⊥})
is defined by6

JPKG = {H ∈ G | 〈P, G〉
+
→H}∪{⊥ | P can diverge or get stuck from G}

where P can diverge from G if there is an infinite sequence 〈P, G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . . , and P

can get stuck from G if there is a terminal configuration 〈Q, H〉 such that 〈P, G〉 →∗ 〈Q, H〉.

6We write JPKG for the application of JPK to a graph G.

D. Plump & S. Steinert 37

Note that JPKG = /0 if and only if P finitely fails on G. In Example 2, for instance, we have

J{par, seq}!; baseKG = /0 for every connected graph G containing a cycle. This is because the graph

resulting from {par, seq}! is still connected and cyclic, so the rule schema base is not applicable.

A program can get stuck only in two situations: either it contains a subprogram ifC then P else Q

where C both can diverge from some graph and cannot produce a proper result from that graph, or it con-

tains a subprogram B! where the loop’s body B possesses the said property of C. The evaluation of these

subprograms will get stuck because the inference rules for branching and iteration are not applicable.

6 Conclusion

GP is an experimental rule-based language for high-level problem solving in the domain of graphs,

freeing programmers from handling low-level data structures. The hallmark of GP is syntactic and

semantic simplicity. Conditional rule schemata for graph transformation allow to express application

conditions and computations on labels, in addition to structural changes. The semantics of rule schemata

is orthogonal to the semantics of control constructs, making it easy to change the format of rules or

graphs.

The operational semantics of programs describes the effect of GP’s control constructs in a natural

way and captures the nondeterminism of the language. In particular, powerful branching and iteration

commands have been defined using the concept of finite failure. Destructive tests on the current graph

can be hidden in the condition of the branching command, and nested loops can be coded since arbitrary

subprograms can be iterated as long as possible.

Future extensions of GP may include recursive procedures for writing complex algorithms (see [19]),

and a type concept for restricting the shape of graphs. Our goal is to support formal reasoning on graph

programs by developing static analyses for properties such as termination and confluence (uniqueness of

results), and a calculus and tool support for program verification.

References

[1] Jørgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag,

2000.

[2] Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Pierre-Etienne Moreau. ELAN from a rewriting

logic point of view. Theoretical Computer Science, 285(2):155–185, 2002.

[3] Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. Program transformation with scoped

dynamic rewrite rules. Fundamenta Informaticae, 69(1–2):123–178, 2006.

[4] Keith L. Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic and Data Bases, pages

293–322. Plenum Press, 1978.

[5] R. J. Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and Applications,

10:303–318, 1965.

[6] Claudia Ermel, Michael Rudolf, and Gabi Taentzer. The AGG approach: Language and environment. In

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook of Graph Grammars and Com-

puting by Graph Transformation, volume 2, chapter 14, pages 551–603. World Scientific, 1999.

[7] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam M. Szalkowski. GrGen: A fast

SPO-based graph rewriting tool. In Proc. International Conference on Graph Transformation (ICGT 2006),

volume 4178 of Lecture Notes in Computer Science, pages 383–397. Springer-Verlag, 2006.

38 Semantics of Graph Programs

[8] Annegret Habel and Detlef Plump. Computational completeness of programming languages based on graph

transformation. In Proc. Foundations of Software Science and Computation Structures (FOSSACS 2001),

volume 2030 of Lecture Notes in Computer Science, pages 230–245. Springer-Verlag, 2001.

[9] Annegret Habel and Detlef Plump. Relabelling in graph transformation. In Proc. International Conference

on Graph Transformation (ICGT 2002), volume 2505 of Lecture Notes in Computer Science, pages 135–147.

Springer-Verlag, 2002.

[10] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2006.

[11] Greg Manning and Detlef Plump. The GP programming system. In Proc. Graph Transformation and Visual

Modelling Techniques (GT-VMT 2008), volume 10 of Electronic Communications of the EASST, 2008.

[12] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In Proc. International Conference

on Software Engineering (ICSE 2000), pages 742–745. ACM Press, 2000.

[13] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer. Springer-Verlag,

2007.

[14] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic Pro-

gramming, 60–61:17–139, 2004.

[15] Detlef Plump. The graph programming language GP. In Proc. Algebraic Informatics (CAI 2009), volume

5725 of Lecture Notes in Computer Science, pages 99–122. Springer-Verlag, 2009.

[16] Detlef Plump and Sandra Steinert. Towards graph programs for graph algorithms. In Proc. International

Conference on Graph Transformation (ICGT 2004), volume 3256 of Lecture Notes in Computer Science,

pages 128–143. Springer-Verlag, 2004.

[17] Andy Schürr. Operationales Spezifizieren mit programmierten Graphersetzungssystemen. Deutscher Univer-

sitäts-Verlag, 1991. In German.

[18] Andy Schürr, Andreas Winter, and Albert Zündorf. The PROGRES approach: Language and environment.

In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook of Graph Grammars and

Computing by Graph Transformation, volume 2, chapter 13, pages 487–550. World Scientific, 1999.

[19] Sandra Steinert. The Graph Programming Language GP. PhD thesis, The University of York, 2007.

	1 Introduction
	2 Graph Transformation
	3 Conditional Rule Schemata
	4 Graph Programs
	5 Semantics of Graph Programs
	6 Conclusion

